JP2011052984A - Method of measuring hardness distribution and rolling bearing - Google Patents

Method of measuring hardness distribution and rolling bearing Download PDF

Info

Publication number
JP2011052984A
JP2011052984A JP2009199624A JP2009199624A JP2011052984A JP 2011052984 A JP2011052984 A JP 2011052984A JP 2009199624 A JP2009199624 A JP 2009199624A JP 2009199624 A JP2009199624 A JP 2009199624A JP 2011052984 A JP2011052984 A JP 2011052984A
Authority
JP
Japan
Prior art keywords
reflected
hardness
reflected wave
hardness distribution
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009199624A
Other languages
Japanese (ja)
Inventor
Hiroki Komata
弘樹 小俣
Daisuke Kobayashi
大輔 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2009199624A priority Critical patent/JP2011052984A/en
Publication of JP2011052984A publication Critical patent/JP2011052984A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of measurement applicable to members different variously in shape, hardening conditions, etc. and allowing the hardness distribution of the member to be precisely measured, and to provide a high-performance rolling bearing with the hardness distribution assured of bearing components. <P>SOLUTION: Ultrasonic pulses are input into an inspected material to receive reflected waves severally reflected at respective depth positions between the surface of the inspected material and its center, thereby obtaining the intensities of the respective reflected waves. Further, the time between the inputting of an ultrasonic pulse and the receiving of a reflected wave is measured as to each of the reflected waves to calculate at which depth positions the reflected waves are reflected. By using the intensities of the respective reflected waves and the depth positions at which the waves are reflected, a reflected-wave curve is drawn showing a relation between the distance from the surface of the inspected material and the intensities of the reflected waves. Based on a correlation between the intensities of the reflected waves and the ratio of non-hardened structure and a correlation between the ratio of non-hardened structure and hardness previously obtained by using a standard material, the intensities of the reflected waves are converted into hardness to obtain a hardness distribution curve of the inspected material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、部材の硬さ分布や熱処理異常を、破壊することなく測定・検出する方法に関する。また、本発明は、軸受部品(内輪,外輪,転動体)の硬さ分布が保証されている転がり軸受に関する。 The present invention relates to a method for measuring and detecting the hardness distribution and heat treatment abnormality of a member without breaking. The present invention also relates to a rolling bearing in which the hardness distribution of bearing parts (inner ring, outer ring, rolling element) is guaranteed.

高周波焼入れ等の焼入れが施された鋼製部材において有効硬化層深さを測定する方法としては、切断した鋼製部材の切断面をエッチングしてマクロ的に観察する方法や、切断面の各深さ位置の硬さを測定する方法が知られている。しかしながら、このような破壊検査は、鋼製部材の形状が複雑であったり大型であったりした場合は、切断が容易ではないため、多大な時間とコストを要することになる。そのため、近年では、超音波を用いた非破壊検査が用いられることもある。 As a method of measuring the effective hardened layer depth in a steel member that has been subjected to induction hardening or the like, a method of observing macroscopically by etching a cut surface of a cut steel member, or each depth of the cut surface A method for measuring the hardness of the vertical position is known. However, such a destructive inspection requires a lot of time and cost because cutting is not easy when the shape of the steel member is complicated or large. Therefore, in recent years, nondestructive inspection using ultrasonic waves is sometimes used.

例えば、特許文献1には、MHz帯の周波数の超音波パルスを測定対象材料の表面に対し傾斜させて送受波する探触子を有するセンサ部と、測定対象材料内で反射してきた受波信号中から、測定対象材料の焼入れ硬化層と母材層(非焼入れ層)との境界からの反射波を抽出する抽出手段と、測定対象材料の表面から反射波までの距離を計測する演算部とを備える、超音波の横波を利用した層厚測定装置が開示されている。 For example, Patent Document 1 discloses a sensor unit having a probe that transmits and receives an ultrasonic pulse having a frequency in the MHz band inclined with respect to the surface of the measurement target material, and a received signal reflected in the measurement target material. An extraction means for extracting the reflected wave from the boundary between the quench hardened layer and the base material layer (non-quenched layer) of the material to be measured, and an arithmetic unit for measuring the distance from the surface of the material to be measured to the reflected wave A layer thickness measuring apparatus using ultrasonic transverse waves is disclosed.

特許文献1によれば、超音波パルスが測定対象材料の内部に伝播した際に、結晶粒径の小さい焼入れ硬化層と比較して結晶粒径の大きい母材層の方が反射レベルが大きいことを利用して、その反射レベルに差が見られる境界を検出することによって、有効硬化層深さを測定することができる。また、特許文献2には、特許文献1の場合と同様に、焼入れ硬化層と母材層との境界付近の超音波反射波を利用して、焼入れ硬化層の深さを評価する方法が開示されている。特許文献2によれば、受信信号の焼入れ硬化層の表面反射波から該表面反射波の次に受信した境界付近の超音波反射波までの時間を複数計測し、この計測した時間情報を集計して、所定の時間帯毎の超音波反射波の発生頻度によりヒストグラムを形成し、発生頻度のピーク位置における時間帯値によって焼入れ硬化層の深さを評価することができる。 According to Patent Document 1, when an ultrasonic pulse propagates inside a material to be measured, a base material layer having a large crystal grain size has a higher reflection level than a quenched hardened layer having a small crystal grain size. The effective hardened layer depth can be measured by detecting a boundary where a difference is seen in the reflection level by using. Patent Document 2 discloses a method for evaluating the depth of a hardened and hardened layer using an ultrasonic wave reflected near the boundary between the hardened and hardened layer and the base material layer, as in Patent Document 1. Has been. According to Patent Document 2, a plurality of times from the surface reflected wave of the hardened hardening layer of the received signal to the ultrasonic reflected wave near the boundary received next to the surface reflected wave are measured, and the measured time information is totaled. Thus, a histogram can be formed based on the frequency of occurrence of ultrasonic reflected waves for each predetermined time zone, and the depth of the hardened hardened layer can be evaluated based on the time zone value at the peak position of the frequency of occurrence.

しかしながら、特許文献1,2の方法では、測定対象材料のうち硬化層深さ一点のみしか測定できないことに加えて、その硬さは不明確であった。高周波焼入れされた転がり軸受の軸受部品においては、転がり疲労寿命等の必要な性能を確保するためには、例えば、有効硬化層深さ(所定の硬さとなる深さ)を高精度に測定したり、表面部におけるトゥルースタイトや未変態フェライトなどの不完全焼入れ組織の存在や,焼入層が貫通(すなわちずぶ焼入れ状態)といった熱処理異常を確実に検出する必要があるので、検出特許文献1,2の方法は転がり軸受の品質を保証するための方法としては不十分であった。 However, in the methods of Patent Documents 1 and 2, only one point of the cured layer depth can be measured among the materials to be measured, and the hardness is unclear. In order to ensure the necessary performance such as rolling fatigue life, the effective hardened layer depth (depth of the predetermined hardness) is measured with high accuracy in the bearing parts of the induction-hardened rolling bearing. Since it is necessary to reliably detect the presence of an incompletely quenched structure such as trustite and untransformed ferrite in the surface portion and a heat treatment abnormality such as penetration of the hardened layer (that is, a submerged state), detection patent documents 1 and 2 This method was insufficient as a method for assuring the quality of rolling bearings.

このような背景から、受信された超音波の反射波における散乱波のピーク信号を検出し、このピーク信号が現れる表面からの深さ位置であるピーク位置を、検出したピーク信号の発信から受信までの伝搬時間により算出し、算出したピーク位置のヒストグラムから所定の基準により超音波深さ位置を定め、予め求めておいた超音波深さ位置と有効硬化層深さとの相関関係に基づいて、有効硬化層深さを測定する方法が提案されている(特許文献3を参照)。 From such a background, the peak signal of the scattered wave in the reflected wave of the received ultrasonic wave is detected, and the peak position, which is the depth position from the surface where this peak signal appears, is detected from transmission to reception of the detected peak signal. Based on the correlation between the calculated ultrasonic depth position and the effective hardened layer depth. A method for measuring the hardened layer depth has been proposed (see Patent Document 3).

特開平8−94344号公報JP-A-8-94344 特開平11−94809号公報Japanese Patent Laid-Open No. 11-94809 特開2007−198822号公報JP 2007-198822 A

しかしながら、特許文献3の方法では、上述の熱処理異常の検出は不可能であり、例えば部材の形状や高周波焼入れ条件が変わって、高周波加熱時の温度勾配が変化した場合は、超音波深さ位置と有効硬化層深さとの相関関係も変化すると考えられるため、有効硬化層深さを正確に測定することができないおそれがあった。そこで、本発明は上記のような従来技術が有する問題点を解決し、形状,焼入れ条件等が種々異なる部材に適用可能であり、熱処理異常の検出や、部材の硬さ分布を正確に測定することができる測定方法を提供することを課題とする。また、本発明は、軸受部品の硬さ分布が保証された高性能の転がり軸受を提供することを併せて課題とする。 However, in the method of Patent Document 3, it is impossible to detect the above-described abnormality of heat treatment. For example, when the shape of the member or the induction hardening condition changes, and the temperature gradient during induction heating changes, the ultrasonic depth position Therefore, there is a possibility that the effective hardened layer depth cannot be accurately measured. Therefore, the present invention solves the problems of the prior art as described above, and can be applied to members having different shapes, quenching conditions, etc., and detects heat treatment abnormality and accurately measures the hardness distribution of the members. It is an object of the present invention to provide a measurement method that can be used. Another object of the present invention is to provide a high-performance rolling bearing in which the hardness distribution of bearing parts is guaranteed.

前記課題を解決するため、本発明は次のような構成からなる。すなわち、本発明の硬さ分布測定方法は、被検材に超音波パルスを入射し、前記被検材の表面から所定深さまでの間の各深さ位置でそれぞれ反射された反射波を受信して、前記各反射波の強度を取得し、前記被検材と同一材質の標準材を用いて予め取得した硬さと反射波の強度との相関関係に基づいて、前記各反射波の強度から前記各深さ位置の硬さを求め、前記被検材の深さ方向の硬さ分布を得ることを特徴とする。また、熱処理異常の検出方法は、(非焼入れ組織(心部組織)に起因した反射波形のピーク信号強度)/(焼入れ組織に起因する反射波形の最も低い信号強度)が、ある所定の値以上であるとき良品であると判別することを特徴とする。 In order to solve the above problems, the present invention has the following configuration. That is, in the hardness distribution measuring method of the present invention, an ultrasonic pulse is incident on a test material, and reflected waves reflected at respective depth positions between the surface of the test material and a predetermined depth are received. Obtaining the intensity of each reflected wave, and based on the correlation between the hardness and the intensity of the reflected wave acquired in advance using a standard material that is the same material as the test material, The hardness at each depth position is obtained, and the hardness distribution in the depth direction of the test material is obtained. Further, the detection method of the heat treatment abnormality is that (the peak signal intensity of the reflected waveform caused by the non-quenched tissue (heart tissue)) / (the lowest signal intensity of the reflected waveform caused by the quenched tissue) is a predetermined value or more. When it is, it is determined that the product is a non-defective product.

この本発明の硬さ分布測定方法、および熱処理異常検出方法においては、取得した前記各反射波の強度を用いて、前記被検材の表面からの距離と前記反射波の強度との関係を示す反射波形曲線を描き、前記超音波パルスを複数回連続的に入射することにより、前記反射波形曲線を複数取得した後、これら複数の反射波形曲線を平均化して得た平均化曲線を平滑化し、その平滑化曲線から読み取った前記反射波の強度を用いることが好ましい。 In the hardness distribution measurement method and the heat treatment abnormality detection method of the present invention, the relationship between the distance from the surface of the test material and the intensity of the reflected wave is shown using the acquired intensity of each reflected wave. Draw a reflected waveform curve, by continuously entering the ultrasonic pulse a plurality of times, after obtaining a plurality of the reflected waveform curves, smoothing the averaged curve obtained by averaging the plurality of reflected waveform curves, It is preferable to use the intensity of the reflected wave read from the smoothing curve.

前記被検材の種類は特に限定されるものではなく、本発明の硬さ分布測定方法および熱処理異常検出方法はどのような材質の被検材にも適用可能であるが、焼入れが施された鋼材に特に好適である。焼入れの種類は特に限定されるものではないが、高周波焼入れが好ましい。さらに、本発明の硬さ分布測定方法および熱処理異常検出方法においては、前記被検材は、焼入れにより生じた焼入れ組織と非焼入れ組織とを備え、全組織中の前記非焼入れ組織の比率が前記深さ位置によって異なることが好ましく、また、硬さ分布測定方法は前記標準材を用いて予め取得した反射波の強度と非焼入れ組織の比率との相関関係及び非焼入れ組織の比率と硬さとの相関関係に基づいて、前記各反射波の強度から前記各深さ位置の硬さを求めることが好ましい。 The kind of the test material is not particularly limited, and the hardness distribution measurement method and the heat treatment abnormality detection method of the present invention can be applied to a test material of any material, but are quenched. It is particularly suitable for steel. The kind of quenching is not particularly limited, but induction quenching is preferable. Furthermore, in the hardness distribution measurement method and the heat treatment abnormality detection method of the present invention, the test material includes a quenched structure and a non-quenched structure generated by quenching, and a ratio of the non-quenched structure in the entire structure is the above-described ratio. It is preferable that the position varies depending on the depth position, and the hardness distribution measurement method uses a correlation between the intensity of the reflected wave obtained in advance using the standard material and the ratio of the non-hardened structure and the ratio of the non-hardened structure and the hardness. It is preferable to obtain the hardness at each depth position from the intensity of each reflected wave based on the correlation.

さらにまた、前記被検材は、転がり軸受の内輪,外輪,又は転動体とすることができる。さらに、本発明の転がり軸受は、内輪と、外輪と、前記内輪及び前記外輪の間に転動自在に配された複数の転動体と、を備える転がり軸受において、内輪,外輪,及び転動体の少なくとも一つが、前記硬さ分布測定方法で硬さ分布が測定されていることを特徴とする。 Furthermore, the test material may be an inner ring, an outer ring, or a rolling element of a rolling bearing. Furthermore, a rolling bearing according to the present invention is a rolling bearing comprising an inner ring, an outer ring, and a plurality of rolling elements that are arranged to freely roll between the inner ring and the outer ring, and includes an inner ring, an outer ring, and a rolling element. At least one of the hardness distributions is measured by the hardness distribution measuring method.

本発明の硬さ分布測定方法および熱処理異常の検出方法は、形状,焼入れ条件等が種々異なる部材に適用可能であり、部材の硬さ分布を正確に測定することができる。また、本発明の転がり軸受は、軸受部品の硬さ分布が保証されていて高性能である。 The hardness distribution measurement method and the heat treatment abnormality detection method of the present invention can be applied to members having different shapes, quenching conditions, and the like, and the hardness distribution of the members can be accurately measured. Further, the rolling bearing of the present invention has high performance because the hardness distribution of the bearing parts is guaranteed.

本発明に係る転がり軸受の一実施形態である深溝玉軸受の構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the deep groove ball bearing which is one Embodiment of the rolling bearing which concerns on this invention. 焼入れが施された被検材について表面からの距離と硬さとの関係を模式的に示したグラフである。It is the graph which showed typically the relationship between the distance from the surface, and hardness about the to-be-quenched test material. 標準材における反射波の強度と非焼入れ組織の比率との相関関係を示すグラフである。It is a graph which shows the correlation with the intensity | strength of the reflected wave in a standard material, and the ratio of a non-hardened structure | tissue. 標準材における非焼入れ組織の比率と硬さとの相関関係を示すグラフである。It is a graph which shows the correlation with the ratio of the non-hardened structure | tissue in a standard material, and hardness. 被検材の反射波形曲線とその平均化曲線及び平滑化曲線である。It is the reflected waveform curve of a test material, its average curve, and a smoothing curve. 被検材の硬さ分布曲線である。It is a hardness distribution curve of a test material.

本発明に係る硬さ分布測定方法および熱処理異常の検出方法及び転がり軸受の実施の形態を、図面を参照しながら詳細に説明する。図1は、本発明に係る転がり軸受の一実施形態である深溝玉軸受の構造を示す縦断面図である。図1の深溝玉軸受は、外周面に軌道面1aを有する内輪1と、軌道面1aに対向する軌道面2aを内周面に有する外輪2と、両軌道面1a,2a間に転動自在に配された複数の転動体(玉)3と、内輪1及び外輪2の間に転動体3を保持する保持器4と、内輪1及び外輪2の間の隙間の開口を覆う密封装置5,5(例えば鋼製のシールドやゴムシール)と、を備えており、内輪1の外周面及び外輪2の内周面の間に形成された軸受内部空間には、図示しない潤滑剤(例えば潤滑油,グリース)が封入されている。なお、保持器4や密封装置5は備えていなくてもよい。 Embodiments of a hardness distribution measurement method, a heat treatment abnormality detection method, and a rolling bearing according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view showing the structure of a deep groove ball bearing which is an embodiment of a rolling bearing according to the present invention. The deep groove ball bearing shown in FIG. 1 is rotatable between an inner ring 1 having a raceway surface 1a on an outer peripheral surface, an outer ring 2 having a raceway surface 2a facing the raceway surface 1a on an inner peripheral surface, and both raceway surfaces 1a and 2a. A plurality of rolling elements (balls) 3 disposed on the inner ring 1, a retainer 4 that holds the rolling elements 3 between the inner ring 1 and the outer ring 2, and a sealing device 5 that covers an opening in a gap between the inner ring 1 and the outer ring 2. 5 (for example, a steel shield or rubber seal), and in a bearing inner space formed between the outer peripheral surface of the inner ring 1 and the inner peripheral surface of the outer ring 2, a lubricant (for example, lubricating oil, Grease) is enclosed. Note that the cage 4 and the sealing device 5 may not be provided.

この深溝玉軸受においては、内輪1,外輪2,及び転動体3は、S53C,SUJ2等の鋼で構成されている。内輪1,外輪2,及び転動体3には、浸炭焼入れ,浸炭窒化焼入れ,高周波焼入れ等の焼入れが施されていて、該焼入れにより硬化されてなる硬化層(図示せず)が軌道面1a,2a及び転動体3の転動面3aに形成されている。また、硬化層の内側には、焼入れが施されていない心部(図示せず)がある。硬化層は焼入れ組織を備え、心部は非焼入れ組織を備えている。 In this deep groove ball bearing, the inner ring 1, the outer ring 2, and the rolling element 3 are made of steel such as S53C and SUJ2. The inner ring 1, the outer ring 2, and the rolling element 3 are subjected to quenching such as carburizing quenching, carbonitriding quenching, and induction quenching, and a hardened layer (not shown) cured by the quenching has a raceway surface 1 a, 2a and the rolling surface 3a of the rolling element 3 are formed. In addition, there is a core (not shown) that is not quenched inside the hardened layer. The hardened layer has a hardened structure, and the core has a non-hardened structure.

前述した従来技術においては硬化層と心部との2層構造が想定されており、非焼入れ組織に起因する反射波が検出された深さ位置が前記2層の境界部分であると考えられていた。しかしながら、実際には硬化層と心部との完全な2層構造となっているわけではなく、硬化層と心部との間に、焼入れ組織と非焼入れ組織とが混在する混合組織層が存在する。この混合組織層においては、表面側から心部側に向かうにしたがって(すなわち、表面からの距離が大きくなるにしたがって)、非焼入れ組織の比率が徐々に増加し、それに伴って硬さが徐々に低下する。表面からの距離と硬さとの関係を模式的に示したグラフを、図2に示す。 In the prior art described above, a two-layer structure of a hardened layer and a core is assumed, and the depth position where the reflected wave due to the non-hardened structure is detected is considered to be the boundary portion of the two layers. It was. However, in reality, it does not have a complete two-layer structure of the hardened layer and the core, and there is a mixed structure layer in which hardened and non-hardened structures are mixed between the hardened layer and the core. To do. In this mixed tissue layer, the ratio of the non-hardened tissue gradually increases as the distance from the surface side toward the core side (that is, as the distance from the surface increases), and the hardness gradually increases accordingly. descend. A graph schematically showing the relationship between the distance from the surface and the hardness is shown in FIG.

そして、この深溝玉軸受においては、内輪1,外輪2,及び転動体3の硬さ分布および熱処理異常が、下記に示す方法で測定されており、その品質が保証されている。なお、内輪1,外輪2,及び転動体3のうち少なくとも一つの品質が保証されていればよいが、全ての品質が保証されていることが最も好ましい。 内輪1,外輪2,及び転動体3(以降は被検材と記す)の軌道面1a,2aや転動面3aに、所定の周波数(例えば10MHz)の超音波パルスを入射して、その反射波を受信する。被検材に入射された超音波パルスは、被検材の表面から心部までの間の各深さ位置でそれぞれ反射されるので、各反射波を受信して、各反射波の強度を取得する。また、超音波パルスの入射から反射波の受信までの時間を、各反射波について測定する。この反射波の受信までの時間によって、その反射波がどの深さ位置で反射されたものかを算出することができる。このようにして、各反射波について強度と反射された深さ位置とが得られるので、被検材の表面からの距離と反射波の強度との関係を示す反射波形曲線を描く。 In this deep groove ball bearing, the hardness distribution and heat treatment abnormality of the inner ring 1, the outer ring 2, and the rolling element 3 are measured by the following method, and the quality is guaranteed. The quality of at least one of the inner ring 1, the outer ring 2, and the rolling element 3 may be guaranteed, but it is most preferable that all the quality is guaranteed. An ultrasonic pulse of a predetermined frequency (for example, 10 MHz) is incident on the inner ring 1, the outer ring 2, and the raceway surfaces 1a, 2a and the rolling surface 3a of the rolling element 3 (hereinafter referred to as a test material), and the reflection thereof. Receive waves. The ultrasonic pulse incident on the test material is reflected at each depth position between the surface of the test material and the heart, so each reflected wave is received and the intensity of each reflected wave is acquired. To do. Further, the time from the incidence of the ultrasonic pulse to the reception of the reflected wave is measured for each reflected wave. Based on the time until reception of the reflected wave, it is possible to calculate at which depth position the reflected wave is reflected. In this way, since the intensity and the reflected depth position are obtained for each reflected wave, a reflection waveform curve showing the relationship between the distance from the surface of the test material and the intensity of the reflected wave is drawn.

そして、後述する標準材を用いて予め取得した、反射波の強度と非焼入れ組織の比率との相関関係及び非焼入れ組織の比率と硬さとの相関関係に基づいて、反射波の強度を硬さに変換すれば、被検材の各深さ位置の硬さを求めることができるから、前記反射波形曲線を被検材の硬さ分布曲線(深さ方向の硬さ分布)に
変換することができる。図3は、標準材における反射波の強度と非焼入れ組織の比率(面積率)との相関関係を示すグラフであり、図4は、標準材における非焼入れ組織の比率(面積率)と硬さとの相関関係を示すグラフである。図3から分かるように、全組織中の非焼入れ組織の比率が大きいほど、反射波の強度も大きくなる。なお、図3のグラフにおける強度の数値は、受信した反射波のうち最も低い強度(焼入れ組織に起因する反射波)を0、最も高い強度(非焼入れ組織に起因する反射波)を1と定義した場合の相対値で示してある。また、受信した反射波のうち、(非焼入れ組織に起因する最も高い強度(絶対値))/(焼入れ組織に起因する最も低い強度(絶対値))の値が所定の値以上であるかによって熱処理異常がなく(すなわち表面部にトゥルースタイトや未変態フェライトなどの不完全焼入れ組織や、焼入層が貫通(すなわちずぶ焼入れ状態)といった状態ではなく)良品であると判別できる.たとえば、上記所定の値が「2」であるとすれば、図5に示す反射波形曲線が得られた場合は、該披検体は良品であると判別できる.
And based on the correlation between the intensity of the reflected wave and the ratio of the non-quenched structure and the correlation between the ratio of the non-quenched structure and the hardness obtained in advance using a standard material to be described later, the intensity of the reflected wave is determined as hardness. Since it is possible to determine the hardness of each depth position of the test material, the reflection waveform curve can be converted into a hardness distribution curve (hardness distribution in the depth direction) of the test material. it can. FIG. 3 is a graph showing the correlation between the intensity of the reflected wave in the standard material and the ratio (area ratio) of the non-quenched structure. FIG. 4 shows the ratio (area ratio) and hardness of the non-quenched structure in the standard material. It is a graph which shows correlation of these. As can be seen from FIG. 3, the greater the ratio of the non-quenched tissue in the entire tissue, the greater the intensity of the reflected wave. In addition, the numerical value of the intensity in the graph of FIG. 3 is defined such that the lowest intensity (reflected wave caused by the quenched structure) is 0 and the highest intensity (reflected wave caused by the non-quenched structure) is 1 among the received reflected waves. The relative value is shown. Further, among the received reflected waves, the value of (the highest intensity (absolute value) caused by non-quenched tissue) / (the lowest intensity (absolute value) caused by quenched tissue) is greater than or equal to a predetermined value. It can be determined that there is no heat treatment abnormality (that is, not an incompletely quenched structure such as truthite or untransformed ferrite on the surface, or a state in which the quenched layer penetrates (ie, a fully quenched state)). For example, if the predetermined value is “2”, when the reflected waveform curve shown in FIG. 5 is obtained, it can be determined that the sample is a non-defective product.

超音波パルスを1回入射しても、得られたデータから反射波形曲線を描くことができないので、超音波パルスを複数回連続的に入射して反射波形曲線を取得する。一つの反射波形においては被検体の表面状態、金属組織のばらつき、非金属介在物などによるノイズを含んでいるため、高精度の硬さ分布を得たり、正確に異常組織を判別するには、上記ノイズを除去するため複数回連続入射を複数回行うことにより得られた複数の反射波形曲線を用いることが好ましい。 Since even if an ultrasonic pulse is incident once, a reflected waveform curve cannot be drawn from the obtained data, an ultrasonic pulse is continuously incident a plurality of times to obtain a reflected waveform curve. One reflected waveform contains noise due to the surface condition of the subject, variations in the metal structure, non-metallic inclusions, etc., so to obtain a highly accurate hardness distribution or accurately distinguish abnormal tissues, In order to remove the noise, it is preferable to use a plurality of reflected waveform curves obtained by performing a plurality of continuous incidences a plurality of times.

つまり、複数の反射波形曲線を平均化して一つの平均化曲線を得て、この平均化曲線を平滑化して得た平滑化曲線を利用する(図5を参照)。すなわち、平滑化曲線から読み取った反射波の強度を図3,4のグラフに基づいて硬さに変換すれば、被検材の各深さ位置の硬さを求めることができるから、平滑化曲線を被検材の硬さ分布曲線に変換することができる。また((非焼入れ組織に起因する最も高い強度(絶対値))/(焼入れ組織に起因する最も低い強度(絶対値))の値の値により良品か否かを判別することができる.なお、平均化曲線を平滑化する際には、加重平均法や指数加重平均法を用いることが好ましい。なお、たとえば被検体と同材料の基準サンプルを用意し、基準サンプルから得られた基準波形で除することによって上記のノイズを除去する手法も考えられる。しかしながらこの手法の場合、基準サンプルはその材料だけではなく表面状態も被検体と同じである必要がある。すなわち被検体の表面状態は様々であるので、ある材料に対して様々な表面状態の基準サンプルを用意する必要がある。また金属組織の状態や非金属介在物の状態を同一にすることは事実上不可能であるため、測定精度が不十分になる可能性がある。本発明のノイズ除去の手法はノイズの原因となる各要素によらず簡単な手法であり、かつ効果的にノイズを除去できる手法である. That is, a plurality of reflected waveform curves are averaged to obtain one averaged curve, and a smoothed curve obtained by smoothing the averaged curve is used (see FIG. 5). That is, if the intensity of the reflected wave read from the smoothing curve is converted to hardness based on the graphs of FIGS. 3 and 4, the hardness at each depth position of the test material can be obtained. Can be converted into a hardness distribution curve of the test material. It is also possible to determine whether the product is a non-defective product based on the value of ((the highest strength attributed to the non-quenched structure (absolute value)) / (the lowest intensity attributed to the quenched structure (absolute value))). When smoothing the averaging curve, it is preferable to use a weighted average method or an exponential weighted average method, for example, by preparing a reference sample of the same material as the subject and dividing it by the reference waveform obtained from the reference sample. However, in this method, the reference sample needs to have not only the material but also the surface condition of the object, that is, the surface condition of the object varies. Therefore, it is necessary to prepare reference samples of various surface states for a certain material, and it is practically impossible to make the state of the metal structure and the state of non-metallic inclusions the same. , The method of noise reduction in the measurement accuracy may become insufficient. The present invention is a simple method regardless of the respective elements causes noise, and is a technique which can effectively remove the noise.

例えば、図5の平滑化曲線において、反射波の強度が0である深さ位置と反射波の強度が1である深さ位置との間で、反射波の強度を3点(r1,r2,r3)選択する。すると、図5から、反射波の強度r1,r2,r3に対応する表面からの距離D1,D2,D3、すなわち、3つの反射波が反射した深さ位置の表面からの距離が分かる(Dtは、強度が1であった反射波が反射した深さ位置の表面からの距離である)。 For example, in the smoothing curve of FIG. 5, between the depth position where the intensity of the reflected wave is 0 and the depth position where the intensity of the reflected wave is 1, the intensity of the reflected wave is 3 points (r1, r2, r3) Select. Then, from FIG. 5, the distances D1, D2, D3 from the surface corresponding to the intensity r1, r2, r3 of the reflected wave, that is, the distance from the surface at the depth position where the three reflected waves are reflected (Dt is The distance from the surface of the depth position where the reflected wave having an intensity of 1 was reflected).

次に、図3のグラフを用いて、強度r1,r2,r3及び強度1を非焼入れ組織の比率R1,R2,R3及び比率100(%)に変換し、得られた非焼入れ組織の比率R1,R2,R3及び比率100(%)を、図4のグラフを用いて硬さ(Hv)H1,H2,H3及び心部硬さに変換する。そして、表面からの距離D1,D2,D3,及びDtと硬さ(Hv)H1,H2,H3及び心部硬さとから、図6の硬さ分布曲線が得られる。 Next, using the graph of FIG. 3, the strengths r1, r2, r3 and strength 1 are converted into the ratios R1, R2, R3 and the ratio 100 (%) of the non-hardened structure, and the ratio R1 of the obtained non-hardened structure , R2, R3 and the ratio 100 (%) are converted into hardness (Hv) H1, H2, H3 and core hardness using the graph of FIG. Then, the hardness distribution curve of FIG. 6 is obtained from the distances D1, D2, D3, and Dt from the surface, the hardness (Hv) H1, H2, H3, and the core hardness.

このようにして、硬さ分布を直接的に測定することができるため、被検材の硬さ分布を非破壊で精度良く測定することが可能である。なお、上記の例では、反射波の強度が0である深さ位置と反射波の強度が1である深さ位置との間で、反射波の強度を3点選択して硬さ分布曲線を得たが、3点に限定されるものではなく、連続的な硬さ分布曲線を得たい場合には、より多数の点を選択すればよい。また、例えば有効硬化層深さのような特定の硬さとなる深さ位置のみを測定したい場合には、その硬さに対応する反射波の強度を選択すればよい。 In this way, since the hardness distribution can be directly measured, it is possible to measure the hardness distribution of the test material with high accuracy in a non-destructive manner. In the above example, between the depth position where the intensity of the reflected wave is 0 and the depth position where the intensity of the reflected wave is 1, three points of the intensity of the reflected wave are selected to obtain the hardness distribution curve. Although obtained, it is not limited to three points, and if it is desired to obtain a continuous hardness distribution curve, a larger number of points may be selected. For example, when it is desired to measure only a depth position having a specific hardness such as the effective hardened layer depth, the intensity of the reflected wave corresponding to the hardness may be selected.

超音波パルスの入射、反射波の受信、及び反射波形曲線の取得を行う装置は特に限定されるものではないが、例えば神鋼検査サービス株式会社製のハード・エコーSH−65が好適である。該装置を用いれば、局部水浸法にて被検材の表面に探触子から連続的に超音波パルスを入射することができる。この際には、該装置の2次元探傷モード(Bスコープモード)を用いて、走査しながら連続的に超音波パルスを入射するとよい。また、該装置を用いれば、被検材の内部の各深さ位置でそれぞれ反射された反射波を連続的に受信し、それを積算表示して、反射波形曲線を描くことができる。 The apparatus for performing the incidence of the ultrasonic pulse, the reception of the reflected wave, and the acquisition of the reflected waveform curve is not particularly limited. If this apparatus is used, an ultrasonic pulse can be continuously incident from the probe onto the surface of the specimen by a local water immersion method. In this case, it is preferable that the ultrasonic pulse is continuously incident while scanning using the two-dimensional flaw detection mode (B scope mode) of the apparatus. Moreover, if this apparatus is used, the reflected wave reflected in each depth position inside the test material can be continuously received, and can be integrated and displayed to draw a reflected waveform curve.

ここで、標準材から図3,4のグラフを取得する方法について説明する。まず、被検材(内輪1,外輪2,及び転動体3)と同一材質,同一形状の素材に、内輪1,外輪2,及び転動体3の場合と同一の条件で焼入れを施して、標準材を調製する。そして、この標準材に向けて被検材と同一の周波数の超音波パルスを入射し、被検材と同様にして反射波形曲線を描く。 Here, a method for obtaining the graphs of FIGS. 3 and 4 from the standard material will be described. First, the same material and the same shape as the test material (inner ring 1, outer ring 2, and rolling element 3) are quenched under the same conditions as in the case of the inner ring 1, outer ring 2, and rolling element 3. Prepare the material. Then, an ultrasonic pulse having the same frequency as that of the test material is incident on the standard material, and a reflection waveform curve is drawn in the same manner as the test material.

次に、この標準材を破断し、例えばマイクロビッカース硬度計を用いて破断面の硬さを測定し、各深さ位置の硬さを得た。また、例えばナイタールエッチングによる金属組織観察法や電子線後方散乱回折法(EBSP)により破断面の組織を分析し、各深さ位置における全組織(焼入れ組織及び非焼入れ組織)中の非焼入れ組織の比率を得た。そして、得られた上記各データと標準材の反射波形曲線とから、標準材における反射波の強度と非焼入れ組織の比率との相関関係及び非焼入れ組織の比率と硬さとの相関関係を取得した(すなわち、図3,4のグラフを作成した)。 Next, this standard material was fractured, and the hardness of the fracture surface was measured using, for example, a micro Vickers hardness tester to obtain the hardness at each depth position. In addition, for example, the structure of the fracture surface is analyzed by a metal structure observation method by means of nital etching or electron beam backscatter diffraction (EBSP), and a non-quenched structure in all structures (hardened structure and non-hardened structure) at each depth position. The ratio was obtained. Then, from the obtained data and the reflection waveform curve of the standard material, the correlation between the intensity of the reflected wave in the standard material and the ratio of the non-quenched structure and the correlation between the ratio of the non-quenched structure and the hardness were obtained. (That is, the graphs of FIGS. 3 and 4 were created).

なお、超音波パルスを1回入射しても、得られたデータから反射波形曲線を描くことができないので、高精度の硬さ分布を得るためには、標準材においても被検材と同様に超音波パルスの複数回連続入射を複数回行って複数の反射波形曲線を取得し、これら複数の反射波形曲線から平滑化曲線を得ることが好ましい。そして、この平滑化曲線を利用して、反射波の強度と非焼入れ組織の比率との相関関係及び非焼入れ組織の比率と硬さとの相関関係を取得することが好ましい(すなわち、図3,4のグラフを作成することが好ましい)。 In addition, even if an ultrasonic pulse is incident once, a reflected waveform curve cannot be drawn from the obtained data. Therefore, in order to obtain a highly accurate hardness distribution, the standard material is the same as the test material. It is preferable to obtain a plurality of reflection waveform curves by performing a plurality of continuous incidences of ultrasonic pulses a plurality of times, and obtain a smoothing curve from the plurality of reflection waveform curves. And it is preferable to obtain the correlation between the intensity of the reflected wave and the ratio of the non-quenched structure and the correlation between the ratio of the non-quenched structure and the hardness by using this smoothing curve (that is, FIGS. 3 and 4). It is preferable to create a graph of

なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。例えば、本実施形態においては、焼入れが施された鋼製部材の硬さ分布を測定した例を説明したが、本発明の硬さ分布測定方法は、焼入れが施された鋼製部材に限らず、あらゆる材質で構成された部材に対して適用することが可能である。例えば、焼入れが施されていない鋼製部材にも適用可能であるし、鋼以外の材質で構成された部材にも適用可能である。 In addition, this embodiment shows an example of this invention and this invention is not limited to this embodiment. For example, in the present embodiment, an example has been described in which the hardness distribution of a steel member subjected to quenching is measured, but the hardness distribution measuring method of the present invention is not limited to a steel member subjected to quenching. The present invention can be applied to members made of any material. For example, the present invention can be applied to a steel member that has not been quenched, and can also be applied to a member made of a material other than steel.

また、本実施形態においては転がり軸受の例として深溝玉軸受をあげて説明したが、本発明は、他の種類の様々な転がり軸受に対して適用することができる。例えば、アンギュラ玉軸受,自動調心玉軸受,自動調心ころ軸受,円筒ころ軸受,円すいころ軸受,針状ころ軸受等のラジアル形の転がり軸受や、スラスト玉軸受,スラストころ軸受等のスラスト形の転がり軸受である。 Further, in the present embodiment, the deep groove ball bearing has been described as an example of the rolling bearing, but the present invention can be applied to various types of rolling bearings. For example, radial rolling bearings such as angular contact ball bearings, self-aligning ball bearings, self-aligning roller bearings, cylindrical roller bearings, tapered roller bearings, needle roller bearings, and thrust types such as thrust ball bearings and thrust roller bearings This is a rolling bearing.

1 内輪 1a 軌道面 2 外輪 2a 軌道面 3 転動体 3a 転動面 DESCRIPTION OF SYMBOLS 1 Inner ring 1a Raceway surface 2 Outer ring 2a Raceway surface 3 Rolling element 3a Rolling surface

Claims (7)

被検材に超音波パルスを入射し、前記被検材の表面から所定深さまでの間の各深さ位置でそれぞれ反射された反射波を受信して、前記各反射波の強度を取得し、前記被検材と同一材質の標準材を用いて予め取得した硬さと反射波の強度との相関関係に基づいて、前記各反射波の強度から前記各深さ位置の硬さを求め、前記被検材の深さ方向の硬さ分布を得ることを特徴とする硬さ分布測定方法。 An ultrasonic pulse is incident on the test material, the reflected wave reflected at each depth position between the surface of the test material and a predetermined depth is received, and the intensity of each reflected wave is acquired, Based on the correlation between the hardness acquired in advance using the same standard material as the test material and the intensity of the reflected wave, the hardness of each depth position is determined from the intensity of each reflected wave, A hardness distribution measuring method characterized by obtaining a hardness distribution in the depth direction of a specimen. 取得した前記各反射波の強度を用いて、前記被検材の表面からの距離と前記反射波の強度との関係を示す反射波形曲線を描き、前記超音波パルスを複数回連続的に入射することにより、前記反射波形曲線を複数取得した後、これら複数の反射波形曲線を平均化して得た平均化曲線を平滑化し、その平滑化曲線から読み取った前記反射波の強度を用いて、前記各深さ位置の硬さを求めることを特徴とする請求項1に記載の硬さ分布測定方法。 Using the acquired intensity of each reflected wave, a reflected waveform curve showing the relationship between the distance from the surface of the test material and the intensity of the reflected wave is drawn, and the ultrasonic pulse is continuously incident a plurality of times. Thus, after obtaining a plurality of the reflected waveform curves, smoothing the averaged curve obtained by averaging the plurality of reflected waveform curves, using the intensity of the reflected wave read from the smoothed curve, 2. The hardness distribution measuring method according to claim 1, wherein the hardness at the depth position is obtained. 前記被検材が、焼入れが施された鋼材であることを特徴とする請求項1又は請求項2に記載の硬さ分布測定方法。 The hardness distribution measuring method according to claim 1, wherein the test material is a hardened steel material. 前記焼入れが高周波焼入れであることを特徴とする請求項3に記載の硬さ分布測定方法。 The hardness distribution measuring method according to claim 3, wherein the quenching is induction quenching. 前記被検材は、焼入れにより生じた焼入れ組織と非焼入れ組織とを備え、全組織中の前記非焼入れ組織の比率が前記深さ位置によって異なり、前記標準材を用いて予め取得した反射波の強度と非焼入れ組織の比率との相関関係及び非焼入れ組織の比率と硬さとの相関関係に基づいて、前記各反射波の強度から前記各深さ位置の硬さを求めることを特徴とする請求項3又は請求項4に記載の硬さ分布測定方法。 The test material includes a quenched structure and a non-quenched structure generated by quenching, and the ratio of the non-quenched structure in the entire structure varies depending on the depth position, and the reflected wave obtained in advance using the standard material. The hardness at each depth position is obtained from the intensity of each reflected wave based on the correlation between the strength and the ratio of the non-quenched structure and the correlation between the ratio of the non-quenched structure and the hardness. The hardness distribution measuring method according to claim 3 or claim 4. 記被検材が転がり軸受の内輪,外輪,又は転動体であることを特徴とする請求項1〜5のいずれか一項に記載の硬さ分布測定方法。 The hardness distribution measuring method according to any one of claims 1 to 5, wherein the test material is an inner ring, an outer ring, or a rolling element of a rolling bearing. 内輪と、外輪と、前記内輪及び前記外輪の間に転動自在に配された複数の転動体と、を備える転がり軸受において、内輪,外輪,及び転動体の少なくとも一つが、請求項1〜5のいずれか一項に記載の硬さ分布測定方法で硬さ分布が測定されていることを特徴とする転がり軸受。 In a rolling bearing comprising an inner ring, an outer ring, and a plurality of rolling elements that are arranged so as to be able to roll between the inner ring and the outer ring, at least one of the inner ring, the outer ring, and the rolling element is defined in claims 1 to 5. A rolling bearing, wherein the hardness distribution is measured by the hardness distribution measuring method according to any one of the above.
JP2009199624A 2009-08-31 2009-08-31 Method of measuring hardness distribution and rolling bearing Pending JP2011052984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009199624A JP2011052984A (en) 2009-08-31 2009-08-31 Method of measuring hardness distribution and rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009199624A JP2011052984A (en) 2009-08-31 2009-08-31 Method of measuring hardness distribution and rolling bearing

Publications (1)

Publication Number Publication Date
JP2011052984A true JP2011052984A (en) 2011-03-17

Family

ID=43942162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009199624A Pending JP2011052984A (en) 2009-08-31 2009-08-31 Method of measuring hardness distribution and rolling bearing

Country Status (1)

Country Link
JP (1) JP2011052984A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353758A (en) * 2011-07-04 2012-02-15 西部钛业有限责任公司 Rolling deformation analysis method of thick-wall metal tube
RU2478923C2 (en) * 2011-07-22 2013-04-10 Открытое акционерное общество "Уфимское моторостроительное производственное объединение" Diagnostics method of technical state of inter-rotor bearing of two-shaft gas turbine engine
JP2014059325A (en) * 2009-01-30 2014-04-03 Nsk Ltd Method for detecting abnormality in heat treatment
CN106124262A (en) * 2016-06-08 2016-11-16 哈尔滨理工大学 For the preparation of ring-shaped work pieces surface layer microhardness exemplar and detection method
WO2017203868A1 (en) * 2016-05-25 2017-11-30 株式会社日立製作所 Rolling bearing fatigue state prediction device and rolling bearing fatigue state prediction method
CN108036941A (en) * 2017-12-26 2018-05-15 浙江大学 A kind of steam turbine bearing abnormal vibration analysis method based on correlation visual analysis

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059325A (en) * 2009-01-30 2014-04-03 Nsk Ltd Method for detecting abnormality in heat treatment
CN102353758A (en) * 2011-07-04 2012-02-15 西部钛业有限责任公司 Rolling deformation analysis method of thick-wall metal tube
CN102353758B (en) * 2011-07-04 2014-02-19 西部钛业有限责任公司 Rolling deformation analysis method of thick-wall metal tube
RU2478923C2 (en) * 2011-07-22 2013-04-10 Открытое акционерное общество "Уфимское моторостроительное производственное объединение" Diagnostics method of technical state of inter-rotor bearing of two-shaft gas turbine engine
WO2017203868A1 (en) * 2016-05-25 2017-11-30 株式会社日立製作所 Rolling bearing fatigue state prediction device and rolling bearing fatigue state prediction method
JPWO2017203868A1 (en) * 2016-05-25 2019-03-07 株式会社日立製作所 Rolling bearing fatigue state prediction device and rolling bearing fatigue state prediction method
US10697854B2 (en) 2016-05-25 2020-06-30 Hitachi, Ltd. Rolling bearing fatigue state prediction device and rolling bearing fatigue state predicting method
SE543580C2 (en) * 2016-05-25 2021-04-06 Hitachi Ltd Rolling bearing fatigue state prediction device and rolling bearing fatigue state prediction method
CN106124262A (en) * 2016-06-08 2016-11-16 哈尔滨理工大学 For the preparation of ring-shaped work pieces surface layer microhardness exemplar and detection method
CN108036941A (en) * 2017-12-26 2018-05-15 浙江大学 A kind of steam turbine bearing abnormal vibration analysis method based on correlation visual analysis

Similar Documents

Publication Publication Date Title
Elforjani et al. Accelerated natural fault diagnosis in slow speed bearings with acoustic emission
JP2011052984A (en) Method of measuring hardness distribution and rolling bearing
Moorthy et al. Magnetic Barkhausen emission technique for evaluation of residual stress alteration by grinding in case-carburised En36 steel
Moghaddam et al. A review of microstructural alterations around nonmetallic inclusions in bearing steel during rolling contact fatigue
Danielsen et al. Accelerated White Etch Cracking (WEC) FE8 type tests of different bearing steels using ceramic rollers
JP5668834B2 (en) Heat treatment abnormality detection method
JP5609277B2 (en) Heat treatment abnormality detection method
Ziouche et al. Pulsed eddy current signal analysis of ferrous and non-ferrous metals under thermal and corrosion solicitations
Pape et al. Ultrasonic evaluation of tailored forming components
JP2013160561A (en) Remaining life prediction device and remaining life prediction method for bearing
Le Manh et al. Future trend and applications of Barkhausen noise
Cosgriff et al. Thermographic characterization of impact damage in SiC/SiC composite materials
JP2010236886A (en) Method of measuring distribution of crystal grain size of metal material
RU2724584C1 (en) Method for nondestructive evaluation of metal structural state using microindentation
JP5178038B2 (en) Method for measuring feature amount of tissue changing portion by ultrasonic wave and feature amount measuring apparatus used therefor
JP6601599B1 (en) Rolling part inspection method and rolling part inspection apparatus
Haderer et al. Spatial imaging of stratified heterogeneous microstructures: determination of the hardness penetration depth in thermally treated steel parts by laser ultrasound
Bahn et al. Manufacturing of representative axial stress corrosion cracks in tube specimens for eddy current testing
JP2023153584A (en) Ultrasonic inspection method and ultrasonic inspection device
Barat et al. 76-Method for assessing the likelihood of fatigue crack detecting.
JP7427532B2 (en) Corrosion testing method and corrosion testing device for laminates
Rao et al. Recent trends in electromagnetic NDE techniques and future directions
Zakiah et al. Detection and analysis of defect in steel tube using Vibration Impact Acoustic Emission (VIAE) method
JP2022138514A (en) Method for determining criterion for evaluating inclusion in steel material by ultrasonic flaw detection
JP2003329653A (en) Evaluation method of copper alloy and copper alloy for bearing cage