JP2011052942A - Exhaust heat-using system - Google Patents

Exhaust heat-using system Download PDF

Info

Publication number
JP2011052942A
JP2011052942A JP2009204641A JP2009204641A JP2011052942A JP 2011052942 A JP2011052942 A JP 2011052942A JP 2009204641 A JP2009204641 A JP 2009204641A JP 2009204641 A JP2009204641 A JP 2009204641A JP 2011052942 A JP2011052942 A JP 2011052942A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
preheating
waste water
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009204641A
Other languages
Japanese (ja)
Other versions
JP5283593B2 (en
Inventor
Kenji Tosaka
健児 登坂
Akira Ogasawara
亮 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Furukawa Engineering and Construction Co Ltd
Original Assignee
Fuji Furukawa Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Furukawa Engineering and Construction Co Ltd filed Critical Fuji Furukawa Engineering and Construction Co Ltd
Priority to JP2009204641A priority Critical patent/JP5283593B2/en
Publication of JP2011052942A publication Critical patent/JP2011052942A/en
Application granted granted Critical
Publication of JP5283593B2 publication Critical patent/JP5283593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • Y02A40/963Off-grid food refrigeration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust heat-using system recovering heat of waste water and effectively using the heat throughout the year. <P>SOLUTION: The exhaust heat-using system includes: a pump device 12 for pumping up waste water within a waste water treatment tank 11; an exhaust heat recovery heat exchanger 13 having a heat exchanger primary side 13a through which the waste water passes and a heat exchanger secondary side 13b for exchanging heat; an air conditioner 15 having a preheating heat exchanger 16 for preheating outside air and controlling the temperature and humidity of the outside air to supply the outside air to an indoor air conditioning zone 14; a cooling tower 17; a refrigerating machine 19 for cooling the air conditioner 15 or inside of a production facility side 18; a refrigerant circuit 21 for making refrigerant fluid made to pass through the heat exchanger secondary side 13b flow in the preheating heat exchanger 16, the cooling tower 17 and the refrigerating machine 19; and a preheating cooling route selector valve 35 arranged in the refrigerant circuit 21 and capable of switching a circulation route of the refrigerant fluid between a preheating route form for circulation in the heat exchanger secondary side 13b and the preheating heat exchanger 16 and a cooling route form for circulation in the heat exchanger secondary side 13b, the cooling tower 17 and the refrigerating machine 19. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は排熱利用システムに関するものであり、特に、例えば工場の製造過程で排水される低温の工場排水を有効に利用して空調等を行うための排熱利用システムに関するものである。   The present invention relates to an exhaust heat utilization system, and more particularly to an exhaust heat utilization system for performing air conditioning or the like by effectively using low-temperature factory effluent drained in, for example, a factory manufacturing process.

従来、例えば飲食品を製造する工場での製造過程では、原料や容器の洗浄水等が多量に発生する。この洗浄水は、排水処理が施された後、排熱を利用することなく公共下水に流されている。また、一般に、これら工場からの排水は、排水設備の都合上、年間を通して20〜25℃程度である場合が多い。一方、空調設備や生産設備で必要とされる加熱源、あるいは、冷熱源の温度は、通常、加熱源で40℃以上、冷熱源で15℃以下であり、25℃前後の排熱水は加熱側にも冷却側にも利用しにくい中途半端な温度域である。このため、予熱や再熱として利用する程度であり、この予熱や再熱に排熱を利用している空調システムは従来から数多く知られている(例えば、特許文献1参照)。   Conventionally, for example, in a manufacturing process in a factory that manufactures foods and drinks, a large amount of raw materials, container washing water, and the like are generated. After the waste water treatment is performed, this washing water is poured into public sewage without using waste heat. Moreover, generally, the waste water from these factories is often about 20 to 25 ° C. throughout the year for the convenience of drainage facilities. On the other hand, the temperature of a heating source or a cold heat source required in an air conditioning facility or a production facility is usually 40 ° C. or higher for the heating source and 15 ° C. or lower for the cold heat source. It is a halfway temperature range that is difficult to use on both the cooling and cooling sides. For this reason, it is only a grade used as preheating or reheating, and many air-conditioning systems using exhaust heat for this preheating and reheating are known conventionally (for example, refer to patent documents 1).

特開平2003−202165号公報。Japanese Patent Application Laid-Open No. 2003-202165.

上述したように、従来の工場の製造過程で発生する25℃前後の低温排水は、効率良く熱を回収することが困難であり、そのため予熱や再熱として用いられる程度であり、その熱を用いる用途も限られていた。また、年間を通して使用することが難しく、運用上での問題があった。   As described above, the low temperature drainage around 25 ° C. generated in the manufacturing process of the conventional factory is difficult to efficiently recover the heat, and is therefore only used as preheating or reheating, and uses that heat. Applications were limited. In addition, it was difficult to use throughout the year, causing operational problems.

そこで、排水が保有する熱量を簡易なシステムで回収し、かつ、年間を通して有効に利用することができる排熱利用システムを提供するために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。   Therefore, there is a technical problem to be solved in order to provide a waste heat utilization system that can recover the amount of heat held by the waste water with a simple system and can be used effectively throughout the year. Aims to solve this problem.

本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、排水処理槽に排出された低温排水の熱を回収して利用する排熱利用システムにおいて、前記排水処理槽内の前記排水を汲み上げるポンプ装置と、該ポンプ装置で汲み上げられた前記排水が通る熱交換器1次側と該熱交換器1次側と熱交換を行う熱交換器2次側を有する排熱回収用熱交換器と、外気を予熱処理する予熱用熱交換器を有し、かつ、該予熱用熱交換器で調整された前記外気の温度と湿度を調整して屋内空調ゾーンに供給する空気調和装置と、外気と熱交換をする冷却塔と、空気調和装置または生産装置を冷却する冷凍機と、前記熱交換器2次側を通る冷媒流体を前記予熱用熱交換器と前記冷却塔と前記冷凍機に流通させる冷媒回路と、前記冷媒回路に配設され、前記冷媒流体が循環して流通する経路を、前記熱交換器2次側と前記予熱用熱交換器を経由して循環する予熱経路態様と前記熱交換器2次側と前記冷却塔と前記冷凍機を経由して循環する冷却経路態様とに切り換え可能な予熱・冷却経路切換弁と、を備える排熱利用システムを提供する。   The present invention has been proposed to achieve the above object, and the invention according to claim 1 is directed to a waste heat utilization system that recovers and uses the heat of low-temperature waste water discharged to a waste water treatment tank. A pump device that pumps up the waste water in the treatment tank; a heat exchanger primary side through which the waste water pumped up by the pump device passes; and a heat exchanger secondary side that performs heat exchange with the heat exchanger primary side. It has a heat exchanger for exhaust heat recovery and a preheat heat exchanger that preheats the outside air, and the temperature and humidity of the outside air adjusted by the preheat heat exchanger are adjusted and supplied to the indoor air conditioning zone An air conditioner that performs heat exchange with the outside air, a refrigerator that cools the air conditioner or the production apparatus, and a refrigerant fluid that passes through the secondary side of the heat exchanger and the heat exchanger for preheating and the cooling A refrigerant circuit that circulates through the tower and the refrigerator, and the refrigerant circuit A preheating path mode in which the refrigerant fluid circulates and circulates through the heat exchanger secondary side and the preheating heat exchanger, the heat exchanger secondary side, and the An exhaust heat utilization system comprising a cooling tower and a preheating / cooling path switching valve that can be switched to a cooling path mode that circulates via the refrigerator.

この構成によれば、排熱回収用熱交換器における熱交換器1次側に供給される排水温度が年間を通して例えば20〜25℃であり、また、冬季の外気温が例えば17℃以下であるような場合、予熱・冷却経路切換弁を操作し、冷媒流体が冷媒回路内で循環して流通する経路を熱交換器2次側と予熱用熱交換器を経由して循環する予熱経路態様側に切り換えると、熱交換器2次側で回収された排水の熱が予熱用熱交換器に送られ、該予熱用熱交換器において外気を前記回収された熱で温める。ここで温められた外気は、空気調和装置でさらに適宜な温度及び湿度に調整された後、屋内空調ゾーンに供給される。したがって、冬季等には外気導入の予熱処理を行うことで、空気調和装置における外気熱処理負荷が軽減する。   According to this structure, the waste water temperature supplied to the heat exchanger primary side in the heat exchanger for exhaust heat recovery is, for example, 20 to 25 ° C. throughout the year, and the outside air temperature in winter is, for example, 17 ° C. or less. In such a case, the preheating / cooling path switching valve is operated so that the path through which the refrigerant fluid circulates and circulates in the refrigerant circuit is circulated via the heat exchanger secondary side and the preheating heat exchanger. When switching to, the heat of the waste water collected on the secondary side of the heat exchanger is sent to the preheating heat exchanger, and the outside air is warmed with the collected heat in the preheating heat exchanger. The outside air heated here is further adjusted to an appropriate temperature and humidity by an air conditioner, and then supplied to the indoor air conditioning zone. Therefore, by performing the pre-heat treatment for introducing the outside air in the winter season or the like, the load of the outside air heat treatment in the air conditioner is reduced.

反対に、夏季等で、外気温が例えば17℃以上であって、回収された熱が外気予熱として効果的に利用することができないような場合、予熱・冷却経路切換弁を操作し、冷媒流体が冷媒回路内で循環して流通する経路を冷却経路態様側に切り換えると、熱交換器2次側で回収された排水の熱は冷却塔を通って冷凍機に送られ、該冷凍機を冷却する熱として利用される。これによって、冷凍機における夏季の冷却水の温度が従来よりも低温度になり、該冷凍機における熱処理負荷が軽減する。   On the other hand, when the outside air temperature is, for example, 17 ° C. or more and the recovered heat cannot be effectively used as the outside air preheating in summer or the like, the preheating / cooling path switching valve is operated and the refrigerant fluid When the path through which the refrigerant circulates in the refrigerant circuit is switched to the cooling path mode side, the heat of the waste water collected on the secondary side of the heat exchanger is sent to the refrigerator through the cooling tower, and the refrigerator is cooled. Used as heat to do. As a result, the temperature of the cooling water in the summer in the refrigerator becomes lower than that in the past, and the heat treatment load in the refrigerator is reduced.

請求項2記載の発明は、請求項1記載の構成において、上記冷媒回路には、上記熱交換器2次側から上記冷却塔に向かう上記冷媒流体が途中でバイパスされて上記冷凍機と前記熱交換器2次側を経由して循環するバイパス路と、前記冷媒流体が上記冷却経路態様から該バイパス路を経由して循環するバイパス経路態様及び該バイパス経路態様から前記冷却経路態様に切り換え可能なバイパス・冷却経路切換弁とを設けてなる排熱利用システムを提供する。   According to a second aspect of the present invention, in the configuration according to the first aspect, in the refrigerant circuit, the refrigerant fluid heading from the heat exchanger secondary side to the cooling tower is bypassed in the middle, and the refrigerator and the heat A bypass path that circulates through the secondary side of the exchanger, a bypass path aspect in which the refrigerant fluid circulates from the cooling path aspect via the bypass path, and a switching from the bypass path aspect to the cooling path aspect can be switched. Provided is an exhaust heat utilization system provided with a bypass / cooling path switching valve.

この構成によれば、夏季等で、外気温が例えば17℃以上ではあるが、熱交換器2次側を経由して冷却された冷媒流体がさほど高くない例えば32℃以下のとき、バイパス・冷却経路切換弁を操作し、冷媒流体が冷媒回路内で循環して流通する経路をバイパス冷却経路態様側に切り換え、該冷媒流体が冷却塔を通らず、冷凍機と熱交換器2次側を通って循環する経路にすると、冷却塔を停止した状態で冷凍機を運転することができる。   According to this configuration, when the outside air temperature is, for example, 17 ° C. or higher in summer and the like, but the refrigerant fluid cooled via the heat exchanger secondary side is not so high, for example, 32 ° C. or less, bypass / cooling is performed. By operating the path switching valve, the path through which the refrigerant fluid circulates and circulates in the refrigerant circuit is switched to the bypass cooling path mode, and the refrigerant fluid does not pass through the cooling tower but passes through the refrigerator and the heat exchanger secondary side. Thus, the refrigerator can be operated with the cooling tower stopped.

請求項3記載の発明は、請求項1または2記載の構成において、上記排水処理槽は、上流側に設けられる調整槽と該調整槽からオーバーフローされた排水を受ける最終中和槽を備え、前記ポンプ装置は、前記最終中和槽から汲み上げられた前記排水が上記熱交換器1次側を通って該最終中和槽に戻る循環用配管を備える排熱利用システムを提供する。   Invention of Claim 3 is the structure of Claim 1 or 2, The said waste water treatment tank is equipped with the adjustment tank provided in an upstream, and the final neutralization tank which receives the waste_water | drain overflowed from this adjustment tank, The said The pump device provides an exhaust heat utilization system including a circulation pipe in which the waste water pumped up from the final neutralization tank returns to the final neutralization tank through the primary side of the heat exchanger.

この構成によれば、ポンプ装置は調整槽で一度浄化処理された排水を最終中和槽から汲み上げ、熱交換器1次側を通して再び最終中和槽に戻すようにしているので、熱交換器1次側の内部等の汚れが少なくなる。   According to this configuration, the pump device pumps the waste water once purified in the adjustment tank from the final neutralization tank and returns it to the final neutralization tank again through the primary side of the heat exchanger. Dirt on the inside of the secondary side is reduced.

請求項4記載の発明は、請求項3記載の構成において、上記循環用配管は、上記熱交換器1次側の上流側に、上記排水処理槽から汲み上げられた上記排水を濾過するストレーナを配設してなる排熱利用システムを提供する。   According to a fourth aspect of the present invention, in the configuration of the third aspect, the circulation pipe is provided with a strainer for filtering the waste water pumped up from the waste water treatment tank on the upstream side of the heat exchanger primary side. An exhaust heat utilization system is provided.

この構成によれば、ポンプ装置で汲み上げられた排水はストレーナを通して濾過された後、熱交換器1次側に送られるので、該熱交換器1次側の内部等における金属表面の腐食や目詰まり等の汚れをさらに少なくすることができる。   According to this configuration, the waste water pumped up by the pump device is filtered through the strainer and then sent to the primary side of the heat exchanger. Therefore, corrosion or clogging of the metal surface inside the primary side of the heat exchanger is performed. Etc. can be further reduced.

請求項5記載の発明は、請求項4記載の構成において、上記循環用配管は、上記ストレーナの内部に逆方向から上記排水を流して該ストレーナの内部を洗浄する洗浄手段を有する排熱利用システムを提供する。 According to a fifth aspect of the present invention, in the configuration according to the fourth aspect, the circulation pipe has a cleaning means for cleaning the inside of the strainer by flowing the drainage from the opposite direction into the inside of the strainer. I will provide a.

この構成によれば、ストレーナの内部に逆方向から排水を流すと、該ストレーナのフィルタ等に付着しているゴミ等が都合よく剥離され、該ストレーナの内部をきれいに洗浄することができる。   According to this configuration, when drainage is allowed to flow into the strainer from the opposite direction, dust or the like adhering to the filter of the strainer is conveniently peeled off, and the inside of the strainer can be cleaned cleanly.

請求項1記載の発明は、排水の熱を回収し、冬季等には外気導入の予熱処理を行うエネルギーとして使用し、夏季等には冷凍機の冷却水を冷却するエネルギーとして使用するので、年間を通して排熱を使用することができる。すなわち、冬季等には外気導入の予熱処理を行うことで、空気調和装置における外気熱処理負荷が軽減され、ボイラー等の加熱源機器のエネルギー消費量を少なくすることができる。一方、夏季等には冷凍機の冷却水を冷却して従来よりも低い温度にすることができるので、冷凍機のエネルギー効率が向上する。これにより、年間を通して省エネルギー効果を得ることができる。   Since the invention according to claim 1 recovers the heat of the waste water and uses it as energy for pre-heat treatment for introducing outside air in winter, etc., and uses it as energy for cooling the cooling water of the refrigerator in summer, etc. Waste heat can be used through. That is, by performing the pre-heat treatment for introducing the outside air in winter or the like, the load of the outside air heat treatment in the air conditioner is reduced, and the energy consumption of the heating source device such as a boiler can be reduced. On the other hand, since the cooling water of the refrigerator can be cooled to a temperature lower than that in the past in summer or the like, the energy efficiency of the refrigerator is improved. Thereby, an energy saving effect can be obtained throughout the year.

請求項2記載の発明は、外気温に応じて冷却塔を停止した状態で冷凍機を運転することができるので、請求項1記載の発明の効果に加えて、さらに省エネルギー効果を得ることができる。   According to the second aspect of the invention, since the refrigerator can be operated in a state where the cooling tower is stopped according to the outside air temperature, in addition to the effect of the first aspect of the invention, further energy saving effect can be obtained. .

請求項3記載の発明は、熱交換器1次側の内部等の汚れを少なくすることができるので、請求項1記載の発明の効果に加えて、メンテナンスのコストを低く抑えることができる。   According to the third aspect of the present invention, dirt on the inside of the heat exchanger primary side and the like can be reduced, so that in addition to the effect of the first aspect of the invention, the maintenance cost can be kept low.

請求項4記載の発明は、熱交換器1次側の内部等が汚れるのを少なくして運転することができるので、請求項3記載の発明の効果に加えて、さらにメンテナンスの回数を減らしてコストを低く抑えることができる。   Since the invention according to claim 4 can be operated with less contamination of the inside of the heat exchanger primary side, etc., in addition to the effect of the invention according to claim 3, the number of maintenance is further reduced. Cost can be kept low.

請求項5記載の発明は、ストレーナ内部の洗浄を簡単に行うことができるので、請求項4記載の発明の効果に加えて、さらにメンテナンスが簡単になり、コストを低く抑えることができる。   According to the fifth aspect of the present invention, since the inside of the strainer can be easily cleaned, in addition to the effect of the fourth aspect of the invention, the maintenance is further simplified and the cost can be kept low.

本発明に係る排熱利用システムの概念図。The conceptual diagram of the waste heat utilization system which concerns on this invention.

本発明は、排水が保有する熱量を簡易なシステムで回収し、かつ、年間を通して有効に利用することができる排熱利用システムを提供するという目的を達成するために、排水処理槽に排出された低温排水の熱を回収して利用する排熱利用システムにおいて、前記排水処理槽内の前記排水を汲み上げるポンプ装置と、該ポンプ装置で汲み上げられた前記排水が通る熱交換器1次側と該熱交換器1次側と熱交換を行う熱交換器2次側を有する排熱回収用熱交換器と、外気を予熱処理する予熱用熱交換器を有し、かつ、該予熱用熱交換器で調整された前記外気の温度と湿度を調整して屋内空調ゾーンに供給する空気調和装置と、外気と熱交換をする冷却塔と、気調和装置または生産装置を冷却する冷凍機と、前記熱交換器2次側を通る冷媒流体を前記予熱用熱交換器と前記冷却塔と前記冷凍機に流通させる冷媒回路と、前記冷媒回路に配設され、前記冷媒流体が循環して流通する経路を、前記熱交換器2次側と前記予熱用熱交換器を経由して循環する予熱経路態様と前記熱交換器2次側と前記冷却塔と前記冷凍機を経由して循環する冷却経路態様とに切り換え可能な予熱・冷却経路切換弁とを備える構成としたことにより実現した。   In order to achieve the object of the present invention to provide a waste heat utilization system that can recover the amount of heat retained by waste water with a simple system and can be used effectively throughout the year, the waste water is discharged into a waste water treatment tank. In a waste heat utilization system that collects and uses heat of low-temperature wastewater, a pump device that pumps up the wastewater in the wastewater treatment tank, a heat exchanger primary side through which the wastewater pumped up by the pump device passes, and the heat An exhaust heat recovery heat exchanger having a heat exchanger secondary side that exchanges heat with the primary side of the exchanger, and a preheat heat exchanger that preheats the outside air, and the preheat heat exchanger An air conditioner that adjusts the temperature and humidity of the adjusted outside air and supplies it to the indoor air conditioning zone, a cooling tower that exchanges heat with the outside air, a refrigerator that cools the air conditioner or the production apparatus, and the heat exchange The refrigerant fluid passing through the secondary side A preheat heat exchanger, the cooling tower, a refrigerant circuit that is circulated through the refrigerator, and a path that is arranged in the refrigerant circuit and through which the refrigerant fluid circulates and passes through the heat exchanger secondary side and the preheater. A preheating / cooling path switching valve capable of switching between a preheating path mode circulating via a heat exchanger, a cooling path mode circulating via the heat exchanger secondary side, the cooling tower, and the refrigerator; Realized by having a configuration with

以下、本発明の排熱利用システムについて、好適な実施例を添付図面を参照して説明する。図1は本発明に係る排熱利用システムの概念図である。   Hereinafter, a preferred embodiment of the exhaust heat utilization system of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a conceptual diagram of an exhaust heat utilization system according to the present invention.

同図において、この排熱利用システムは、例えば工場等から排出される排水を受ける排水処理槽11と、該排水処理槽11内の排水を汲み上げるポンプ装置12と、該排水の熱を回収する排熱回収用熱交換器13と、外気を取り入れ、かつ、該外気の温度と湿度を調整して屋内空調ゾーン14に供給する空気調和装置15と、該空気調和装置15に取り入れる外気を予熱処理する予熱用熱交換器16と、冷却塔17と、空気調和装置または生産装置側18を冷却する冷凍機19等を備えている。また、前記排熱回収用熱交換器13と前記予熱用熱交換器16と前記冷却塔17と前記冷凍機19は、互いに冷媒配管20で直接連結されており、同一の空調系循環水(以下、「冷媒流体」という)が流通する冷媒回路21を構成している。   In this figure, this waste heat utilization system includes, for example, a wastewater treatment tank 11 that receives wastewater discharged from a factory, a pump device 12 that pumps up wastewater in the wastewater treatment tank 11, and a wastewater that recovers heat of the wastewater. A heat recovery heat exchanger 13, an air conditioner 15 that takes in outside air, adjusts the temperature and humidity of the outside air, and supplies the air conditioning zone 14 to the indoor air conditioning zone 14; and preheats the outside air taken into the air conditioner 15. A preheating heat exchanger 16, a cooling tower 17, and a refrigerator 19 for cooling the air conditioner or production apparatus side 18 are provided. The heat exchanger 13 for exhaust heat recovery, the heat exchanger 16 for preheating, the cooling tower 17 and the refrigerator 19 are directly connected to each other through a refrigerant pipe 20, and the same air conditioning system circulating water (hereinafter referred to as the air conditioning system circulating water). , "Refrigerant fluid") is configured to flow through the refrigerant circuit 21.

前記排水処理槽11は、互いに並置された調整槽22と最終中和槽23とを備えている。該調整槽22には工場からの排水が流入されて浄化処理され、最終中和槽23は該調整槽22でオーバーフローした排水が流入するようになっている。なお、本実施例における最終中和槽23の排水温度は年間を通して例えば20〜25℃であり、また、調整槽22で浄化処理された排水は無色透明ではあるが、通常、有機物やシリカ等の微細な浮遊物が僅かに存在している。   The waste water treatment tank 11 includes an adjustment tank 22 and a final neutralization tank 23 that are juxtaposed with each other. Waste water from the factory is introduced into the adjustment tank 22 for purification, and waste water overflowed in the adjustment tank 22 flows into the final neutralization tank 23. In addition, although the waste_water | drain temperature of the final neutralization tank 23 in a present Example is 20-25 degreeC throughout the year, for example, although the waste_water | drain purified in the adjustment tank 22 is colorless and transparent, usually organic substances, a silica, etc. There are a few fine suspended solids.

前記排熱回収用熱交換器13は、前記排水が流通する熱交換器1次側13aと前記冷媒回路21の冷媒流体が流れる熱交換器2次側13bを備え、該熱交換器1次側13a内を通る排水の熱を該熱交換器2次側13b側に伝えて該排水の熱を回収することが可能になっている。   The exhaust heat recovery heat exchanger 13 includes a heat exchanger primary side 13a through which the waste water flows and a heat exchanger secondary side 13b through which the refrigerant fluid of the refrigerant circuit 21 flows, and the heat exchanger primary side The heat of the waste water passing through the inside of 13a can be transmitted to the secondary side 13b of the heat exchanger to recover the heat of the waste water.

前記ポンプ装置12は、ポンプ24と、ストレーナ25と、循環用配管26とを備えている。該循環用配管26は、前記最終中和槽23内から該ポンプ24と該ストレーナ25及び前記排熱回収用熱交換器13の前記熱交換器1次側13aを通って再び該最終中和槽23に戻る経路で配設されている。   The pump device 12 includes a pump 24, a strainer 25, and a circulation pipe 26. The circulation pipe 26 passes through the final neutralization tank 23 again through the pump 24, the strainer 25, and the heat exchanger primary side 13a of the heat exchanger 13 for exhaust heat recovery. It is arranged by a route returning to 23.

前記ポンプ24は、インバータ式の電動ポンプであり、最終中和槽23内の排水を汲み上げ、この汲み上げた排水を前記ストレーナ25を通して前記交換器1次側13aに送るためのポンプである。   The pump 24 is an inverter type electric pump, and is a pump for pumping the waste water in the final neutralization tank 23 and sending the pumped waste water to the exchanger primary side 13 a through the strainer 25.

前記ストレーナ25は、前記ポンプ24で汲み上げられた排水内に含まれる不純物を濾過して取り除く装置であり、定期的に洗浄処理及びフィルタ交換が行われる。   The strainer 25 is a device that filters out impurities contained in the waste water pumped up by the pump 24, and periodically performs a cleaning process and filter replacement.

なお、前記ポンプ装置12には、前記排熱回収用熱交換器13の前記熱交換器1次側13a内に溜まる不純物及びストレーナ25内に溜まる不純物を取り除くための手段として洗浄用管27a、27b、27c、27dと、開閉弁28a、28b、28c、28d、28e、28f、28g、28hが設けられている。   The pump device 12 includes cleaning pipes 27a and 27b as means for removing impurities accumulated in the heat exchanger primary side 13a of the exhaust heat recovery heat exchanger 13 and impurities accumulated in the strainer 25. 27c, 27d, and on-off valves 28a, 28b, 28c, 28d, 28e, 28f, 28g, 28h.

そして、通常の運転時は、開閉弁28a、28c、28d、28fを開、開閉弁28b、28e、28g、28hを閉にしてポンプ24を駆動する。これにより、ポンプ24で汲み上げられた最終中和槽23内の排水は、開閉弁28a、ストレーナ25、開閉弁28c、28dを通り、かつ、熱交換器1次側13aの上部から下部に向かって該熱交換器1次側13a内を流れ、その後、開閉弁28fを通って再び最終中和槽23に戻る経路で流される。   During normal operation, the on-off valves 28a, 28c, 28d and 28f are opened, the on-off valves 28b, 28e, 28g and 28h are closed, and the pump 24 is driven. Thereby, the waste water in the final neutralization tank 23 pumped up by the pump 24 passes through the opening / closing valve 28a, the strainer 25, the opening / closing valves 28c, 28d, and from the upper part to the lower part of the heat exchanger primary side 13a. The heat flows through the primary side 13a of the heat exchanger, and then flows through a path returning to the final neutralization tank 23 through the on-off valve 28f.

一方、ストレーナ25を洗浄するときは、開閉弁28a、28cを閉、開閉弁28b、27hを開にして、ポンプ24を駆動する。これにより、該ポンプ24で汲み上げられた最終中和槽23内の排水は、開閉弁28bを通り、ストレーナ25の下部から該ストレーナ25内に入り、その後、開閉弁28hを通って調整槽22に戻る経路で流される。これにより、ストレーナ25内は、通常の運転時とは逆の方向から排水を流すことによってフラッシング洗浄が行われ、簡易洗浄を行うことができる。なお、該簡易洗浄で対応することができなくなったら内部フィルタの交換が行われる。   On the other hand, when the strainer 25 is washed, the on-off valves 28a and 28c are closed, the on-off valves 28b and 27h are opened, and the pump 24 is driven. Thereby, the waste water in the final neutralization tank 23 pumped up by the pump 24 passes through the opening / closing valve 28b, enters the strainer 25 from the lower part of the strainer 25, and then passes through the opening / closing valve 28h to the adjusting tank 22. It is carried on the return path. As a result, flushing cleaning is performed in the strainer 25 by flowing waste water from a direction opposite to that during normal operation, and simple cleaning can be performed. Note that the internal filter is replaced when the simple cleaning cannot cope.

また、排水が熱媒体として供給される前記排熱回収用熱交換器13の交換器1次側13a内は、排水内の微細な浮遊物が内部に付着し、金属表面の腐食や、細菌が繁殖してスラム状となって目詰まりを起こしやすく、その結果、流量不足による省エネルギー効果の低減や、腐食による水漏れ事故が発生する可能性があるので、本実施例の構造では該熱交換器1次側13a内を定期的に洗浄できるようにしている。該熱交換器1次側13a内を洗浄する場合は、開閉弁28a、28d、28f、28hを閉、開閉弁28b、28c、28e、28gを開にしてポンプ24を駆動する。これにより、ポンプ24で汲み上げられた最終中和槽23内の排水は、開閉弁28b、開閉弁28c、28eを通り、かつ、該熱交換器1次側13aの下部から上部に向かって該熱交換器1次側13a内を流れ、その後、開閉弁28gを通って再び最終中和槽23に戻る経路で流される。これにより、熱交換器1次側13a内は、通常の運転時とは逆に、下から上に向かって排水が流され、洗浄が行われる。なお、洗浄時、該熱交換器1次側13aの配管系統内に薬液洗浄用のポートを設置し、酸・アルカリ洗浄を行うようにしてもよい。   In addition, in the primary side 13a of the heat exchanger 13 for exhaust heat recovery to which waste water is supplied as a heat medium, fine floating substances in the waste water adhere to the inside, and corrosion of the metal surface and bacteria are generated. It is prone to breed and slam, causing clogging. As a result, energy saving effect due to insufficient flow rate and water leakage accident due to corrosion may occur. The inside of the primary side 13a can be periodically cleaned. When cleaning the inside of the heat exchanger primary side 13a, the on-off valves 28a, 28d, 28f, 28h are closed, the on-off valves 28b, 28c, 28e, 28g are opened, and the pump 24 is driven. As a result, the waste water in the final neutralization tank 23 pumped up by the pump 24 passes through the on-off valve 28b and the on-off valves 28c, 28e, and flows from the lower part to the upper part of the heat exchanger primary side 13a. It flows through the exchanger primary side 13a, and then flows through a path returning to the final neutralization tank 23 through the on-off valve 28g. Thereby, in the heat exchanger primary side 13a, contrary to the time of a normal driving | operation, waste_water | drain flows from the bottom toward the top, and washing | cleaning is performed. During cleaning, a chemical cleaning port may be installed in the piping system of the heat exchanger primary side 13a to perform acid / alkali cleaning.

また、前記ポンプ装置12の循環用配管26内には、該循環用配管26内の圧力を検出する圧力センサ29a、29b、29c、29dが配設されており、該圧力センサ29a〜29dで検出された配管内の圧力に応じて、図示せぬ制御回路がポンプ24を駆動制御するようになっている。   In addition, pressure sensors 29a, 29b, 29c, and 29d that detect the pressure in the circulation pipe 26 are disposed in the circulation pipe 26 of the pump device 12, and are detected by the pressure sensors 29a to 29d. A control circuit (not shown) drives and controls the pump 24 according to the pressure in the pipe.

前記空気調和装置15は、予熱用熱交換器15a、冷却用熱交換器15b、加熱用熱交換器15c、加湿器15d、給気ファン15eを備えている。また、該空気調和装置15には、該空気調和装置15内を通る空気の温度及び湿度を検出するセンサ30が設けられている。   The air conditioner 15 includes a preheating heat exchanger 15a, a cooling heat exchanger 15b, a heating heat exchanger 15c, a humidifier 15d, and an air supply fan 15e. The air conditioner 15 is provided with a sensor 30 that detects the temperature and humidity of the air passing through the air conditioner 15.

そして、該空気調和装置15においては、給気ファン15eの駆動により取り込まれた外気は、冬季等の暖房・加湿運転時、予熱用熱交換器15a及び加熱用熱交換器15cにより所定の温度まで温められるとともに、加湿器15dにより必要な湿度が付加され、その後、該給気ファン15eの駆動により屋内空調ゾーン14へ送り出される。一方、夏季などの冷房・除湿運転時は、冷却用熱交換器15cにおいて所定の露点温度まで除湿・冷却された後、給気ファン15eの駆動により屋内空調ゾーン14へ送り出される。なお、図示していないが、予熱用熱交換器15aと冷却用熱交換器15bと加熱用熱交換器15cに対する熱媒流体の経路は、前記冷媒回路21とは独立している別経路で設けられている。   In the air conditioner 15, the outside air taken in by driving the air supply fan 15 e is heated to a predetermined temperature by the preheating heat exchanger 15 a and the heating heat exchanger 15 c during the heating / humidifying operation in winter. While being warmed, necessary humidity is added by the humidifier 15d, and thereafter, the air supply fan 15e is driven to send out to the indoor air conditioning zone 14. On the other hand, at the time of cooling / dehumidifying operation in summer, etc., after dehumidifying and cooling to a predetermined dew point temperature in the cooling heat exchanger 15c, the air supply fan 15e is driven and sent to the indoor air conditioning zone 14. Although not shown, the path of the heat transfer fluid to the preheating heat exchanger 15a, the cooling heat exchanger 15b, and the heating heat exchanger 15c is provided as a separate path independent of the refrigerant circuit 21. It has been.

前記予熱用熱交換器16は、前記空気調和装置15の前側に配設され、冬季等の暖房・加湿運転時に該空気調和装置15に取り入れられる外気の温度が例えば17℃以下と低い場合に、前記排熱回収用熱交換器13で回収された熱を利用して該外気を温めるもので、前記冷媒回路21の開閉弁31a、31b、開閉弁32及びインバータ式のポンプ33を介して前記排熱回収用熱交換器13の熱交換器2次側13bに連結されている。また、予熱用熱交換器16の外気取り入れ側には、該外気の温度を検出する温度センサ34が設けられている。なお、開閉弁31a,31bは、同じく冷媒回路21内に配設されている開閉弁31c、31d、31eとともに予熱・冷却経路切換弁35を形成している。   The preheating heat exchanger 16 is disposed on the front side of the air conditioner 15, and when the temperature of the outside air taken into the air conditioner 15 at the time of heating / humidifying operation in winter or the like is as low as 17 ° C. or less, for example, The heat recovered by the heat exchanger 13 for exhaust heat recovery is used to warm the outside air, and the exhaust air is supplied via the on-off valves 31a and 31b, the on-off valve 32 and the inverter-type pump 33 of the refrigerant circuit 21. The heat recovery heat exchanger 13 is connected to the heat exchanger secondary side 13b. A temperature sensor 34 for detecting the temperature of the outside air is provided on the outside air intake side of the preheating heat exchanger 16. The on-off valves 31a and 31b form a preheating / cooling path switching valve 35 together with the on-off valves 31c, 31d, and 31e that are also disposed in the refrigerant circuit 21.

そして、該予熱用熱交換器16において、該開閉弁31a、31b、32が開の状態で該ポンプ33が駆動されると、前記冷媒回路21内の冷媒流体が、該熱交換器2次側13b、開閉弁31a、予熱用熱交換器16、開閉弁32、31bを順に流通して再び該ポンプ33に戻る経路で流れ、予熱用熱交換器16を通る外気を所定の温度まで温めることができるようになっている。   In the preheating heat exchanger 16, when the pump 33 is driven with the on-off valves 31a, 31b, 32 open, the refrigerant fluid in the refrigerant circuit 21 is transferred to the secondary side of the heat exchanger. 13b, the on-off valve 31a, the preheating heat exchanger 16, and the on-off valves 32 and 31b are sequentially passed through the path returning to the pump 33 to warm the outside air passing through the preheating heat exchanger 16 to a predetermined temperature. It can be done.

前記冷却塔17は、冷却用熱交換器17a、貯水タンク17b、ポンプ17c、散水器17d、送風ファン17eを備えている。なお、冷却用熱交換器17aは、前記冷媒回路21に接続された熱交換器であり、該冷媒回路21には該冷却用熱交換器17aを通った冷媒流体の温度を検出する温度センサ39を備える。該温度センサ39の信号は、送風ファン17eの駆動・停止を制御するコントローラ17f等に供給される。   The cooling tower 17 includes a cooling heat exchanger 17a, a water storage tank 17b, a pump 17c, a sprinkler 17d, and a blower fan 17e. The cooling heat exchanger 17a is a heat exchanger connected to the refrigerant circuit 21, and the refrigerant circuit 21 has a temperature sensor 39 that detects the temperature of the refrigerant fluid that has passed through the cooling heat exchanger 17a. Is provided. A signal from the temperature sensor 39 is supplied to a controller 17f that controls driving and stopping of the blower fan 17e.

そして、該冷却塔17において、ポンプ17cが駆動されると、貯水タンク17b内の水が散水器17dに汲み上げられ、該散水器17dから冷却用熱交換器17aに水が散水されて該冷却用熱交換器17aが冷却され、該冷却用熱交換器17a内を流通する冷媒流体も冷却される。   When the pump 17c is driven in the cooling tower 17, the water in the water storage tank 17b is pumped up to the sprinkler 17d, and water is sprinkled from the sprinkler 17d to the cooling heat exchanger 17a. The heat exchanger 17a is cooled, and the refrigerant fluid flowing through the cooling heat exchanger 17a is also cooled.

前記冷媒回路21には、前記予熱・冷却系路切換弁35の他に、冷凍機19へ送られる冷媒流体の温度を検出するセンサ36と、冷凍機19内から排熱回収用熱交換器13を流通して来る冷媒流体の温度を検出するセンサ31、該冷凍機19へ送られる冷媒流体の温度が所定の温度より低くなったときにバイパス路21aを流通する冷媒流体の流量を調整して、冷却用熱交換器17a内を流通して来る冷媒流体とバイパス路21をバイパスして流入される冷媒流体とを混合させ、冷凍機19に供給される冷媒流体の温度が所定の温度より低くならないにように制御するバイパス冷却系路切換弁としての三方弁37と、冷媒回路21内の冷媒流体を冷凍機19に送る冷媒用ポンプ38等が設けられている。なお、前記三方弁37は、図示しないコントローラで制御される。   In the refrigerant circuit 21, in addition to the preheating / cooling system path switching valve 35, a sensor 36 for detecting the temperature of the refrigerant fluid sent to the refrigerator 19, and a heat exchanger 13 for exhaust heat recovery from the refrigerator 19. A sensor 31 for detecting the temperature of the refrigerant fluid flowing through the refrigerant, and adjusting the flow rate of the refrigerant fluid flowing through the bypass passage 21a when the temperature of the refrigerant fluid sent to the refrigerator 19 becomes lower than a predetermined temperature. The refrigerant fluid flowing through the cooling heat exchanger 17a and the refrigerant fluid that flows in by bypassing the bypass passage 21 are mixed, and the temperature of the refrigerant fluid supplied to the refrigerator 19 is lower than a predetermined temperature. There are provided a three-way valve 37 as a bypass cooling system path switching valve that is controlled so as not to become a refrigerant, a refrigerant pump 38 that sends the refrigerant fluid in the refrigerant circuit 21 to the refrigerator 19, and the like. The three-way valve 37 is controlled by a controller (not shown).

次に、上記構成の排熱利用システムの動作について説明する。以下の説明では、熱交換器2次側で回収された排水温度が年間を通して例えば20〜25℃である場合とし、また、冬季等では外気温が例えば17℃以下の場合に排水の排熱温度を予熱用として使用し、夏季等で外気温度が17℃以上である場合に排水の排熱温度を冷却用として使用する場合として説明するが、これらの温度は環境に応じて自由に変更されるものである。   Next, the operation of the exhaust heat utilization system configured as described above will be described. In the following description, it is assumed that the drainage temperature collected on the secondary side of the heat exchanger is, for example, 20 to 25 ° C. throughout the year, and the exhaust heat temperature of the drainage when the outside air temperature is, for example, 17 ° C. or less in winter. Is used for preheating, and when the outside air temperature is 17 ° C. or higher in summer or the like, the exhaust heat temperature of the waste water is used for cooling. However, these temperatures can be freely changed according to the environment. Is.

(1)冬季等で外気温が例えば17℃以下であるような場合;
予熱・冷却経路切換弁35を構成している開閉弁31a,31b,31eを開、開閉弁31c,31dを閉とした予熱経路態様側に切り換える。この予熱経路態様では、冷媒回路21は予熱・冷却経路切換弁35の切り換えにより、空気調和装置15側と冷凍機19側とに分離され、前記冷媒流体は各側で各々独立して流通する。そして、空気調和装置15側では、冷媒回路21側のポンプ33及びポンプ装置12側のポンプ24が駆動されると、排熱回収用熱交換器13では排水と冷媒流体の間の熱交換が行われ、冷媒流体が20〜25℃に近い所定の温度に温められる。また、ここで温められた冷媒流体は予熱用熱交換器16に送られ、該予熱用熱交換器16において外気と熱交換され、該外気を20〜25℃に近い所定の温度に温めて、空気調和装置15側に送る。該空気調和装置15側では、該予熱用熱交換器16側から送られて来る外気の温度及び湿度をさらに調整して屋内空調ゾーン14に送り、該屋内空調ゾーン14内の空調を行う。
(1) When the outside temperature is, for example, 17 ° C or lower in winter, etc .;
The preheating / cooling path switching valve 35 constituting the preheating / cooling path switching valve 35 is switched to the preheating path mode side in which the on / off valves 31a, 31b, 31e are opened and the on / off valves 31c, 31d are closed. In this preheating path mode, the refrigerant circuit 21 is separated into the air conditioner 15 side and the refrigerator 19 side by switching of the preheating / cooling path switching valve 35, and the refrigerant fluid flows independently on each side. On the air conditioning device 15 side, when the pump 33 on the refrigerant circuit 21 side and the pump 24 on the pump device 12 side are driven, the heat exchanger 13 for exhaust heat recovery performs heat exchange between the waste water and the refrigerant fluid. The refrigerant fluid is warmed to a predetermined temperature close to 20-25 ° C. The refrigerant fluid warmed here is sent to the preheating heat exchanger 16, heat exchanged with the outside air in the preheating heat exchanger 16, and the outside air is warmed to a predetermined temperature close to 20 to 25 ° C. It sends to the air conditioner 15 side. On the air conditioner 15 side, the temperature and humidity of the outside air sent from the preheating heat exchanger 16 side are further adjusted and sent to the indoor air conditioning zone 14 to perform air conditioning in the indoor air conditioning zone 14.

一方、冷凍機19側における空気調和装置または生産装置側18の冷却では、前記排熱回収用熱交換器13で回収された熱は使わずに、冷却塔17の冷却用熱交換器17aと該冷凍機19を循環する冷媒流体を使う。   On the other hand, in the cooling of the air conditioner or production device side 18 on the refrigerator 19 side, the heat recovered by the exhaust heat recovery heat exchanger 13 is not used, and the cooling heat exchanger 17a of the cooling tower 17 and the A refrigerant fluid circulating through the refrigerator 19 is used.

(2)夏季等で、外気温が例えば17℃以上であるような場合;
予熱・冷却経路切換弁35を構成している開閉弁31a,31b,31eを閉、開閉弁31c,31dを開とした冷却経路態様側に切り換える。この冷却経路態様では、冷媒回路21は予熱・冷却経路切換弁35の切り換えにより、予熱用熱交換器16と排熱回収用熱交換器13の間が切り離される。そして、排熱回収用熱交換器13は該冷凍機19側及び冷却塔17側に接続される。また、冷凍機19内から排熱回収用熱交換器13を流通して来る冷媒流体の温度を検出するセンサ31の温度が例えば32℃より高い場合は三方弁37の切り換えにより、該冷媒流体は排熱回収用熱交換器13と冷却塔17と冷凍機19を通って循環される。反対に、32℃より低い場合はバイパス路21aが使用され、冷媒流体は冷却塔17を通らずに排熱回収用熱交換器13と冷凍機19を通って循環する。そして、冷却塔17の運転は休止状態に保持される。
(2) When the outdoor temperature is, for example, 17 ° C or higher in summer, etc .;
The on / off valves 31a, 31b, 31e constituting the preheating / cooling path switching valve 35 are closed, and the on / off valves 31c, 31d are opened to switch to the cooling path mode. In this cooling path mode, the refrigerant circuit 21 is disconnected between the preheating heat exchanger 16 and the exhaust heat recovery heat exchanger 13 by switching the preheating / cooling path switching valve 35. The exhaust heat recovery heat exchanger 13 is connected to the refrigerator 19 side and the cooling tower 17 side. In addition, when the temperature of the sensor 31 that detects the temperature of the refrigerant fluid that flows through the heat exchanger 13 for exhaust heat recovery from the refrigerator 19 is higher than, for example, 32 ° C., the refrigerant fluid is changed by switching the three-way valve 37. It is circulated through the heat exchanger 13 for exhaust heat recovery, the cooling tower 17 and the refrigerator 19. On the other hand, when the temperature is lower than 32 ° C., the bypass passage 21 a is used, and the refrigerant fluid circulates through the heat exchanger 13 for exhaust heat recovery and the refrigerator 19 without passing through the cooling tower 17. Then, the operation of the cooling tower 17 is kept in a resting state.

すなわち、排熱回収用熱交換器13での冷媒流体の温度が例えば37℃程度のとき、冷媒回路21側のポンプ33及びポンプ装置12側のポンプ24が駆動されると、排熱回収用熱交換器13では排水と冷媒流体の間の熱交換が行われて、冷媒流体が32℃以下の温度に冷却される。また、この冷却された冷媒流体は冷却塔17に送られ、該冷却塔17においてさらに30℃程度まで冷却され、冷凍機19側に送られる。該冷凍機19側では、該冷却塔17側から送られて来る冷媒流体により空気調和装置または生産装置側18内の冷却を行う。   That is, when the temperature of the refrigerant fluid in the heat exchanger 13 for exhaust heat recovery is, for example, about 37 ° C., when the pump 33 on the refrigerant circuit 21 side and the pump 24 on the pump device 12 side are driven, In the exchanger 13, heat exchange between the waste water and the refrigerant fluid is performed, and the refrigerant fluid is cooled to a temperature of 32 ° C. or lower. The cooled refrigerant fluid is sent to the cooling tower 17, further cooled to about 30 ° C. in the cooling tower 17, and sent to the refrigerator 19 side. On the refrigerator 19 side, the air conditioning apparatus or the production apparatus side 18 is cooled by the refrigerant fluid sent from the cooling tower 17 side.

一方、排熱回収用熱交換器13での冷媒流体の温度が例えば32℃程度のとき、冷媒回路21側のポンプ33及びポンプ装置12側のポンプ24が駆動されると、排熱回収用熱交換器13では排水と冷媒流体の間の熱交換が行われ、冷媒流体が27℃以下の温度に冷却される。また、この冷却された冷媒流体は冷凍機19側に送られる。該冷凍機19側では、排熱回収用熱交換器13側から送られて来る冷媒流体により空気調和装置または生産装置側18の冷却を行う。   On the other hand, when the temperature of the refrigerant fluid in the exhaust heat recovery heat exchanger 13 is about 32 ° C., for example, when the pump 33 on the refrigerant circuit 21 side and the pump 24 on the pump device 12 side are driven, the heat for exhaust heat recovery In the exchanger 13, heat exchange between the waste water and the refrigerant fluid is performed, and the refrigerant fluid is cooled to a temperature of 27 ° C. or lower. The cooled refrigerant fluid is sent to the refrigerator 19 side. On the refrigerator 19 side, the air conditioning apparatus or the production apparatus side 18 is cooled by the refrigerant fluid sent from the exhaust heat recovery heat exchanger 13 side.

次に、空気調和装置15側では、冷媒流体の温度に応じて予熱用熱交換器16及び該空気調和装置15が駆動され、外気の温度及び湿度を調整して屋内空調ゾーン14に送り、該屋内空調ゾーン14内の空調を行う。   Next, on the air conditioner 15 side, the preheat heat exchanger 16 and the air conditioner 15 are driven according to the temperature of the refrigerant fluid, and the temperature and humidity of the outside air are adjusted and sent to the indoor air conditioning zone 14. Air conditioning in the indoor air conditioning zone 14 is performed.

したがって、本実施例の排熱利用システムでは、排水の熱を回収し、冬季等には外気導入の予熱処理を行うエネルギーとして使用し、夏季等には冷凍機19の冷却水を冷却するエネルギーとして使用するので、年間を通して排熱を使用することができる。すなわち、冬季等には外気導入の予熱処理を行うことで、空気調和装置15における外気熱処理負荷が軽減され、エネルギー消費量を少なくすることができる。一方、夏季等には冷凍機19の冷却水を冷却して従来よりも低い温度にすることができるので、冷凍機19のエネルギー効率が向上する。これにより、年間を通して省エネルギー効果を得ることができる。   Therefore, in the exhaust heat utilization system of the present embodiment, the heat of the waste water is recovered and used as energy for pre-heat treatment for introducing outside air in winter and the like, and as energy for cooling the cooling water of the refrigerator 19 in summer and the like. Because it is used, exhaust heat can be used throughout the year. That is, by performing the pre-heat treatment for introducing the outside air in winter or the like, the load of the outside air heat treatment in the air conditioner 15 is reduced, and the energy consumption can be reduced. On the other hand, since the cooling water of the refrigerator 19 can be cooled to a temperature lower than the conventional temperature in summer or the like, the energy efficiency of the refrigerator 19 is improved. Thereby, an energy saving effect can be obtained throughout the year.

なお、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。   It should be noted that the present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.

本発明は工場排水を有効利用する場合について説明したが、工場排水以外の排水の熱を利用する場合にも応用できる。   Although this invention demonstrated the case where factory wastewater was used effectively, it is applicable also when utilizing the heat | fever of wastewater other than factory wastewater.

11 排水処理槽
12 ポンプ装置
13 排熱回収用熱交換器
13a 熱交換器1次側
13b 熱交換器2次側
14 屋内空調ゾーン
15 空気調和装置
15a 予熱用熱交換器
15b 冷却用熱交換器
15c 加熱用熱交換器
15d 加湿器
15e 給気ファン
16 予熱用熱交換器
17 冷却塔
17a 冷却用熱交換器
17b 貯水タンク
17c ポンプ
17d 散水器
17f コントローラ
18 空気調和装置または生産装置側
19 冷凍機
20 冷媒配管
21 冷媒回路
21a バイパス路
22 調整槽
23 最終中和槽
24 ポンプ
25 ストレーナ
26 循環用配管
27a〜27d 洗浄用管
28a〜28h 開閉弁
29a〜29d 圧力センサ
30 センサ
31a〜31e 開閉弁
31 センサ
32 開閉弁
33 ポンプ
34 センサ
35 予熱・冷却系路切換弁
36 センサ
37 三方弁(バイパス冷却系路切換弁)
38 冷媒用ポンプ
39 センサ
DESCRIPTION OF SYMBOLS 11 Waste water processing tank 12 Pump apparatus 13 Heat exchanger 13a for heat recovery 13a Heat exchanger primary side 13b Heat exchanger secondary side 14 Indoor air-conditioning zone 15 Air conditioner 15a Preheating heat exchanger 15b Cooling heat exchanger 15c Heat exchanger for heating 15d Humidifier 15e Heating fan 16 Preheat heat exchanger 17 Cooling tower 17a Cooling heat exchanger 17b Water storage tank 17c Pump 17d Sprinkler 17f Controller 18 Air conditioner or production equipment side 19 Refrigerator 20 Refrigerant Pipe 21 Refrigerant circuit 21a Bypass path 22 Adjustment tank 23 Final neutralization tank 24 Pump 25 Strainer 26 Circulation pipes 27a to 27d Cleaning pipes 28a to 28h Open / close valves 29a to 29d Pressure sensor 30 Sensors 31a to 31e Open / close valve 31 Sensor 32 Open / close Valve 33 Pump 34 Sensor 35 Preheating / cooling path switching valve 36 Sensor 37 Three The valve (bypass cooling system passage switching valve)
38 Refrigerant pump 39 Sensor

Claims (5)

排水処理槽に排出された低温排水の熱を回収して利用する排熱利用システムにおいて、
前記水処理槽内の前記排水を汲み上げるポンプ装置と、
該ポンプ装置で汲み上げられた前記排水が通る熱交換器1次側と該熱交換器1次側と熱交換を行う熱交換器2次側を有する排熱回収用熱交換器と、
外気を予熱処理する予熱用熱交換器と、
該予熱用熱交換器で調整された前記外気の温度と湿度を調整して屋内空調ゾーンに供給する空気調和装置と、
外気と熱交換をする冷却塔と、
空気調和装置または生産装置を冷却する冷凍機と、
前記熱交換器2次側を通る冷媒流体を前記予熱用熱交換器と前記冷却塔と前記冷凍機に流通させる冷媒回路と、
前記冷媒回路に配設され、前記冷媒流体が循環して流通する経路を、前記熱交換器2次側と前記予熱用熱交換器を経由して循環する予熱経路態様と前記熱交換器2次側と前記冷却塔と前記冷凍機を経由して循環する冷却経路態様とに切り換え可能な予熱・冷却経路切換弁と、
を備えることを特徴とする排熱利用システム。
In the waste heat utilization system that recovers and uses the heat of the low temperature wastewater discharged to the wastewater treatment tank,
A pump device for pumping up the waste water in the water treatment tank;
A heat exchanger for exhaust heat recovery having a heat exchanger primary side through which the waste water pumped up by the pump device passes and a heat exchanger secondary side for exchanging heat with the heat exchanger primary side;
A heat exchanger for preheating to preheat the outside air;
An air conditioner for adjusting the temperature and humidity of the outside air adjusted by the heat exchanger for preheating and supplying the indoor air conditioning zone;
A cooling tower for exchanging heat with the outside air,
A refrigerator for cooling an air conditioner or a production device;
A refrigerant circuit that causes the refrigerant fluid passing through the secondary side of the heat exchanger to flow through the preheating heat exchanger, the cooling tower, and the refrigerator;
A preheating path mode in which the refrigerant fluid is circulated and circulated through the heat exchanger secondary side and the heat exchanger for preheating and the heat exchanger secondary arranged in the refrigerant circuit. A preheating / cooling path switching valve that can be switched to a cooling path mode that circulates through the side, the cooling tower, and the refrigerator,
A waste heat utilization system comprising:
上記冷媒回路には、上記熱交換器2次側から上記冷却塔に向かう上記冷媒流体が途中でバイパスされて上記冷凍機と前記熱交換器2次側を経由して循環するバイパス路と、前記冷媒流体が上記冷却経路態様から該バイパス路を経由して循環するバイパス経路態様及び該バイパス経路態様から前記冷却経路態様に切り換え可能なバイパス・冷却経路切換弁とを設けてなることを特徴とする請求項1記載の排熱利用システム。   In the refrigerant circuit, the refrigerant fluid heading from the heat exchanger secondary side to the cooling tower is bypassed in the middle and circulated through the refrigerator and the heat exchanger secondary side, A bypass path mode in which the refrigerant fluid circulates from the cooling path mode via the bypass path and a bypass / cooling path switching valve that can be switched from the bypass path mode to the cooling path mode are provided. The exhaust heat utilization system according to claim 1. 上記排水処理槽は、上流側に設けられる調整槽と該調整槽からオーバーフローされた排水を受ける最終中和槽を備え、前記ポンプ装置は、前記最終中和槽から汲み上げられた前記排水が上記交換器1次側を通って該最終中和槽に戻る循環用配管を備えることを特徴とする請求項1または2記載の排熱利用システム。   The waste water treatment tank includes an adjustment tank provided on the upstream side and a final neutralization tank that receives waste water overflowed from the adjustment tank, and the pump device replaces the waste water pumped up from the final neutralization tank. The exhaust heat utilization system according to claim 1, further comprising a circulation pipe that returns to the final neutralization tank through the primary side of the vessel. 上記循環用配管は、上記熱交換器1次側の上流側に、上記排水処理槽から汲み上げられた上記排水を濾過するストレーナを配設してなることを特徴とする請求項3記載の排熱利用システム。   The exhaust heat according to claim 3, wherein the circulation pipe is provided with a strainer for filtering the waste water pumped up from the waste water treatment tank on the upstream side of the heat exchanger primary side. Usage system. 上記循環用配管は、上記ストレーナの内部に逆方向から上記排水を流して該ストレーナの内部を洗浄する洗浄手段を有することを特徴とする請求項4記載の排熱利用システム。   5. The exhaust heat utilization system according to claim 4, wherein the circulation pipe has a cleaning means for cleaning the inside of the strainer by flowing the waste water from the opposite direction into the strainer.
JP2009204641A 2009-09-04 2009-09-04 Waste heat utilization system Active JP5283593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009204641A JP5283593B2 (en) 2009-09-04 2009-09-04 Waste heat utilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009204641A JP5283593B2 (en) 2009-09-04 2009-09-04 Waste heat utilization system

Publications (2)

Publication Number Publication Date
JP2011052942A true JP2011052942A (en) 2011-03-17
JP5283593B2 JP5283593B2 (en) 2013-09-04

Family

ID=43942128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009204641A Active JP5283593B2 (en) 2009-09-04 2009-09-04 Waste heat utilization system

Country Status (1)

Country Link
JP (1) JP5283593B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202578A (en) * 2011-03-24 2012-10-22 Kanden Plant Kk Heated effluent energy recovery system
DE102013009608A1 (en) 2012-06-12 2013-12-12 Mitsubishi Heavy Industries, Ltd. A heat source selecting device for a heat source system, a method thereof, and a heat source system
JP2014114992A (en) * 2012-12-07 2014-06-26 Komatsu Ltd Air conditioning system
KR101495741B1 (en) * 2013-10-23 2015-02-26 한국에너지기술연구원 Sea water heat pump system using backwash
CN114060973A (en) * 2017-11-29 2022-02-18 汤姆.阿斯科 Method for conditioning air

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138971U (en) * 1985-09-25 1986-08-28
JPH08136085A (en) * 1994-11-07 1996-05-31 Hitachi Zosen Corp Snow melting device
JPH094881A (en) * 1995-06-20 1997-01-10 Toyo Eng Works Ltd Cooling device
JP2003202165A (en) * 2002-01-08 2003-07-18 Hitachi Cable Ltd Air-conditioning system using low temperature exhaust heat
JP2003279296A (en) * 2002-03-25 2003-10-02 Takenaka Komuten Co Ltd Filtering heat exchanger used for aquifer heat accumulating system
JP2004287971A (en) * 2003-03-24 2004-10-14 Dai-Dan Co Ltd Device for designing cooling water piping
JP2005214581A (en) * 2004-02-02 2005-08-11 Misawa Kankyo Gijutsu Kk Snow-melting/indoor cooling device utilizing earth thermal
JP2006010170A (en) * 2004-06-24 2006-01-12 Shimizu Corp Regional heat source system
JP2007132582A (en) * 2005-11-09 2007-05-31 Hitachi Plant Technologies Ltd Cooling system
JP2008209042A (en) * 2007-02-26 2008-09-11 Masahiro Izutsu Heat pump type air conditioning system, heat pump type hot water supply system, and heat pump type air conditioning-hot water supply integrative system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138971U (en) * 1985-09-25 1986-08-28
JPH08136085A (en) * 1994-11-07 1996-05-31 Hitachi Zosen Corp Snow melting device
JPH094881A (en) * 1995-06-20 1997-01-10 Toyo Eng Works Ltd Cooling device
JP2003202165A (en) * 2002-01-08 2003-07-18 Hitachi Cable Ltd Air-conditioning system using low temperature exhaust heat
JP2003279296A (en) * 2002-03-25 2003-10-02 Takenaka Komuten Co Ltd Filtering heat exchanger used for aquifer heat accumulating system
JP2004287971A (en) * 2003-03-24 2004-10-14 Dai-Dan Co Ltd Device for designing cooling water piping
JP2005214581A (en) * 2004-02-02 2005-08-11 Misawa Kankyo Gijutsu Kk Snow-melting/indoor cooling device utilizing earth thermal
JP2006010170A (en) * 2004-06-24 2006-01-12 Shimizu Corp Regional heat source system
JP2007132582A (en) * 2005-11-09 2007-05-31 Hitachi Plant Technologies Ltd Cooling system
JP2008209042A (en) * 2007-02-26 2008-09-11 Masahiro Izutsu Heat pump type air conditioning system, heat pump type hot water supply system, and heat pump type air conditioning-hot water supply integrative system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202578A (en) * 2011-03-24 2012-10-22 Kanden Plant Kk Heated effluent energy recovery system
DE102013009608A1 (en) 2012-06-12 2013-12-12 Mitsubishi Heavy Industries, Ltd. A heat source selecting device for a heat source system, a method thereof, and a heat source system
JP2013257069A (en) * 2012-06-12 2013-12-26 Mitsubishi Heavy Ind Ltd Heat-source selecting device for heat source system, method thereof, and heat source system
US9488387B2 (en) 2012-06-12 2016-11-08 Mitsubishi Heavy Industries, Ltd. Heat-source selecting device for heat source system, method thereof, and heat source system
JP2014114992A (en) * 2012-12-07 2014-06-26 Komatsu Ltd Air conditioning system
KR101495741B1 (en) * 2013-10-23 2015-02-26 한국에너지기술연구원 Sea water heat pump system using backwash
CN114060973A (en) * 2017-11-29 2022-02-18 汤姆.阿斯科 Method for conditioning air

Also Published As

Publication number Publication date
JP5283593B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5283593B2 (en) Waste heat utilization system
CN101660015B (en) Processing system of heating by using waste heat of hot water for slag flushing in blast furnace
CN101634499B (en) Hot-water and heating-cooling room supply system
US20120159980A1 (en) Device for recovering heat from wastewater, thermal system including such a device, and method
CN1333206C (en) Heat pump driven energy storage type solution dehumidifying air-conditioning system
CN105485823A (en) Fresh air ventilator and fresh air ventilator unit
KR101325897B1 (en) Apparatus for recovering heat of wasted water
JP5325431B2 (en) Waste heat recovery equipment for refrigeration equipment
CN106091133B (en) Air treatment device and method
KR101209611B1 (en) Outdoor air conditioning system using low temperature waste heat
CN110655255A (en) Waste water evaporation concentration decrement integrated device
JP2009168255A (en) Water heat source heat pump air conditioning system
CN203177386U (en) Air humidifying system
CN207019539U (en) The full-automatic online backflushing cleaning device of MBR plate type heat exchangers
JP2011145010A (en) Storage water heater
CN116734371A (en) Deep heat recovery fresh air system and anti-freezing control method thereof
CN108626829A (en) A kind of air conditioner and process for purifying water with water purification function
CN105509315B (en) Water resource heat pump combines the control method of heat recovery system with plate heat exchanger
CN212246569U (en) Brewing cooling water recovery and waste heat utilization system
WO2016023480A1 (en) Smog-removing air conditioner having cleaning function
CN203177331U (en) Air humidifying system
KR101280116B1 (en) A heating system of the raw water for the membrane process
JP5842597B2 (en) Hot water storage water heater
CN110440351A (en) A kind of cleaning fresh air handining unit
JP6230830B2 (en) Waste water treatment apparatus and waste water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130528

R150 Certificate of patent or registration of utility model

Ref document number: 5283593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250