JP2011053303A - Optical element module, optical transceiver, and optical active cable - Google Patents

Optical element module, optical transceiver, and optical active cable Download PDF

Info

Publication number
JP2011053303A
JP2011053303A JP2009199995A JP2009199995A JP2011053303A JP 2011053303 A JP2011053303 A JP 2011053303A JP 2009199995 A JP2009199995 A JP 2009199995A JP 2009199995 A JP2009199995 A JP 2009199995A JP 2011053303 A JP2011053303 A JP 2011053303A
Authority
JP
Japan
Prior art keywords
optical
lens
light
substrate
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009199995A
Other languages
Japanese (ja)
Inventor
Akihiro Hiruta
昭浩 蛭田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2009199995A priority Critical patent/JP2011053303A/en
Publication of JP2011053303A publication Critical patent/JP2011053303A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical transceiver that can be reduced in the number of components while increasing efficiency of optical coupling between an optical element and an optical fiber, and can be reduced in the cost. <P>SOLUTION: The optical transceiver includes: a mirror member 9 with a lens, which has a mirror body 7 having an approximately right-angle triangular cross-section disposed on an optical element 4 and has a lens 8 formed on a light-entering face or a light-exiting face of the mirror body 7; an optical connector 10 disposed at an end of an optical fiber array 6; and an optical path-converting optical waveguide member 13 with a lens, which has an optical waveguide 11 connecting a substrate 3 and the optical connector 10 and aligning the optical axes of the optical fiber array 6 of the optical connector 10 and of the lens 8 of the mirror member 9 with a lens, and has a lens 12 formed on the light-entering end face or light-exiting end face of the optical waveguide 11. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、基板上に実装された光素子と光ファイバアレイとの間で電気信号と光信号を相互変換するための光素子モジュール、光トランシーバ及び光アクティブケーブルに関するものである。   The present invention relates to an optical element module, an optical transceiver, and an optical active cable for mutually converting an electric signal and an optical signal between an optical element mounted on a substrate and an optical fiber array.

光通信においては、一方の光送受信モジュールに実装された発光素子にて電気信号を光信号に変換し、変換した光信号を光ファイバを用いて伝送し、伝送された光信号を他方の光送受信モジュールに実装された受光素子にて再び電気信号に変換することにより、高速な通信を可能にしている。   In optical communication, an electrical signal is converted into an optical signal by a light emitting element mounted on one optical transceiver module, the converted optical signal is transmitted using an optical fiber, and the transmitted optical signal is transmitted and received on the other optical transceiver. High-speed communication is enabled by converting the light signal again into an electric signal by the light receiving element mounted on the module.

電気信号と光信号の相互変換のための光送受信モジュールとして光トランシーバが用いられている。   An optical transceiver is used as an optical transmission / reception module for mutual conversion between an electrical signal and an optical signal.

従来の光トランシーバとしては、一端が電子機器に設けられた電気コネクタに挿抜可能に電気接続される基板と、基板上に実装された発光素子及び受光素子(光素子)と、発光素子及び受光素子にそれぞれ接続された2本の光ファイバとをケース内に収容したものがある(例えば、特許文献1参照)。   As a conventional optical transceiver, one end is electrically connected so that it can be inserted into and removed from an electrical connector provided in an electronic device, a light emitting element and a light receiving element (optical element) mounted on the substrate, and a light emitting element and a light receiving element In some cases, two optical fibers connected to each other are accommodated in a case (see, for example, Patent Document 1).

この光トランシーバでは、電子機器からの電気信号は、発光素子にて光信号に変換され、送信用の光ファイバに出射される。他方、受信用の光ファイバで受信された光信号は、受光素子にて電気信号に変換され、電子機器に送られる。このように、光トランシーバは電気信号と光信号の相互変換を同時に行うことができる。   In this optical transceiver, an electrical signal from an electronic device is converted into an optical signal by a light emitting element and emitted to an optical fiber for transmission. On the other hand, the optical signal received by the receiving optical fiber is converted into an electrical signal by the light receiving element and sent to the electronic device. In this manner, the optical transceiver can perform mutual conversion between an electrical signal and an optical signal at the same time.

また、光トランシーバの小型化のために基板の表裏面に発光素子と受光素子を別々に実装することが行われている(例えば、特許文献2参照)。   In order to reduce the size of an optical transceiver, a light emitting element and a light receiving element are separately mounted on the front and back surfaces of a substrate (for example, see Patent Document 2).

特開平9−171127号公報JP-A-9-171127 特開2003−133631号公報Japanese Patent Laid-Open No. 2003-133661 特開2009−103877号公報JP 2009-103877 A 特開2005−173043号公報JP 2005-173043 A

ところで、光素子に送受信用の光ファイバを光結合するには、従来、光ファイバの光入出射端面を光素子に直接光結合したり、光結合の信頼性を高めるために入出射光を集光するためのレンズを光素子上に一体に形成し、光トランシーバの薄型化のために光素子の光軸を基板面と平行に変換するためのミラーを別途設け、これを介して光結合することが行われている。   By the way, in order to optically couple an optical fiber for transmission / reception to an optical element, conventionally, the light incident / exit end face of the optical fiber is directly optically coupled to the optical element, or the incident / exit light is condensed to improve the reliability of optical coupling. In order to reduce the thickness of the optical transceiver, a mirror for converting the optical axis of the optical element in parallel to the substrate surface is provided separately, and optical coupling is performed therethrough. Has been done.

しかし、光素子と光ファイバを直接光結合する方法では、光軸合わせが難しく光結合効率に劣る問題がある。また、光素子上に一体にレンズを形成し、別途設けたミラーを介して光結合する方法では、光結合効率の向上、光トランシーバの薄型化を図ることはできるものの、別途設けたミラーの分だけ部品点数が多くなり、結果として光トランシーバにかかるコストの上昇を招いてしまう問題がある。   However, the method of directly optically coupling the optical element and the optical fiber has a problem that it is difficult to align the optical axes and the optical coupling efficiency is inferior. In addition, in the method in which a lens is integrally formed on an optical element and optical coupling is performed via a separately provided mirror, the optical coupling efficiency can be improved and the optical transceiver can be thinned. However, there is a problem that the number of parts increases, resulting in an increase in cost for the optical transceiver.

そこで、本発明の目的は、光素子と光ファイバとの光結合の効率を向上させつつ部品点数を少なくでき、コストの低減を図ることができる光素子モジュール、光トランシーバ及び光アクティブケーブルを提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an optical element module, an optical transceiver, and an optical active cable that can reduce the number of parts while improving the efficiency of optical coupling between an optical element and an optical fiber and can reduce costs. There is.

本発明は上記目的を達成するために創案されたものであり、請求項1の発明は、発光素子又は受光素子からなる光素子と、反射面を有する側面断面が略直角三角形状のミラー本体と、前記光素子からの光信号又は前記光素子への光信号を平行光とする又は集光するレンズとからなり、前記ミラー本体の一方の光信号入射面又は光信号出射面に前記レンズが一体形成されると共に、前記ミラー本体の他方の光信号入射面又は光信号出射面に前記光素子が一体に形成された光素子モジュールである。   The present invention has been devised to achieve the above object, and the invention of claim 1 includes an optical element comprising a light emitting element or a light receiving element, a mirror main body having a reflecting surface and a side surface section having a substantially right triangle shape. A lens that collimates or condenses the optical signal from the optical element or the optical signal to the optical element, and the lens is integrated with one optical signal incident surface or optical signal output surface of the mirror body. And an optical element module in which the optical element is integrally formed on the other optical signal incident surface or optical signal output surface of the mirror body.

請求項2の発明は、ケースと、前記ケース内に収容され一端が電子機器に設けられた電気コネクタに挿抜可能に電気接続される基板と、前記ケース内に収容されると共に前記基板の表裏面に光軸が前記基板の表裏面に対して垂直な方向となるように実装された発光素子及び受光素子と、前記基板の他端側の前記ケース外に設けられる光ファイバアレイを有し、前記光ファイバアレイの光入射端面又は光出射端面の光軸が前記基板の表裏面と平行になるように保持する光コネクタと、断面が略直角三角形状のミラー本体を有すると共に前記ミラー本体の光入出射面に形成されたレンズを有し、前記発光素子及び前記受光素子と一体に形成されたレンズ付きミラー部材と、前記光コネクタの前記光ファイバアレイと前記レンズ付きミラー部材の前記レンズとの間に設けられた光路変換光導波路と、を備える光トランシーバである。   According to a second aspect of the present invention, there is provided a case, a substrate housed in the case and electrically connected to an electrical connector provided at one end of the electronic device so as to be insertable / removable, and housed in the case and front and back surfaces of the substrate A light-emitting element and a light-receiving element mounted so that the optical axis is in a direction perpendicular to the front and back surfaces of the substrate, and an optical fiber array provided outside the case on the other end side of the substrate, The optical connector includes an optical connector that holds the optical axis of the light incident end face or light outgoing end face of the optical fiber array so that the optical axis is parallel to the front and back surfaces of the substrate, a mirror body having a substantially right-angled triangle cross section, and light input to the mirror body. A lens-attached mirror member having a lens formed on the exit surface and formed integrally with the light-emitting element and the light-receiving element; the optical fiber array of the optical connector; and the front of the lens-attached mirror member And the optical path converting optical waveguide provided between the lens, an optical transceiver with a.

請求項3の発明は、前記光路変換光導波路部材は、フレキシブル光導波路と透明基板上にレンズを一体形成したレンズ付き基板と複数に分割されたブロック本体で形成されると共に、前記ブロック本体の分割面には曲率面が形成され、前記フレキシブル光導波路を前記ブロック本体の曲率面で挟み込む構造であると共に、前記レンズ付き基板のレンズが前記フレキシブル光導波路の光入射端面又は光出射端面の光軸上に位置するように貼り付けて構成される請求項2に記載の光トランシーバである。   According to a third aspect of the present invention, the optical path conversion optical waveguide member is formed of a flexible optical waveguide, a substrate with a lens integrally formed with a lens on a transparent substrate, and a block main body divided into a plurality of blocks. A curved surface is formed on the surface, and the flexible optical waveguide is sandwiched between the curved surfaces of the block body, and the lens of the substrate with the lens is on the optical axis of the light incident end surface or the light emitting end surface of the flexible optical waveguide. The optical transceiver according to claim 2, wherein the optical transceiver is attached so as to be located at a position.

請求項4の発明は、前記発光素子及び前記受光素子がアレイ状光素子である請求項2又は3に記載の光トランシーバである。   The invention according to claim 4 is the optical transceiver according to claim 2 or 3, wherein the light emitting element and the light receiving element are arrayed optical elements.

請求項5の発明は、光ファイバアレイの両端に、請求項2〜4のいずれかに記載の光トランシーバを光接続したことを特徴とする光アクティブケーブルである。   The invention according to claim 5 is an optical active cable characterized in that the optical transceiver according to any one of claims 2 to 4 is optically connected to both ends of the optical fiber array.

本発明によれば、光素子と光ファイバとの光結合の効率を向上させつつ部品点数を少なくでき、コストの低減を図ることができる。   According to the present invention, it is possible to reduce the number of parts while improving the efficiency of optical coupling between the optical element and the optical fiber, and to reduce the cost.

本発明の一実施の形態に係る光トランシーバを示す側面断面図(概略図)である。It is side surface sectional drawing (schematic diagram) which shows the optical transceiver which concerns on one embodiment of this invention. 図1の光トランシーバに用いる光コネクタ及びレンズ付き光路変換光導波路を示す図であり、(a)は上面図、(b)は正面図である。It is a figure which shows the optical connector and optical path change optical waveguide with a lens which are used for the optical transceiver of FIG. 1, (a) is a top view, (b) is a front view. (a)〜(d)は図1のレンズ付き光路変換光導波路の製造手順を示す図である。(A)-(d) is a figure which shows the manufacture procedure of the optical path change optical waveguide with a lens of FIG. 本発明の変形例に係る光トランシーバの光コネクタを示す図である。It is a figure which shows the optical connector of the optical transceiver which concerns on the modification of this invention. (a)〜(d)は本発明の変形例に係る光トランシーバのレンズ付き光路変換光導波路の製造手順を示す図である。(A)-(d) is a figure which shows the manufacture procedure of the optical path change optical waveguide with a lens of the optical transceiver which concerns on the modification of this invention. 図1の光トランシーバを用いた光アクティブケーブルを示す概略断面図である。It is a schematic sectional drawing which shows the optical active cable using the optical transceiver of FIG.

以下、本発明の好適な実施の形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、本実施の形態に係る光トランシーバを示す側面断面図(概略図)である。   FIG. 1 is a side sectional view (schematic diagram) showing an optical transceiver according to the present embodiment.

光トランシーバとは、電気信号を光信号に変換して出力し、また入力された光信号を電気信号に変換する光送受信モジュールである。   An optical transceiver is an optical transceiver module that converts an electrical signal into an optical signal and outputs the optical signal, and converts an input optical signal into an electrical signal.

図1に示すように、本実施の形態に係る光トランシーバ1は、一端2が電子機器(図示せず)に設けられた電気コネクタ(図示せず)に挿抜可能に電気接続される基板3の表裏面に光素子4を実装し、基板3の他端5側に配置される光ファイバアレイ6を光素子4と光学的且つ機械的に接続するものである。   As shown in FIG. 1, the optical transceiver 1 according to the present embodiment has a substrate 3 electrically connected so that one end 2 can be inserted into and removed from an electrical connector (not shown) provided in an electronic device (not shown). The optical element 4 is mounted on the front and back surfaces, and the optical fiber array 6 disposed on the other end 5 side of the substrate 3 is optically and mechanically connected to the optical element 4.

そのために、光トランシーバ1は、光素子4上に設けられた側面の断面が略直角三角形状のミラー本体7を有すると共に、ミラー本体7の光入射面又は光出射面に形成されたレンズ8を有するレンズ付きミラー部材9と、光ファイバアレイ6の端部に設けられた光コネクタ10と、光コネクタ10の光ファイバアレイ6とレンズ付きミラー部材9のレンズ8との光軸を一致させる光導波路11を有し、且つ光導波路11の光入射端面又は光出射端面に形成されたレンズ12を有するレンズ付き光路変換光導波路部材13とを備える。   For this purpose, the optical transceiver 1 has a mirror body 7 having a substantially right-angled triangular cross section provided on the optical element 4 and a lens 8 formed on the light incident surface or light exit surface of the mirror body 7. A mirror member with lens 9, an optical connector 10 provided at an end of the optical fiber array 6, and an optical waveguide that matches the optical axes of the optical fiber array 6 of the optical connector 10 and the lens 8 of the mirror member 9 with lens. 11 and a lens-attached optical path conversion optical waveguide member 13 having a lens 12 formed on the light incident end face or light exit end face of the optical waveguide 11.

基板3の一端2の表裏面には、接続端子14が形成されてカードエッジコネクタ15を構成している。このカードエッジコネクタ15を電子機器に設けられた電気コネクタに挿入することで、電子機器と光トランシーバ1とが電気接続される。なお、接続端子14は、基板3の一端2の表面又は裏面のいずれか一方のみに形成してもよい。   Connection terminals 14 are formed on the front and back surfaces of the one end 2 of the substrate 3 to constitute a card edge connector 15. By inserting the card edge connector 15 into an electrical connector provided in the electronic device, the electronic device and the optical transceiver 1 are electrically connected. The connection terminal 14 may be formed only on either the front surface or the back surface of the one end 2 of the substrate 3.

光素子4は、基板3の表裏面に設けられており、一方(図では表面側)がLD(Laser Diode)などからなる発光素子16であり、他方(図では裏面側)がフォトダイオードなどからなる受光素子17である。これら発光素子16及び受光素子17は基板3の表裏面に所定の間隔でアレイ状に(紙面に垂直な方向に)複数並列して配置されている。本実施の形態においては、発光素子16と受光素子17をそれぞれ4つアレイ状に並列して配置した。   The optical element 4 is provided on the front and back surfaces of the substrate 3, one side (front side in the figure) is a light emitting element 16 made of LD (Laser Diode) or the like, and the other (back side in the figure) is from a photodiode or the like. This is the light receiving element 17. A plurality of the light emitting elements 16 and the light receiving elements 17 are arranged in parallel on the front and back surfaces of the substrate 3 in an array at predetermined intervals (in a direction perpendicular to the paper surface). In the present embodiment, four light emitting elements 16 and four light receiving elements 17 are arranged in parallel in an array.

各発光素子16は電子機器からの電気信号を光信号に変換して外部に出力するためのものであり、各受光素子17は外部から入力された光信号を電気信号に変換して電子機器に伝送するためのものである。これら各発光素子16と各受光素子17は、レンズ付きミラー部材9が一体に形成された光素子モジュールとして基板3の表面又は裏面に実装される(レンズ付きミラー部材9の構造については後述する)。   Each light emitting element 16 is for converting an electrical signal from an electronic device into an optical signal and outputting it to the outside, and each light receiving element 17 converts an optical signal input from the outside into an electrical signal for use in the electronic device. It is for transmission. Each light emitting element 16 and each light receiving element 17 are mounted on the front surface or the back surface of the substrate 3 as an optical element module in which the mirror member 9 with lens is integrally formed (the structure of the mirror member 9 with lens will be described later). .

また、基板3の表面には、発光素子16を駆動・制御するドライバ18が実装され、基板3の裏面には、受光素子17で変換した電気信号を増幅するためのアンプ19が実装される。   A driver 18 for driving and controlling the light emitting element 16 is mounted on the front surface of the substrate 3, and an amplifier 19 for amplifying the electric signal converted by the light receiving element 17 is mounted on the back surface of the substrate 3.

光ファイバアレイ6は、複数本(本実施例では4本)の光ファイバ6aを、例えば250μmピッチで並列に配置して形成されたテープ状光ファイバ6bを上下に2枚重ねて配置した合計8芯の光ファイバアレイ6である。光ファイバアレイ6を構成する光ファイバ6aとしては、本実施例ではコア径50μmの光ファイバを用いるが、シングルモード光ファイバや分散シフト光ファイバなども用いることができる。   The optical fiber array 6 includes a total of 8 optical fibers 6a formed by arranging a plurality of (four in this embodiment) optical fibers 6a in parallel at a pitch of, for example, 250 μm, and two upper and lower tape optical fibers 6b. This is a core optical fiber array 6. As the optical fiber 6a constituting the optical fiber array 6, an optical fiber having a core diameter of 50 μm is used in this embodiment, but a single mode optical fiber, a dispersion shifted optical fiber, or the like can also be used.

次に、レンズ付きミラー部材9の構造を説明する。   Next, the structure of the lens-attached mirror member 9 will be described.

レンズ付きミラー部材9は、発光素子16又は受光素子17の光軸を基板面と平行な方向に90°変換するためのものである。   The lens-attached mirror member 9 is for converting the optical axis of the light emitting element 16 or the light receiving element 17 by 90 ° in a direction parallel to the substrate surface.

上述したように、レンズ付きミラー部材9は、光素子4上に設けられた側面の断面が略直角三角形状のミラー本体7と、ミラー本体7の光入出射面に形成されたレンズ8とを有する。   As described above, the lens-equipped mirror member 9 includes the mirror main body 7 having a substantially right-angled triangular cross section provided on the optical element 4 and the lens 8 formed on the light incident / exit surface of the mirror main body 7. Have.

ミラー本体7は、水平面(基板3の表裏面)と45°の角度をなす斜面7aを有する側面の断面が略直角三角形状に形成され、その斜面7aで発光素子16からの出射光(或いは受光素子17への入射光)を反射させる。つまり、発光素子16又は受光素子17の光軸を基板面と平行な方向に90°変換する。   The mirror body 7 is formed such that a cross section of a side surface having an inclined surface 7a that forms an angle of 45 ° with a horizontal plane (front and back surfaces of the substrate 3) is formed into a substantially right triangle shape, and light emitted from the light emitting element 16 (or light reception) on the inclined surface 7a. The incident light on the element 17 is reflected. That is, the optical axis of the light emitting element 16 or the light receiving element 17 is converted by 90 ° in a direction parallel to the substrate surface.

レンズ8は、ミラー本体7で90°変換された発光素子16又は受光素子17の光軸上に形成され、発光素子16からの出射光(或いは受光素子17への入射光)を集光して光結合の効率を向上させる。   The lens 8 is formed on the optical axis of the light emitting element 16 or the light receiving element 17 converted by 90 ° by the mirror body 7, and condenses the emitted light from the light emitting element 16 (or incident light to the light receiving element 17). Improve the efficiency of optical coupling.

これらミラー本体7及びレンズ8は、ガラスやプラスチック及び樹脂など光信号(波長0.8〜1.6μm)を透過する材料で一体形成される。   The mirror body 7 and the lens 8 are integrally formed of a material that transmits an optical signal (wavelength: 0.8 to 1.6 μm) such as glass, plastic, or resin.

ミラー本体7の斜面7aで、入射光(或いは出射光)が反射するのは、ミラー本体7を構成するガラスやプラスチック及び樹脂などの材料と空気の屈折率が異なるためである。   The reason why the incident light (or outgoing light) is reflected by the inclined surface 7a of the mirror main body 7 is that the refractive index of air is different from the material such as glass, plastic and resin constituting the mirror main body 7.

本実施の形態においては、このレンズ付きミラー部材9と光素子4とが一体に形成されて光素子モジュール28が構成されている。レンズ付きミラー部材9と光素子4とは光軸合わせを行いながら一体形成を行うが、光軸合わせを行わず、治具を用いて機械的に位置決めして一体形成してもよい。一体形成は、光素子4にレンズ付きミラー部材9の金型を装着し、プラスチックや樹脂などを注入して一体形成する。又は金型などで形成したレンズ付きミラー部材9と光素子4を直接光学的に透明な接着材で接合するか、光素子4をパッケージ(図示せず)に収容し、そのパッケージにレンズ付きミラー部材9を装着して一体形成する。   In the present embodiment, the lens-equipped mirror member 9 and the optical element 4 are integrally formed to constitute an optical element module 28. The lens-equipped mirror member 9 and the optical element 4 are integrally formed while aligning the optical axes, but may be integrally formed by mechanical positioning using a jig without performing optical axis alignment. The integral formation is performed by mounting a mold of the mirror member with lens 9 on the optical element 4 and injecting plastic or resin. Alternatively, the lens-attached mirror member 9 formed of a mold or the like and the optical element 4 are directly bonded with an optically transparent adhesive, or the optical element 4 is accommodated in a package (not shown), and the lens-attached mirror is included in the package. The member 9 is attached and formed integrally.

図2に示すように、光コネクタ10は、直方体状のフェルール20からなり、発光素子16の配列間隔と同じ間隔で形成された複数(4つ)の上段孔21と、受光素子17の配列間隔と同じ間隔で形成された複数(4つ)の下段孔22とを有する。   As shown in FIG. 2, the optical connector 10 includes a rectangular parallelepiped ferrule 20, and a plurality (four) upper holes 21 formed at the same interval as the arrangement interval of the light emitting elements 16 and the arrangement interval of the light receiving elements 17. And a plurality of (four) lower holes 22 formed at the same interval.

各上段孔21と各下段孔22は、それぞれ基板面に対して平行に形成されており、各上段孔21に、光ファイバアレイ6の上側のテープ状光ファイバ6bを構成する各光ファイバ6aの先端を挿入し、各下段孔22に、光ファイバアレイ6の下側のテープ状光ファイバ6bを構成する各光ファイバ6aの先端を挿入したときに、各光ファイバ6aの光入射端面又は光出射端面の光軸が基板面と平行になるように保持するようになっている。   Each upper stage hole 21 and each lower stage hole 22 are formed in parallel to the substrate surface, and each upper stage hole 21 has an optical fiber 6a constituting the tape-like optical fiber 6b on the upper side of the optical fiber array 6. When the tip is inserted and the tip of each optical fiber 6a constituting the tape-like optical fiber 6b on the lower side of the optical fiber array 6 is inserted into each lower hole 22, the light incident end face or light emission of each optical fiber 6a The optical axis of the end face is held so as to be parallel to the substrate surface.

フェルール20への光ファイバアレイ6の接続は、光ファイバアレイ6の各光ファイバ6aの先端を、フェルール20の各上段孔21又は各下段孔22に挿入した後、接着材を注入して固定し、各光ファイバ6aの光入射端面又は光出射端面側のフェルール20の端面を研磨し、各光ファイバ6aの光入射端面又は光出射端面を露出させることにより行われる。   The optical fiber array 6 is connected to the ferrule 20 by inserting the tip of each optical fiber 6a of the optical fiber array 6 into each upper hole 21 or each lower hole 22 of the ferrule 20, and then injecting and fixing an adhesive. The end face of the ferrule 20 on the light incident end face or the light exit end face side of each optical fiber 6a is polished to expose the light incident end face or light exit end face of each optical fiber 6a.

各上段孔21と各下段孔22との上下間隔Tは、規格によって定められており、例えば、インフィニバンドでは500μmである。これに対し、基板3の厚さtは1mm程度であるため、光ファイバアレイ6を構成する各テープ状光ファイバ6bの上下間隔(=T)を少なくとも基板3の厚さtより大きくピッチ変換する必要がある。   The vertical interval T between each upper hole 21 and each lower hole 22 is determined by the standard, and is, for example, 500 μm in Infiniband. On the other hand, since the thickness t of the substrate 3 is about 1 mm, the vertical distance (= T) between the tape-like optical fibers 6b constituting the optical fiber array 6 is converted to a pitch that is at least larger than the thickness t of the substrate 3. There is a need.

そこで本実施の形態においては、各テープ状光ファイバ6bの上下間隔を基板3の表裏(上下)面に配設されたレンズ付きミラー部材9のレンズ8の上下間隔と一致させる(各テープ状光ファイバ6bの光入射端面又は光出射端面の光軸を基板3の表裏(上下)面に配設されたレンズ付きミラー部材9のレンズ8の光軸と一致させる)ために、基板3と光コネクタ10との間に、レンズ付き光路変換光導波路部材13が設けられる。   Therefore, in the present embodiment, the vertical distance of each tape-shaped optical fiber 6b is made to coincide with the vertical distance of the lens 8 of the lens-equipped mirror member 9 disposed on the front and back (upper and lower) surfaces of the substrate 3 (each tape-shaped light In order to make the optical axis of the light incident end face or the light outgoing end face of the fiber 6b coincide with the optical axis of the lens 8 of the lens-equipped mirror member 9 disposed on the front and back (upper and lower) surfaces of the substrate 3, the substrate 3 and the optical connector 10 is provided with an optical path conversion optical waveguide member 13 with a lens.

レンズ付き光路変換光導波路部材13は、図3に示すように、光導波路11と、光導波路11を境に2分割されたブロック本体23(上部ブロック23aと下部ブロック23b)と、レンズ12とで形成されたブロック部材24を上下対称となるように2組配置して構成される。ブロック本体23の分割面25は、光導波路11の光路が光損失を無視できる(例えば0.1dB未満)曲率で形成される。   As shown in FIG. 3, the optical path conversion optical waveguide member 13 with a lens includes an optical waveguide 11, a block main body 23 (upper block 23 a and lower block 23 b) divided into two with the optical waveguide 11 as a boundary, and a lens 12. Two sets of the formed block members 24 are arranged so as to be vertically symmetrical. The dividing surface 25 of the block body 23 is formed with a curvature that allows the optical path of the optical waveguide 11 to ignore light loss (for example, less than 0.1 dB).

また、光導波路11はポリマなどの高分子材料からなるフレキシブル光導波路11aを複数並列し、レンズ12はガラス、プラスチック又は樹脂などで形成される光学的に透明な透明基板26上にレンズ27を一体形成したレンズ付き基板で形成される。   The optical waveguide 11 includes a plurality of flexible optical waveguides 11a made of a polymer material such as a polymer, and the lens 12 has a lens 27 integrated on an optically transparent transparent substrate 26 formed of glass, plastic, resin, or the like. The lens-formed substrate is formed.

透明基板26の厚さは、0.1mm〜2mmにするとよい。厚さが、0.1mm未満では、取り扱いが難しく、また2mmを超えると光信号の拡散が大きくなり光損失が増加する。好ましくは0.5〜1mmがよい。   The thickness of the transparent substrate 26 is preferably 0.1 mm to 2 mm. If the thickness is less than 0.1 mm, it is difficult to handle, and if it exceeds 2 mm, the diffusion of the optical signal increases and the optical loss increases. Preferably 0.5-1 mm is good.

レンズ付き光路変換光導波路部材13は、図3(a)〜(d)に示すように、フレキシブル光導波路からなる光導波路11をブロック本体23の曲率面で挟み込むように接着固定した後、レンズ付き基板からなるレンズ12をそのレンズ27が光導波路11の光入出射端面の光軸上に位置するように貼り付け、これを2組上下対称に配置した後、接着剤を用いて接着して構成される。   As shown in FIGS. 3A to 3D, the optical path conversion optical waveguide member 13 with a lens is bonded and fixed so that the optical waveguide 11 composed of a flexible optical waveguide is sandwiched between the curvature surfaces of the block main body 23, and then attached to the lens. A lens 12 made of a substrate is affixed so that the lens 27 is positioned on the optical axis of the light incident / exit end face of the optical waveguide 11, and two sets of these are arranged vertically symmetrically, and then bonded using an adhesive. Is done.

フレキシブル光導波路11aは、ポリマなどの高分子材料からなるコアと、コアの周囲をコアより屈折率の低いポリマなどの高分子材料からなるクラッドで覆った構造であり、コアは断面が矩形(正方形、又は長方形)である。   The flexible optical waveguide 11a has a structure in which a core made of a polymer material such as a polymer and a periphery of the core are covered with a clad made of a polymer material such as a polymer having a refractive index lower than that of the core. Or a rectangle).

フレキシブル光導波路11aは、ポリマなどの高分子材料からなるため、形状を柔軟に変形することができ、ブロック本体23の分割面25の曲率形状に適応することができる。   Since the flexible optical waveguide 11 a is made of a polymer material such as a polymer, the flexible optical waveguide 11 a can be deformed flexibly and can be adapted to the curvature shape of the dividing surface 25 of the block body 23.

また、フレキシブル光導波路11aのレンズ12側のコアピッチL2(間隔)は、発光素子4の配列ピッチと同じピッチに形成され、フレキシブル光導波路11aの光ファイバ6a側のコアピッチL1は、光ファイバアレイ6のコアピッチと同じピッチに形成されている。 The core pitch L 2 (interval) on the lens 12 side of the flexible optical waveguide 11a is formed at the same pitch as the arrangement pitch of the light emitting elements 4, and the core pitch L 1 on the optical fiber 6a side of the flexible optical waveguide 11a is the optical fiber array. 6 is formed at the same pitch as the core pitch.

なお、フレキシブル光導波路11aのコアの寸法は、光ファイバ6aのコア径に応じて適宜決定される。   The dimension of the core of the flexible optical waveguide 11a is appropriately determined according to the core diameter of the optical fiber 6a.

この光トランシーバ1を用いた電気信号と光信号の相互変換を説明する。   The mutual conversion between an electrical signal and an optical signal using the optical transceiver 1 will be described.

電子機器からの電気信号は、電子機器に設けられた電気コネクタから基板3のカードエッジコネクタ15を介しドライバ18に伝送され、ドライバ18によって発光素子16を駆動・制御して、発光素子16で光信号に変換されると共にその光信号が基板面と垂直な方向に出射される。   An electrical signal from the electronic device is transmitted from an electrical connector provided in the electronic device to the driver 18 via the card edge connector 15 of the substrate 3, and the light emitting element 16 is driven and controlled by the driver 18. It is converted into a signal and the optical signal is emitted in a direction perpendicular to the substrate surface.

発光素子16から出射された光信号は、レンズ付きミラー部材9の斜面7aで反射されてその進行方向を90°変換されてレンズ付きミラー部材9のレンズ8から出射され、次にレンズ付き光路変換光導波路部材13の上側のブロック部材24aのレンズ12を介して、フレキシブル光導波路11aの光入射端面700aに光結合してフレキシブル光導波路11aを伝搬し、光コネクタ10の上段孔21に挿入された光ファイバ6aの光入射端面700cに光結合し、光ファイバ6aを通じて外部に出力される。   The optical signal emitted from the light emitting element 16 is reflected by the inclined surface 7a of the mirror member 9 with a lens, and its traveling direction is converted by 90 ° and emitted from the lens 8 of the mirror member 9 with a lens. Via the lens 12 of the upper block member 24a of the optical waveguide member 13, it is optically coupled to the light incident end surface 700a of the flexible optical waveguide 11a, propagates through the flexible optical waveguide 11a, and is inserted into the upper hole 21 of the optical connector 10. It is optically coupled to the light incident end surface 700c of the optical fiber 6a and output to the outside through the optical fiber 6a.

他方、下段孔22に挿入された光ファイバ6aの光出射端面700dから出射された光信号は、レンズ付き光路変換光導波路部材13の下側のブロック部材24bに保持されたフレキシブル光導波路11aを伝搬して基板面と平行にレンズ12から出射され、レンズ付きミラー部材9のレンズ8を介してミラー本体7に導かれてミラー本体7の斜面7aで反射されてその進行方向を90°変換され、次いで受光素子17に入射して受光素子17で電気信号に変換された後、アンプ19にて電気信号を増幅して電子機器に伝送される。   On the other hand, the optical signal emitted from the light emitting end face 700d of the optical fiber 6a inserted into the lower hole 22 propagates through the flexible optical waveguide 11a held by the lower block member 24b of the optical path conversion optical waveguide member 13 with lens. Then, the light is emitted from the lens 12 in parallel with the substrate surface, guided to the mirror body 7 through the lens 8 of the mirror member 9 with the lens, reflected by the inclined surface 7a of the mirror body 7, and the traveling direction thereof is converted by 90 °, Next, the light enters the light receiving element 17 and is converted into an electric signal by the light receiving element 17, and then the electric signal is amplified by the amplifier 19 and transmitted to the electronic device.

以上の動作により、本実施の形態に係る光トランシーバ1では電気信号と光信号の相互変換が行われる。   Through the above operation, the optical transceiver 1 according to the present embodiment performs mutual conversion between an electrical signal and an optical signal.

本実施の形態に係る光トランシーバ1によれば、発光素子16(又は受光素子17)と一体に形成され、ミラー本体7とミラー本体7に一体に形成されたレンズ8とからなるレンズ付きミラー部材9を用いているため、ミラーを別途設ける従来の光トランシーバに比べて、光素子4とフレキシブル光導波路11aとの光結合の効率を向上させつつ部品点数を少なくでき、コストの低減を図ることができる。さらに、従来に比べて構成を小型化できる。   According to the optical transceiver 1 according to the present embodiment, a lens-attached mirror member that is formed integrally with the light emitting element 16 (or the light receiving element 17) and includes the mirror main body 7 and the lens 8 formed integrally with the mirror main body 7. 9 is used, the number of parts can be reduced and the cost can be reduced while improving the efficiency of optical coupling between the optical element 4 and the flexible optical waveguide 11a as compared with a conventional optical transceiver in which a mirror is separately provided. it can. Furthermore, the configuration can be reduced in size as compared with the prior art.

また、本実施の形態に係る光トランシーバ1によれば、基板3の表裏面に光素子4、すなわち発光素子16と受光素子17を別々に実装しているため、基板3の同一面にこれら発光素子16及び受光素子17を実装する場合に比べて基板3の面積を有効に活用できる。このため、基板3の大きさを小さくでき、光トランシーバ1の小型化に貢献できる。   Further, according to the optical transceiver 1 according to the present embodiment, the optical element 4, that is, the light emitting element 16 and the light receiving element 17 are separately mounted on the front and back surfaces of the substrate 3. Compared with the case where the element 16 and the light receiving element 17 are mounted, the area of the substrate 3 can be effectively utilized. For this reason, the size of the substrate 3 can be reduced, which can contribute to the miniaturization of the optical transceiver 1.

さらに、基板3の表裏面に発光素子16と受光素子17を別々に実装しているため、発光素子16を駆動・制御するドライバ18からのノイズが裏面のアンプ19へ与える影響を低減できる。   Furthermore, since the light emitting element 16 and the light receiving element 17 are separately mounted on the front and back surfaces of the substrate 3, the influence of noise from the driver 18 that drives and controls the light emitting element 16 on the amplifier 19 on the back surface can be reduced.

本実施の形態においては、光コネクタ10は、フェルール20に形成された各上段孔21と各下段孔22に光ファイバアレイ6を構成する各光ファイバ6aを挿入して形成したが、これに限定されるものではない。   In the present embodiment, the optical connector 10 is formed by inserting the optical fibers 6a constituting the optical fiber array 6 into the upper holes 21 and the lower holes 22 formed in the ferrule 20, but the present invention is not limited to this. Is not to be done.

例えば、図4に示すように、フェルール20を上部20a、本体20b、下部20cに3分割し、本体20bの上下面に断面半円弧状のガイド溝40を形成し、他方上部20a及び下部20cにガイド溝40に対応する半円弧状のガイド溝41を形成し、ガイド溝40に各光ファイバ6aを配置し、上部20aと下部20cとで本体20bを挟み込んで光コネクタ10としてもよい。   For example, as shown in FIG. 4, the ferrule 20 is divided into three parts, an upper part 20a, a main body 20b, and a lower part 20c, and a guide groove 40 having a semicircular cross section is formed on the upper and lower surfaces of the main body 20b. A semicircular arc guide groove 41 corresponding to the guide groove 40 may be formed, each optical fiber 6a may be disposed in the guide groove 40, and the main body 20b may be sandwiched between the upper part 20a and the lower part 20c to form the optical connector 10.

また、本実施の形態においては、レンズ付き光路変換光導波路部材13は、光導波路11とブロック本体23とレンズ12とで形成されたブロック部材24を上下対称となるように2組配置して構成したが、これに限定されるものではない。   Further, in the present embodiment, the optical path conversion optical waveguide member 13 with a lens is configured by arranging two sets of block members 24 formed of the optical waveguide 11, the block main body 23, and the lens 12 so as to be vertically symmetrical. However, the present invention is not limited to this.

例えば、図5(a)〜(d)に示すように、直方体形状のブロック本体50を上下対称となるように3分割し、2つの分割面51に光導波路11を挟み込み、レンズ52を有するレンズ付き基板53を、そのレンズ52が各光導波路11の入出射端面に位置するように貼り付けてレンズ付き光路変換光導波路部材13としてもよい。   For example, as shown in FIGS. 5A to 5D, a rectangular parallelepiped block main body 50 is divided into three so as to be vertically symmetrical, and the optical waveguide 11 is sandwiched between two divided surfaces 51, and a lens having a lens 52 is provided. The attached substrate 53 may be attached so that the lens 52 is positioned on the input / output end face of each optical waveguide 11 to form the lens-attached optical path converting optical waveguide member 13.

また、本実施の形態においては、各々にレンズ付きミラー部材9が一体に形成された発光素子16(又は受光素子17)を複数並列に配置したが、アレイ状に並列された複数の発光部(又は受光部)を有するVCSEL(Vertical-Cavity Surface-Emitting Laser)などのアレイ状光素子を用いてもよい。   Further, in the present embodiment, a plurality of light emitting elements 16 (or light receiving elements 17) each having a lens-attached mirror member 9 integrally formed are arranged in parallel. Alternatively, an array-shaped optical element such as a VCSEL (Vertical-Cavity Surface-Emitting Laser) having a light receiving unit) may be used.

この場合、ミラー本体7の光入出射端面に、発光部(又は受光部)の数だけレンズ8を設けたミラーを1つ用い、これをアレイ状光素子上に一体に形成するようにするとよい。   In this case, it is preferable to use one mirror provided with lenses 8 corresponding to the number of light emitting portions (or light receiving portions) on the light incident / exit end face of the mirror main body 7 and integrally form it on the arrayed optical element. .

上記したレンズ付き光路変換光導波路部材13、受光素子17、発光素子16、ドライバ18、アンプ19、そして基板3の大部分は、ケース200に収容され保護されている。ケース200は放熱やノイズ防止の効果を得るため金属(SUS、アルミなど)が好ましい。しかし、放熱やノイズが問題とならない環境では樹脂やプラスチックを用いてもよい。基板3の一端2に形成されたカードエッジコネクタ15は、ケース200から一部が突出した構造となっている。   Most of the above-described optical path changing optical waveguide member 13 with lens, light receiving element 17, light emitting element 16, driver 18, amplifier 19, and substrate 3 are housed in a case 200 and protected. The case 200 is preferably made of metal (SUS, aluminum, etc.) in order to obtain heat dissipation and noise prevention effects. However, resin or plastic may be used in an environment where heat dissipation and noise are not a problem. The card edge connector 15 formed at one end 2 of the substrate 3 has a structure in which a part protrudes from the case 200.

次に、光トランシーバ1を用いた光アクティブケーブルを説明する。   Next, an optical active cable using the optical transceiver 1 will be described.

図6に示すように、光アクティブケーブル100は、光ファイバアレイ6の両端に光トランシーバ1を光接続したものである。より具体的には、一方の光トランシーバ1の発光素子16(或いは受光素子17)と他方の光トランシーバ1の受光素子17(或いは発光素子16)を光ファイバアレイ6の各光ファイバ6a、レンズ付き光路変換光導波路部材13の各フレキシブル光導波路11aを介して光接続したものである。   As shown in FIG. 6, the optical active cable 100 is obtained by optically connecting the optical transceiver 1 to both ends of the optical fiber array 6. More specifically, the light emitting element 16 (or light receiving element 17) of one optical transceiver 1 and the light receiving element 17 (or light emitting element 16) of the other optical transceiver 1 are connected to each optical fiber 6a of the optical fiber array 6 and a lens. The optical path conversion optical waveguide member 13 is optically connected through each flexible optical waveguide 11a.

この光アクティブケーブル100を用いて電子機器間を接続することで、電子機器間で光ファイバアレイ6を介して双方向の光通信を行うことができる。   By connecting the electronic devices using the optical active cable 100, bidirectional optical communication can be performed between the electronic devices via the optical fiber array 6.

光アクティブケーブル100によれば、本発明の光トランシーバ1を用いているため、光素子4とフレキシブル光導波路11aとの光結合の効率を向上させつつ部品点数を少なくでき、コストの低減を図ることができる。   According to the optical active cable 100, since the optical transceiver 1 of the present invention is used, the number of parts can be reduced and the cost can be reduced while improving the efficiency of optical coupling between the optical element 4 and the flexible optical waveguide 11a. Can do.

1 光トランシーバ
3 基板
4 光素子
6 光ファイバアレイ
7 ミラー本体
8 レンズ
9 レンズ付きミラー部材
10 光コネクタ
11 光導波路
12 レンズ
13 レンズ付き光路変換光導波路部材
DESCRIPTION OF SYMBOLS 1 Optical transceiver 3 Board | substrate 4 Optical element 6 Optical fiber array 7 Mirror main body 8 Lens 9 Lens mirror member 10 Optical connector 11 Optical waveguide 12 Lens 13 Optical path conversion optical waveguide member with lens

Claims (5)

発光素子又は受光素子からなる光素子と、
側面断面が略直角三角形状で反射面を有するミラー本体と、
前記光素子からの光信号又は前記光素子への光信号を平行光とする又は集光するレンズとからなり、前記ミラー本体の一方の光信号入射面又は光信号出射面に前記レンズが一体形成されると共に、
前記ミラー本体の他方の光信号入射面又は光信号出射面に前記光素子が一体に形成されたことを特徴とする光素子モジュール。
An optical element comprising a light emitting element or a light receiving element;
A mirror body having a reflecting surface with a substantially right-sided triangular cross-section;
It consists of a lens that collimates or condenses the optical signal from the optical element or the optical signal to the optical element, and the lens is integrally formed on one optical signal incident surface or optical signal output surface of the mirror body As
An optical element module, wherein the optical element is integrally formed on the other optical signal incident surface or optical signal output surface of the mirror body.
ケースと、
前記ケース内に収容され一端が電子機器に設けられた電気コネクタに挿抜可能に電気接続される基板と、
前記ケース内に収容されると共に前記基板の表裏面に光軸が前記基板の表裏面に対して垂直な方向となるように実装された発光素子及び受光素子と、
前記基板の他端側の前記ケース外に設けられる光ファイバアレイを有し、前記光ファイバアレイの光入射端面又は光出射端面の光軸が前記基板の表裏面と平行になるように保持する光コネクタと、
断面が略直角三角形状のミラー本体を有すると共に前記ミラー本体の光入出射面に形成されたレンズを有し、前記発光素子及び前記受光素子と一体に形成されたレンズ付きミラー部材と、
前記光コネクタの前記光ファイバアレイと前記レンズ付きミラー部材の前記レンズとの間に設けられた光路変換光導波路部材と、
を備えることを特徴とする光トランシーバ。
Case and
A substrate housed in the case and electrically connected so that one end can be inserted into and removed from an electrical connector provided in the electronic device;
A light emitting element and a light receiving element that are housed in the case and mounted on the front and back surfaces of the substrate so that the optical axis is perpendicular to the front and back surfaces of the substrate;
Light having an optical fiber array provided outside the case on the other end side of the substrate, and held so that the optical axis of the light incident end surface or the light exit end surface of the optical fiber array is parallel to the front and back surfaces of the substrate A connector;
A mirror member with a lens having a mirror body having a substantially right-angled triangular cross section and a lens formed on a light incident / exit surface of the mirror body; and the light emitting element and the light receiving element formed integrally with each other;
An optical path conversion optical waveguide member provided between the optical fiber array of the optical connector and the lens of the mirror member with the lens;
An optical transceiver comprising:
前記光路変換光導波路部材は、フレキシブル光導波路と透明基板上にレンズを一体形成したレンズ付き基板と複数に分割されたブロック本体で形成されると共に、前記ブロック本体の分割面には曲率面が形成され、前記フレキシブル光導波路を前記ブロック本体の曲率面で挟み込む構造であると共に、前記レンズ付き基板のレンズが前記フレキシブル光導波路の光入射端面又は光出射端面の光軸上に位置するように貼り付けて構成される請求項2に記載の光トランシーバ。   The optical path converting optical waveguide member is formed of a flexible optical waveguide and a substrate with a lens integrally formed with a lens on a transparent substrate, and a block main body divided into a plurality of parts, and a curved surface is formed on the divided surface of the block main body The flexible optical waveguide is sandwiched between the curvature surfaces of the block main body, and the lens of the substrate with the lens is pasted so as to be positioned on the optical axis of the light incident end surface or the light output end surface of the flexible optical waveguide. The optical transceiver according to claim 2 configured. 前記発光素子及び前記受光素子がアレイ状光素子である請求項2又は3に記載の光トランシーバ。   The optical transceiver according to claim 2 or 3, wherein the light emitting element and the light receiving element are arrayed optical elements. 光ファイバアレイの両端に、請求項2〜4のいずれかに記載の光トランシーバを光接続したことを特徴とする光アクティブケーブル。   An optical active cable, wherein the optical transceiver according to claim 2 is optically connected to both ends of the optical fiber array.
JP2009199995A 2009-08-31 2009-08-31 Optical element module, optical transceiver, and optical active cable Pending JP2011053303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009199995A JP2011053303A (en) 2009-08-31 2009-08-31 Optical element module, optical transceiver, and optical active cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009199995A JP2011053303A (en) 2009-08-31 2009-08-31 Optical element module, optical transceiver, and optical active cable

Publications (1)

Publication Number Publication Date
JP2011053303A true JP2011053303A (en) 2011-03-17

Family

ID=43942413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009199995A Pending JP2011053303A (en) 2009-08-31 2009-08-31 Optical element module, optical transceiver, and optical active cable

Country Status (1)

Country Link
JP (1) JP2011053303A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020060796A (en) * 2015-10-28 2020-04-16 京セラ株式会社 Optical connector and optical connector system, and active optical cable including these
CN112540425A (en) * 2019-09-23 2021-03-23 宇目(厦门)科技有限公司 Optical waveguide structure and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020060796A (en) * 2015-10-28 2020-04-16 京セラ株式会社 Optical connector and optical connector system, and active optical cable including these
CN112540425A (en) * 2019-09-23 2021-03-23 宇目(厦门)科技有限公司 Optical waveguide structure and preparation method thereof

Similar Documents

Publication Publication Date Title
US7539367B2 (en) Optical system connection structure, optical component, and optical communication module
EP2831652B1 (en) Misalignment-tolerant total-internal-reflection fiber optic interface modules and assemblies with high coupling efficiency
TWI612353B (en) Optical socket and optical module having the same
US8641296B2 (en) Optical path change member and holding member body
US6748143B2 (en) Optical transceiver module and optical communications system using the same
JP2010122312A (en) Transmission/reception lens block and optical module using the same
CN106646772B (en) Structure of photoelectric conversion module
JP2010122311A (en) Lens block and optical module using the same
JP2004212847A (en) Optical coupler
JP2008209767A (en) Optical module and its manufacturing method
JP3890999B2 (en) Optical transmission module
JP5158039B2 (en) Optical transceiver and optical active cable using optical path changing optical block with lens
JP2007072199A (en) Optical module and optical transmission device
JP2011053303A (en) Optical element module, optical transceiver, and optical active cable
JP2006201499A (en) Optical communication module
JP2011048072A (en) Optical transceiver and optical active cable
JP5614725B2 (en) Optical module
JP2008134444A (en) Optical module and optical waveguide structure
JP2008020721A (en) Parallel optical transmitter-receiver
JP2006184680A (en) Optical connector
JP2003185888A (en) Optical communication module
KR100398045B1 (en) Module for transmitting and receiving an optic signal
JP2007073664A (en) Optical transceiver module and optical communication device
WO2016162943A1 (en) Photoelectric circuit substrate
JP6159239B2 (en) Optical communication module and optical communication device