JP2011054235A - Optical pickup device and optical disk device using the same - Google Patents

Optical pickup device and optical disk device using the same Download PDF

Info

Publication number
JP2011054235A
JP2011054235A JP2009202188A JP2009202188A JP2011054235A JP 2011054235 A JP2011054235 A JP 2011054235A JP 2009202188 A JP2009202188 A JP 2009202188A JP 2009202188 A JP2009202188 A JP 2009202188A JP 2011054235 A JP2011054235 A JP 2011054235A
Authority
JP
Japan
Prior art keywords
light
signal
diffraction
optical pickup
pickup device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009202188A
Other languages
Japanese (ja)
Other versions
JP5378120B2 (en
Inventor
Toshiteru Nakamura
俊輝 中村
Nobuo Nakai
伸郎 中井
Shigeji Kimura
茂治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Media Electronics Co Ltd
Original Assignee
Hitachi Media Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Media Electronics Co Ltd filed Critical Hitachi Media Electronics Co Ltd
Priority to JP2009202188A priority Critical patent/JP5378120B2/en
Priority to US12/760,592 priority patent/US8184509B2/en
Priority to CN201010167259.7A priority patent/CN102005217B/en
Publication of JP2011054235A publication Critical patent/JP2011054235A/en
Application granted granted Critical
Publication of JP5378120B2 publication Critical patent/JP5378120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1381Non-lens elements for altering the properties of the beam, e.g. knife edges, slits, filters or stops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0901Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following only
    • G11B7/0906Differential phase difference systems
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0943Methods and circuits for performing mathematical operations on individual detector segment outputs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • G11B7/133Shape of individual detector elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/094Methods and circuits for servo offset compensation

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical pickup device capable of stably obtaining high-quality recording or reproducing quality by reducing fluctuations in detection signals caused by stray light in a multilayered optical disk, and an optical disk device. <P>SOLUTION: Of the beams reflected by an optical disk, only peripheral beams excluding the push-pull region are used to generate a DPD signal in order to optimize internal wire connections among the light-receiving areas of the optical detector and thereby reduce the amplification factor of the lens error signal, required for generating the tracking error signal of the DPP method. A beam reflected from a multilayered optical disk is divided into some beam diffraction areas. The divided beam diffraction areas and the light-receiving areas are so arranged that the divided beams focus at different positions on the optical detector and that, when a beam is focused on a target layer, stray light from other than the target recording layer to be reproduced does not enter the servo signal light-receiving area of the optical detector. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光ピックアップ装置、光ディスク装置に関する。   The present invention relates to an optical pickup device and an optical disk device.

本技術分野の背景技術として、例えば特開2006−344344号公報(特許文献1)がある。本公報には「複数の記録層を有する光ディスクから所望の信号を精度良く取得する」と記載されている。また、例えば特開2006−344380号公報(特許文献2)がある。本公報には「情報記録面を2面有する記録可能な光記憶媒体を用いた場合でも、オフセットの少ないトラッキング誤差信号を検出する」と記載されている。さらに、例えば非特許文献1には「トラッキング用フォトディテクタを他層迷光のない領域に配置する」と記載されており、その構成については特開2004−281026(特許文献3)においても記載されている。   As background art in this technical field, for example, there is JP-A-2006-344344 (Patent Document 1). This publication describes that “a desired signal is accurately obtained from an optical disk having a plurality of recording layers”. Moreover, there exists Unexamined-Japanese-Patent No. 2006-344380 (patent document 2), for example. This publication describes that “a tracking error signal with a small offset is detected even when a recordable optical storage medium having two information recording surfaces is used”. Further, for example, Non-Patent Document 1 describes that “the tracking photodetector is arranged in an area free from other layers of stray light”, and the configuration thereof is also described in Japanese Patent Application Laid-Open No. 2004-281026 (Patent Document 3). .

また、例えば特開2008−102998号公報(特許文献4)がある。本公報には「光ディスクの目的の情報記録層に焦点を合わせた場合に、目的の情報記録層からの反射光束が光検出器の受光部上に焦点を結び、目的の情報記録層以外の情報記録層からの反射光束は光検出器の受光部に照射されないように、分割素子の各領域と光検出器の受光部を構成する。」と記載されている。   Moreover, there exists Unexamined-Japanese-Patent No. 2008-102998 (patent document 4), for example. This publication states that “when the target information recording layer of the optical disc is focused, the reflected light beam from the target information recording layer is focused on the light receiving portion of the photodetector, and information other than the target information recording layer is recorded. It is described that each region of the dividing element and the light receiving portion of the photodetector are configured so that the reflected light beam from the recording layer is not irradiated to the light receiving portion of the photodetector.

特開2006−344344号公報JP 2006-344344 A 特開2006−344380号公報JP 2006-344380 A 特開2004−281026号公報JP 2004-281026 A 特開2008−102998号公報JP 2008-102998 A

電子情報通信学会 信学技報CPM2005−149(2005−10)IEICE Technical Report CPM 2005-149 (2005-10)

近年、記録層が多層化された光ディスクの記録又は再生時において、再生の対象でない記録層で反射した迷光が光検出器面上へ入射して外乱成分となり、光検出器の検出信号を変動させるという課題がある。特に記録層が3層以上に多層化された光ディスクでは、不要光束が複数の層で発生する為、外乱成分が増加し前記検出信号の変動はさらに増大してしまう。前記課題に対して、特許文献4では複数の領域を有する分割素子を設け、光ディスクで反射された光束を、出射方向の異なる複数の光束に分割することで迷光と信号光を分離することにより検出信号の変動を抑制している。   In recent years, when recording or reproducing an optical disc having a multi-layered recording layer, stray light reflected by a recording layer that is not the target of reproduction is incident on the surface of the photodetector and becomes a disturbance component, which fluctuates the detection signal of the photodetector. There is a problem. In particular, in an optical disk having three or more recording layers, unnecessary light fluxes are generated in a plurality of layers, so that the disturbance component increases and the variation of the detection signal further increases. In order to solve the above-mentioned problem, Patent Document 4 provides a dividing element having a plurality of regions, and detects the light beam reflected by the optical disk by separating the stray light and the signal light by dividing the light beam into a plurality of light beams having different emission directions. Signal fluctuation is suppressed.

しかし、前記構成ではDPP方式のトラッキング誤差信号に用いる信号に10倍程度の信号増幅を必要とするものがあり、完全に分離しきれずに僅かに残留した迷光による信号揺れ成分や、傷や汚れ等の外乱成分を大幅に増幅してしまうという課題がある。その結果、増幅された外乱成分がDPP信号に漏れ込み、安定して高品質な記録又は再生品質の得ることが難しい。   However, in the above configuration, there is a signal that requires signal amplification of about 10 times for the signal used for the tracking error signal of the DPP system, and the signal fluctuation component due to the stray light that cannot be completely separated and remaining slightly, scratches, dirt, etc. There is a problem that the disturbance component of the signal is greatly amplified. As a result, the amplified disturbance component leaks into the DPP signal, and it is difficult to stably obtain high-quality recording or reproduction quality.

本発明は電気的な信号増幅を抑えつつDPP信号を生成可能とし、外乱成分の検出信号への漏込みを大幅に低減し、安定して高品質な記録又は再生品質の得られる光ピックアップ装置および光ディスク装置を提供することを目的とする。   The present invention provides an optical pickup device capable of generating a DPP signal while suppressing electrical signal amplification, greatly reducing leakage of a disturbance component into a detection signal, and stably obtaining high quality recording or reproduction quality. An object is to provide an optical disk device.

上記目的は、その一例として特許請求の範囲に記載の発明によって達成できる。   The above object can be achieved by the invention described in the claims as an example.

本発明によれば、検出信号への迷光による外乱の影響を低減し、高品質な信号の検出ができる、光ピックアップ装置及び光ディスク装置を提供できる。   According to the present invention, it is possible to provide an optical pickup device and an optical disc device that can reduce the influence of disturbance due to stray light on a detection signal and can detect a high-quality signal.

本発明における光ピックアップ装置の構成例を示す概略図。Schematic which shows the structural example of the optical pick-up apparatus in this invention. 従来例における光束分割素子を示す概略図。Schematic which shows the light beam splitting element in a prior art example. 従来例における光検出器の構成を示す概略図。Schematic which shows the structure of the photodetector in a prior art example. 第1の実施例における光束分割素子を示す概略図。Schematic which shows the light beam splitting element in a 1st Example. 第1の実施例における光検出器の構成を示す概略図。Schematic which shows the structure of the photodetector in a 1st Example. 第2の実施例における光検出器の構成を示す概略図。Schematic which shows the structure of the photodetector in a 2nd Example. 第3の実施例における光束分割素子を示す概略図。Schematic which shows the light beam splitting element in a 3rd Example. 第3の実施例における光検出器の構成を示す概略図。Schematic which shows the structure of the photodetector in a 3rd Example. 第4の実施例における光検出器の構成を示す概略図。Schematic which shows the structure of the photodetector in a 4th Example. 第5の実施例における光検出器の構成を示す概略図。Schematic which shows the structure of the photodetector in a 5th Example. 本発明における光ディスク装置の構成例を示す概略図。1 is a schematic diagram showing a configuration example of an optical disc apparatus according to the present invention.

以下、本発明の実施形態の詳細について図面を参照しながら説明する。なお、各図において、同じ作用を示す構成要素には同じ符号を付している。   Hereinafter, details of embodiments of the present invention will be described with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the component which shows the same effect | action.

図1は本発明の第1の実施例に係る光ピックアップ装置の一例を示した概略構成図である。レーザ光源1から出射したレーザ光束2は偏光ビームスプリッタ3により進路方向が変更され、ステッピングモータ4の駆動により入射光束の球面収差補正が可能なコリメートレンズ5、互いに直交する偏光成分に90度の位相差を与える1/4波長板6を経て対物レンズ7によって光ディスク8内の所定の記録層に集光される。
光ディスク8からの反射光束は再び対物レンズ7を透過後、1/4波長板6、偏光ビームスプリッタ3を経て、光束分割素子10によって光束は複数光束に分割されたのち、光検出器11へ入射する。なお、対物レンズ7は所定の方向に駆動するためのアクチュエータ9内に取付けられるのが望ましい。このアクチュエータを駆動して対物レンズの位置制御が実行される。対物レンズの位置制御にはトラッキング誤差信号を用いたトラッキング制御とフォーカス誤差信号を用いたフォーカス制御とが実行される。前記球面収差補正手段としては液晶素子等を用いても構わない。
FIG. 1 is a schematic configuration diagram showing an example of an optical pickup device according to a first embodiment of the present invention. The laser beam 2 emitted from the laser light source 1 has its path direction changed by the polarization beam splitter 3, the collimating lens 5 capable of correcting the spherical aberration of the incident beam by driving the stepping motor 4, and the polarization component orthogonal to each other at about 90 degrees. The light is condensed on a predetermined recording layer in the optical disk 8 by the objective lens 7 through a quarter-wave plate 6 that gives a phase difference.
The reflected light beam from the optical disk 8 passes through the objective lens 7 again, passes through the quarter-wave plate 6 and the polarizing beam splitter 3, and is split into a plurality of light beams by the light beam splitting element 10 and then enters the light detector 11. To do. The objective lens 7 is preferably mounted in an actuator 9 for driving in a predetermined direction. The actuator is driven to control the position of the objective lens. For the position control of the objective lens, tracking control using a tracking error signal and focus control using a focus error signal are executed. A liquid crystal element or the like may be used as the spherical aberration correction means.

上記構成は主に多層化された光ディスクを記録又は再生する際に良く用いられる光学系方式である。そこで、はじめに従来の前記光束分割素子と光検出器の具体的構成と課題について説明する。図2(a)に従来例における前記光束分割素子10の概略形状の一例を示す。前記光束分割素子は回折格子であり、かつ回折格子面は複数の領域に分割され、領域毎に所定の回折格子溝の形状が夫々設けられたものとすればよい。光束分割素子には複数の回折領域a及至回折領域iが設けられる。光ディスクで反射した前記反射光束は、光ディスクの記録層に設けられたトラック溝により回折作用をうける。このディスク回折光のうち、回折領域iには、光束の中心を含む0次ディスク回折光が入射し、前記回折領域a及びbには、0次、+1次ディスク回折光が入射し、前記回折領域c及びdには、0次と−1次ディスク回折光が入射する。さらに前記回折領域aに隣接して回折領域eが、前記回折領域bに隣接して回折領域fが、前記回折領域cに隣接して回折領域gが、前記回折領域dに隣接して回折領域hが夫々設けられる。そして回折領域e及至回折領域hには0次のディスク回折光束の周辺部領域の光が主に入射する。上記各入射光束成分と回折領域の関係に対応した範囲内であれば各回折領域の形状の変更や領域間の一体化もしくは更なる領域分割を行っても構わない。図2(b)には一例として光束分割素子の変形例を示す。各回折領域と入射するディスク回折光の関係は前記関係を維持している。   The above configuration is an optical system that is often used when recording or reproducing a multilayered optical disk. Therefore, first, specific configurations and problems of the conventional light beam splitting element and photodetector will be described. FIG. 2A shows an example of a schematic shape of the light beam splitting element 10 in the conventional example. The beam splitting element may be a diffraction grating, the diffraction grating surface may be divided into a plurality of regions, and a predetermined diffraction grating groove shape may be provided for each region. The beam splitting element is provided with a plurality of diffraction areas a and diffractive areas i. The reflected light beam reflected by the optical disc is diffracted by the track groove provided in the recording layer of the optical disc. Of the disc diffracted light, 0th-order disc diffracted light including the center of the light beam is incident on the diffraction region i, and 0th-order and + 1st-order disc diffracted light is incident on the diffraction regions a and b. Zero-order and −1st-order disc diffracted light is incident on the regions c and d. Further, a diffraction region e is adjacent to the diffraction region a, a diffraction region f is adjacent to the diffraction region b, a diffraction region g is adjacent to the diffraction region c, and a diffraction region is adjacent to the diffraction region d. h is provided. The light in the peripheral region of the 0th-order disc diffracted light beam is mainly incident on the diffraction region e and the diffractive region h. As long as it is within a range corresponding to the relationship between each incident light beam component and the diffraction region, the shape of each diffraction region may be changed, or the regions may be integrated or further divided. FIG. 2B shows a modification of the light beam splitting element as an example. The relationship between each diffraction region and the incident disc diffracted light maintains the above relationship.

ディスク溝からの±1次ディスク回折光の含まれる回折領域a及至回折領域dの光束にはトラッキング誤差信号生成に必要なプッシュプル(以下、PPと記す)信号成分が含まれる。PP信号により、ディスク溝と集光スポットの相対位置関係を知ることができる。回折領域e及至回折領域hの光束にはトラッキング誤差信号生成に必要なレンズエラー信号成分が含まれる。レンズエラー信号はアクチュエータに搭載された対物レンズの位置移動量に比例した信号となる。   The light fluxes in the diffraction region a and the diffracting region d including the ± first-order disc diffracted light from the disc groove include a push-pull (hereinafter referred to as PP) signal component necessary for generating a tracking error signal. The relative positional relationship between the disk groove and the focused spot can be known from the PP signal. The light fluxes in the diffraction area e and the diffraction area h include a lens error signal component necessary for generating a tracking error signal. The lens error signal is a signal proportional to the amount of position movement of the objective lens mounted on the actuator.

各領域で回折した+1次光と−1次光は光検出器11内に設けられた複数の受光面へ夫々集光して入射し信号検出される。図3(a)は従来例の光検出器11の受光面パターンと信号結線を示した概略図である。また図3(b)には多層光ディスクを記録又は再生する際の、記録又は再生の対象となっている記録層からの反射光である信号光束と、記録又は再生の対象ではない層からの反射光(以下、迷光と記す)の光検出器面上での光強度分布を示した。回折領域a、b、c、d、e、f、g、h、iを通過した光束のうち+1次光は夫々受光面DET1、4、2、3、8、6、7、5、19へ入射し、集光スポット45、46,47,48,49,50,51,52,61を形成する。回折領域e、f、g、hを通過した光束の−1次光は受光面DET15、17、16、18へ夫々入射し、集光スポット57,58,59,60を形成する。回折領域a、b、c、dを通過した光束の−1次光はフォーカス検出用の受光面DET9及至DET14の領域へ入射する。ただしフォーカス誤差信号検出にはダブルナイフエッジ法を用いるのが望ましいので、フォーカス制御時はDET9及至DET14には直接光が入射せず各受光面の間に光束は入射して集光スポット53及至集光スポット56を形成する。トラッキング誤差信号は広く一般に使用されるDifferential push−pull法(以下、DPP法と記す。)及びDifferential phase detection法(以下、DPD法と記す。)によって信号検出を行う。光束分割素子により再生の対称でない記録層で反射した迷光も信号光束と同様複数の光束に分割される。光検出器面上で集光される信号光に対し、迷光は焦点がずれているため信号光スポットとは異なり、集光されずに一定の領域にボケた光強度分布を持つ。回折領域a、b、c、d、e、f、g、h、iを通過した迷光のうち+1次光はスポット62、63,64,65,66,67,68,69,78を形成する。回折領域e、f、g、hを通過した迷光の−1次光はスポット74,75,76,77を形成する。回折領域a、b、c、dを通過した迷光の−1次光はスポット70,71,72,73を形成する。これによりトラッキング誤差信号生成に用いる回折領域からの集光スポットには受光面上で迷光が入射しない構成とすることができ、迷光が信号光へ干渉することによる検出信号の変動を抑制できる構成となっている。   The + 1st order light and the −1st order light diffracted in each region are collected and incident on a plurality of light receiving surfaces provided in the photodetector 11 to detect signals. FIG. 3A is a schematic view showing a light receiving surface pattern and signal connection of the photodetector 11 of the conventional example. FIG. 3B shows a signal beam that is reflected light from a recording layer that is a target of recording or reproduction and a reflection from a layer that is not a target of recording or reproduction when recording or reproducing a multilayer optical disc. The light intensity distribution on the photodetector surface of light (hereinafter referred to as stray light) is shown. Of the light beams that have passed through the diffraction areas a, b, c, d, e, f, g, h, i, the + 1st order light is directed to the light receiving surfaces DET1, 4, 2, 3, 8, 6, 7, 5, 19 respectively. Incident light is formed to form condensing spots 45, 46, 47, 48, 49, 50, 51, 52, 61. The −1st order light beams that have passed through the diffraction regions e, f, g, and h are incident on the light receiving surfaces DET15, 17, 16, and 18, respectively, thereby forming condensing spots 57, 58, 59, and 60. The −1st-order light of the light beam that has passed through the diffraction regions a, b, c, and d is incident on the regions of the light receiving surfaces DET9 and DET14 for focus detection. However, since it is desirable to use the double knife edge method for detecting the focus error signal, no light is directly incident on DET 9 and DET 14 during focus control, and a light beam is incident between the respective light receiving surfaces so that the condensed spot 53 and the focused light are collected. A light spot 56 is formed. The tracking error signal is detected by a widely used differential push-pull method (hereinafter referred to as DPP method) and a differential phase detection method (hereinafter referred to as DPD method). The stray light reflected by the recording layer that is not symmetrically reproduced by the light beam dividing element is also divided into a plurality of light beams in the same manner as the signal light beam. Unlike the signal light spot, the stray light is out of focus with respect to the signal light collected on the surface of the photodetector, so that the stray light has a light intensity distribution which is not condensed and is blurred in a certain region. Of the stray light that has passed through the diffraction regions a, b, c, d, e, f, g, h, i, the + 1st order light forms spots 62, 63, 64, 65, 66, 67, 68, 69, 78. . The first-order light of stray light that has passed through the diffraction regions e, f, g, and h forms spots 74, 75, 76, and 77. The first-order light of stray light that has passed through the diffraction regions a, b, c, and d forms spots 70, 71, 72, and 73. As a result, the condensing spot from the diffraction region used for generating the tracking error signal can be configured so that no stray light is incident on the light receiving surface, and the detection signal can be prevented from fluctuating due to the stray light interfering with the signal light. It has become.

前記回折領域e及至回折領域hの+1次格子回折光または−1次格子回折光を検出する2つ以上の受光面が前記光ディスクの半径方向に相当する方向と略一致する方向に略一直線で並び、前記回折格子領域a及至回折領域dの+1次格子回折光または−1次格子回折光を検出する2つ以上の受光面が前記光ディスクの接線方向に相当する方向と略一致する方向に並ぶ構成とすると対物レンズシフト時にも迷光を回避しやすい構成とすることができる。   Two or more light receiving surfaces for detecting the + 1st order diffracted light or the −1st order diffracted light in the diffractive region e and the diffractive region h are arranged in a substantially straight line in a direction substantially coincident with a direction corresponding to the radial direction of the optical disc. A configuration in which two or more light receiving surfaces for detecting the + 1st order diffracted light or the −1st order diffracted light in the diffraction grating region a and the leading diffraction region d are arranged in a direction substantially coincident with a direction corresponding to a tangential direction of the optical disc. Then, it can be set as the structure which is easy to avoid stray light at the time of an objective lens shift.

+1次光の検出信号からは情報再生信号及びトラッキング誤差信号として用いるDPD信号及びPP信号の検出を行う。−1次光はフォーカス誤差信号及びレンズエラー信号の検出に用いる。DPP信号はPP信号とレンズエラー信号よりPP信号−k*レンズエラー信号の演算により生成される。kは増幅器による増幅率を示したものである。
具体的には以下のように内部結線し、信号演算を経て各種信号が検出される。
DET4とDET6を内部結線し電流−電圧変換増幅器12を経て出力される信号をA、
DET2とDET7を内部結線し電流−電圧変換増幅器13を経て出力される信号をB、
DET3とDET5を内部結線し電流−電圧変換増幅器14を経て出力される信号をC、
DET1とDET8を内部結線し電流−電圧変換増幅器15を経て出力される信号をD、
DET15とDET17を内部結線し電流−電圧変換増幅器16を経て出力される信号をL、
DET16とDET18を内部結線し電流−電圧変換増幅器17を経て出力される信号をM、
DET19から電流−電圧変換増幅器18を経て出力される信号をR、
DET10とDET13を内部結線し電流−電圧変換増幅器19を経て出力される信号をF1、
DET9とDET11とDET12とDET14を内部結線し電流−電圧変換増幅器20を経て出力される信号をF2、
とする。前記出力信号から以下の演算により、情報再生信号及びサーボ制御信号を得ることができる。
PP信号:(A+D)−(B+C)
レンズエラー信号:L−M
DPP信号:PP信号−k*レンズエラー信号 ((A+D)−(B+C)−k*(L−M))
フォーカス誤差信号:F1−F2
DPD信号:(AとBの位相比較)+(CとDの位相比較)
情報再生信号:A+B+C+D+R
従来例の光検出器では、受光面毎に電流−電圧変換増幅器を設けて信号検出するのではなく光検出器の内部で受光面同士を結線し、その後に電流−電圧変換増幅器を設けて信号検出することで、電流−電圧変換増幅器の数を低減している。これは情報再生信号検出に必要なS/Nを確保するためである。電流−電圧変換増幅器は数が減るほどノイズ成分を低減できる。またフォーカス検出に用いるダブルナイフエッジ法では受光面内に設けた暗線領域は信号検出の周波数特性に劣化がある為、前記受光面からの信号は情報再生信号の検出に用いないほうが良い。そこで、+1次光と−1次光の光量配分を4:1程度とし、+1次光に重みを持たせ、再生信号検出は光量の強い+1次光側のみから、かつ内部結線により電流−電圧変換増幅器の数を低減した構成で検出をおこなっている。光量の弱い−1次光でフォーカス誤差信号の検出を行っている。よって前記光束分割素子の回折領域の分光比は0次光:+1次光:−1次光=0:4:1程度とし、+1次光の光量が−1次光の光量より大きくなるようブレーズかされた回折格子を用いるのが一般的である。
From the detection signal of the + 1st order light, the DPD signal and PP signal used as the information reproduction signal and tracking error signal are detected. The −1st order light is used to detect a focus error signal and a lens error signal. The DPP signal is generated by calculating a PP signal−k * lens error signal from the PP signal and the lens error signal. k represents the amplification factor by the amplifier.
Specifically, internal connection is performed as follows, and various signals are detected through signal calculation.
DET4 and DET6 are internally connected and the signal output through the current-voltage conversion amplifier 12 is A,
DET2 and DET7 are internally connected and the signal output through the current-voltage conversion amplifier 13 is represented by B,
DET3 and DET5 are internally connected, and a signal output through the current-voltage conversion amplifier 14 is represented by C,
DET1 and DET8 are internally connected and a signal output through the current-voltage conversion amplifier 15 is D,
DET15 and DET17 are internally connected, and the signal output through the current-voltage conversion amplifier 16 is L,
DET16 and DET18 are internally connected and the signal output through the current-voltage conversion amplifier 17 is represented by M,
The signal output from the DET 19 via the current-voltage conversion amplifier 18 is R,
DET10 and DET13 are internally connected and the signal output through the current-voltage conversion amplifier 19 is F1,
DET9, DET11, DET12, and DET14 are internally connected, and the signal output through the current-voltage conversion amplifier 20 is F2,
And An information reproduction signal and a servo control signal can be obtained from the output signal by the following calculation.
PP signal: (A + D)-(B + C)
Lens error signal: LM
DPP signal: PP signal−k * lens error signal ((A + D) − (B + C) −k * (LM))
Focus error signal: F1-F2
DPD signal: (A and B phase comparison) + (C and D phase comparison)
Information reproduction signal: A + B + C + D + R
In the conventional photodetector, a current-voltage conversion amplifier is not provided for each light-receiving surface to detect the signal, but the light-receiving surfaces are connected to each other inside the light detector, and then a current-voltage conversion amplifier is provided for the signal. By detecting, the number of current-voltage conversion amplifiers is reduced. This is to ensure the S / N necessary for detecting the information reproduction signal. As the number of current-voltage conversion amplifiers decreases, noise components can be reduced. Further, in the double knife edge method used for focus detection, the dark line region provided in the light receiving surface is deteriorated in the frequency characteristic of signal detection. Therefore, the signal from the light receiving surface should not be used for detection of the information reproduction signal. Therefore, the light quantity distribution of the + 1st order light and the −1st order light is set to about 4: 1, the + 1st order light is weighted, and the reproduction signal is detected only from the + 1st order light side where the light quantity is strong, and the current-voltage by the internal connection. Detection is performed with a configuration in which the number of conversion amplifiers is reduced. The focus error signal is detected with the first-order light having a weak light quantity. Therefore, the spectral ratio of the diffraction region of the light beam splitting element is set to about 0th order light: + 1st order light: -1st order light = 0: 4: 1, and blaze so that the light quantity of the + 1st order light is larger than the light quantity of the −1st order light. It is common to use a diffracted diffraction grating.

以下では従来例の課題について述べる。従来例で課題となるのは光量の弱い−1次光からレンズエラー信号を検出せざるを得ず、受光面で検出後に信号を増幅器によって電気的に増幅率k=10程度で大幅に増幅する必要があることである。受光面配置は幾何光学的には多層ディスクにおいて迷光が受光面へ入射しない構成となっているものの、波動光学的に考えると迷光と信号光束との完全な分離は難しく、迷光は広範囲にわたって一定の光量成分を持つこととなる。従って僅かであるが受光面へ入射する迷光成分が存在する。特に層間隔が狭くかつ迷光の発生の原因となる記録層が複数存在する多層光ディスクでは光検出器面上での迷光の光量分布は非常に複雑となり、信号光との完全な分離は非常に難しくなる。従って迷光は受光面へ入射しやすく、前記迷光が外乱成分となって検出信号に変動を生じさせてしまう。この多層迷光による信号変動は従来例の構成では前記増幅器で大幅に増幅されてDPP信号に漏込む事となる。実際、従来構成の光ピックアップでは−1次光から検出しているレンズエラー信号に多層光ディスクにおいて変動が生じやすい。また多層迷光による信号変動以外にも、傷や汚れ等の外乱成分もレンズエラー信号に漏れ込んだ場合、前記増幅器で大幅に増幅されてしまい記録又は再生品質を大幅に劣化させる要因となる。このように従来例ではレンズエラー信号が様々な外乱に非常に敏感であることが課題となっている。   In the following, problems of the conventional example will be described. The problem with the conventional example is that it is necessary to detect the lens error signal from the first-order light having a weak light quantity, and after the detection on the light receiving surface, the signal is electrically amplified by an amplifier with an amplification factor of about k = 10. It is necessary. In terms of geometric optics, the arrangement of the light receiving surface is such that stray light does not enter the light receiving surface in a multilayer disk. However, considering wave optics, it is difficult to completely separate stray light and signal light flux, and stray light is constant over a wide range. It will have a light quantity component. Accordingly, there is a slight stray light component incident on the light receiving surface. In particular, in multilayer optical discs where the layer spacing is narrow and there are multiple recording layers that cause stray light, the light quantity distribution of stray light on the surface of the photodetector becomes very complex, and it is very difficult to completely separate it from signal light. Become. Accordingly, the stray light is likely to enter the light receiving surface, and the stray light becomes a disturbance component and causes a change in the detection signal. The signal fluctuation due to the multilayer stray light is greatly amplified by the amplifier in the configuration of the conventional example and leaks into the DPP signal. In fact, with a conventional optical pickup, the lens error signal detected from the −1st order light is likely to vary in the multilayer optical disc. In addition to signal fluctuations due to multi-layer stray light, when disturbance components such as scratches and dirt leak into the lens error signal, they are greatly amplified by the amplifier, causing a serious deterioration in recording or reproduction quality. Thus, the conventional example has a problem that the lens error signal is very sensitive to various disturbances.

レンズシフト信号成分は回折領域e及至回折領域hの+1次光側の光スポットからも検出できる。こちらから検出できれば分光比分の光量差がなく前記増幅率を小さく抑えることができる。加えて光量の弱い−1次光側の光は回折格子の製造誤差の影響を受けやすく、光束分割素子の各領域間の分光比のバラツキが大きくなってしまうという課題もある。これはDPP信号のオフセット要因となり記録又は再生品質を低下させる。したがって分光比バラツキの観点からも光量の強い側の+1次光の光のみを使ってDPP信号を生成することが望ましい。しかしDPD信号検出の為には回折領域aとeの和信号、回折領域bとfの和信号、回折領域cとgの和信号、回折領域dとhの和信号の4つの信号を検出する必要がある。そこでPPとDPD信号生成に必要な信号を結線せずに全て電流−電圧変換増幅器を通して独立に検出して、演算により生成しようとした場合、情報再生信号の検出に用いる電流−電圧変換増幅器が9個となりS/Nが大きく劣化することとなる。これを避けるため、内部結線することで電流−電圧変換増幅器を5個と低減してPP信号とDPD信号及びノイズの少ない情報再生信号の検出を両立している。上記構成は本来DPP信号演算時にPP信号から減算されるべきレンズシフト信号の+1次光側の信号が、PP信号に加算される構成となっている。従って+1次光からはレンズエラー信号を検出できず、従来例は光量の小さい−1次光からレンズエラー信号を取らざる得ない構成となっている。
分光比の光量差分と+1次光のレンズシフト信号成分をPPへ加算してしまっている結果、前記増幅率がk=10程度と非常に大きな値となってしまうわけである。
The lens shift signal component can also be detected from the light spot on the + 1st order light side of the diffraction region e and the diffraction region h. If it can be detected from here, there is no difference in the amount of light corresponding to the spectral ratio, and the amplification factor can be kept small. In addition, the light on the −1st order light side with a weak light quantity is easily affected by the manufacturing error of the diffraction grating, and there is a problem that the variation in the spectral ratio between the regions of the light beam splitting element becomes large. This becomes an offset factor of the DPP signal and lowers the recording or reproduction quality. Therefore, it is desirable to generate the DPP signal using only the light of the + 1st order light on the side where the light amount is strong from the viewpoint of variation in spectral ratio. However, for the DPD signal detection, four signals are detected: the sum signal of the diffraction areas a and e, the sum signal of the diffraction areas b and f, the sum signal of the diffraction areas c and g, and the sum signal of the diffraction areas d and h. There is a need. Therefore, when all the signals necessary for PP and DPD signal generation are detected independently through the current-voltage conversion amplifier without being connected and are generated by calculation, there are 9 current-voltage conversion amplifiers used for detecting the information reproduction signal. The S / N is greatly deteriorated. In order to avoid this, the internal connection reduces the number of current-voltage conversion amplifiers to five to achieve both detection of the PP signal, the DPD signal, and the information reproduction signal with less noise. In the above configuration, a signal on the + 1st order light side of the lens shift signal to be subtracted from the PP signal when the DPP signal is calculated is added to the PP signal. Accordingly, the lens error signal cannot be detected from the + 1st order light, and the conventional example has a configuration in which the lens error signal must be obtained from the −1st order light having a small light amount.
As a result of adding the light quantity difference of the spectral ratio and the lens shift signal component of the + 1st order light to PP, the amplification factor becomes a very large value of about k = 10.

これまでに説明したように、従来例の構成はDPD信号を検出しかつ、S/N確保のために電流−電圧変換増幅器数の低減を図っているために、DPP信号生成に必要なレンズエラー信号の電気増幅率がk=10程度と大きな値となってしまっている。そこで、本発明では新たなDPD信号の検出法を導入することで、DPP信号生成に必要な前記増幅器の増幅率を1〜2程度へと大幅に抑制し、かつ従来と同等の各種信号を得られる光ピックアップ装置とする。これにより多層迷光や回折格子の分光比バラツキや傷等の外乱に強く、歩留良好でかつ安定して高品質な記録/再生品質の得られる光ピックアップ装置を提供することができる。   As described above, since the configuration of the conventional example detects the DPD signal and reduces the number of current-voltage conversion amplifiers for securing the S / N, the lens error necessary for generating the DPP signal is reduced. The electrical amplification factor of the signal has become a large value of about k = 10. Therefore, in the present invention, by introducing a new DPD signal detection method, the amplification factor of the amplifier necessary for generating the DPP signal is greatly suppressed to about 1 to 2 and various signals equivalent to the conventional ones are obtained. An optical pickup device to be used. As a result, it is possible to provide an optical pickup device that is resistant to disturbances such as multilayer stray light, diffraction grating spectral ratio variations, scratches, and the like, has a good yield, and stably obtains high quality recording / reproducing quality.

まず本発明での新たなDPD信号の検出法について説明する。従来のDPD法は前述の通り略信号光束の全域を使ってDPD信号検出を行っている。本発明では信号光束のPP信号領域を除いた、信号光束の周辺部領域に着目した。すなわち回折領域e及至回折領域hに相当する光束周辺部の領域の光束のみでDPD信号検出可能かを検討した。そして検討の結果、周辺領域の光束のみでも良好な品質のDPD信号を検出できることが判明した。DPD信号は光量の変化自体を信号として検出するのではなく、光量が変化するタイミングの違い(位相差)を検出して、その位相差の変化量を信号とするため、光量や一部光束の領域が減少しても、光量変化のタイミングさえ検知できれば信号生成できることに起因する。前記本発明の新規DPD検出法により、従来例において電流−電圧変換増幅器の低減のため強いられていた受光面DET1と8及びDET2と7DET3と5DET4と6の夫々の内部結線を行わなくても周辺領域の光束が入射する、DET5、6、7、8の信号のみでDPD信号検出可能であることが判明したわけである。本発明の新規DPD検出法により前記内部結線不要になったことでDET5、6、7、8の信号を用いれば光量の強い+1次光側でレンズエラー信号を生成し、かつDPD信号検出可能である。したがって前記増幅器の増幅率を大きく低減でき。具体的には増幅率は1.5程度へと大幅に低減できることとなる。   First, a new DPD signal detection method according to the present invention will be described. In the conventional DPD method, DPD signal detection is performed using substantially the entire area of the signal beam as described above. In the present invention, attention is paid to the peripheral region of the signal light beam excluding the PP signal region of the signal light beam. That is, it was examined whether the DPD signal can be detected only with the light flux in the peripheral area of the light flux corresponding to the diffraction area e and the diffractive area h. As a result of the examination, it has been found that a DPD signal of good quality can be detected only with the luminous flux in the peripheral region. The DPD signal does not detect the change in the amount of light itself as a signal, but detects the timing difference (phase difference) at which the amount of light changes, and uses the amount of change in the phase difference as a signal. This is because even if the area is reduced, a signal can be generated as long as the timing of light quantity change can be detected. According to the novel DPD detection method of the present invention, the peripheral areas of the light receiving surfaces DET1 and 8 and DET2, 7DET3, 5DET4, and 6 that have been forced to reduce the current-voltage conversion amplifier in the conventional example are not required. It has been found that the DPD signal can be detected only by the signals DET5, 6, 7, and 8 on which the luminous flux in the region enters. By using the DET5, 6, 7, and 8 signals, the lens error signal can be generated on the + 1st order light side with a strong light intensity and the DPD signal can be detected by eliminating the need for the internal connection by the novel DPD detection method of the present invention. is there. Therefore, the amplification factor of the amplifier can be greatly reduced. Specifically, the amplification factor can be greatly reduced to about 1.5.

以下では本発明の具体的な構成を説明する。図4は本発明での前記光束分割素子10の構成を示した概略図である。前記した従来例の変形例の範囲内ではあるが回折領域b、cは夫々回折領域a、dと一体になっている。回折領域e、f、g、hは従来例と同様の分光比とすることが望ましい。回折領域a、dは従来例と同様の分光比とするか、+1次光のみに光量が集中するような分光比とすればよい。回折領域iは従来例と同様の分光比とすれば良い。図5は本発明での受光面構成と結線方法を示す概略図である。   Hereinafter, a specific configuration of the present invention will be described. FIG. 4 is a schematic view showing a configuration of the light beam splitting element 10 in the present invention. Although within the range of the above-described modification of the conventional example, the diffraction regions b and c are integrated with the diffraction regions a and d, respectively. The diffraction regions e, f, g, and h are preferably set to the same spectral ratio as in the conventional example. The diffraction areas a and d may have the same spectral ratio as in the conventional example, or a spectral ratio in which the light amount is concentrated only on the + 1st order light. The diffraction region i may have the same spectral ratio as in the conventional example. FIG. 5 is a schematic view showing a light receiving surface configuration and a connection method in the present invention.

回折領域a、d、e、f、g、h、i通過した光束のうち+1次光はDET1’、2’、3’、5’、4’、6’、15’へ夫々入射する。回折領域e、f、g、hを通過した光束のうち−1次光はフォーカス検出用の受光面DET7’及至DET14’の領域へ入射する。ただしフォーカス誤差信号検出にはダブルナイフエッジ法を用いるのが望ましいので、フォーカス制御時には信号光束はDET7’及至DET14’には直接入射せず各受光面の間に光束は入射する。
各信号は夫々以下の演算により求める。
DET5’から電流−電圧変換増幅器21を経ての出力される信号をA’、
DET4’から電流−電圧変換増幅器22を経ての出力される信号をB’、
DET6’から電流−電圧変換増幅器23を経ての出力される信号をC’、
DET3’から電流−電圧変換増幅器24を経ての出力される信号をD’、
DET1’から電流−電圧変換増幅器25を経ての出力される信号をL’、
DET2’から電流−電圧変換増幅器26を経ての出力される信号をM’、
DET15’から電流−電圧変換増幅器27を経ての出力される信号をR’、
DET8’とDET14’を内部結線し電流−電圧変換増幅器28を経ての出力される信号をF1’、
DET10’とDET12’を内部結線し電流−電圧変換増幅器29を経ての出力される信号をF2’、
DET9’とDET11’を内部結線し電流−電圧変換増幅器30を経ての出力される信号をF3’、
DET7’とDET13’を内部結線し電流−電圧変換増幅器31を経ての出力される信号をF4’、
とする。前記出力信号から以下の演算により、情報再生信号及びサーボ制御信号を得ることができる。
PP信号:L’−M’
レンズエラー信号:(A’+D’)−(B’+C’)
DPP信号:PP信号−k*レンズエラー信号 (L’−M’−k*{(A’+D’)−(B’+C’)})
フォーカス誤差信号:(F1’+F3’)−(F2’+F4’)
DPD信号:(A’とB’の位相比較)+(C’とD’の位相比較)
情報再生信号:A’+B’+C’+D’+L’+M’+R’
電流−電圧変換増幅器は7個となり従来例の5個からは増加してしまうが、2個であれば劣化量は大きくなく、電流−電圧変換増幅器自体の性能改善や、電流−電圧変換増幅器の感度設定などを最適化することで改善可能なレベルである。また、光検出器面上でのスポット数が減少しているため、PP領域を1つの回折領域とそれに対応する受光面から取ることで光検出器の調整が容易になり歩留まり改善できるというメリットがある。
Of the light beams that have passed through the diffraction regions a, d, e, f, g, h, and i, the + 1st order light is incident on the DETs 1 ′, 2 ′, 3 ′, 5 ′, 4 ′, 6 ′, and 15 ′, respectively. Of the light beams that have passed through the diffraction regions e, f, g, and h, the −1st order light is incident on the regions of the light receiving surfaces DET7 ′ and DET14 ′ for focus detection. However, since it is desirable to use the double knife edge method for detecting the focus error signal, the signal light beam does not directly enter DET7 ′ and DET14 ′ during the focus control, and the light beam enters between the light receiving surfaces.
Each signal is obtained by the following calculation.
A signal output from the DET 5 ′ via the current-voltage conversion amplifier 21 is represented by A ′,
A signal output from the DET 4 ′ through the current-voltage conversion amplifier 22 is represented by B ′,
A signal output from the DET 6 ′ through the current-voltage conversion amplifier 23 is represented by C ′,
A signal output from the DET 3 ′ through the current-voltage conversion amplifier 24 is represented by D ′,
A signal output from the DET 1 ′ through the current-voltage conversion amplifier 25 is represented by L ′,
A signal output from the DET 2 ′ through the current-voltage conversion amplifier 26 is represented by M ′,
The signal output from the DET 15 ′ via the current-voltage conversion amplifier 27 is R ′,
DET8 ′ and DET14 ′ are internally connected, and the signal output through the current-voltage conversion amplifier 28 is F1 ′,
DET10 ′ and DET12 ′ are internally connected, and the signal output through the current-voltage conversion amplifier 29 is F2 ′,
DET9 ′ and DET11 ′ are internally connected, and the signal output through the current-voltage conversion amplifier 30 is F3 ′,
DET7 ′ and DET13 ′ are internally connected, and the signal output through the current-voltage conversion amplifier 31 is F4 ′,
And An information reproduction signal and a servo control signal can be obtained from the output signal by the following calculation.
PP signal: L'-M '
Lens error signal: (A ′ + D ′) − (B ′ + C ′)
DPP signal: PP signal−k * lens error signal (L′−M′−k * {(A ′ + D ′) − (B ′ + C ′)})
Focus error signal: (F1 ′ + F3 ′) − (F2 ′ + F4 ′)
DPD signal: (A 'and B' phase comparison) + (C 'and D' phase comparison)
Information reproduction signal: A ′ + B ′ + C ′ + D ′ + L ′ + M ′ + R ′
The number of current-voltage conversion amplifiers is seven, which is an increase from the five in the conventional example. However, if there are two, the amount of deterioration is not large, and the performance of the current-voltage conversion amplifier itself is improved. It is a level that can be improved by optimizing sensitivity settings. In addition, since the number of spots on the surface of the photodetector is reduced, it is possible to easily adjust the photodetector and improve the yield by taking the PP region from one diffraction region and the corresponding light receiving surface. is there.

なお、前記光束分割素子を往復路中の光束分割素子10は偏光ビームスプリッタ3と1/4波長板6の間に配置してもよい。光検出器と光束分割素子間の距離が伸びるため、必要な回折格子ピッチを大きくでき、素子を作製しやすいという利点がある。また、回折格子面上での光束有効径も大きくなるため、素子の位置ズレに対する、各種信号の劣化度合いが緩やかになる。ただし、往路の光束には前記光束分割素子を作用させないために、光束分割素子の回折格子には偏光性を持たせた偏光回折格子とし復路光束のみに作用する構成とするのが望ましい。   The light beam splitting element 10 in the round trip path may be disposed between the polarization beam splitter 3 and the quarter wavelength plate 6. Since the distance between the photodetector and the beam splitting element is extended, there is an advantage that the required diffraction grating pitch can be increased and the element can be easily manufactured. In addition, since the effective diameter of the light beam on the diffraction grating surface also increases, the degree of deterioration of various signals with respect to the positional deviation of the element becomes moderate. However, in order not to cause the light beam splitting element to act on the outward light beam, it is desirable that the diffraction grating of the light beam splitting device is a polarization diffraction grating having polarization properties so that it acts only on the return light beam.

迷光の回避しやすい構成となるよう受光面の配置は従来例の基本構成に則った配置とするのが望ましい。したがって、前記回折領域e及至回折領域hの+1次格子回折光または−1次格子回折光を検出する2つ以上の受光面が前記光ディスクの半径方向に相当する方向と略一致する方向に略一直線で並び、前記回折格子領域a及至回折領域dの+1次格子回折光または−1次格子回折光を検出する2つ以上の受光面が前記光ディスクの接線方向に相当する方向と略一致する方向に並ぶ構成とすると良い。したがって、各受光面の配置は図5に示した配置に限定されるものではない。各回折領域からの光束と入射する受光面の対応関係が変わらなければ、各受光面の配置位置は変更して構わない。それに応じて、光束分割素子の回折方向、角度を合わせることで対応受光面に光束を入射させる構成とすればよい。なお、前記フォーカス誤差信号の検出している受光面群は、情報再生信号やその他の制御信号の検出も行っていないため、受光面パターンの位置だけでなく、新たな受光面の追加や内部結線の変更、出力信号や電流−電圧変換増幅器の追加などの改変を自由に行って構わない。   It is desirable to arrange the light receiving surfaces in accordance with the basic configuration of the conventional example so that the stray light can be easily avoided. Accordingly, the two or more light receiving surfaces for detecting the + 1st order diffracted light or the −1st order diffracted light in the diffraction region e and the diffractive region h are substantially straight in a direction substantially coincident with the direction corresponding to the radial direction of the optical disc. The two or more light receiving surfaces for detecting the + 1st order diffracted light or the −1st order diffracted light in the diffraction grating region a and the diffractive region d are arranged in a direction substantially coincident with the direction corresponding to the tangential direction of the optical disc. It is good to have a line-up configuration. Therefore, the arrangement of the light receiving surfaces is not limited to the arrangement shown in FIG. If the correspondence between the light flux from each diffraction region and the incident light receiving surface does not change, the arrangement position of each light receiving surface may be changed. Accordingly, the light beam may be incident on the corresponding light receiving surface by matching the diffraction direction and angle of the light beam splitting element. The light receiving surface group detected by the focus error signal does not detect the information reproduction signal or other control signals. Therefore, not only the position of the light receiving surface pattern but also the addition of a new light receiving surface and internal connection Modifications such as changing the output signal and adding a current-voltage conversion amplifier may be freely made.

以上の構成により、光量の強い+1次光側でPP信号とレンズエラー信号を検出して、かつDPD信号検出可能となり、レンズエラー信号をPP信号と分光比の等しい+1次光側から検出できる。これにより前記増幅器の増幅率を大幅に低減でき増幅率は1.5程度となる。よって多層迷光による干渉変動や光ディスクの傷や汚れといった様々な外乱変動に強くなり、かつ分光比バラツキによる信号劣化も抑制でき、安定して高品質な記録/再生品質の得られる光ピックアップ装置を提供することができる。   With the above configuration, the PP signal and the lens error signal can be detected on the + primary light side where the light intensity is strong, and the DPD signal can be detected, and the lens error signal can be detected from the + primary light side having the same spectral ratio as the PP signal. As a result, the amplification factor of the amplifier can be greatly reduced, and the amplification factor is about 1.5. Therefore, an optical pickup device that is resistant to various disturbance fluctuations such as interference fluctuation due to multi-layer stray light and scratches and dirt on the optical disk and can suppress signal deterioration due to variation in spectral ratio, and can stably obtain high quality recording / reproducing quality is provided. can do.

第2の実施例について図6を用いて説明する。本実施例では、第1実施例よりも、製造が容易な光束分割素子を用いることで、前記光束分割素子の量産製造バラツキを抑制して素子単体の性能を安定化させることで光ピックアップ装置の歩留まり向上や低コスト化を図ることができる。   A second embodiment will be described with reference to FIG. In this embodiment, by using a light beam splitting element that is easier to manufacture than in the first embodiment, it is possible to suppress variations in mass production of the light beam splitting element and stabilize the performance of the single element of the optical pickup device. Yield improvement and cost reduction can be achieved.

本実施例における光ピックアップ装置の光学系構成は、例えば図1に示した光ピックアップ装置と同様の構成で構わない。第1の実施例と異なる点は、光束分割素子10と光検出器11の構成である。そこで第2の実施例の主要部である光検出器11の構成を図6に示して説明する。   The optical system configuration of the optical pickup device in the present embodiment may be the same as that of the optical pickup device shown in FIG. The difference from the first embodiment is the configuration of the light beam splitting element 10 and the photodetector 11. Therefore, the configuration of the photodetector 11 which is the main part of the second embodiment will be described with reference to FIG.

第1の実施例の光学系構成は回折領域iの回折格子ピッチが最も小さくなりやすい。回折格子のピッチが小さくなると、製造誤差の影響で回折効率等に変化が生じやすくなる。結果、光ピックアップの性能バラツキが生じ、歩留まりの低下を招く。そこで、前記回折領域iのみ+1次光と−1次光の光量が等しくなる矩形格子を設ける領域する。第1の実施例で用いたブレーズ格子に比べ矩形格子は作製が非常に易しく、性能のバラツキを大きく抑制することができる。各回折領域の形状は第1の実施例と同様で良い。   In the optical system configuration of the first embodiment, the diffraction grating pitch of the diffraction region i is likely to be the smallest. If the pitch of the diffraction grating is reduced, the diffraction efficiency is likely to change due to the influence of manufacturing errors. As a result, performance variation of the optical pickup occurs, resulting in a decrease in yield. Therefore, only the diffraction area i is provided with a rectangular grating in which the light amounts of the + 1st order light and the −1st order light are equal. Compared to the blazed grating used in the first embodiment, the rectangular grating is very easy to manufacture and can greatly suppress variation in performance. The shape of each diffraction region may be the same as in the first embodiment.

図6に回折領域iが矩形格子とした場合の光検出器の概略図を示す。第1の実施例と異なるのは回折領域iからの光束を受光する受光面構成とその内部結線である。回折領域iを矩形格子として±1次光に均等に光量を割り振ったため、+1次光の光量が第1の実施例に比べ減少する。そこで、新たにDET16’を設けて光量が増加した回折領域iの−1次光も検出する。また、DET15’とDET16’は内部結線して信号R’として出力すればよく電流−電圧変換増幅器の増加はない。   FIG. 6 shows a schematic diagram of a photodetector when the diffraction region i is a rectangular grating. The difference from the first embodiment is the light receiving surface configuration for receiving the light beam from the diffraction region i and its internal connection. Since the diffraction region i is a rectangular grating and the light amount is evenly allocated to the ± first-order light, the light amount of the + 1st-order light is reduced compared to the first embodiment. Therefore, a new DET 16 ′ is also provided to detect −1st order light in the diffraction region i in which the amount of light is increased. Further, the DET 15 'and the DET 16' may be internally connected and output as the signal R 'without increasing the current-voltage conversion amplifier.

その他の各回折領域と受光面の対応及び内部結線及び信号演算方法は第1の実施例と同等でよい。具体的には、回折領域a、d、e、f、g、h通過した光束のうち+1次光はDET1’、2’、3’、5’、4’、6’へ夫々入射する。回折領域e、f、g、hを通過した光束のうち−1次光はフォーカス検出用の受光面DET7’及至DET14’の領域へ入射する。ただしフォーカス誤差信号検出にはダブルナイフエッジ法を用いるのが望ましいので、信号光束はDET7’及至DET14’には直接入射せず各受光面の間に光束は入射する。トラッキング誤差信号は広く一般に使用されるDPP法及びDPD法の信号検出を行う。前記矩形の回折格子溝を設けた回折領域iの+1次光は受光面DET15’へ、−1次光は受光面DET16’へ入射する。
各信号は夫々以下の演算により求める。
DET5’から電流−電圧変換増幅器21を経ての出力される信号をA’、
DET4’から電流−電圧変換増幅器22を経ての出力される信号をB’、
DET6’から電流−電圧変換増幅器23を経ての出力される信号をC’、
DET3’から電流−電圧変換増幅器24を経ての出力される信号をD’、
DET1’から電流−電圧変換増幅器25を経ての出力される信号をL’、
DET2’から電流−電圧変換増幅器26を経ての出力される信号をM’、
DET15’とDET16’を内部結線し電流−電圧変換増幅器27を経ての出力される信号をR’、
DET8’とDET14’を内部結線し電流−電圧変換増幅器28を経ての出力される信号をF1’、
DET10’とDET12’を内部結線し電流−電圧変換増幅器29を経ての出力される信号をF2’、
DET9’とDET11’を内部結線し電流−電圧変換増幅器30を経ての出力される信号をF3’、
DET7’とDET13’を内部結線し電流−電圧変換増幅器31を経ての出力される信号をF4’、
とする。前記出力信号から以下の演算により、情報再生信号及びサーボ制御信号を得ることができる。
PP信号:L’−M’
レンズエラー信号:(A’+D’)−(B’+C’)
DPP信号:PP信号−k*レンズエラー信号 (L’−M’−k*{(A’+D’)−(B’+C’)})
フォーカス誤差信号:(F1’+F3’)−(F2’+F4’)
DPD信号:(A’とB’の位相比較)+(C’とD’の位相比較)
情報再生信号:A’+B’+C’+D’+L’+M’+R’
即ち、本実施例では、第1実施例より製造が容易な光束分割素子を用いることで、前記光束分割素子の量産製造バラツキを抑制して素子単体の性能を安定化させ、光ピックアップ装置の歩留まり向上や低コスト化を図り、かつ前記増幅器の増幅率を1.5程度へと大幅に低減できることとなる。これにより、多層迷光干渉等の外乱に強く、かつ第1の実施例よりも量産時の性能ばらつき少なく安定して高品質な記録/再生信号の得られる光ピックアップ装置を提供できるという利点がある。
The correspondence between the other diffraction regions and the light receiving surface, the internal connection, and the signal calculation method may be the same as those in the first embodiment. Specifically, of the light beams that have passed through the diffraction regions a, d, e, f, g, and h, the + 1st order light is incident on the DETs 1 ′, 2 ′, 3 ′, 5 ′, 4 ′, and 6 ′, respectively. Of the light beams that have passed through the diffraction regions e, f, g, and h, the −1st order light is incident on the regions of the light receiving surfaces DET7 ′ and DET14 ′ for focus detection. However, since it is desirable to use the double knife edge method for detecting the focus error signal, the signal light beam does not directly enter DET 7 'and DET 14', but the light beam enters between the respective light receiving surfaces. The tracking error signal performs signal detection using the DPP method and the DPD method which are widely used in general. In the diffraction region i provided with the rectangular diffraction grating grooves, the + 1st order light is incident on the light receiving surface DET15 ′ and the −1st order light is incident on the light receiving surface DET16 ′.
Each signal is obtained by the following calculation.
A signal output from the DET 5 ′ via the current-voltage conversion amplifier 21 is represented by A ′,
A signal output from the DET 4 ′ through the current-voltage conversion amplifier 22 is represented by B ′,
A signal output from the DET 6 ′ through the current-voltage conversion amplifier 23 is represented by C ′,
A signal output from the DET 3 ′ through the current-voltage conversion amplifier 24 is represented by D ′,
A signal output from the DET 1 ′ through the current-voltage conversion amplifier 25 is represented by L ′,
A signal output from the DET 2 ′ through the current-voltage conversion amplifier 26 is represented by M ′,
DET15 ′ and DET16 ′ are internally connected, and the signal output through the current-voltage conversion amplifier 27 is R ′,
DET8 ′ and DET14 ′ are internally connected, and the signal output through the current-voltage conversion amplifier 28 is F1 ′,
DET10 ′ and DET12 ′ are internally connected, and the signal output through the current-voltage conversion amplifier 29 is F2 ′,
DET9 ′ and DET11 ′ are internally connected, and the signal output through the current-voltage conversion amplifier 30 is F3 ′,
DET7 ′ and DET13 ′ are internally connected, and the signal output through the current-voltage conversion amplifier 31 is F4 ′,
And An information reproduction signal and a servo control signal can be obtained from the output signal by the following calculation.
PP signal: L'-M '
Lens error signal: (A ′ + D ′) − (B ′ + C ′)
DPP signal: PP signal−k * lens error signal (L′−M′−k * {(A ′ + D ′) − (B ′ + C ′)})
Focus error signal: (F1 ′ + F3 ′) − (F2 ′ + F4 ′)
DPD signal: (A 'and B' phase comparison) + (C 'and D' phase comparison)
Information reproduction signal: A ′ + B ′ + C ′ + D ′ + L ′ + M ′ + R ′
That is, in this embodiment, by using a light beam splitting element that is easier to manufacture than in the first embodiment, the mass production of the light beam splitting element is suppressed, the performance of the single element is stabilized, and the yield of the optical pickup device is improved. Improvement and cost reduction can be achieved, and the amplification factor of the amplifier can be greatly reduced to about 1.5. Thus, there is an advantage that it is possible to provide an optical pickup device that is resistant to disturbances such as multi-layer stray light interference and can stably obtain a high quality recording / reproducing signal with less performance variation during mass production than the first embodiment.

次に、第3の実施例について図7及び図8を用いて説明する。本実施例では、第1の実施例よりも、情報再生信号検出に用いる電流−電圧変換増幅器の数を低減して、よりノイズ成分の少ない高品質な情報再生信号を検出できる光ピックアップ装置を提供する。   Next, a third embodiment will be described with reference to FIGS. In this embodiment, an optical pickup device capable of detecting a high-quality information reproduction signal with fewer noise components by reducing the number of current-voltage conversion amplifiers used for information reproduction signal detection than in the first embodiment is provided. To do.

本実施例における光ピックアップ装置の光学系構成は、例えば図1に示した光ピックアップ装置と同様の構成で構わない。第1の実施例と異なる点は、光束分割素子10と光検出器11の構成である。そこで第3の実施例の主要部である光束分割素子10と光検出器11の構成を図7と図8に夫々示す。   The optical system configuration of the optical pickup device in the present embodiment may be the same as that of the optical pickup device shown in FIG. The difference from the first embodiment is the configuration of the light beam splitting element 10 and the photodetector 11. Therefore, the configurations of the light beam splitting element 10 and the photodetector 11 which are the main parts of the third embodiment are shown in FIGS. 7 and 8, respectively.

光束分割素子の構成は第1の実施例で説明した従来例の光束分割素子と同様で良い。回折領域a、b、c、d、e、f、g、h、iは従来例と同様の分光比とすることが望ましい。
回折領域a及至回折領域dの+1次光からPP信号を検出し、回折領域e及至回折領域hの+1次光からレンズエラー信号を検出し、回折領域e及至回折領域hの−1次光から前記DPD信号を検出し、回折領域a及至回折領域dの−1次光からフォーカス誤差信号を検出し、回折領域a及至回折領域iの+1次光から情報再生信号を検出する。第2の実施例で特徴となるのは、光束周辺部の領域を使う新規DPD信号を光量の弱い−1次光側から検出することである。前述したが、DPD信号は信号変化のタイミングを検知し、その変化タイミングの位相差量からトラッキング誤差信号をえる。したがって信号光量が弱くても信号変化のタイミングさえ検知できれば正確なトラッキング誤差信号を得られるという利点があり、光量変化が直接トラッキング誤差信号となるDPP信号に比べて外乱にも強い。そこで光束周辺部から検出するDPD信号は光量の弱い−1次光から検出する構成とした。これにより+1次光側からはPP信号とレンズシフト信号のみえられれば良いので、受光面DET1と4、受光面2と3、受光面5と7、受光面6と8を夫々内部結線することで、電流−電圧変換増幅器の数を従来例と同等の5個にまで低減できる。レンズエラー信号は+1次光から検出しているためレンズエラー信号の増幅率は第1の実施例と同等のk=1.5程度へと低減できる。
The configuration of the light beam splitting element may be the same as that of the conventional light beam splitting element described in the first embodiment. The diffraction regions a, b, c, d, e, f, g, h, and i are preferably set to the same spectral ratio as in the conventional example.
The PP signal is detected from the + 1st order light in the diffraction region a and the diffractive region d, the lens error signal is detected from the + 1st order light in the diffraction region e and the diffractive region h, and the −1st order light in the diffraction region e and the diffractive region h is detected. The DPD signal is detected, a focus error signal is detected from the −1st order light in the diffraction region a and the diffraction region d, and an information reproduction signal is detected from the + 1st order light in the diffraction region a and the diffraction region i. A feature of the second embodiment is that a new DPD signal that uses the region around the light beam is detected from the side of the −1st-order light having a low light quantity. As described above, the DPD signal detects the signal change timing, and obtains the tracking error signal from the phase difference amount of the change timing. Therefore, there is an advantage that an accurate tracking error signal can be obtained as long as the signal change timing can be detected even if the signal light amount is weak, and the light amount change is more resistant to disturbance than the DPP signal that directly becomes the tracking error signal. Therefore, the DPD signal detected from the light beam peripheral portion is detected from the first-order light having a weak light quantity. As a result, only the PP signal and the lens shift signal need be obtained from the + 1st order light side, so that the light receiving surfaces DET1 and 4, the light receiving surfaces 2 and 3, the light receiving surfaces 5 and 7, and the light receiving surfaces 6 and 8 are internally connected. Thus, the number of current-voltage conversion amplifiers can be reduced to five, which is the same as the conventional example. Since the lens error signal is detected from the + 1st order light, the amplification factor of the lens error signal can be reduced to about k = 1.5, which is equivalent to the first embodiment.

図8は本発明での光検出器11の構成を示した概略図である。回折領域a、b、c、d、e、f、g、h、i通過した光束のうち+1次光はDET1、4、2、3、8、6、7、5、19へ夫々入射し、回折領域e、f、g、hを通過した光束のうち−1次光はDET15、17、16、18へ夫々入射する。回折領域a、b、c、dを通過した光束の−1次光はフォーカス検出用の受光面DET9及至DET14の領域へ入射する。ただしフォーカス誤差信号検出にはダブルナイフエッジ法を用いるのが望ましいのでDET9及至DET14には直接光が入射せず各受光面の間に光束は入射する。   FIG. 8 is a schematic view showing the configuration of the photodetector 11 in the present invention. Of the luminous fluxes that have passed through the diffraction regions a, b, c, d, e, f, g, h, i, the + 1st order light is incident on DET1, 4, 2, 3, 8, 6, 7, 5, 19 respectively. Of the light beams that have passed through the diffraction regions e, f, g, and h, the −1st order light is incident on the DETs 15, 17, 16, and 18, respectively. The −1st-order light of the light beam that has passed through the diffraction regions a, b, c, and d is incident on the regions of the light receiving surfaces DET9 and DET14 for focus detection. However, since it is desirable to use the double knife edge method for detecting the focus error signal, no light is directly incident on DET9 to DET14, but a light beam is incident between the respective light receiving surfaces.

各信号は夫々以下の演算により求める。
DET17から電流−電圧変換増幅器32を経ての出力される信号をA’、
DET16から電流−電圧変換増幅器33を経ての出力される信号をB’、
DET18から電流−電圧変換増幅器34を経ての出力される信号をC’、
DET15から電流−電圧変換増幅器35を経ての出力される信号をD’、
DET1とDET4を内部結線し電流−電圧変換増幅器36の出力信号をL’、
DET2とDET3を内部結線し電流−電圧変換増幅器37の出力信号をM’、
DET6とDET8を内部結線し電流−電圧変換増幅器38の出力信号をP’、
DET5とDET7を内部結線し電流−電圧変換増幅器39の出力信号をQ’、
DET19から電流−電圧変換増幅器40を経ての出力される信号をR’、
DET10とDET13を内部結線し電流−電圧変換増幅器41を経て出力される信号をF1’、
DET9とDET11とDET12とDET14を内部結線し電流−電圧変換増幅器42を経て出力される信号をF2’、
とする。前記出力信号から以下の演算により、情報再生信号及びサーボ制御信号を得ることができる。
PP信号:L’−M’
レンズエラー信号:P’−Q’
DPP信号:PP信号−k*レンズエラー信号 (L’−M’−k*(P’−Q’))
フォーカス誤差信号:F1’−F2’
DPD信号:(A’とB’の位相比較)+(C’とD’の位相比較)
情報再生信号:L’+M’+P’+Q’+R’
前述の通り光束周辺部で検出するDPD信号を光量の弱い−1次光から検出する構成としたため、受光面DET1と4、受光面2と3、受光面5と7、受光面6と8を夫々内部結線して信号出力可能となり、電流−電圧変換増幅器を従来例と同等の5個にまで低減できる。
Each signal is obtained by the following calculation.
A signal output from the DET 17 via the current-voltage conversion amplifier 32 is A ′,
A signal output from the DET 16 via the current-voltage conversion amplifier 33 is represented by B ′,
A signal output from the DET 18 via the current-voltage conversion amplifier 34 is represented by C ′,
A signal output from the DET 15 via the current-voltage conversion amplifier 35 is represented by D ′,
DET1 and DET4 are internally connected, and the output signal of the current-voltage conversion amplifier 36 is L ′,
DET2 and DET3 are internally connected, and the output signal of the current-voltage conversion amplifier 37 is M ′,
DET6 and DET8 are internally connected, and the output signal of the current-voltage conversion amplifier 38 is P ′,
DET5 and DET7 are internally connected, and the output signal of the current-voltage conversion amplifier 39 is Q ′,
A signal output from the DET 19 via the current-voltage conversion amplifier 40 is represented by R ′,
DET10 and DET13 are internally connected, and the signal output through the current-voltage conversion amplifier 41 is F1 ′,
DET9, DET11, DET12, and DET14 are internally connected, and the signal output through the current-voltage conversion amplifier 42 is F2 ′,
And An information reproduction signal and a servo control signal can be obtained from the output signal by the following calculation.
PP signal: L'-M '
Lens error signal: P'-Q '
DPP signal: PP signal−k * lens error signal (L′−M′−k * (P′−Q ′))
Focus error signal: F1'-F2 '
DPD signal: (A 'and B' phase comparison) + (C 'and D' phase comparison)
Information reproduction signal: L ′ + M ′ + P ′ + Q ′ + R ′
As described above, since the DPD signal detected at the periphery of the light beam is detected from the first-order light having a low light amount, the light receiving surfaces DET1 and 4, the light receiving surfaces 2 and 3, the light receiving surfaces 5 and 7, and the light receiving surfaces 6 and 8 are provided. Each can be internally connected to output a signal, and the number of current-voltage conversion amplifiers can be reduced to five, which is the same as in the conventional example.

即ち、本実施例では、光束周辺部で検出するDPD信号を光量の弱い−1次光から検出する構成とすることで電流−電圧変換増幅器の使用数を低減し、第1の実施例よりもノイズの少ない高品質な情報再生信号が得られるという利点がある。かつ前記増幅器の増幅率をk=1.5程度へと大幅に低減できることとなり、多層迷光干渉等の外乱に強い安定して高品質な記録/再生信号の得られる光ピックアップ装置を提供できる。   That is, in this embodiment, the number of current-voltage conversion amplifiers used is reduced by adopting a configuration in which the DPD signal detected in the peripheral portion of the light beam is detected from the first-order light having a low light amount, which is lower than that in the first embodiment. There is an advantage that a high-quality information reproduction signal with less noise can be obtained. In addition, the amplification factor of the amplifier can be greatly reduced to about k = 1.5, and an optical pickup device that can stably and high-quality record / reproduce signals that are resistant to disturbances such as multilayer stray light interference can be provided.

第4の実施例について図9を用いて説明する。本実施例では、第3の実施例よりも製造が容易な光束分割素子を用いることで、前記光束分割素子の量産製造バラツキを抑制して素子単体の性能を安定化させ、光ピックアップ装置の歩留まり向上や低コスト化を図ることができる。   A fourth embodiment will be described with reference to FIG. In this embodiment, by using a light beam splitting element that is easier to manufacture than in the third embodiment, the mass production of the light beam splitting element is suppressed, the performance of the single element is stabilized, and the yield of the optical pickup device is improved. Improvement and cost reduction can be achieved.

本実施例における光ピックアップ装置の光学系構成は、例えば図1に示した光ピックアップ装置と同様の構成で構わない。第一の実施例と異なる点は、光束分割素子10と光検出器11の構成である。そこで第4の実施例の主要部である光検出器11の構成を図9に示して説明する。   The optical system configuration of the optical pickup device in the present embodiment may be the same as that of the optical pickup device shown in FIG. The difference from the first embodiment is the configuration of the light beam splitting element 10 and the photodetector 11. Therefore, the configuration of the photodetector 11 which is the main part of the fourth embodiment will be described with reference to FIG.

第1の実施例の光学系構成は回折領域iの回折格子ピッチが最も小さくなりやすい。回折格子のピッチが小さくなると、製造誤差の影響で回折効率等に変化が生じやすくなる。結果、光ピックアップの性能バラツキが生じ、歩留まりの低下を招く。   In the optical system configuration of the first embodiment, the diffraction grating pitch of the diffraction region i is likely to be the smallest. If the pitch of the diffraction grating is reduced, the diffraction efficiency is likely to change due to the influence of manufacturing errors. As a result, performance variation of the optical pickup occurs, resulting in a decrease in yield.

そこで、前記回折領域iのみ+1次光と−1次光の光量が等しくなる矩形格子を設ける領域する。第1の実施例で用いたブレーズ格子に比べ矩形格子は作製が非常に易しく、性能のバラツキを大きく抑制することができる。各回折領域の形状は第1の実施例と同様で良い。   Therefore, only the diffraction area i is provided with a rectangular grating in which the light amounts of the + 1st order light and the −1st order light are equal. Compared to the blazed grating used in the first embodiment, the rectangular grating is very easy to manufacture and can greatly suppress variation in performance. The shape of each diffraction region may be the same as in the first embodiment.

図9は回折領域iを矩形格子とした場合の光検出器構成の一例を示した概略図である。第3の実施例と異なるのは回折領域iからの光束を受光する受光面の構成である。回折領域iを矩形格子として±1次光に均等に光量を割り振ったため、+1次光の光量が第1の実施例に比べ減少する。そこで、新たにDET20を設けて回折領域iからの光束の−1次光も検出する。また、DET19とDET20は内部結線して信号R’として出力すればよく電流−電圧変換増幅器の増加はない。   FIG. 9 is a schematic view showing an example of the configuration of a photodetector when the diffraction region i is a rectangular grating. The difference from the third embodiment is the configuration of the light receiving surface that receives the light beam from the diffraction region i. Since the diffraction region i is a rectangular grating and the light amount is evenly allocated to the ± first-order light, the light amount of the + 1st-order light is reduced compared to the first embodiment. Therefore, a new DET 20 is provided to detect the −1st order light beam from the diffraction region i. Further, DET19 and DET20 may be internally connected and output as signal R ', and there is no increase in the current-voltage conversion amplifier.

その他の各回折領域と受光面の対応及び内部結線及び信号演算方法は第1の実施例と同等でよい。具体的には、回折領域a、b、c、d、e、f、g、h通過した光束のうち+1次光はDET1、4、2、3、8、6、7、5へ夫々入射し、回折領域e、f、g、hを通過した光束のうち−1次光はDET15、17、16、18へ夫々入射する。回折領域a、b、c、dを通過した光束の−1次光はフォーカス検出用の受光面DET9及至DET14の領域へ入射する。ただしフォーカス誤差信号検出にはダブルナイフエッジ法を用いるのが望ましいのでDET9及至DET14には直接光が入射せず各受光面の間に光束は入射する。トラッキング誤差信号は広く一般に使用されるDPP法及びDPD法の信号検出を行う。前記矩形の回折格子溝を設けた回折領域iの+1次光は受光面DET19へ、−1次光は受光面DET20へ入射する。   The correspondence between the other diffraction regions and the light receiving surface, the internal connection, and the signal calculation method may be the same as those in the first embodiment. Specifically, of the light beams that have passed through the diffraction regions a, b, c, d, e, f, g, and h, the + 1st order light is incident on the DETs 1, 4, 2, 3, 8, 6, 7, and 5, respectively. The first-order light among the light beams that have passed through the diffraction regions e, f, g, and h are incident on the DETs 15, 17, 16, and 18, respectively. The −1st-order light of the light beam that has passed through the diffraction regions a, b, c, and d is incident on the regions of the light receiving surfaces DET9 and DET14 for focus detection. However, since it is desirable to use the double knife edge method for detecting the focus error signal, no light is directly incident on DET9 to DET14, but a light beam is incident between the respective light receiving surfaces. The tracking error signal performs signal detection using the DPP method and the DPD method which are widely used in general. In the diffraction region i provided with the rectangular diffraction grating grooves, the + 1st order light is incident on the light receiving surface DET19 and the −1st order light is incident on the light receiving surface DET20.

各信号は夫々以下の演算により求める。
DET17から電流−電圧変換増幅器32を経ての出力される信号をA’、
DET16から電流−電圧変換増幅器33を経ての出力される信号をB’、
DET18から電流−電圧変換増幅器34を経ての出力される信号をC’、
DET15から電流−電圧変換増幅器35を経ての出力される信号をD’、
DET1とDET4を内部結線し電流−電圧変換増幅器36の出力信号をL’、
DET2とDET3を内部結線し電流−電圧変換増幅器37の出力信号をM’、
DET6とDET8を内部結線し電流−電圧変換増幅器38の出力信号をP’、
DET5とDET7を内部結線し電流−電圧変換増幅器39の出力信号をQ’、
DET19とDET20を内部結線し電流−電圧変換増幅器40の出力信号をR’、
DET10とDET13を内部結線し電流−電圧変換増幅器41を経て出力される信号をF1’、
DET9とDET11とDET12とDET14を内部結線し電流−電圧変換増幅器42を経て出力される信号をF2’、
とする。前記出力信号から以下の演算により、情報再生信号及びサーボ制御信号を得ることができる。
PP信号:L’−M’
レンズエラー信号:P’−Q’
DPP信号:PP信号−k*レンズエラー信号 (L’−M’−k*(P’−Q’))
フォーカス誤差信号:F1’−F2’
DPD信号:(A’とB’の位相比較)+(C’とD’の位相比較)
情報再生信号:L’+M’+P’+Q’+R’
即ち、本実施例では、第3実施例より製造が容易な光束分割素子を用いることで、前記光束分割素子の量産製造バラツキを抑制して素子単体の性能を安定化させ、光ピックアップ装置の歩留まり向上や低コスト化を図り、かつ前記増幅器の増幅率を1.5程度へと大幅に低減できることとなる。これにより多層迷光干渉等の外乱に強くかつ量産時の性能ばらつき少なく安定して高品質な記録/再生信号の得られる光ピックアップ装置を提供できるという利点がある。
Each signal is obtained by the following calculation.
A signal output from the DET 17 via the current-voltage conversion amplifier 32 is A ′,
A signal output from the DET 16 via the current-voltage conversion amplifier 33 is represented by B ′,
A signal output from the DET 18 via the current-voltage conversion amplifier 34 is represented by C ′,
A signal output from the DET 15 via the current-voltage conversion amplifier 35 is represented by D ′,
DET1 and DET4 are internally connected, and the output signal of the current-voltage conversion amplifier 36 is L ′,
DET2 and DET3 are internally connected, and the output signal of the current-voltage conversion amplifier 37 is M ′,
DET6 and DET8 are internally connected, and the output signal of the current-voltage conversion amplifier 38 is P ′,
DET5 and DET7 are internally connected, and the output signal of the current-voltage conversion amplifier 39 is Q ′,
DET19 and DET20 are internally connected, and the output signal of the current-voltage conversion amplifier 40 is R ′,
DET10 and DET13 are internally connected, and the signal output through the current-voltage conversion amplifier 41 is F1 ′,
DET9, DET11, DET12, and DET14 are internally connected, and the signal output through the current-voltage conversion amplifier 42 is F2 ′,
And An information reproduction signal and a servo control signal can be obtained from the output signal by the following calculation.
PP signal: L'-M '
Lens error signal: P'-Q '
DPP signal: PP signal−k * lens error signal (L′−M′−k * (P′−Q ′))
Focus error signal: F1'-F2 '
DPD signal: (A 'and B' phase comparison) + (C 'and D' phase comparison)
Information reproduction signal: L ′ + M ′ + P ′ + Q ′ + R ′
That is, in this embodiment, by using a light beam splitting element that is easier to manufacture than in the third embodiment, the mass production of the light beam splitting element is suppressed, the performance of the single element is stabilized, and the yield of the optical pickup device is increased. Improvement and cost reduction can be achieved, and the amplification factor of the amplifier can be greatly reduced to about 1.5. Accordingly, there is an advantage that it is possible to provide an optical pickup device that is resistant to disturbances such as multi-layer stray light interference and stably obtains a high quality recording / reproducing signal with little variation in performance during mass production.

次に、第5の実施例について図10を用いて説明する。本実施例では、第1実施例よりも、情報再生信号検出に用いる電流−電圧変換増幅器の数を低減して、よりノイズ成分の少ない高品質な情報再生信号の得られる光ピックアップ装置を提供する。   Next, a fifth embodiment will be described with reference to FIG. The present embodiment provides an optical pickup device that can reduce the number of current-voltage conversion amplifiers used for information reproduction signal detection and obtain a high-quality information reproduction signal with fewer noise components than the first embodiment. .

本実施例における光ピックアップ装置の光学系構成は、例えば図1に示した第1の実施例の光ピックアップ装置と同様の構成で構わない。第1の実施例と異なる点は光検出器11の構成である。そこで、図10に第5の実施例の主要部である光検出器11を示す。DPD信号はROMディスクを前提としたトラッキング誤差信号の検出方式である。DPD信号は光量変化の位相差を検知しているが、この光量変化がROMディスクに設けられている記録ピットによってもたらされるものだからである。しかし例えばBlu−reyディスク(以下BDと記す)ではROMディスクもDPP方式をサポートしているため、必ずしもDPD信号の検出が必要というわけではない。そこで、本実施例の光ピックアップ装置ではDPD信号の検出自体を行わずROMディスクもDPP方式のトラッキング誤差信号検出を行うことで、さらに受光面の内部結線を増やして電流−電圧変換増幅器の数を低減し情報再生信号のノイズ成分を低減することを目指すものである。光束分割素子は第1及び第2の実施例と同等で良い。また、光検出器の受光面配置も第1及び第2の実施例と同等で良い。第1及び第2の実施例と異なるのは受光面DET3’及至DET6’から電流−電圧変換増幅器43と電流−電圧変換増幅器44にいたるまでの内部結線の方法である。図10では回折領域iを矩形の回折格子溝とした場合の受光面パターンの一例を示している。
DET3’とDET5’を内部結線し電流−電圧変換増幅器43を経ての出力される信号をP’、
DET4’とDET6’を内部結線し電流−電圧変換増幅器44を経ての出力される信号をQ’、とする。これによりレンズエラー信号をP’−Q’により生成し、情報再生信号をL’+M’+P’+Q’+R’により生成する。他の内部結線方法や信号演算方法は第1及び第2の実施例と同様でよい。
The optical system configuration of the optical pickup apparatus in this embodiment may be the same as that of the optical pickup apparatus of the first embodiment shown in FIG. The difference from the first embodiment is the configuration of the photodetector 11. FIG. 10 shows a photodetector 11 which is a main part of the fifth embodiment. The DPD signal is a tracking error signal detection method based on a ROM disk. This is because the DPD signal detects the phase difference of the change in the amount of light, but this change in the amount of light is caused by the recording pit provided on the ROM disk. However, for example, in a Blu-ray disc (hereinafter referred to as BD), the ROM disc also supports the DPP method, so that it is not always necessary to detect the DPD signal. Therefore, the optical pickup apparatus of this embodiment does not detect the DPD signal itself, but the ROM disk also detects the DPP tracking error signal, thereby further increasing the internal connection of the light receiving surface and increasing the number of current-voltage conversion amplifiers. It aims to reduce the noise component of the information reproduction signal. The beam splitting element may be the same as in the first and second embodiments. Further, the arrangement of the light receiving surface of the photodetector may be the same as that in the first and second embodiments. The difference from the first and second embodiments is the internal connection method from the light receiving surfaces DET3 ′ to DET6 ′ to the current-voltage conversion amplifier 43 and the current-voltage conversion amplifier 44. FIG. 10 shows an example of the light receiving surface pattern when the diffraction region i is a rectangular diffraction grating groove.
DET3 ′ and DET5 ′ are internally connected, and a signal output through the current-voltage conversion amplifier 43 is P ′,
A signal output through the current-voltage conversion amplifier 44 by internally connecting DET4 ′ and DET6 ′ is Q ′. Thus, a lens error signal is generated by P′−Q ′, and an information reproduction signal is generated by L ′ + M ′ + P ′ + Q ′ + R ′. Other internal connection methods and signal calculation methods may be the same as those in the first and second embodiments.

上記構成により情報再生信号に影響する電流−電圧変換増幅器の数を7個から5個へと低減できる。即ち、本実施例では、第1の実施例よりもノイズの少ない高品質な情報再生信号が得られるという利点がある。   With the above configuration, the number of current-voltage conversion amplifiers affecting the information reproduction signal can be reduced from seven to five. That is, this embodiment has an advantage that a high-quality information reproduction signal with less noise than that of the first embodiment can be obtained.

図11は、第1及至第5実施例に係る光ピックアップ装置を搭載した光ディスク装置概略図である。8は光ディスク、910はレーザ点灯回路、920は光ピックアップ装置、930はスピンドルモータ、940はスピンドルモータ駆動回路、950はアクセス制御回路、960はアクチュエータ駆動回路、970はサーボ信号生成回路、980は情報信号再生回路、990は情報信号記録回路、900はコントロール回路である。コントロール回路900、サーボ信号生成回路970、アクチュエータ駆動回路960は、光ピックピックアップ920からの出力に応じて、アクチュエータを制御する。本発明における光ピックアップ装置からの出力をアクチュエータ制御に用いることにより、安定的かつ高精度の情報記録や情報再生ができる。   FIG. 11 is a schematic diagram of an optical disk device on which the optical pickup device according to the first to fifth embodiments is mounted. 8 is an optical disk, 910 is a laser lighting circuit, 920 is an optical pickup device, 930 is a spindle motor, 940 is a spindle motor drive circuit, 950 is an access control circuit, 960 is an actuator drive circuit, 970 is a servo signal generation circuit, and 980 is information A signal reproduction circuit, 990 is an information signal recording circuit, and 900 is a control circuit. The control circuit 900, the servo signal generation circuit 970, and the actuator drive circuit 960 control the actuator in accordance with the output from the optical pick pickup 920. By using the output from the optical pickup device in the present invention for actuator control, stable and highly accurate information recording and information reproduction can be performed.

また、本発明を用いた光ピックアップ装置としては、図1に示されるような光学系や実施例で説明した光学系構成あるいは受光面構成に限定されるものではない。   Further, the optical pickup device using the present invention is not limited to the optical system as shown in FIG. 1, the optical system configuration described in the embodiment, or the light receiving surface configuration.

上記した各手段を用いることにより、多層化された光ディスクを記録又は再生する際に、良好な再生品質を得ることができる。   By using each of the above-described means, it is possible to obtain good reproduction quality when recording or reproducing a multilayered optical disc.

以上、本発明に従う光ピックアップ装置及びそれを用いた光ディスク装置の実施形態について説明したが、本発明は上記実施形態に限定されず、本発明の要旨を逸脱しない範囲において種々の改良や変形を行うことができる。つまり、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   The embodiments of the optical pickup device according to the present invention and the optical disk device using the same have been described above. However, the present invention is not limited to the above-described embodiments, and various improvements and modifications are made without departing from the scope of the present invention. be able to. That is, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1…レーザ光源、2…レーザ光束、3…偏光ビームスプリッタ、4…ステッピングモータ、5…コリメートレンズ、6…1/4波長板、7…対物レンズ、8…光ディスク、9…アクチュエータ、10…光束分割素子、11…光検出器、18〜44…電流−電圧変換増幅器、910…レーザ点灯回路、920…光ピックアップ装置、930…スピンドルモータ、940…スピンドルモータ駆動回路、950…アクセス制御回路、960…アクチュエータ駆動回路、970…サーボ信号生成回路、980…情報信号再生回路、990…情報信号記録回路、900…コントロール回路 DESCRIPTION OF SYMBOLS 1 ... Laser light source, 2 ... Laser beam, 3 ... Polarizing beam splitter, 4 ... Stepping motor, 5 ... Collimating lens, 6 ... 1/4 wavelength plate, 7 ... Objective lens, 8 ... Optical disk, 9 ... Actuator, 10 ... Light beam Splitting element 11... Photo detector 18 to 44 Current-voltage conversion amplifier 910... Laser lighting circuit 920... Optical pick-up device 930 Spindle motor 940 Spindle motor drive circuit 950 Access control circuit 960 ... Actuator drive circuit, 970 ... Servo signal generation circuit, 980 ... Information signal reproduction circuit, 990 ... Information signal recording circuit, 900 ... Control circuit

Claims (16)

レーザ光源と、
該レーザ光源から出射したレーザ光束を光ディスク上に集光させる対物レンズと、
光ディスクで反射された信号光束を複数の光束へと分割する光束分割素子と、
複数に分割された前記信号光束を夫々受光する為の複数の受光面を有する光検出器とを備えた光ピックアップ装置であって、
前記光束分割素子により分割された信号光束のうち、プッシュプル信号領域を除いた光束周辺部の領域の光を前記光検出器で検出し、
前記光束周辺部の光からの検出信号を用いてトラッキング誤差信号となるDPD信号を検出することを特徴とする光ピックアップ装置。
A laser light source;
An objective lens for condensing the laser beam emitted from the laser light source onto the optical disc;
A light beam splitting element that splits the signal light beam reflected by the optical disc into a plurality of light beams;
An optical pickup device comprising a photodetector having a plurality of light receiving surfaces for receiving the signal light beams divided into a plurality of parts,
Of the signal light beam divided by the light beam splitting element, the light detector detects the light in the peripheral region of the light beam excluding the push-pull signal region,
An optical pickup device that detects a DPD signal serving as a tracking error signal by using a detection signal from light in the periphery of the light beam.
請求項1に記載の光ピックアップ装置であって、
前記光束分割素子は少なくとも7つの回折領域を有し、
前記光ディスクの記録層に設けられたトラック溝により回折されたディスク回折光のうち、
第1の回折領域には光束の中心を含む0次ディスク回折光が入射し、
第2の回折領域には0次、+1次ディスク回折光が入射し、
第3の回折領域には0次、−1次ディスク回折光が入射し、
前記第2の回折領域に隣接した第4と第5の回折領域には0次ディスク回折光の光束周辺部領域の光が入射し、
前記第3の回折領域に隣接した第6と第7の回折領域には0次ディスク回折光の光束周辺部領域の光が入射し、
第4と第6の回折領域は互いに隣接しており、
第5と第7の回折領域も互いに隣接していることを特徴とする光ピックアップ装置。
The optical pickup device according to claim 1,
The beam splitting element has at least seven diffraction regions;
Of the disc diffracted light diffracted by the track grooves provided in the recording layer of the optical disc,
Zero-order disc diffracted light including the center of the light beam is incident on the first diffraction region,
The 0th-order and + 1st-order disc diffracted light is incident on the second diffraction region,
The third diffraction region is incident with 0th and −1st order disc diffracted light,
The fourth and fifth diffraction regions adjacent to the second diffraction region are incident on the light beam peripheral region of the zero-order disc diffracted light,
The light in the peripheral region of the light flux of the 0th-order disc diffracted light is incident on the sixth and seventh diffraction regions adjacent to the third diffraction region,
The fourth and sixth diffraction regions are adjacent to each other;
An optical pickup device characterized in that the fifth and seventh diffraction regions are also adjacent to each other.
請求項1に記載の光ピックアップ装置であって、
前記光束分割素子は回折格子であり、かつ回折格子面は複数の領域に分割され、領域毎に所定の回折格子溝の形状が夫々設けられ、
前記光束分割素子の回折格子は+1次回折光の光量と−1次回折光の光量比が異なるようにブレーズ化されたことを特徴とする光ピックアップ装置。
The optical pickup device according to claim 1,
The light beam splitting element is a diffraction grating, and the diffraction grating surface is divided into a plurality of regions, each having a predetermined diffraction grating groove shape,
An optical pickup device characterized in that the diffraction grating of the light beam splitting element is blazed so that the light amount ratio of + 1st order diffracted light and -1st order diffracted light is different.
請求項1に記載の光ピックアップ装置であって、
前記光束分割素子は回折格子であり、かつ回折格子面は複数の領域に分割され、領域毎に所定の回折格子溝の形状が夫々設けられ、
前記光束分割素子の回折格子は+1次回折光の光量と−1次回折光の光量比が異なるようにブレーズ化された回折格子領域と、
+1次回折光の光量と−1次回折光の光量が等しくなる矩形回折格子領域とが混在していることを特徴とする光ピックアップ装置。
The optical pickup device according to claim 1,
The light beam splitting element is a diffraction grating, and the diffraction grating surface is divided into a plurality of regions, each having a predetermined diffraction grating groove shape,
The diffraction grating of the light beam splitting element has a diffraction grating region blazed so that the light amount ratio of the + 1st order diffracted light and the light amount of the −1st order diffracted light are different from each other;
An optical pickup device, wherein a light quantity of + 1st order diffracted light and a rectangular diffraction grating region where light quantities of -1st order diffracted light are equal are mixed.
請求項3に記載の光ピックアップ装置であって、
前記光束分割素子の分割された光束のうち、第2と第3の回折領域の光量が強い側の符号の1次光からPP信号を検出し、
第4及至第7の回折領域の光量が強い側の符号の1次光から対物レンズ移動量に比例したレンズエラー信号と前記DPD信号を検出し、
第4及至第7の回折領域の光量が弱い側の符号の1次光からフォーカス誤差信号を検出し、
第1及至第7の回折領域の光量が強い側の符号の1次光から情報再生信号を検出することを特徴とする光ピックアップ装置。
The optical pickup device according to claim 3,
A PP signal is detected from the primary light of the sign on the side where the light intensity of the second and third diffraction regions is strong among the light beams divided by the light beam splitting element,
A lens error signal proportional to the amount of movement of the objective lens and the DPD signal are detected from the primary light of the sign on the side where the light intensity of the fourth to seventh diffraction areas is strong,
A focus error signal is detected from the primary light of the code on the side where the light intensity of the fourth to seventh diffraction regions is weak,
An optical pickup apparatus for detecting an information reproduction signal from primary light having a sign with a higher light quantity in first to seventh diffraction regions.
請求項3に記載の光ピックアップ装置であって、
前記光束分割素子の分割された光束のうち、第2と第3の回折領域の光量が強い側の符号の1次光からPP信号を検出し、
第4及至第7の回折領域の光量が強い側の符号の1次光からレンズエラー信号を検出し、
第4及至第7の回折領域の光量が弱い側の符号の1次光から前記DPD信号を検出し、
第2と第3の回折領域の光量が弱い側の符号の1次光からフォーカス誤差信号を検出し、
第1及至第7の回折領域の光量が強い側の符号の1次光から情報再生信号を検出することを特徴とする光ピックアップ装置。
The optical pickup device according to claim 3,
A PP signal is detected from the primary light of the sign on the side where the light intensity of the second and third diffraction regions is strong among the light beams divided by the light beam splitting element,
A lens error signal is detected from the primary light of the sign on the side where the light intensity of the fourth to seventh diffraction regions is strong,
The DPD signal is detected from the primary light of the sign on the side where the light intensity of the fourth to seventh diffraction regions is weak,
A focus error signal is detected from the primary light of the sign on the side where the light intensity of the second and third diffraction regions is weak,
An optical pickup apparatus for detecting an information reproduction signal from primary light having a sign with a higher light quantity in first to seventh diffraction regions.
請求項4に記載の光ピックアップ装置であって、
前記光束分割素子の分割された光束のうち、第2と第3の回折領域の光量が強い側の符号の1次光からPP信号を検出し、
第4及至第7の回折領域の光量が強い側の符号の1次光からレンズエラー信号と前記DPD信号を検出し、
第4及至第7の回折領域の光量が弱い側の符号の1次光からフォーカス誤差信号を検出し、
第2及至第7の回折領域の光量が強い側の符号の1次光と第1の回折領域の±1次光から情報再生信号を検出することを特徴とする光ピックアップ装置。
The optical pickup device according to claim 4,
A PP signal is detected from the primary light of the sign on the side where the light intensity of the second and third diffraction regions is strong among the light beams divided by the light beam splitting element,
The lens error signal and the DPD signal are detected from the primary light of the sign on the side where the light intensity of the fourth to seventh diffraction regions is strong,
A focus error signal is detected from the primary light of the code on the side where the light intensity of the fourth to seventh diffraction regions is weak,
An optical pickup apparatus for detecting an information reproduction signal from primary light having a sign on the side where the light intensity in the second to seventh diffraction regions is strong and ± first-order light in the first diffraction region.
請求項4に記載の光ピックアップ装置であって、
前記光束分割素子の分割された光束のうち、第2と第3の回折領域の光量が強い側の符号の1次光からPP信号を検出し、
第4及至第7の回折領域の光量が強い側の符号の1次光からレンズエラー信号を検出し、
第4及至第7の回折領域の光量が弱い側の符号の1次光から前記DPD信号を検出し、
第2と第3の回折領域の光量が弱い側の符号の1次光からフォーカス誤差信号を検出し、
第1及至第7の回折領域の光量が強い側の符号の1次光と第1の回折領域の±1次光から情報再生信号を検出することを特徴とする光ピックアップ装置。
The optical pickup device according to claim 4,
A PP signal is detected from the primary light of the sign on the side where the light intensity of the second and third diffraction regions is strong among the light beams divided by the light beam splitting element,
A lens error signal is detected from the primary light of the sign on the side where the light intensity of the fourth to seventh diffraction regions is strong,
The DPD signal is detected from the primary light of the sign on the side where the light intensity of the fourth to seventh diffraction regions is weak,
A focus error signal is detected from the primary light of the sign on the side where the light intensity of the second and third diffraction regions is weak,
An optical pickup device that detects an information reproduction signal from primary light with a sign on the side where the light intensity is strong in the first to seventh diffraction regions and ± primary light in the first diffraction region.
請求項1に記載の光ピックアップ装置であって、
前記第4及至7の回折格子領域の+1次回折光または−1次格子回折光を検出する2つ以上の受光面が前記光ディスクの半径方向に相当する方向と略一致する方向に略一直線で並び、
前記第2及び第3の回折格子領域+1次格子回折光または−1次格子回折光を検出する2つ以上の受光面が前記光ディスクの接線方向に相当する方向と略一致する方向に並び、
前記第1及至第7の回折領域からの各光束は、前記光ディスクの目的の記録層に焦点が合っている場合には、前記目的の記録層からの反射光束は前記光検出器の受光面上に夫々焦点を結び、第2及至第7の回折領域からの各光束で前記目的の情報記録層以外の記録再生層からの反射光束は前記光検出器の前記受光面に照射されないよう構成されたことを特徴とする光ピックアップ装置。
The optical pickup device according to claim 1,
Two or more light receiving surfaces for detecting + 1st order diffracted light or −1st order diffracted light in the fourth to seventh diffraction grating regions are arranged in a substantially straight line in a direction substantially corresponding to a direction corresponding to a radial direction of the optical disc;
Two or more light receiving surfaces for detecting the second and third diffraction grating regions + 1st order grating diffracted light or −1st order grating diffracted light are arranged in a direction substantially coincident with a direction corresponding to a tangential direction of the optical disc,
When the light beams from the first to seventh diffraction regions are focused on the target recording layer of the optical disc, the reflected light beam from the target recording layer is reflected on the light receiving surface of the photodetector. Each of the light beams from the second to seventh diffraction regions is configured such that the reflected light beam from the recording / reproducing layer other than the target information recording layer is not irradiated onto the light receiving surface of the photodetector. An optical pickup device characterized by that.
請求項1に記載の光ピックアップ装置であって、
トラッキング誤差信号をとしてDPP信号を生成する際に必要な前記レンズエラー信号の信号増幅率が1乃至2の範囲内にあることを特徴とする光ピックアップ装置。
The optical pickup device according to claim 1,
An optical pickup device characterized in that a signal amplification factor of the lens error signal necessary for generating a DPP signal using a tracking error signal is in a range of 1 to 2.
レーザ光源と、
該レーザ光源から出射したレーザ光束を光ディスク上に集光させる対物レンズと、
光ディスクで反射された信号光束を複数の光束へと分割する光束分割素子と、
前記光束分割素子により複数に分割された光束を夫々受光する為の複数の受光面を有する光検出器とを備えた光ピックアップ装置であって、
DPP信号のみをトラッキング誤差信号として検出することを特徴とする光ピックアップ装置。
A laser light source;
An objective lens for condensing the laser beam emitted from the laser light source onto the optical disc;
A light beam splitting element that splits the signal light beam reflected by the optical disc into a plurality of light beams;
An optical pickup device including a photodetector having a plurality of light receiving surfaces for receiving light beams divided into a plurality of light beams by the light beam dividing element,
An optical pickup device that detects only a DPP signal as a tracking error signal.
請求項11に記載の光ピックアップ装置であって、
前記光束分割素子は少なくとも7つの回折領域を有し、
前記光ディスクの記録層に設けられたトラック溝により回折されたディスク回折光のうち、
第1の回折領域には光束の中心を含む0次ディスク回折光が入射し、
第2の回折領域には0次、+1次ディスク回折光が入射し、
第3の回折領域には0次、−1次ディスク回折光が入射し、
前記第2の回折領域に隣接した第4と第5の回折領域には0次ディスク回折光の光束周辺部領域の光が入射し、
前記第3の回折領域に隣接した第6と第7の回折領域には0次ディスク回折光の光束周辺部領域の光が入射し、
第4と第6の回折領域は互いに隣接しており、
第5と第7の回折領域も互いに隣接していることを特徴とする光ピックアップ装置。
The optical pickup device according to claim 11,
The beam splitting element has at least seven diffraction regions;
Of the disc diffracted light diffracted by the track grooves provided in the recording layer of the optical disc,
Zero-order disc diffracted light including the center of the light beam is incident on the first diffraction region,
The 0th-order and + 1st-order disc diffracted light is incident on the second diffraction region,
The third diffraction region is incident with 0th and −1st order disc diffracted light,
The fourth and fifth diffraction regions adjacent to the second diffraction region are incident on the light beam peripheral region of the zero-order disc diffracted light,
The light in the peripheral region of the light flux of the 0th-order disc diffracted light is incident on the sixth and seventh diffraction regions adjacent to the third diffraction region,
The fourth and sixth diffraction regions are adjacent to each other;
An optical pickup device characterized in that the fifth and seventh diffraction regions are also adjacent to each other.
請求項11に記載の光ピックアップ装置であって、
前記光束分割素子の分割された光束のうち、第2と第3の回折領域の光量が強い側の符号の1次光からPP信号を検出し、
第4及至第7の回折領域の光量が強い側の符号の1次光からレンズエラー信号を検出し、
第4及至第7の回折領域の光量が弱い側の符号の1次光からフォーカス誤差信号を検出し、
第2及至第7の回折領域の光量が強い側の符号の1次光と第1の回折領域の±1次光から情報再生信号を検出することを特徴とする光ピックアップ装置。
The optical pickup device according to claim 11,
A PP signal is detected from the primary light of the sign on the side where the light intensity of the second and third diffraction regions is strong among the light beams divided by the light beam splitting element,
A lens error signal is detected from the primary light of the sign on the side where the light intensity of the fourth to seventh diffraction regions is strong,
A focus error signal is detected from the primary light of the code on the side where the light intensity of the fourth to seventh diffraction regions is weak,
An optical pickup apparatus for detecting an information reproduction signal from primary light having a sign on the side where the light intensity in the second to seventh diffraction regions is strong and ± first-order light in the first diffraction region.
前記光ディスク内に所定間隔で設けられた複数の記録層に記録された各情報信号を再生する機能と、各記録層に各情報信号を記録する機能とを備えた請求項1及至請求項13に記載の光ピックアップ装置。   Claims 1 to 13 having a function of reproducing each information signal recorded on a plurality of recording layers provided at predetermined intervals in the optical disc and a function of recording each information signal on each recording layer. The optical pickup device described. 請求項1及至請求項14に記載の光ピックアップ装置と、該光ピックアップ装置内における前記レーザ光源を駆動するレーザ点灯回路と、前記光ピックアップ装置内の前記光検出器から検出された信号を用いてフォーカス誤差信号とトラッキング誤差信号を生成するサーボ信号生成回路と、光ディスクに記録された情報信号を再生する情報信号再生回路を搭載した光ディスク装置。   15. An optical pickup device according to claim 1, a laser lighting circuit for driving the laser light source in the optical pickup device, and a signal detected from the photodetector in the optical pickup device. An optical disc apparatus equipped with a servo signal generation circuit for generating a focus error signal and a tracking error signal and an information signal reproduction circuit for reproducing an information signal recorded on the optical disc. 前記光ディスク内に所定間隔で設けられた複数の記録層に記録された各情報信号を再生する機能と、各記録層に各情報信号を記録する機能とを備えた請求項15に記載の光ディスク装置。   16. The optical disc apparatus according to claim 15, comprising a function of reproducing each information signal recorded on a plurality of recording layers provided at predetermined intervals in the optical disc, and a function of recording each information signal on each recording layer. .
JP2009202188A 2009-09-02 2009-09-02 Optical pickup device and optical disk device using the same Active JP5378120B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009202188A JP5378120B2 (en) 2009-09-02 2009-09-02 Optical pickup device and optical disk device using the same
US12/760,592 US8184509B2 (en) 2009-09-02 2010-04-15 Optical pickup device and optical disk device using the same
CN201010167259.7A CN102005217B (en) 2009-09-02 2010-04-21 Optical pickup device and optical disk device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009202188A JP5378120B2 (en) 2009-09-02 2009-09-02 Optical pickup device and optical disk device using the same

Publications (2)

Publication Number Publication Date
JP2011054235A true JP2011054235A (en) 2011-03-17
JP5378120B2 JP5378120B2 (en) 2013-12-25

Family

ID=43624740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009202188A Active JP5378120B2 (en) 2009-09-02 2009-09-02 Optical pickup device and optical disk device using the same

Country Status (3)

Country Link
US (1) US8184509B2 (en)
JP (1) JP5378120B2 (en)
CN (1) CN102005217B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013097831A (en) * 2011-10-31 2013-05-20 Sony Corp Optical disk drive
US10176838B2 (en) * 2015-06-26 2019-01-08 Sony Corporation Optical disc device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004139728A (en) * 2003-11-17 2004-05-13 Nec Corp Optical head device
JP2007213754A (en) * 2006-01-12 2007-08-23 Sony Corp Optical pickup and optical information device
JP2008102998A (en) * 2006-10-18 2008-05-01 Hitachi Media Electoronics Co Ltd Optical head and optical disk device using the same
JP2009170061A (en) * 2008-01-21 2009-07-30 Hitachi Media Electoronics Co Ltd Diffraction grating, optical pickup device and optical disk device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045058A (en) * 2001-07-31 2003-02-14 Canon Inc Optical disk inclination detector
JP2003162832A (en) 2001-09-14 2003-06-06 Matsushita Electric Ind Co Ltd Optical pickup head, information recording and reproducing device, and information recording device
JP2004281026A (en) 2002-08-23 2004-10-07 Matsushita Electric Ind Co Ltd Optical pickup head device, optical information device, and optical information reproducing method
US8023368B2 (en) * 2003-10-16 2011-09-20 Panasonic Corporation Tilt sensor and optical disk drive
US7830773B2 (en) * 2004-11-16 2010-11-09 Panasonic Corporation Optical pickup for recording and reproducing information with a plurality of types of optical information recording mediums
JP2006209924A (en) * 2005-01-31 2006-08-10 Toshiba Corp Optical pickup device and information recording reproducing device
JP4859095B2 (en) 2005-03-02 2012-01-18 株式会社リコー Extraction optical system, optical pickup device, and optical disc device
CN101140772B (en) * 2006-09-07 2012-10-10 松下电器产业株式会社 Optical head and optical disc device
US7567495B2 (en) * 2006-10-18 2009-07-28 Hitachi Media Electronics Co., Ltd. Optical pickup apparatus and optical disc apparatus using same
JP2008204517A (en) * 2007-02-19 2008-09-04 Hitachi Media Electoronics Co Ltd Optical head and optical information recording and reproducing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004139728A (en) * 2003-11-17 2004-05-13 Nec Corp Optical head device
JP2007213754A (en) * 2006-01-12 2007-08-23 Sony Corp Optical pickup and optical information device
JP2008102998A (en) * 2006-10-18 2008-05-01 Hitachi Media Electoronics Co Ltd Optical head and optical disk device using the same
JP2009170061A (en) * 2008-01-21 2009-07-30 Hitachi Media Electoronics Co Ltd Diffraction grating, optical pickup device and optical disk device

Also Published As

Publication number Publication date
JP5378120B2 (en) 2013-12-25
US8184509B2 (en) 2012-05-22
US20110051574A1 (en) 2011-03-03
CN102005217A (en) 2011-04-06
CN102005217B (en) 2014-08-13

Similar Documents

Publication Publication Date Title
US7227819B2 (en) Optical pick-up head, optical information apparatus, and optical information reproducing method
JP5002445B2 (en) Optical pickup device and optical disk device
JP2007257750A (en) Optical pickup and optical disk device
JP3897632B2 (en) Optical pickup device and optical beam focusing method
KR20110074974A (en) Optical pickup device and optical disc device equipped with same
US20070041287A1 (en) Optical pickup apparatus capable of detecting and compensating for spherical aberration caused by thickness variation of recording layer
JP5378120B2 (en) Optical pickup device and optical disk device using the same
KR20100041699A (en) Optical pickup device and optical disc device provided with the same
JP5542459B2 (en) Optical pickup device and optical disk device using the same
US20110063967A1 (en) Optical pickup device and optical disc apparatus using the same
JP2012108985A (en) Optical pickup
JP5103367B2 (en) Optical pickup device and optical disk device using the same
KR20080000030A (en) Optical pick-up
JP4862139B2 (en) Optical pickup device
KR20080017690A (en) Optical pick-up
JP2006120211A (en) Optical pickup, optical disk device, photodetector, and method for generating optical pickup signal
JP2006099844A (en) Optical head apparatus and optical disk apparatus
JP2011187116A (en) Optical pickup device and optical disk device
JP2009271994A (en) Optical pickup device and method for designing optical pickup device
JP2012133852A (en) Optical pickup
JP2004272947A (en) Optical pickup head device and optical information device
JP2012181904A (en) Optical pickup
JP2009140551A (en) Optical pickup and optical disk drive unit
JP2012203930A (en) Optical pickup device
JP2012123874A (en) Optical pickup device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130925

R150 Certificate of patent or registration of utility model

Ref document number: 5378120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150