JP2011053189A - Ground fault detection device for dc electric railway - Google Patents

Ground fault detection device for dc electric railway Download PDF

Info

Publication number
JP2011053189A
JP2011053189A JP2009204934A JP2009204934A JP2011053189A JP 2011053189 A JP2011053189 A JP 2011053189A JP 2009204934 A JP2009204934 A JP 2009204934A JP 2009204934 A JP2009204934 A JP 2009204934A JP 2011053189 A JP2011053189 A JP 2011053189A
Authority
JP
Japan
Prior art keywords
voltage
ground fault
substation
fault detection
substations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009204934A
Other languages
Japanese (ja)
Other versions
JP5377170B2 (en
Inventor
Yasuyuki Fukuda
恭之 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009204934A priority Critical patent/JP5377170B2/en
Publication of JP2011053189A publication Critical patent/JP2011053189A/en
Application granted granted Critical
Publication of JP5377170B2 publication Critical patent/JP5377170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quickly detect a grounding fault constantly with the same sensitivity at both substations when the grounding fault occurs. <P>SOLUTION: A ground fault detection device for a DC electric railway includes voltage measuring parts 18 and 28 for respective substations which measure voltage between a rail 4 of a feeding system of the DC electric railway and grounds 15 and 25 of a plurality of substations 1 and 2 connected to the feeding system, a dedicated communication line 6 for mutually transmitting the measured voltage to the adjacent substations 2 and 1, and sensitivity compensation calculation processing parts 19 and 29 for the respective substations for summing up voltage measured by the own voltage measuring part of the substation with the voltage measured by the voltage measuring part of the adjacent substation and sent through the dedicated communication line 6 to determine the sum as ground fault detecting voltage σ V and for output of a protective signal when the ground fault detecting voltage σ V exceeds a predetermined set value. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、直流電気鉄道のき電系統に接続される隣接する変電所の内外で発生する地絡事故を検出する直流電気鉄道の地絡検出装置に関する。   The present invention relates to a ground fault detection device for a DC electric railway that detects a ground fault occurring inside and outside adjacent substations connected to a feeding system of the DC electric railway.

直流電気鉄道のき電系統には図5に示すように変電所1,2が接続されている。各変電所1,2は、一般に1区間のき電線3の両端に接続され、直流電力を供給している。   Substations 1 and 2 are connected to the feeding system of the DC electric railway as shown in FIG. Each of the substations 1 and 2 is generally connected to both ends of the feeder line 3 in one section and supplies DC power.

変電所1は、交流電源11、交流遮断器12、整流回路13及びき電遮断器14等によって構成され、交流電源11から供給される交流電力を整流回路13で所要の直流電力に変換し、き電遮断器14を通してき電線3の一端側に供給される。   The substation 1 includes an AC power supply 11, an AC circuit breaker 12, a rectifier circuit 13, a feeder circuit breaker 14, and the like. The AC power supplied from the AC power supply 11 is converted into required DC power by the rectifier circuit 13, It is supplied to one end side of the feeder 3 through the feeder circuit breaker 14.

もう一方の変電所2においても、変電所1と同様の構成を有しており、整流回路23で変換された直流電力がき電遮断器24を通してき電線3の他端側に供給される。   The other substation 2 has the same configuration as that of the substation 1, and the DC power converted by the rectifier circuit 23 is supplied to the other end of the feeder 3 through the feeder circuit breaker 24.

直流電気鉄道の各変電所1,2における直流地絡事故の検出手段は、き電系統のレール4と変電所メッシュアース15,25の間に地絡検出装置16,26が設けられ、き電線3に地絡事故が発生したとき、各地絡検出装置16,26にて変電所メッシュアース15,25の電位上昇を感知し、それぞれ自変電所1,2側のき電遮断器14,24を開放し、き電線3などを保護する。   As a means for detecting a DC ground fault at each of the substations 1 and 2 of the DC electric railway, ground fault detection devices 16 and 26 are provided between the rail 4 of the feeder system and the substation mesh grounds 15 and 25. 3, the local fault detectors 16 and 26 sense the potential increase of the substation mesh grounds 15 and 25, and the feeder circuit breakers 14 and 24 on the substations 1 and 2 side are respectively connected. Open and protect the feeder 3 and the like.

ところで、き電線3に地絡事故が発生したとき、その地絡位置と地絡検出装置16,26との距離に応じて、一方の変電所例えば1の地絡検出装置16側で地絡事故を検出できるが、他方の地絡検出装置26で地絡事故を検出できない場合がある。当然,その逆の場合もあり得る。それは、地絡検出装置16,26から地絡位置までの距離に応じて、検出感度が異なる為である。その結果、き電線10を含む変電所1,2の構成機器を保護することが難しくなる。   By the way, when a ground fault occurs in the feeder 3, a ground fault occurs at one of the substations, for example, one ground fault detection device 16 side, according to the distance between the ground fault position and the ground fault detection devices 16 and 26. May be detected, but the ground fault detection device 26 may not be able to detect a ground fault. Of course, the reverse is also possible. This is because the detection sensitivity varies depending on the distance from the ground fault detection devices 16 and 26 to the ground fault position. As a result, it becomes difficult to protect the components of the substations 1 and 2 including the feeder 10.

そこで、従来、各変電所1,2に既に設置される連絡装置を連絡遮断装置17,27として用い、これら連絡遮断装置17,27間を連絡線5で結ぶことにより、地絡事故を検出した側の地絡検出装置例えば16が自変電所1のき電遮断器14を開放し、さらに連絡遮断装置17を介して隣接する変電所2の連絡遮断装置27に遮断指令信号を送信し、き電遮断器24を開放させることで、地絡事故による影響を未然に回避する処置を施している(特許文献1)。   Therefore, a ground fault has been detected by connecting a communication device already installed in each substation 1 and 2 as the communication disconnection devices 17 and 27 and connecting the communication disconnection devices 17 and 27 with the communication line 5. The side ground fault detection device 16, for example, opens the feeder circuit breaker 14 of the own substation 1, and further sends a disconnection command signal to the contact disconnection device 27 of the adjacent substation 2 via the communication disconnection device 17. The electric circuit breaker 24 is opened to take measures to avoid the influence of the ground fault accident (Patent Document 1).

特開2002−040087号公報JP 2002-040087 A

しかしながら、特許文献1に記載される技術によれば、両変電所1,2の連絡遮断装置17、27は、もともと両変電所1,2間で相互に各種の情報の受け渡しを行うために設置したものであり、その情報の中に地絡事故時の遮断指令信号を含めて相互に情報交換を行うものである。   However, according to the technique described in Patent Document 1, the communication disconnecting devices 17 and 27 of both substations 1 and 2 are originally installed to exchange various information between the substations 1 and 2. The information includes a shut-off command signal in the event of a ground fault and exchanges information with each other.

その結果、連絡線5を用いて他の目的情報の受け渡しを行っている際に地絡事故が発生した場合、他の情報の受け渡しの終了を待って地絡事故の状況を連絡することから、き電線10を含む変電所1,2の構成機器の保護が遅れてしまう問題がある。   As a result, if a ground fault occurs while transferring other purpose information using the communication line 5, the situation of the ground fault will be notified after completion of the other information transfer, There is a problem that protection of the components of the substations 1 and 2 including the feeder 10 is delayed.

また、従来の直流地絡事故の検出手段は、前述したように地絡位置によって検出感度にバラツキが出てくることから、同一感度で高速度に地絡事故を検出することができない。   Further, since the conventional DC ground fault detection means has variations in detection sensitivity depending on the ground fault position as described above, it cannot detect a ground fault at the same speed and at a high speed.

本発明は上記事情に鑑みてなされたもので、地絡事故が発生したとき、き電線の両端側に接続される変電所にて常に同一感度で高速度で地絡事故を検出し、き電系統を含む変電所機器を保護する直流電気鉄道の地絡検出装置を提供することを目的とする。   The present invention has been made in view of the above circumstances. When a ground fault occurs, the ground fault is always detected at a high speed with the same sensitivity at a substation connected to both ends of the feeder line. An object of the present invention is to provide a ground fault detection device for a DC electric railway that protects substation equipment including a grid.

上記課題を解決するために、本発明に係る直流電気鉄道の地絡検出装置は、直流電気鉄道のき電系統に接続される複数の変電所に設置される保護装置であって、前記き電系統のレールと各変電所のアースとの間の電圧を計測する前記変電所ごとの電圧計測手段と、各電圧計測手段で計測された電圧を相互に隣接変電所に送信する専用通信ラインと、自変電所の電圧計測手段で計測された電圧と隣接する変電所の電圧計測手段で計測され前記専用通信ラインを通して送られてくる電圧とを加算して地絡検出用電圧とし、この地絡検出用電圧が予め定めた設定値を超えたとき、保護用信号を出力する前記変電所ごとの感度補償演算処理部とを備えた構成である。   In order to solve the above problems, a ground fault detection device for a DC electric railway according to the present invention is a protection device installed at a plurality of substations connected to a feeding system of the DC electric railway, A voltage measuring means for each substation that measures the voltage between the rails of the system and the ground of each substation, a dedicated communication line that transmits the voltage measured by each voltage measuring means to the adjacent substations, and The voltage measured by the voltage measuring means of the own substation and the voltage measured by the voltage measuring means of the adjacent substation and sent through the dedicated communication line are added as a ground fault detection voltage, and this ground fault detection And a sensitivity compensation calculation processing unit for each substation that outputs a protection signal when the working voltage exceeds a predetermined set value.

また、本発明に係る直流電気鉄道の地絡検出装置は、き電系統のレールと各変電所のアースとの間の電圧を計測する前記変電所ごとの電圧計測手段と、各電圧計測手段で計測された電圧を隣接変電所に送信する専用通信ラインと、自変電所の電圧計測手段で計測された電圧と隣接する変電所の電圧計測手段で計測され前記専用通信ラインを通して送られてくる電圧とを加算した加算電圧に対して、当該加算電圧の所要倍数の値から前記電圧計測手段で計測された電圧値の減算量の比率を減算して得られる増幅係数を乗算することにより、前記地絡検出用電圧を求めた後、この地絡検出用電圧が予め定めた設定値を超えたとき、保護用信号を出力する前記変電所ごとの感度補償演算処理部とを備えた構成である。   The ground fault detection apparatus for a DC electric railway according to the present invention includes a voltage measuring unit for each substation that measures a voltage between a rail of the feeder system and the ground of each substation, and each voltage measuring unit. A dedicated communication line that transmits the measured voltage to the adjacent substation, a voltage measured by the voltage measuring means of the own substation, and a voltage measured by the voltage measuring means of the adjacent substation and sent through the dedicated communication line Is multiplied by an amplification coefficient obtained by subtracting the ratio of the subtraction amount of the voltage value measured by the voltage measuring means from the value of the required multiple of the added voltage. After obtaining the fault detection voltage, when the ground fault detection voltage exceeds a predetermined set value, a sensitivity compensation calculation processing unit for each substation that outputs a protection signal is provided.

本発明によれば、地絡事故が発生したとき、き電線の両端側に接続される変電所にて常に同一感度で高速度で地絡事故を検出でき、き電系統を含む変電所機器を確実に保護する直流電気鉄道の地絡検出装置を提供できる。   According to the present invention, when a ground fault occurs, it is always possible to detect a ground fault at a high speed with the same sensitivity at a substation connected to both ends of the feeder line. It is possible to provide a ground fault detection device for a DC electric railway that reliably protects.

本発明に係る直流電気鉄道の地絡検出装置の実施の形態1,2を示す構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram which shows Embodiment 1, 2 of the ground-fault detection apparatus of the DC electric railway which concerns on this invention. 直流電気鉄道のき電系統の地絡事故が発生した際の電気系統図及び当該電気系統の簡易な等価回路図。The electrical system diagram at the time of the ground fault of the feeding system of a DC electric railway, and the simple equivalent circuit diagram of the said electrical system. 地絡事故点の比率と各隣接変電所で計測する電圧V1,V2との関係及びその際の等価回路の構成要素の仮定値を表す図。The figure showing the relationship between the ratio of a ground fault point and voltage V1, V2 measured at each adjacent substation, and the assumed value of the component of the equivalent circuit in that case. 本発明に係る直流電気鉄道の地絡検出装置の実施の形態2を説明する地絡事故点の比率と各隣接変電所で計測する電圧V1,V2から演算により求める地絡検出用電圧σV´との関係及びその際の等価回路の構成要素の仮定値を表す図。Ground fault detection voltage σV ′ obtained by calculation from the ratio of ground fault points and voltage V1, V2 measured at each adjacent substation, explaining the second embodiment of the ground fault detection device for DC electric railway according to the present invention. The figure showing the assumption of the component of an equivalent circuit in that case, and the equivalent circuit in that case. 従来の直流電気鉄道の地絡検出装置を示す構成図。The block diagram which shows the ground fault detection apparatus of the conventional DC electric railway.

以下、本発明の実施の形態について、図面を参照して説明する。
(実施の形態1)
図1は本発明に係る直流電気鉄道の地絡検出装置の実施の形態1を示す構成図である。なお、同図において、図5と同一部分には同一符号を付して説明する。
Embodiments of the present invention will be described below with reference to the drawings.
(Embodiment 1)
FIG. 1 is a block diagram showing Embodiment 1 of a ground fault detection apparatus for a DC electric railway according to the present invention. In the figure, the same parts as those in FIG.

直流電気鉄道のき電系統においては、1区間のき電線3の両端にそれぞれ変電所1,2が接続され、各変電所1,2からは所要とする直流電力が当該き電線3に供給される。   In the feeding system of the DC electric railway, the substations 1 and 2 are connected to both ends of the feeder 3 in one section, respectively, and the required DC power is supplied to the feeder 3 from each of the substations 1 and 2. The

各変電所1,2は図5とほぼ同様な構成である。すなわち、変電所1は、交流電源11、交流遮断器12、整流回路13及びき電遮断器14等によって構成され、交流電源11から供給される交流電力を整流回路13で所要の直流電力に変換し、き電遮断器14を通してき電線3の一端側に供給される。   Each of the substations 1 and 2 has substantially the same configuration as that in FIG. That is, the substation 1 includes an AC power source 11, an AC circuit breaker 12, a rectifier circuit 13, a feeder circuit breaker 14, and the like, and converts AC power supplied from the AC power source 11 into required DC power by the rectifier circuit 13. Then, it is supplied to one end side of the feeder 3 through the feeder circuit breaker 14.

他方の変電所2においても、交流電源21、交流遮断器22、整流回路23及びき電遮断器24等によって構成され、交流電源21から供給される交流電力を整流回路23で所要の直流電力に変換し、き電遮断器24を通してき電線3の他端側に供給される。   The other substation 2 is also configured by an AC power source 21, an AC circuit breaker 22, a rectifier circuit 23, a feeder circuit breaker 24, and the like. The AC power supplied from the AC power source 21 is converted into required DC power by the rectifier circuit 23. It is converted and supplied to the other end side of the feeder 3 through the feeder circuit breaker 24.

また、変電所1には、変電所1側のレール4と変電所メッシュアース15の間に設けられ、レール4とアース15との間に発生する電圧を計測する電圧計測部18と、地絡事故の検出時に保護処理を実行する感度補償演算処理部19とが設けられている。   Further, the substation 1 is provided between the rail 4 on the substation 1 side and the substation mesh ground 15, and measures a voltage generated between the rail 4 and the ground 15. A sensitivity compensation calculation processing unit 19 is provided that performs a protection process when an accident is detected.

感度補償演算処理部19は、送受信機能をもった通信部19Aと、各変電所1,2で計測された電圧値18a,28aを記憶する記憶部19Bと、地絡事故時に電圧計測部18で計測された電圧18a(V1)と隣接する変電所2側から送信されてくる電圧28a(V2)とを記憶部19Bに記憶するとともに、加算演算を行って同一感度の地絡検出用電圧を得た後、予め定める設定値を超えたとき、地絡事故と判定する感度補償演算部19Cと、地絡事故の判定結果を受けたとき、遮断信号19aを出力し、き電遮断器14を開放する操作出力部19Dとで構成される。   The sensitivity compensation calculation processing unit 19 includes a communication unit 19A having a transmission / reception function, a storage unit 19B that stores voltage values 18a and 28a measured at the substations 1 and 2, and a voltage measurement unit 18 at the time of a ground fault. The measured voltage 18a (V1) and the voltage 28a (V2) transmitted from the adjacent substation 2 side are stored in the storage unit 19B, and addition operation is performed to obtain a ground fault detection voltage with the same sensitivity. After that, when a predetermined set value is exceeded, a sensitivity compensation calculation unit 19C that determines a ground fault is output, and when a determination result of a ground fault is received, a cutoff signal 19a is output and the feeder circuit breaker 14 is opened. And an operation output unit 19D.

さらに、変電所2側においても、レール4と変電所メッシュアース25との間に発生する電圧を計測する電圧計測部28と、地絡事故検出時に保護処理を実行する感度補償演算処理部29とが設けられ、感度補償演算処理部29は、感度補償演算処理部19と同様に通信部29Aと、電圧28a(V2),18a(V1)を記憶する記憶部29Bと、感度補償演算部29Cと、操作出力部29Dとで構成され、各感度補償演算処理部19,29の通信部19Aと29Aとが有線による専用通信ライン6で接続されている。   Furthermore, on the substation 2 side, a voltage measuring unit 28 that measures a voltage generated between the rail 4 and the substation mesh ground 25, and a sensitivity compensation calculation processing unit 29 that executes a protection process when a ground fault is detected, As with the sensitivity compensation calculation processing unit 19, the sensitivity compensation calculation processing unit 29 includes a communication unit 29A, a storage unit 29B that stores voltages 28a (V2) and 18a (V1), and a sensitivity compensation calculation unit 29C. , The operation output unit 29D, and the communication units 19A and 29A of the sensitivity compensation calculation processing units 19 and 29 are connected by a dedicated communication line 6 by wire.

変電所2側の補償演算処理部29の感度補償演算部29Cは、地絡事故時に電圧計測部28で計測された電圧28aと隣接する変電所1側から専用通信ライン6を介して送信されてくる電圧18aとを記憶部29Bに記憶するとともに、加算演算を行って同一感度の地絡検出用電圧を得た後、予め定める設定値を超えたとき、地絡事故と判定し、その判定結果を操作出力部29Dに送出する。操作出力部29Dは、遮断信号29aを出力し、き電遮断器24を開放する。   The sensitivity compensation calculation unit 29C of the compensation calculation processing unit 29 on the substation 2 side is transmitted via the dedicated communication line 6 from the substation 1 side adjacent to the voltage 28a measured by the voltage measurement unit 28 at the time of the ground fault. The incoming voltage 18a is stored in the storage unit 29B, and after addition calculation is performed to obtain a ground fault detection voltage with the same sensitivity, when a predetermined set value is exceeded, a ground fault is determined, and the determination result Is sent to the operation output unit 29D. The operation output unit 29D outputs a cut-off signal 29a and opens the feeder breaker 24.

次に、感度補償演算処理部19,29の感度補償演算処理に先立ち、従来の地絡検出装置16,26から地絡事故点までのき電線3の長さの比率と地絡検出用電圧との関係について説明する。   Next, prior to the sensitivity compensation computation processing of the sensitivity compensation computation processing units 19 and 29, the ratio of the length of the feeder 3 from the conventional ground fault detection devices 16 and 26 to the ground fault point and the ground fault detection voltage The relationship will be described.

き電線3に地絡事故が発生した場合、地絡検出装置16,26から地絡事故点までのき電線3の全長に対する長さの比率に従って、各地絡検出装置16,26の地絡事故検出電圧電圧が異なる。つまり、変電所1,2ごとに地絡事故時の電圧検出感度が異なってくる。このことは,各地絡検出装置16,26に予め固定の設定値を設けた場合、地絡事故点から遠い地絡検出装置16,26では地絡事故を検出することができなくなる。   When a ground fault occurs in the feeder 3, the fault detection of the local fault detectors 16 and 26 is performed according to the ratio of the length to the total length of the feeder 3 from the ground fault detectors 16 and 26 to the ground fault point. The voltage is different. That is, the voltage detection sensitivity at the time of the ground fault differs for each of the substations 1 and 2. This means that when a fixed set value is previously set in each of the ground fault detection devices 16 and 26, the ground fault detection devices 16 and 26 far from the ground fault point cannot detect the ground fault.

そこで、地絡事故点までのき電線3の全長に対する長さの比率の影響を受けることなく同一の検出感度で地絡事故を検出するために、各変電所1,2側で検出した電圧を相互に受け取って加算し、地絡事故検出時の地絡検出用電圧とすれば、安定、かつ高速度に地絡事故を検出できる。   Therefore, in order to detect a ground fault with the same detection sensitivity without being affected by the ratio of the length to the total length of the feeder 3 up to the ground fault point, the voltage detected at each substation 1, 2 side is used. If they are received and added to each other and used as a ground fault detection voltage when a ground fault is detected, the ground fault can be detected stably and at high speed.

次に、図2を参照して、地絡事故点までのき電線3の長さの比率を考慮しつつ、各変電所1,2が同一の検出感度とする処理例について説明する。図2はき電線3に地絡事故が発生した際の簡易な等価回路である。   Next, with reference to FIG. 2, a processing example in which each substation 1 and 2 has the same detection sensitivity will be described in consideration of the ratio of the length of the feeder 3 to the ground fault point. FIG. 2 is a simple equivalent circuit when a ground fault occurs in the feeder 3.

図2上段の電気系統に示すようにき電線3に地絡事故31が発生した場合、変電所1の故障電流I1、レール4とメッシュアース15間の電圧V1、変電所2の故障電流I2、レール4とメッシュアース25間の電圧V2と仮定すると、地絡故障の故障電流I1,I2は、レール4を介してほぼすべてが地絡事故点へ帰還すると考えられる。   2, when a ground fault 31 occurs in the feeder 3, the fault current I1 of the substation 1, the voltage V1 between the rail 4 and the mesh ground 15, the fault current I2 of the substation 2, Assuming the voltage V2 between the rail 4 and the mesh ground 25, it is considered that almost all of the fault currents I1 and I2 due to the ground fault return to the ground fault point via the rail 4.

その結果、各変電所1,2のレール4と各メッシュアース15,25との間の加算電圧(地絡事故検出電圧電圧)σVは、式(1)で表すことができる。
σV=V1+V2=(I1+I2)・RR ……(1)
ここで、レール抵抗RRは、前述したように故障電流I1,I2がレール4を介してほぼすべて地絡事故点へ帰還することから、事故点に因らない一定の値で近似することができる。
As a result, the addition voltage (ground fault detection voltage voltage) σV between the rails 4 of the substations 1 and 2 and the mesh grounds 15 and 25 can be expressed by Expression (1).
σV = V1 + V2 = (I1 + I2) · R R (1)
Here, the rail resistance R R can be approximated by a constant value that does not depend on the fault point since the fault currents I1 and I2 almost return to the ground fault point via the rail 4 as described above. it can.

しかし、き電線3の地絡事故点からの抵抗比率に応じて、等価回路全体の合成抵抗が変化し、それに伴って各変電所1,2側の故障電流I1,I2も異なってくるので、等価回路のもとに合成抵抗σR及び故障電流I1,I2を解明する。   However, the combined resistance of the entire equivalent circuit changes according to the resistance ratio from the ground fault point of the feeder 3, and accordingly the fault currents I1 and I2 on the substations 1 and 2 side also differ. Based on the equivalent circuit, the combined resistance σR and the fault currents I1 and I2 are solved.

図2下段の等価回路から変電所1,2の整流回路13,23の内部抵抗をRSR、き電線抵抗をRFとすると、合成抵抗σRは式(2)となる。 When the internal resistance of the rectifier circuits 13 and 23 of the substations 1 and 2 is R SR and the feeder resistance is R F from the lower equivalent circuit in FIG. 2, the combined resistance σR is expressed by the following equation (2).

σR={(RSR+dRF)(RSR+(1−d)RF)}/{2RSR+dRF+(1−d)RF)}
……(2)
ここで、き電線3の地絡事故点からの抵抗RFの比率dは、き電区間を「1」とした時の地絡事故点の比率dとも言える。
σR = {(R SR + dR F ) (R SR + (1-d) R F )} / {2R SR + dR F + (1-d) R F )}
(2)
Here, the ratio d of the resistance R F from the ground fault point of the feeder 3 can be said to be the ratio d of the ground fault point when the feeder section is “1”.

そこで、式(2)で求めた合成抵抗σRを用いて、変電所1,2の故障電流I1,I2を求めると、式(3)、式(4)で表わすことができる。
I1={1500/(RR+Re+σR)}・{(RSR+(1−d)RF)/(2RSR+dRF)}
……(3)
I2={1500/(RR+Re+σR)}・{(RSR+dRF)/(2RSR+dRF)}
……(4)
従って、地絡事故点の比率dを考慮しつつ、式(3),式(4)に基づいて各変電所1,2の故障電流I1、I2を求めた後、式(1)に従って各変電所1,2のレール4とメッシュアース16,26との検出電圧V1、V2を求めると、図3(a)に示すように地絡事故点の比率dの変化に応じて、全く相反する検出電圧V1,V2の特性のグラフとなる。但し、図3(a)は1500V系の直流電気鉄道に適用した例である。
Therefore, when the fault currents I1 and I2 of the substations 1 and 2 are obtained using the combined resistance σR obtained by the expression (2), they can be expressed by the expressions (3) and (4).
I1 = {1500 / (R R + Re + σR)} · {(R SR + (1−d) R F ) / (2R SR + dR F )}
...... (3)
I2 = {1500 / (R R + Re + σR)} · {(R SR + dR F ) / (2R SR + dR F )}
...... (4)
Accordingly, the fault currents I1 and I2 of the substations 1 and 2 are obtained based on the equations (3) and (4) while taking into account the ratio d of the ground fault points, and then each substation according to the equation (1). When the detection voltages V1 and V2 between the rail 4 at the stations 1 and 2 and the mesh grounds 16 and 26 are obtained, the detection is completely contradictory according to the change in the ratio d of the ground fault points as shown in FIG. This is a graph of the characteristics of the voltages V1 and V2. However, FIG. 3A shows an example applied to a 1500V DC electric railway.

そこで、感度補償演算処理部19では、自変電所1の電圧計測部18で計測された電圧18a(V1)と他方の電圧計測部28で計測され、感度補償演算処理部29から専用通信ライン6を経由して送られてくる電圧29a(V2)とを加算演算し、図3(a)に示すごとく地絡事故点の比率dに影響されずにほぼ一定の高い地絡検出用電圧σVを得ることができる。   Therefore, in the sensitivity compensation calculation processing unit 19, the voltage 18a (V1) measured by the voltage measurement unit 18 of the own substation 1 and the other voltage measurement unit 28 are measured, and from the sensitivity compensation calculation processing unit 29 to the dedicated communication line 6 Is added to the voltage 29a (V2) sent via the, and as shown in FIG. 3A, a substantially constant high ground fault detection voltage σV is obtained without being influenced by the ratio d of the ground fault points. Obtainable.

感度補償演算処理部29においても、図3(a)と全く同様の地絡検出用電圧σVを得ることができる。   The sensitivity compensation calculation processing unit 29 can also obtain the ground fault detection voltage σV exactly the same as in FIG.

従って、各感度補償演算処理部19,29は、図3(b)に示すように等価回路の構成要素の仮定値の変動を考慮し、予め加算演算して得られる地絡検出用電圧σVより低い所定の設定値(例えば図示(イ))を定めておけば、両変電所1,2がそれぞれほぼ同一の検出感度となる地絡検出用電圧σVと設定値とを比較し、地絡検出用電圧σVが設定値を超えたとき、それぞれ遮断信号19a,29aを出力し、自変電所1,2側のき電遮断器14,24を開放させることができる。   Accordingly, each of the sensitivity compensation calculation processing units 19 and 29 considers a change in an assumed value of a component of the equivalent circuit as shown in FIG. 3B, and uses a ground fault detection voltage σV obtained by adding in advance. If a low predetermined set value (for example, (A) in the figure) is set, the ground fault detection voltage σV at which both substations 1 and 2 have almost the same detection sensitivity are compared with the set value to detect the ground fault. When the working voltage σV exceeds the set value, the interruption signals 19a and 29a are output, respectively, and the feeder circuit breakers 14 and 24 on the substations 1 and 2 side can be opened.

従って、以上のような実施の形態では、従来、自変電所1,2から地絡事故点までの距離が遠くなるほど、地絡検出電圧が低くなっていくことから、自変電所より遠端で発生した地絡事故を検出できず、地絡事故の検出が非常に不安定となる。   Therefore, in the embodiment as described above, since the ground fault detection voltage becomes lower as the distance from the substations 1 and 2 to the ground fault point becomes longer, conventionally, at the far end from the substation. The generated ground fault accident cannot be detected, and the detection of the ground fault accident becomes very unstable.

その結果、従来では、地絡検出用電圧が固定の設定値を超えたことを条件に自き電遮断器を開放するとともに、自連絡遮断装置を利用し、隣接する変電所に設置される他連絡遮断装置に地絡事故有りを通知する必要があり、また他の目的の情報の終了を待って通知するので、時間的に遅くなってしまう。   As a result, in the past, the self-current breaker was opened on the condition that the ground fault detection voltage exceeded a fixed set value, and the self-contact breaker was used to install it at an adjacent substation. Since it is necessary to notify the communication interruption device that there is a ground fault, and the notification is made after waiting for the end of the information for other purposes, the time is delayed.

その点、本発明は、電圧計測部18,28で計測した検出電圧を通信部19A,29A及び専用通信ライン6を介して即座に隣接する変電所の感度補償演算処理部29,19に伝送し、各電圧計測部18,28で計測した検出電圧を加算演算し、地絡検出用電圧を取得し、設定値と比較するので、各感度補償演算処理部19,29は同一の検出感度で安定、かつ、高速度で地絡事故を検出でき、き電線3を含む変電所1,2の構成機器を保護することができる。   In that respect, the present invention immediately transmits the detected voltage measured by the voltage measuring units 18 and 28 to the sensitivity compensation calculation processing units 29 and 19 of the adjacent substations via the communication units 19A and 29A and the dedicated communication line 6. Since the detection voltages measured by the voltage measuring units 18 and 28 are added and calculated, the ground fault detection voltage is obtained and compared with the set value, the sensitivity compensation calculation processing units 19 and 29 are stable with the same detection sensitivity. And a ground fault can be detected at high speed, and the components of the substations 1 and 2 including the feeder 3 can be protected.

ところで、前記式(1)による電圧加算の場合、図3(a)に示すように地絡事故点が両変電所1,2の中間付近になるに従って加算電圧値が低くなる。従って、設定値としては、例えば両変電所1,2の中間で地絡事故が発生することを想定して予め低い値を設定しておけば、地絡事故の検出感度は、地絡事故点に因ることなく、両変電所1,2とも同一の検出感度で地絡事故を検出でき、さらに同一検出感度とすることにより、高速度による保護を実現することができる。   By the way, in the case of voltage addition according to the equation (1), as shown in FIG. 3 (a), the added voltage value becomes lower as the ground fault point becomes near the middle of both substations 1 and 2. Therefore, as a setting value, for example, if a low value is set in advance assuming that a ground fault will occur between the two substations 1 and 2, the detection sensitivity of the ground fault will be the ground fault point. Therefore, both substations 1 and 2 can detect a ground fault with the same detection sensitivity, and can achieve protection at a high speed by using the same detection sensitivity.

(実施の形態2)
本発明に係る直流電気鉄道の地絡検出装置の実施の形態2は、図1と全く同様の構成であるので、ここでは図1を用いて説明する。
(Embodiment 2)
Since the second embodiment of the ground fault detection apparatus for a DC electric railway according to the present invention has the same configuration as that shown in FIG. 1, it will be described here with reference to FIG.

実施の形態2において特に異なるところは、感度補償演算処理部19,29の地絡検出用の電圧に改良を施したものである。   In particular, the second embodiment differs from the second embodiment in that the voltage for ground fault detection of the sensitivity compensation calculation processing sections 19 and 29 is improved.

実施の形態1における感度補償演算処理部19,29は、両変電所1,2の電圧計測部18,28で計測された電圧18a,28aを単純に加算した加算電圧値を地絡検出用電圧としたことにより、き電線3で検出する地絡事故の検出感度は、地絡事故点に因らず両変電所1,2とも同一の検出感度とすることができる。   The sensitivity compensation calculation processing units 19 and 29 in the first embodiment use the added voltage value obtained by simply adding the voltages 18a and 28a measured by the voltage measuring units 18 and 28 of both substations 1 and 2 as a ground fault detection voltage. As a result, the detection sensitivity of the ground fault detected by the feeder 3 can be the same detection sensitivity for both the substations 1 and 2 regardless of the ground fault point.

しかし、以上のように単純に電圧計測部18,28で計測された電圧18a,28aを加算し、地絡検出用電圧とすると、図3(a)に示すように両変電所1,2の中間付近で地絡事故が発生したとき、何れも地絡事故点からの距離が遠くなり、地絡検出用電圧が低くなる。このことは、例えば等価回路の構成要素の仮定値の変動を考えると、さらに加算電圧値の落ち込みが大きくなることも考えられる。その結果、決定される設定値によっては、地絡事故の検出が不安定になる虞れがある。   However, when the voltages 18a and 28a measured by the voltage measuring units 18 and 28 are simply added as described above and used as a ground fault detection voltage, as shown in FIG. When a ground fault occurs near the middle, the distance from the ground fault point becomes longer and the ground fault detection voltage becomes lower. For example, if the fluctuations in the assumed values of the components of the equivalent circuit are considered, the drop in the added voltage value may be further increased. As a result, depending on the determined setting value, the detection of a ground fault may become unstable.

そこで、実施の形態2では、実施の形態1で求めた加算電圧値(V1+V2)に対して予め定める増幅係数を乗じることにより、両変電所1,2の中間付近で地絡事故が発生しても最も高い所定の電圧が得られるような加算演算式(5)を用いて、地絡検出用電圧σV´を求めるものである。   Therefore, in the second embodiment, a ground fault occurs near the middle of both substations 1 and 2 by multiplying the addition voltage value (V1 + V2) obtained in the first embodiment by a predetermined amplification coefficient. In addition, the ground fault detection voltage σV ′ is obtained by using the addition calculation formula (5) that can obtain the highest predetermined voltage.

σV´=(V1+V2)・[2−{(|V1−V2|)/(|V1+V2|)}]
……(5)
すなわち、地絡検出用電圧σV´は、両変電所側で計測された加算電圧値σV´(=V1+V2)に対して、当該加算電圧値(V1+V2)の所要倍数の値(例えば1.5〜2.0)から両変電所1,2で計測された電圧値の減算量の比率(|V1−V2|)/(|V1+V2|)を減算して得られる増幅係数を乗算することにより、求めるものである。
σV ′ = (V1 + V2) · [2-{(| V1-V2 |) / (| V1 + V2 |)}]
...... (5)
That is, the ground fault detection voltage σV ′ is a value of a required multiple of the added voltage value (V1 + V2) with respect to the added voltage value σV ′ (= V1 + V2) measured at both substations (for example, 1.5 to 2.0) is obtained by multiplying the amplification factor obtained by subtracting the ratio (| V1-V2 |) / (| V1 + V2 |) of the subtraction amount of the voltage value measured at both substations 1 and 2. Is.

図4(a)は上記式(5)の演算式で求められた各地絡事故点の比率dに対する地絡検出用電圧σV´の変化を表すグラフである。但し、このグラフは、所要倍数の値を「2」とした例である。   FIG. 4A is a graph showing a change in the ground fault detection voltage σV ′ with respect to the ratio d of the local fault points determined by the calculation formula of the above formula (5). However, this graph is an example in which the required multiple value is set to “2”.

この地絡検出用電圧σV´のグラフは、実施の形態1の地絡検出用電圧σVのグラフと異なり、両変電所1,2の中間付近の地絡事故時の電圧値を上昇させることができるので、例えば実施の形態1の地絡事故点の最小比率d=0.0及び最大比率1.0の地絡事故点で得られる計測電圧V1,V2を加算演算して得られる加算電圧よりも低い近傍値(例えば図示(ロ))を設定値すれば、地絡事故を安定、かつ高感度で地絡事故を検出できる。   Unlike the graph of the ground fault detection voltage σV of the first embodiment, the graph of the ground fault detection voltage σV ′ can increase the voltage value at the time of the ground fault near the middle of the two substations 1 and 2. Therefore, for example, from the addition voltage obtained by adding and calculating the measurement voltages V1 and V2 obtained at the ground fault point of the ground fault point of the first embodiment with the minimum ratio d = 0.0 and the maximum ratio 1.0. If a lower neighborhood value (for example, (b) in the figure) is set, the ground fault can be detected stably and with high sensitivity.

(その他の実施の形態例)
(1) 上記実施の形態では、各変電所1,2間相互の情報のやり取りのための連絡装置を省略しているが、従来と同様に各変電所1,2にそれぞれ連絡装置を設け、相互に情報のやり取りを行う構成であってもよい。
(Other embodiments)
(1) In the above embodiment, a communication device for exchanging information between the substations 1 and 2 is omitted, but a communication device is provided in each substation 1 and 2 as in the prior art, It may be configured to exchange information with each other.

(2) 感度補償演算処理部19,29の通信部19Aと29Aは、相互に自変電所側の計測電圧18a,28aを隣接する相手側の通信部29A、19Aに送信したが、各通信部19Aと29Aが互いに受信応答結果を受け取る通信プロトコルを用いて通信することにより、地絡事故に対する保護の信頼性を高めることができる。 (2) The communication units 19A and 29A of the sensitivity compensation calculation processing units 19 and 29 transmit the measured voltages 18a and 28a on the own substation side to the adjacent counterpart communication units 29A and 19A. 19A and 29A communicate with each other using a communication protocol that receives a reception response result, so that the reliability of protection against a ground fault can be improved.

(3) 上記実施の形態では、メッシュアース15,25を用いた例について説明したが、必ずしもメッシュ状のアースである必要が無いことは言うまでもない。 (3) In the above-described embodiment, the example using the mesh grounds 15 and 25 has been described, but it is needless to say that the mesh ground is not necessarily required.

その他、本発明は、上記実施の形態に限定されるものでなく、その要旨を逸脱しない範囲で種々変形して実施できる。 In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

1,2…変電所、3…き電線、4…レール、6…専用通信ライン、11,21…交流電源、13,23…整流回路、14,24…き電遮断器、18,28…電圧計測部、19,29…感度補償演算処理部、19A、29A…通信部、19B,29B…記憶部、19C,29C…感度補償演算部、19D,29D…操作出力部。   1, 2 ... substation, 3 ... feeder, 4 ... rail, 6 ... dedicated communication line, 11, 21 ... alternating current power supply, 13, 23 ... rectifier circuit, 14, 24 ... feeder breaker, 18, 28 ... voltage Measurement unit 19, 29 ... Sensitivity compensation calculation processing unit, 19A, 29A ... Communication unit, 19B, 29B ... Storage unit, 19C, 29C ... Sensitivity compensation calculation unit, 19D, 29D ... Operation output unit.

Claims (5)

直流電気鉄道のき電系統に接続される複数の変電所に設置される保護装置であって、
前記き電系統のレールと各変電所のアースとの間の電圧を計測する前記変電所ごとの電圧計測手段と、
各電圧計測手段で計測された電圧を相互に隣接変電所に送信する専用通信ラインと、
自変電所の電圧計測手段で計測された電圧と隣接する変電所の電圧計測手段で計測され前記専用通信ラインを通して送られてくる電圧とを加算して地絡検出用電圧とし、当該地絡検出用電圧が予め定めた設定値を超えたとき、保護用信号を出力する前記変電所ごとの感度補償演算処理部と
を備えたことを特徴とする直流電気鉄道の地絡検出装置。
A protection device installed in a plurality of substations connected to a feeding system of a DC electric railway,
Voltage measuring means for each substation for measuring the voltage between the rails of the feeder system and the ground of each substation;
A dedicated communication line that transmits the voltage measured by each voltage measurement means to the adjacent substations;
The voltage measured by the voltage measuring means of the own substation and the voltage measured by the voltage measuring means of the adjacent substation and sent through the dedicated communication line are added as a ground fault detection voltage, and the ground fault detection A ground fault detection device for a DC electric railway, comprising: a sensitivity compensation calculation processing unit for each substation that outputs a protection signal when a working voltage exceeds a predetermined set value.
請求項1に記載の直流電気鉄道の地絡検出装置において、
前記感度補償演算処理部は、前記専用通信ラインに接続される送受信機能をもった通信部と、前記電圧計測手段で計測される電圧を記憶する記憶部と、前記自変電所の電圧計測手段で計測された電圧と隣接する変電所側から前記専用通信ラインを通して送られてくる電圧とを前記記憶部に記憶し、かつ、加算演算により地絡検出用電圧を得た後、この地絡検出用電圧が前記予め定める設定値を超えたとき、地絡事故と判定する感度補償演算部と、この感度補償演算部から地絡事故の判定結果を受けたとき、保護信号を出力し、互いに自変電所側のき電遮断器を開放する操作出力部とで構成したことを特徴とする直流電気鉄道の地絡検出装置。
In the ground fault detection apparatus of the DC electric railway according to claim 1,
The sensitivity compensation calculation processing unit includes a communication unit having a transmission / reception function connected to the dedicated communication line, a storage unit that stores a voltage measured by the voltage measurement unit, and a voltage measurement unit of the substation. The measured voltage and the voltage sent through the dedicated communication line from the adjacent substation side are stored in the storage unit, and the ground fault detection voltage is obtained by addition calculation. When the voltage exceeds the predetermined set value, a sensitivity compensation calculation unit for determining a ground fault, and when receiving a determination result of a ground fault from the sensitivity compensation calculation unit, a protection signal is output, A ground fault detection device for a DC electric railway, characterized by comprising an operation output unit for opening a feeding circuit breaker on the site side.
請求項1に記載の直流電気鉄道の地絡検出装置において、
前記設定値は、前記両変電所に連なる前記き電線の中間付近での地絡事故に対して、前記両電圧計測手段で計測された電圧を加算演算して得られる地絡検出用電圧が最も低くなることを考慮し、この最も低い電圧よりも低い所定の設定値とすることを特徴とする直流電気鉄道の地絡検出装置。
In the ground fault detection apparatus of the DC electric railway according to claim 1,
As for the set value, the ground fault detection voltage obtained by adding the voltage measured by the both voltage measuring means to the ground fault near the middle of the feeders connected to the two substations is the most. A ground fault detection device for a DC electric railway characterized in that a predetermined set value lower than the lowest voltage is set in consideration of lowering.
直流電気鉄道のき電系統に接続される複数の変電所に設置される保護装置であって、
前記き電系統のレールと各変電所のアースとの間の電圧を計測する前記変電所ごとの電圧計測手段と、
各電圧計測手段で計測された電圧を相互に隣接変電所に送信する専用通信ラインと、
自変電所の電圧計測手段で計測された電圧と隣接する変電所の電圧計測手段で計測され前記専用通信ラインを通して送られてくる電圧とを加算した加算電圧に対して、当該加算電圧の所定の倍数の値から前記電圧計測手段で計測された電圧値の減算量の比率を減算して得られる増幅係数を乗算し、前記地絡検出用電圧を求めた後、当該地絡検出用電圧が予め定めた設定値を超えたとき、保護用信号を出力する前記変電所ごとの感度補償演算処理部と
を備えたことを特徴とする直流電気鉄道の地絡検出装置。
A protection device installed in a plurality of substations connected to a feeding system of a DC electric railway,
Voltage measuring means for each substation for measuring the voltage between the rails of the feeder system and the ground of each substation;
A dedicated communication line that transmits the voltage measured by each voltage measurement means to the adjacent substations;
For an added voltage obtained by adding the voltage measured by the voltage measuring means of the own substation and the voltage measured by the voltage measuring means of the adjacent substation and sent through the dedicated communication line, a predetermined value of the added voltage is determined. After multiplying the amplification factor obtained by subtracting the ratio of the subtraction amount of the voltage value measured by the voltage measuring means from the multiple value to obtain the ground fault detection voltage, the ground fault detection voltage is A ground fault detection device for a DC electric railway, comprising: a sensitivity compensation calculation processing unit for each substation that outputs a protection signal when a predetermined set value is exceeded.
請求項4に記載の直流電気鉄道の地絡検出装置において、
前記設定値は、前記両変電所の電圧計測手段で計測されるき電線の抵抗比率の最小及び最大となる地絡事故点の電圧をそれぞれ加算演算して得られる加算電圧よりも低い近傍値に設定することを特徴とする直流電気鉄道の地絡検出装置。
In the ground fault detection apparatus of the DC electric railway according to claim 4,
The set value is a neighborhood value lower than the added voltage obtained by adding and calculating the voltage at the ground fault point at which the resistance ratio of the feeders measured at the voltage measuring means of both substations is minimum and maximum. A ground fault detection device for a DC electric railway characterized by being set.
JP2009204934A 2009-09-04 2009-09-04 Ground fault detector for DC electric railway Active JP5377170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009204934A JP5377170B2 (en) 2009-09-04 2009-09-04 Ground fault detector for DC electric railway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009204934A JP5377170B2 (en) 2009-09-04 2009-09-04 Ground fault detector for DC electric railway

Publications (2)

Publication Number Publication Date
JP2011053189A true JP2011053189A (en) 2011-03-17
JP5377170B2 JP5377170B2 (en) 2013-12-25

Family

ID=43942336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009204934A Active JP5377170B2 (en) 2009-09-04 2009-09-04 Ground fault detector for DC electric railway

Country Status (1)

Country Link
JP (1) JP5377170B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067241A (en) * 2013-09-30 2015-04-13 株式会社東芝 Dc feeding protection control system
CN117849446A (en) * 2024-03-07 2024-04-09 国网山东省电力公司莱芜供电公司 Transformer substation ground current detection system, method, electronic equipment and medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262070A (en) * 1989-03-31 1990-10-24 Ngk Insulators Ltd Monitoring apparatus for distribution line
JPH07318607A (en) * 1994-05-27 1995-12-08 Nissin Electric Co Ltd Method for detection of point of short circuit accident of distribution line
JPH08205377A (en) * 1994-11-25 1996-08-09 Central Japan Railway Co Protective device for feeding equipment
JP2002271972A (en) * 2001-03-15 2002-09-20 Meidensha Corp Ground relaying system of dc feeding substation
JP2007049858A (en) * 2005-08-12 2007-02-22 Railway Technical Res Inst High-resistance ground fault detecting system for direct current feeding circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262070A (en) * 1989-03-31 1990-10-24 Ngk Insulators Ltd Monitoring apparatus for distribution line
JPH07318607A (en) * 1994-05-27 1995-12-08 Nissin Electric Co Ltd Method for detection of point of short circuit accident of distribution line
JPH08205377A (en) * 1994-11-25 1996-08-09 Central Japan Railway Co Protective device for feeding equipment
JP2002271972A (en) * 2001-03-15 2002-09-20 Meidensha Corp Ground relaying system of dc feeding substation
JP2007049858A (en) * 2005-08-12 2007-02-22 Railway Technical Res Inst High-resistance ground fault detecting system for direct current feeding circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067241A (en) * 2013-09-30 2015-04-13 株式会社東芝 Dc feeding protection control system
CN117849446A (en) * 2024-03-07 2024-04-09 国网山东省电力公司莱芜供电公司 Transformer substation ground current detection system, method, electronic equipment and medium

Also Published As

Publication number Publication date
JP5377170B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
US7872478B2 (en) Method and adaptive distance protection relay for power transmission lines
US8749933B2 (en) Fault protection of HVDC transmission lines
US10826287B2 (en) Method and system providing feeder fault response
US20130221977A1 (en) Fault direction parameter indicator device and related methods
US10862291B2 (en) Differential protection method, device and system for monitoring a line of an electrical energy supply network
KR100835388B1 (en) Apparatus and method for monitoring ground fault of high resistance
BR112014029744B1 (en) CIRCUIT BREAKER AND SYSTEM FOR MONITORING THE ENERGY OF A WIRELESS DERIVATIVE CIRCUIT
RU2407124C2 (en) Accounting of load in remote protection of three-phase power transmission line
US8102634B2 (en) Differential protection method, system and device
CN103891077A (en) Travelling-wave based fault protection of high-voltage transmission lines
US20170133834A1 (en) Transient protection for multi-terminal hvdc grid
JP2015067241A (en) Dc feeding protection control system
WO2013106985A1 (en) Method for identifying fault direction without voltage measurement information and directional element thereof
CN104880640A (en) DC traction power supply system frame electric leakage monitoring apparatus
JP6624165B2 (en) Distribution line fault location system
US8952825B2 (en) Monitoring device for an ungrounded power network of a photovoltaic system
JP5377170B2 (en) Ground fault detector for DC electric railway
US11137436B2 (en) Secure traveling wave distance protection in an electric power delivery system
CN111095728B (en) Method and power distribution network management system for assessing power distribution network assets based on downstream events
US9201110B2 (en) Multi-channel leakage current monitoring system
US9910080B2 (en) Method and arrangement for locating short-circuits in energy supply systems
JP2011015583A (en) Leakage detection method, leakage detection device, and earth leakage breaker
JP5903143B1 (en) Disconnection detection apparatus and method
JP5283369B2 (en) Disconnection protection relay
JP5574888B2 (en) AC feeder overload protection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130924

R151 Written notification of patent or utility model registration

Ref document number: 5377170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151