JP2011052714A - Multi-row combination angular ball bearing - Google Patents

Multi-row combination angular ball bearing Download PDF

Info

Publication number
JP2011052714A
JP2011052714A JP2009199748A JP2009199748A JP2011052714A JP 2011052714 A JP2011052714 A JP 2011052714A JP 2009199748 A JP2009199748 A JP 2009199748A JP 2009199748 A JP2009199748 A JP 2009199748A JP 2011052714 A JP2011052714 A JP 2011052714A
Authority
JP
Japan
Prior art keywords
bearing
bearings
row
ball bearing
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009199748A
Other languages
Japanese (ja)
Inventor
Yoshiaki Katsuno
美昭 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2009199748A priority Critical patent/JP2011052714A/en
Publication of JP2011052714A publication Critical patent/JP2011052714A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • F16C19/542Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
    • F16C19/543Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/80Pitch circle diameters [PCD]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Abstract

<P>PROBLEM TO BE SOLVED: To provide multi-row combination angular ball bearings which achieves stable high-speed rotation without causing a seizure fault of bearings arranged inside the multi-row bearings. <P>SOLUTION: Ball pitch circle diameters PCD2, PCD3 of the inside bearings 50, 60 in the second and third rows from the tool side out of bearings 40, 50, 60, 70 of the multi-row angular ball bearings are made smaller than the pitch circle diameters PCD1, PCD4 of the outside bearings 40, 70 in the first and fourth rows, and contact angles α2, α3 of the inside bearings 50, 60 in the second and third rows from the tool side are made smaller than the contact angles α1, α4 of the outside bearings 40, 70 in the first and fourth rows. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、多列組合せアンギュラ玉軸受に関し、より詳細には、工作機械主軸やコンプレッサー等に適用される、高速回転可能な多列組合せアンギュラ玉軸受に関する。   The present invention relates to a multi-row combination angular contact ball bearing, and more particularly to a multi-row combination angular contact ball bearing that is applied to a machine tool spindle, a compressor, and the like and that can rotate at high speed.

近年、工作機械の主軸においては、加工効率を向上するため高速化が進み、従来の歯車駆動やベルト駆動では、歯の噛み合い部の摩擦やベルトのスリップによる発熱等伝達効率が良くないため、カップリングによる駆動モータ直結タイプや主軸内部にモータを搭載したいわゆる、モータビルトインタイプが主流を占めている。   In recent years, the speed of machine tool spindles has been increased to improve machining efficiency, and the conventional gear drive and belt drive have poor transmission efficiency such as friction between teeth and heat generated by belt slip. The direct drive motor type with a ring and the so-called motor built-in type in which a motor is mounted inside the main shaft dominate.

特に、モータビルトインタイプにおいて、高出力モータを搭載する場合、ロータ及びステータの軸長の関係から、主軸全体の軸長が長くなる。このような場合、主軸先端の工具部分の加工力によって発生する主軸系へのモーメント荷重に対して、主軸の曲げ剛性を高めるために、3列、あるいは、4列以上の組合せアンギュラ玉軸受を工具側軸受として採用するケースが非常に多い。   In particular, in a motor built-in type, when a high-output motor is mounted, the axial length of the entire main shaft becomes longer due to the axial length of the rotor and the stator. In such a case, in order to increase the bending rigidity of the spindle against the moment load on the spindle system generated by the machining force of the tool part at the tip of the spindle, a combination of three or four rows of angular contact ball bearings is used as a tool. There are very many cases used as side bearings.

このような多列組合せ軸受の場合(例えば、4列組合せの場合)、軸方向内側の2列目、3列目の軸受は、1列目及び4列目の軸受の発熱と昇温に阻まれているため熱伝導性が悪くなり、軸受自身の転がり摩擦による発熱分を、外部に逃がすことが困難であり、いわゆる熱がこもる蓄熱状態に陥る。   In the case of such multi-row combination bearings (for example, in the case of 4-row combinations), the second row and third row bearings on the inner side in the axial direction are obstructed by the heat generation and temperature rise of the first row and fourth row bearings. Therefore, it is difficult to release the heat generated by the rolling friction of the bearing itself to the outside, resulting in a so-called heat storage state where heat is trapped.

その結果、玉と内外輪間転がり接触部の温度が上昇し、油膜切れによる焼付きが非常に起こりやすい状態に陥る。また、モータビルトインタイプの場合、ロータの発熱が軸内部を伝わり工具側の軸受部分にも伝達されるので、さらに厳しい条件となる。   As a result, the temperature of the rolling contact portion between the balls and the inner and outer rings increases, and seizure due to oil film breakage occurs very easily. Further, in the case of the motor built-in type, the heat generated in the rotor is transmitted through the shaft and is also transmitted to the bearing portion on the tool side.

また、モータの発熱を伴うモータビルトインタイプでは、主軸精度の向上を図るため熱変位を抑えることが重要であり、高速回転時の軸受の発熱やステータの発熱による主軸の温度上昇を抑えるため、主軸外筒部に温度コントロールされた冷却油を循環させる構造を用いる場合がほとんどである。   Also, in motor built-in types that generate heat from the motor, it is important to suppress thermal displacement in order to improve the accuracy of the main spindle, and in order to suppress the temperature rise of the main spindle due to heat generation of the bearing at high speed rotation and heat generation of the stator, In most cases, a structure in which cooling oil whose temperature is controlled is circulated in the outer cylinder portion.

この外筒冷却によって軸受の外輪は温度上昇が抑えられるが、冷却部と直接接触していない軸受内輪の温度上昇は抑えることができず、その結果、軸受の内外輪温度差(内輪温度>外輪温度)が発生する。4列組合せ軸受の場合、この外筒冷却油の循環経路の中央部に位置し、最も冷却効果が得られるのが2列目、3列目の軸受であるので、1列目、4列目の軸受に比べて、さらに内外輪温度差が大きくなる傾向になる。内外輪温度差が発生すると、軸受の内部すきまが小さくなり、内部予圧が増大して転がり接触部のPV値が上昇し、焼付きに進行する。   This outer cylinder cooling suppresses the temperature rise of the outer ring of the bearing, but the temperature rise of the inner ring of the bearing that is not in direct contact with the cooling portion cannot be suppressed. As a result, the temperature difference between the inner and outer rings of the bearing (inner ring temperature> outer ring) Temperature). In the case of a four-row combination bearing, the second-row and third-row bearings are located in the center of the circulation path of this outer cylinder cooling oil and the most effective cooling is obtained. Compared with the bearings, the temperature difference between the inner and outer rings tends to be larger. When the temperature difference between the inner and outer rings occurs, the internal clearance of the bearing decreases, the internal preload increases, the PV value of the rolling contact portion increases, and the seizure proceeds.

加えて、高速回転時においては、玉の遠心力作用も付加されて、さらに内部予圧が増大し焼付きに対するリスクが高くなる。   In addition, at the time of high-speed rotation, the action of the centrifugal force of the balls is also added, and the internal preload is further increased to increase the risk of seizure.

高速切削回転時においては、使用工具径も小さく切削力によって発生する加工荷重は大きくないので、軸受に加わる荷重は、外部荷重ではなく上述の要因によって発生する内部荷重(内部予圧荷重)が大勢を占める。以上のことから、例えば、4列の多列組合せ軸受で構成される高速主軸での軸受の焼付き不具合は、2,3列目で発生するのがほとんどである。   During high-speed cutting rotation, the tool load is small and the processing load generated by the cutting force is not large. Therefore, the internal load (internal preload) generated by the above factors is not the external load. Occupy. From the above, for example, the seizure failure of the bearing in the high-speed main shaft composed of four rows of multi-row combination bearings mostly occurs in the second and third rows.

多列組合せ軸受の内側軸受の発熱を抑え、軸受間での温度を下げる方法としては、内側軸受のみぞ曲率を外側軸受のものより大きくするもの(例えば、特許文献1参照。)や、内側軸受の外径寸法を外側軸受のものより小さくするもの(例えば、特許文献2参照。)が知られている。   As a method of suppressing the heat generation of the inner bearings of the multi-row combination bearings and lowering the temperature between the bearings, the inner bearings have a larger curvature than that of the outer bearings (for example, see Patent Document 1), or the inner bearings. Is known (see, for example, Patent Document 2).

特開2005−299761号公報JP 2005-299761 A 特開2006−322496号公報JP 2006-322496 A

しかしながら、特許文献1に記載の多列玉軸受では、実際の効果がどれくらいあるのか明確に記載されていない。また、軸受のみぞ曲率を変えているのみなので、現品の見分けがつきづらく、製造過程や客先組立現場で、組合せ間違いを犯す可能性がある。また、特許文献2に記載の多列アンギュラ玉軸受では、外輪とハウジング間のすきまを大きくすると、主軸剛性(ラジアル方向及びモーメント方向)が低下する。本来なら、全ての軸受で切削時の荷重や加工に伴う振動荷重を受けるはずが、この場合には受けられなくなりフレッチングなどの不具合が生じやすい。   However, the multi-row ball bearing described in Patent Document 1 does not clearly describe how much the actual effect is. Moreover, since only the curvature of the bearing is changed, it is difficult to distinguish the actual product, and there is a possibility of making a wrong combination in the manufacturing process or at the customer assembly site. Further, in the multi-row angular contact ball bearing described in Patent Document 2, when the clearance between the outer ring and the housing is increased, the rigidity of the main shaft (radial direction and moment direction) decreases. Originally, all bearings should receive a cutting load and a vibration load accompanying the processing, but in this case, they cannot be received and problems such as fretting are likely to occur.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、内側軸受の焼付き不具合を生じさせず、安定した高速回転を達成できる多列組合せアンギュラ玉軸受を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a multi-row combination angular ball bearing that can achieve stable high-speed rotation without causing seizure failure of the inner bearing. .

本発明の上記目的は、下記の構成により達成される。
(1) 3個以上のアンギュラ玉軸受を軸方向に配列してなる多列組合せアンギュラ玉軸受において、
軸方向内側に配置される前記アンギュラ玉軸受の玉ピッチ円径が軸方向外側に配置される前記アンギュラ玉軸受の玉ピッチ円径よりも小さいことを特徴とする多列組合せアンギュラ玉軸受。
(2) 前記軸方向内側に配置される前記アンギュラ玉軸受の接触角は、前記軸方向外側に配置される前記アンギュラ玉軸受の接触角よりも小さいことを特徴とする(1)に記載の多列組合せアンギュラ玉軸受。
(3) 工作機械主軸を支持することを特徴とする(1)または(2)に記載の多列組合せアンギュラ玉軸受。
The above object of the present invention can be achieved by the following constitution.
(1) In a multi-row combination angular contact ball bearing in which three or more angular contact ball bearings are arranged in the axial direction,
A multi-row combination angular contact ball bearing characterized in that a ball pitch circle diameter of the angular ball bearing arranged on the inner side in the axial direction is smaller than a ball pitch circle diameter of the angular ball bearing arranged on the outer side in the axial direction.
(2) A contact angle of the angular ball bearing disposed on the inner side in the axial direction is smaller than a contact angle of the angular ball bearing disposed on the outer side in the axial direction. Row combination angular contact ball bearing.
(3) The multi-row combination angular contact ball bearing according to (1) or (2), which supports a machine tool main shaft.

本発明の多列組合せアンギュラ玉軸受によれば、軸方向内側に配置されるアンギュラ玉軸受(以下、「内側軸受」とも称す。)の玉ピッチ円径が軸方向外側に配置されるアンギュラ玉軸受(以下、「外側軸受」とも称す。)の玉ピッチ円径よりも小さいので、軸受のdmn値が小さくなり、組合せ軸受の中心部の軸受発熱量が下がる。その結果、軸受全体の温度分布が均一となり、内側軸受で大きくなる内外輪温度差の発生も抑制され、内側軸受の高速回転時の内部予圧荷重の上昇を抑えることが可能となり、焼付きリスクを低減することができる。したがって、内側軸受の焼付きリスクを外側軸受と同程度として、熱的負荷バランスのとれた構成とすることができる。また、上記玉ピッチ円径の差により、軸受のモーメント剛性を向上することができる。   According to the multi-row combination angular contact ball bearing of the present invention, an angular contact ball bearing in which the ball pitch circle diameter of the angular contact ball bearing (hereinafter also referred to as “inner bearing”) disposed on the inner side in the axial direction is disposed on the outer side in the axial direction. Since it is smaller than the ball pitch circle diameter (hereinafter also referred to as “outer bearing”), the dmn value of the bearing is reduced, and the bearing heat generation at the center of the combined bearing is reduced. As a result, the temperature distribution of the entire bearing becomes uniform, the occurrence of a large temperature difference between the inner and outer rings of the inner bearing is suppressed, and an increase in the internal preload during high-speed rotation of the inner bearing can be suppressed. Can be reduced. Therefore, the seizure risk of the inner bearing can be set to the same level as that of the outer bearing, and the thermal load can be balanced. Further, the moment rigidity of the bearing can be improved due to the difference in the ball pitch circle diameters.

また、内側軸受の接触角は、外側軸受の接触角よりも小さいので、接触角を小さくするほど、スピン滑りやジャイロ滑りなど接触角をもつアンギュラ玉軸受において生じる滑りが小さくなり、さらに内側軸受の発熱量を抑え、外側軸受と内側軸受の発熱量差をつけて、軸受の耐焼付き性をより向上させることができる。さらに、上記接触角差により、軸受のモーメント剛性もより向上することができる。   In addition, since the contact angle of the inner bearing is smaller than the contact angle of the outer bearing, the smaller the contact angle, the smaller the slip generated in angular ball bearings having a contact angle such as spin slip and gyro slip, and further the inner bearing The amount of heat generated can be suppressed, and a difference in the amount of heat generated between the outer bearing and the inner bearing can be provided to further improve the seizure resistance of the bearing. Furthermore, the moment rigidity of the bearing can be further improved by the contact angle difference.

本発明の多列組合せアンギュラ玉軸受が前側軸受として適用された主軸装置を示す断面図である。It is sectional drawing which shows the main axis | shaft apparatus with which the multi-row combination angular contact ball bearing of this invention was applied as a front side bearing. 本発明の一実施形態に係る多列組合せアンギュラ玉軸受の断面図である。It is sectional drawing of the multi-row combination angular contact ball bearing which concerns on one Embodiment of this invention. 定位置予圧の付与方法について説明するための図である。It is a figure for demonstrating the provision method of a fixed position preload. 本発明の第1の変形例に係る多列組合せアンギュラ玉軸受の断面図である。It is sectional drawing of the multi-row combination angular contact ball bearing which concerns on the 1st modification of this invention. 本発明の第2の変形例に係る多列組合せアンギュラ玉軸受の断面図である。It is sectional drawing of the multi-row combination angular contact ball bearing which concerns on the 2nd modification of this invention. 本発明の第3の変形例に係る多列組合せアンギュラ玉軸受の断面図である。It is sectional drawing of the multi-row combination angular contact ball bearing which concerns on the 3rd modification of this invention.

以下、本発明の一実施形態に係る多列組合せアンギュラ玉軸受について図面に基づいて詳細に説明する。   Hereinafter, a multi-row combination angular contact ball bearing according to an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本実施形態の多列組合せアンギュラ玉軸受が適用された主軸装置20を示す。主軸装置20は、モータビルトイン方式であり、その軸方向中心部には、中空状の回転軸22が設けられ、回転軸22の軸芯には、ドローバ23が摺動自在に挿嵌されている。ドローバ23には、工具Tが取り付けられた工具ホルダ24が設けられており、ドローバ23が皿ばね27の力によって反工具側方向(図の右方向)に付勢されることで、工具ホルダ24は、回転軸22のテーパ面28と嵌合する。この結果、回転軸22には、工具Tがドローバ23、工具ホルダ24と共に一体に取り付けられる。   FIG. 1 shows a spindle device 20 to which the multi-row combination angular ball bearing of this embodiment is applied. The main shaft device 20 is a motor built-in system, and a hollow rotating shaft 22 is provided in the center in the axial direction, and a draw bar 23 is slidably inserted into the shaft core of the rotating shaft 22. . The draw bar 23 is provided with a tool holder 24 to which a tool T is attached, and the draw bar 23 is urged in the counter tool side direction (right direction in the figure) by the force of the disc spring 27, whereby the tool holder 24. Is fitted to the tapered surface 28 of the rotary shaft 22. As a result, the tool T is integrally attached to the rotary shaft 22 together with the draw bar 23 and the tool holder 24.

また、回転軸22は、その工具側を支承する多列組合せアンギュラ玉軸受である前側軸受40,50,60,70と、反工具側を支承する図示しない後側軸受とによって、ハウジングHに回転自在に支持されている。   Further, the rotary shaft 22 is rotated to the housing H by front bearings 40, 50, 60, 70 which are multi-row combination angular ball bearings supporting the tool side and a rear bearing (not shown) supporting the counter tool side. It is supported freely.

前側軸受40,50,60,70と後側軸受間における回転軸22の外周面には、ロータ30が外嵌されている。また、ロータ30の周囲に配置されるステータ32は、ステータ32に焼き嵌めされた冷却ジャケット33をハウジングHを構成する外筒29に内嵌することで、外筒29に固定される。従って、ロータ30とステータ32はモータを構成し、ステータ32に電力を供給することでロータ30に回転力を発生させ、回転軸22を回転させる。   A rotor 30 is fitted on the outer peripheral surface of the rotary shaft 22 between the front bearings 40, 50, 60, 70 and the rear bearing. The stator 32 arranged around the rotor 30 is fixed to the outer cylinder 29 by fitting a cooling jacket 33 shrink-fitted into the stator 32 into the outer cylinder 29 constituting the housing H. Therefore, the rotor 30 and the stator 32 constitute a motor, and by supplying electric power to the stator 32, a rotational force is generated in the rotor 30 and the rotating shaft 22 is rotated.

図2にも併せて示すように、前側軸受40,50,60,70は、外輪41,51,61,71と、内輪42,52,62,72と、接触角α1,α2,α3,α4を持って配置される転動体としての玉43,53,63,73と、玉43,53,63,73を略等間隔で保持する保持器44,54,64,74と、をそれぞれ有するアンギュラ玉軸受であり、工具側から数えて1列目・2列目の前側軸受40,50と、3列目・4列目の前側軸受60,70が背面組み合わせとなるように配置された状態で、定位置予圧が付与されている。なお、定位置予圧とは、組合せ軸受に予圧を付与する方法であり、図3に示すように、背面組合せの場合には、組み合わさった端面間に適切なすきま(Δa)を設定し、軸受を軸に外嵌し、軸受ナット等を用いて軸方向に締め付け、該すきま(Δaを0にする)を密着させることで、該すきまに対応した予圧を軸受に付与することができる。   As also shown in FIG. 2, the front bearings 40, 50, 60, 70 are composed of outer rings 41, 51, 61, 71, inner rings 42, 52, 62, 72, and contact angles α1, α2, α3, α4. Angular balls each having balls 43, 53, 63, 73 as rolling elements arranged with a ring and retainers 44, 54, 64, 74 holding the balls 43, 53, 63, 73 at substantially equal intervals. Ball bearings, with the first and second row front bearings 40 and 50 counted from the tool side and the third and fourth row front bearings 60 and 70 arranged in a rear combination. A fixed position preload is applied. The fixed position preload is a method of applying preload to the combination bearing. As shown in FIG. 3, in the case of rear combination, an appropriate clearance (Δa) is set between the combined end faces, and the bearing Can be externally fitted to the shaft, tightened in the axial direction using a bearing nut or the like, and brought into close contact with the clearance (Δa is set to 0), whereby a preload corresponding to the clearance can be applied to the bearing.

前側軸受40,50,60,70の外輪41,51,61,71は、外筒29に固定された前側軸受ハウジング31に内嵌されており、且つ前側軸受ハウジング31にボルト締結された前側軸受外輪押え38によって複数の外輪間座35を介して前側軸受ハウジング31に対し軸方向に固定されている。また、前側軸受40,50,60,70の内輪42,52,62,72は、回転軸22に外嵌されており、且つ回転軸22に締結されたナット39によって複数の内輪間座36を介して回転軸22に対し軸方向に固定されている。
なお、図2は、外輪間座35及び内輪間座36を省略して示しているが、本発明の多列組合せアンギュラ玉軸受は、間座を有する構成、間座を有しない構成のいずれの場合も含むものとする。
Outer rings 41, 51, 61, 71 of the front bearings 40, 50, 60, 70 are fitted in a front bearing housing 31 fixed to the outer cylinder 29 and are bolted to the front bearing housing 31. The outer ring presser 38 is fixed to the front bearing housing 31 in the axial direction via a plurality of outer ring spacers 35. Further, the inner rings 42, 52, 62, 72 of the front bearings 40, 50, 60, 70 are externally fitted to the rotary shaft 22, and a plurality of inner ring spacers 36 are connected by nuts 39 fastened to the rotary shaft 22. And is fixed in the axial direction with respect to the rotating shaft 22.
Note that FIG. 2 shows the outer ring spacer 35 and the inner ring spacer 36 omitted, but the multi-row combination angular ball bearing of the present invention has either a structure having a spacer or a structure having no spacer. Including cases.

また、前側軸受ハウジング31の外周面と、前側軸受ハウジング31に外嵌さえるカバー34との間には、冷却路が形成されており、冷媒を循環させることで各前側軸受40,50,60,70を冷却する。   In addition, a cooling path is formed between the outer peripheral surface of the front bearing housing 31 and the cover 34 that is fitted on the front bearing housing 31, and each of the front bearings 40, 50, 60,. 70 is cooled.

ここで、前側軸受40,50,60,70のうち、工具側から2列目、3列目の軸方向内側の前側軸受(内側軸受)50,60の玉ピッチ円径PCD2,PCD3を1列目、4列目の軸方向外側の前側軸受(外側軸受)40,70のピッチ円径PCD1,PCD4より小さくしている(PCD1,PCD4>PCD2,PCD3)。なお、本実施形態では、前側軸受40,50,60,70の各接触角α1,α2,α3,α4を同一としているので、外側軸受40,70の玉ピッチ円径PCD1,PCD4を同一とし、内側軸受50,60の玉ピッチ円径PCD2,PCD3を同一とし(即ち、PCD1=PCD4>PCD2=PCD3)、1列目と4列目の外側軸受40,70、及び2列目と3列目の内側軸受50,60をそれぞれ共用することができる。   Here, out of the front bearings 40, 50, 60, 70, the ball pitch circle diameters PCD2, PCD3 of the front side bearings (inner bearings) 50, 60 in the second and third rows from the tool side in the axial direction are arranged in one row. The fourth and fourth rows of axially outer front bearings (outer bearings) 40, 70 are smaller than the pitch circle diameters PCD1, PCD4 (PCD1, PCD4> PCD2, PCD3). In the present embodiment, since the contact angles α1, α2, α3, α4 of the front bearings 40, 50, 60, 70 are the same, the ball pitch circle diameters PCD1, PCD4 of the outer bearings 40, 70 are the same, The ball pitch circle diameters PCD2 and PCD3 of the inner bearings 50 and 60 are the same (ie, PCD1 = PCD4> PCD2 = PCD3), the first and fourth rows of outer bearings 40 and 70, and the second and third rows. The inner bearings 50 and 60 can be shared.

このように構成することで、内側軸受50,60のdmn値が外側軸受40,70のdmn値より小さくなり、組合せ軸受の中心部の軸受発熱量が下がる。その結果、軸受全体の温度分布が均一となり、内側軸受50,60で大きくなる内外輪温度差の発生も抑制され、内側軸受50,60の高速回転時の内部予圧荷重の上昇を抑えることが可能となり、焼付きリスクを低減することができる。したがって、内側軸受50,60の焼付きリスクを外側軸受40,70と同程度として、熱的負荷バランスのとれた構成とすることができる。また、上記玉ピッチ円径の差により、軸受のモーメント剛性を向上することができる。   With this configuration, the dmn value of the inner bearings 50, 60 is smaller than the dmn value of the outer bearings 40, 70, and the bearing heat generation at the center of the combination bearing is reduced. As a result, the temperature distribution of the entire bearing becomes uniform, the occurrence of a temperature difference between the inner and outer rings that increases at the inner bearings 50 and 60 is suppressed, and an increase in internal preload when the inner bearings 50 and 60 rotate at high speed can be suppressed. Thus, the seizure risk can be reduced. Therefore, the seizure risk of the inner bearings 50 and 60 can be set to the same level as that of the outer bearings 40 and 70 so that the thermal load can be balanced. Further, the moment rigidity of the bearing can be improved due to the difference in the ball pitch circle diameters.

なお、図2では、前側軸受40,50,60,70の各接触角α1,α2,α3,α4を同一(α1=α2=α3=α4)としたが、図4に示すように、2列目、3列目の内側軸受50,60の接触角α2,α3が、1列目、4列目の外側軸受40,70の接触角α1,α4より小さくしてもよい(α1,α4>α2,α3)。   In FIG. 2, the contact angles α1, α2, α3, α4 of the front bearings 40, 50, 60, 70 are the same (α1 = α2 = α3 = α4). However, as shown in FIG. The contact angles α2 and α3 of the inner bearings 50 and 60 in the third and third rows may be smaller than the contact angles α1 and α4 of the outer bearings 40 and 70 in the first and fourth rows (α1, α4> α2). , Α3).

これにより、スピン滑りやジャイロ滑りなど接触角をもつアンギュラ玉軸受において生じる滑りが小さくなり、さらに内側軸受の発熱量を抑え、外側軸受40,70と内側軸受50,60の発熱量差をつけて、軸受の耐焼付き性をより向上させることができる。さらに、上記接触角差により、軸受のモーメント剛性もより向上することができる。   As a result, the slip generated in the angular ball bearing having a contact angle such as spin slip and gyro slip is reduced, and further, the heat generation amount of the inner bearing is suppressed, and the heat generation amount difference between the outer bearings 40 and 70 and the inner bearings 50 and 60 is given. The seizure resistance of the bearing can be further improved. Furthermore, the moment rigidity of the bearing can be further improved by the contact angle difference.

なお、本実施形態では、4列の多列アンギュラ玉軸受について説明したが、本発明の多列アンギュラ玉軸受は、少なくとも3列以上であればよく、図5に示すように、6列の多列アンギュラ玉軸受であってもよいし、図6に示すように、3列の多列アンギュラ玉軸受であってもよい。   In this embodiment, the four-row angular contact ball bearing has been described. However, the multi-row angular contact ball bearing of the present invention only needs to have at least three rows, and as shown in FIG. A row angular contact ball bearing may be sufficient, and as shown in FIG. 6, it may be a 3 row multi-row angular contact ball bearing.

具体的に、図5に示す6列の多列アンギュラ玉軸受では、外側軸受40,70と内側軸受50,60との間に、外輪81,91、内輪82,92、玉83,93、保持器84,94をそれぞれ有する中間列のアンギュラ玉軸受80,90がそれぞれ配置される。この場合、各軸受の玉ピッチ円径は、外側軸受40,70の玉ピッチ円径>中間列軸受80,90の玉ピッチ円径>内側軸受50,60の玉ピッチ円径となる(PCD1,PCD4>PCD5,PCD6>PCD2,PCD3)。また、各軸受の接触角は、外側軸受40,70の接触角>中間列軸受80,90の接触角>内側軸受50,60の接触角となる(α1,α4>α5,α6>α2,α3)。   Specifically, in the six-row angular contact ball bearing shown in FIG. 5, the outer rings 81 and 91, the inner rings 82 and 92, the balls 83 and 93, and the holding are held between the outer bearings 40 and 70 and the inner bearings 50 and 60. Intermediate rows of angular ball bearings 80, 90 each having a container 84, 94 are arranged. In this case, the ball pitch circle diameter of each bearing is the ball pitch circle diameter of the outer bearings 40 and 70> the ball pitch circle diameter of the intermediate row bearings 80 and 90> the ball pitch circle diameter of the inner bearings 50 and 60 (PCD1, PCD4> PCD5, PCD6> PCD2, PCD3). Further, the contact angle of each bearing is the contact angle of the outer bearings 40 and 70> the contact angle of the intermediate row bearings 80 and 90> the contact angle of the inner bearings 50 and 60 (α1, α4> α5, α6> α2, α3). ).

また、図6に示すように、外側軸受40,70の間に1列の内側軸受50のみとした3列の多列アンギュラ玉軸受の場合、各軸受の玉ピッチ円径は、外側軸受40,70の玉ピッチ円径>内側軸受50の玉ピッチ円径となるようにすればよい(PCD1,PCD4>PCD2)。また、各軸受の接触角は、外側軸受40,70の接触角>内側軸受50の接触角となるようにすればよい(α1,α4>α2)。   Further, as shown in FIG. 6, in the case of a three-row angular contact ball bearing having only one inner bearing 50 between the outer bearings 40, 70, the ball pitch circle diameter of each bearing is the outer bearing 40, The ball pitch circle diameter of 70> the ball pitch circle diameter of the inner bearing 50 may be set (PCD1, PCD4> PCD2). Further, the contact angle of each bearing may be set such that the contact angle of the outer bearings 40 and 70> the contact angle of the inner bearing 50 (α1, α4> α2).

但し、偶数列の組合せ軸受の場合、軸方向外側から数えて同じ位置の軸受は、接触角を等しくすることが望ましい。例えば、図4に示す4列の組合せ軸受の場合、工具側から1列目と4列目の外側軸受40,70の接触角α1、α4、及び2列目と3列目の内側軸受50,60の接触角α2、α3を等しくすると、定位置予圧を付加した場合、個々の軸受の予圧による付加荷重Fa1,Fa2,Fa3,Fa4は、Fa1=Fa4、Fa2=Fa3、且つ、Fa1+Fa2=Fa3+Fa4となる。従って、1列目と4列目、及び2列目と3列目は、それぞれ同じ予圧荷重となるので、予圧バランスをとることができる。   However, in the case of even-numbered combination bearings, it is desirable that the bearings at the same position counted from the outside in the axial direction have the same contact angle. For example, in the case of the four-row combination bearing shown in FIG. 4, the contact angles α1, α4 of the first and fourth outer bearings 40, 70 from the tool side, and the second and third inner bearings 50, 70, When the contact angles α2 and α3 of 60 are made equal, when fixed position preload is applied, the additional loads Fa1, Fa2, Fa3, and Fa4 due to preload of the individual bearings are Fa1 = Fa4, Fa2 = Fa3, and Fa1 + Fa2 = Fa3 + Fa4. Become. Accordingly, the first and fourth rows, and the second and third rows have the same preload, so that a preload balance can be achieved.

ここで、例えば、1列目:20°、2列目:16°、3列目:16°、4列目:18°のように接触角を違えると、3列目と4列目の軸受60,70の予圧による接触面圧(特に3列目)が、1列目と2列目の軸受40,50に比べ大きくなってしまうので、焼付きに対してはやや不利となる。しかし、逆に2列目の軸受50の内外輪温度差が3列目の軸受60より大きい場合など、2列目の軸受50の焼付きを3列目の軸受60より、あえて生じ難くする必要があれば、上記のように1列目と4列目の軸受40,70の接触角を変えてもよい。   Here, for example, if the contact angles are different, such as the first row: 20 °, the second row: 16 °, the third row: 16 °, the fourth row: 18 °, the bearings in the third row and the fourth row The contact surface pressure (particularly the third row) due to the preloads 60 and 70 becomes larger than the bearings 40 and 50 in the first row and the second row, which is somewhat disadvantageous for seizure. However, on the contrary, when the temperature difference between the inner and outer rings of the bearing 50 in the second row is larger than the bearing 60 in the third row, seizure of the bearing 50 in the second row needs to be made harder than the bearing 60 in the third row. If there is, the contact angle of the bearings 40 and 70 in the first row and the fourth row may be changed as described above.

また、奇数列の組合せ軸受の場合、背面組合せした際に軸方向中間部に位置する軸受と接触角が半径方向に対して反対方向に向く軸受は、軸方向外側から数えて同じ位置の軸受と比べて、接触角を大きくすることが好ましい。   Also, in the case of odd-numbered combination bearings, the bearings that are located in the axially intermediate portion and the bearings whose contact angle faces in the opposite direction to the radial direction when combined on the back are the bearings at the same position counted from the outside in the axial direction. In comparison, it is preferable to increase the contact angle.

例えば、図6に示す3列組合せ軸受の場合、工具側から1列目、2列目の軸受40,50の接触角α1、α2と、3列目の軸受70の接触角α4とは、半径方向に対して反対方向に向くことになり、各列の軸受の予圧による付加荷重Fa1,Fa2,Fa3は、Fa1+Fa2=Fa3、且つ、Fa3>Fa1>Fa2となり、3列目の軸受70は、1列目と2列目の軸受40,50の予圧荷重を付加するので、予圧による接触面圧が高くなる。このため、3列目の軸受70の接触角α4を、1列目の軸受40の接触角α1より大きくすることで(α1<α4、かつ、α1>α2)、3列目の軸受70の予圧荷重による接触面圧の上昇を抑えることができる。   For example, in the case of the three-row combination bearing shown in FIG. 6, the contact angles α1 and α2 of the first and second row bearings 40 and 50 from the tool side and the contact angle α4 of the third row bearing 70 are the radius. The additional loads Fa1, Fa2, and Fa3 due to the preload of the bearings in each row are Fa1 + Fa2 = Fa3, and Fa3> Fa1> Fa2, and the bearing 70 in the third row is 1 Since a preload is applied to the bearings 40 and 50 in the second and second rows, the contact surface pressure due to the preload increases. Therefore, the contact angle α4 of the third row bearing 70 is made larger than the contact angle α1 of the first row bearing 40 (α1 <α4 and α1> α2), so that the preload of the third row bearing 70 is increased. An increase in contact surface pressure due to a load can be suppressed.

なお、本発明は上述した実施形態に限定されるものでなく、適宜、変形、改良等が可能である。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.

また、本発明は、モータビルトイン主軸のような高速主軸において、特に効果を発揮できるが、それに限定されるものでなく、低速主軸の他、ベルト駆動、歯車駆動、モータ直結駆動などでも予圧荷重を大きく設定するなどして、軸受の発熱による温度上昇が高い場合にも効果があり適用可能である。   The present invention can be particularly effective for a high-speed main shaft such as a motor built-in main shaft, but is not limited thereto. In addition to a low-speed main shaft, a preload is also applied to a belt drive, a gear drive, a motor direct drive, etc. It is effective and applicable even when the temperature rise due to heat generation of the bearing is high by setting it large.

さらに、転動体は、鉄だけでなく、軽量のセラミック(例えば、窒化けい素など)材料を用いることで高速回転時の遠心力による予圧増大が抑制でき、さらに、耐焼付性を向上させることができる。この場合、全ての列の転動体をセラミック材料にしてもよいし、あるいは、内側軸受の耐焼付性をより向上させるために内側軸受のみセラミック材料としてもよい。さらには、外側軸受の玉ピッチ円径をより大きくしたり、接触角を大きくするなどして、外側軸受の焼付きリスクが高くなる場合において、外側軸受のみセラミック材料を使用してもよい。   Furthermore, the rolling elements can be made of not only iron but also a lightweight ceramic (for example, silicon nitride) material, thereby suppressing an increase in preload due to centrifugal force during high-speed rotation, and further improving seizure resistance. it can. In this case, all the rolling elements of the row may be made of a ceramic material, or only the inner bearing may be made of a ceramic material in order to further improve the seizure resistance of the inner bearing. Furthermore, when the ball pitch diameter of the outer bearing is increased or the contact angle is increased to increase the seizure risk of the outer bearing, the ceramic material may be used only for the outer bearing.

潤滑条件も、グリース潤滑に限定されるものでなく、オイルエア潤滑、オイルミスト潤滑、アンダーレース潤滑、ジェット潤滑などいずれの潤滑法を適用してもよい。
また、軸受の組合せ方法としては、背面組合せのほかに、正面組合せ(接触角が逆ハの字方向の組合せ)としてもよい。
The lubrication conditions are not limited to grease lubrication, and any lubrication method such as oil-air lubrication, oil mist lubrication, underlace lubrication, and jet lubrication may be applied.
Further, as a method of combining the bearings, in addition to the back surface combination, a front surface combination (a combination in which the contact angle is a reverse C shape) may be used.

加えて、単列軸受の多列組合せ軸受に限らず、例えば、図2及び図4において、1列目と2列目、及び3列目と4列目をそれぞれ一体形とした複列玉軸受を背面組合せや正面組合せとしてもよいし、図5において、1列目、2列目、3列目、及び4列目、5列目、6列目をそれぞれ一体形とした複列玉軸受を背面組合せや正面組合せとしてもよい。   In addition to the multi-row combination bearings of single row bearings, for example, in FIG. 2 and FIG. 4, double row ball bearings in which the first row and the second row, and the third row and the fourth row are respectively integrated. May be a backside combination or a frontal combination, and in FIG. 5, a double row ball bearing in which the first row, the second row, the third row, the fourth row, the fifth row, and the sixth row are respectively integrated. It is good also as a back surface combination and a front surface combination.

(試験1)
ここで、本実施形態(図2及び図4の組合せ軸受)に示す考案品A〜Cと、従来品を用いて、各種軸受特性を比較した。軸受寸法、試験条件については、表1と合わせて、以下に列挙する。なお、考案品A〜Cにおいて、1列目と4列目、及び2列目と3列目は同じ仕様の軸受であり、4列組合せにおいて、左右対称の配列構造としている。
(Test 1)
Here, various bearing characteristics were compared using the inventive products A to C shown in the present embodiment (the combined bearings in FIGS. 2 and 4) and the conventional product. The bearing dimensions and test conditions are listed below together with Table 1. In the devices A to C, the first and fourth rows, and the second and third rows are bearings having the same specifications, and the four-row combination has a symmetrical arrangement structure.

<軸受寸法(従来品・考案品の共通仕様部分)>
・内径:φ100mm
・外径:φ150mm
・幅:24mm
・玉径:11.112mm
・組合せ:4列背面組合せアンギュラ玉軸受
<試験条件>
・ 回転数:6,000min−1
・ 予圧すきま:−17μm
・ 潤滑:グリース潤滑
<Bearing dimensions (common specification for conventional and conceived products)>
・ Inner diameter: φ100mm
・ Outer diameter: φ150mm
・ Width: 24mm
・ Ball diameter: 11.112mm
・ Combination: 4 rows back combination angular contact ball bearing <Test conditions>
・ Number of revolutions: 6,000 min -1
・ Preload clearance: -17μm
・ Lubrication: Grease lubrication

Figure 2011052714
Figure 2011052714

表1より、従来品を100とした場合、考案品は2・3列目の発熱比率が約80%以下(20〜23%低下)に下がる。しかも、総発熱量の増加は、2%に満たない結果である。ここで、2%の増加は、外側軸受の玉ピッチ円径や接触角を従来品より若干大きくしたことによるものであるが、増加率は小さいので、軸受全体として温度特性に及ぼす影響は小さい。
この計算結果からわかるように、本考案の採用により2・3列目の軸受内部温度は、従来品に比べて下がり、内外輪温度差も小さくなり内部予圧の増加が抑制され焼付きが生じ難くなる。
From Table 1, when the conventional product is set to 100, the heat generation ratio in the second and third rows of the inventive product falls to about 80% or less (20-23% decrease). Moreover, the increase in the total calorific value is a result of less than 2%. Here, the 2% increase is due to the fact that the ball pitch circle diameter and contact angle of the outer bearing are slightly larger than those of the conventional product, but since the rate of increase is small, the effect on the temperature characteristics of the entire bearing is small.
As can be seen from the calculation results, the internal temperature of the second and third rows of bearings is lower than that of the conventional product by adopting the present invention, the temperature difference between the inner and outer rings is reduced, the increase in internal preload is suppressed, and seizure hardly occurs. Become.

また、外側軸受と内側軸受の接触角差を大きくするに伴い、外側軸受と内側軸受の発熱比の減少率が変化している。つまり、外側軸受と内側軸受の接触角差を大きくしすぎると、逆に、外側軸受の発熱量が過度に増加すると共に、両者の発熱差量が大きくなりすぎ、焼付きリスクが内側軸受と外側軸受で逆転することになる。したがって、それぞれの列の接触角は、好ましくは、最小(内側軸受)で10°以上、最大(外側軸受)で30°以下が、より好ましくは、最小(内側軸受)で15°以上、最大(外側軸受)で25°以下が、さらに好ましくは、最小(内側軸受)で15°以上、最大(外側軸受)で20°以下がよい。主軸の軸受配置や組合せ列数、モータの容量、外筒冷却の効率等、主軸の高速特性(焼付きの発生頻度やリスク)に合わせて、適正な角度差を選べばよい。   Further, as the contact angle difference between the outer bearing and the inner bearing is increased, the reduction rate of the heat generation ratio between the outer bearing and the inner bearing is changed. In other words, if the contact angle difference between the outer bearing and the inner bearing is too large, the heat generation amount of the outer bearing will increase excessively, and the heat difference difference between the two will become too large, and the seizure risk will increase. It will be reversed by the bearing. Accordingly, the contact angle of each row is preferably 10 ° or more at the minimum (inner bearing) and 30 ° or less at the maximum (outer bearing), more preferably 15 ° or more and maximum (at the inner (bearing)) (maximum ( The outer bearing is preferably 25 ° or less, more preferably 15 ° or more at the minimum (inner bearing) and 20 ° or less at the maximum (outer bearing). An appropriate angle difference may be selected in accordance with the high-speed characteristics of the main shaft (frequency and risk of seizure) such as the main shaft bearing arrangement, number of combination rows, motor capacity, and outer cylinder cooling efficiency.

(試験2)
次に、上記と同様の軸受寸法の考案品A〜C、及び従来品を用いて、以下の試験条件にて軸受モーメント剛性を比較した。
(Test 2)
Next, the bearing moment stiffness was compared under the following test conditions using the inventive products A to C having the same bearing dimensions as those described above and the conventional product.

<試験条件>
・ 予圧すきま:−17μm
・ 傾き角度:30”(秒)
<Test conditions>
・ Preload clearance: -17μm
・ Tilt angle: 30 ”(seconds)

Figure 2011052714
Figure 2011052714

表2の計算結果から、本考案品の付随的な効果として軸受モーメント剛性の向上が図れたことがわかる。特に、考案品Cの場合、従来品に比べて約10%のモーメント剛性の向上が期待できる。主軸のラジアル方向の曲げ剛性は、軸受剛性以外に軸自身の曲げ剛性との組合せで決定される。軸受のモーメント剛性の向上により、軸自身の曲がりも少なくなるので実際の主軸の曲げ剛性としては、本計算結果以上にその効果が期待できる。   From the calculation results in Table 2, it can be seen that the bearing moment rigidity can be improved as an incidental effect of the product of the present invention. In particular, the device C can be expected to have about 10% improvement in moment rigidity compared to the conventional product. The bending rigidity in the radial direction of the main shaft is determined by a combination with the bending rigidity of the shaft itself in addition to the bearing rigidity. By improving the moment rigidity of the bearing, the bending of the shaft itself is also reduced. Therefore, the actual bending rigidity of the main shaft can be expected to be more effective than this calculation result.

(試験3)
次に、上記と同様の軸受寸法の考案品A〜C、及び従来品を用いて、以下の試験条件にて軸受アキシャル剛性を比較した。
(Test 3)
Next, the bearing axial rigidity was compared under the following test conditions using the inventive products A to C having the same bearing dimensions as those described above and the conventional product.

<試験条件>
・ 予圧すきま:−31μm
・ 外部アキシャル荷重:3000N
<Test conditions>
・ Preload clearance: -31μm
・ External axial load: 3000N

Figure 2011052714
Figure 2011052714

表3の計算結果から、本考案品のさらなる付随的な効果として軸受アキシャル剛性が増加することがわかる。特に、考案品Cの場合、従来品に比べて約8%増加する。   From the calculation results in Table 3, it can be seen that the bearing axial rigidity increases as a further incidental effect of the product of the present invention. In particular, the device C increases by about 8% compared to the conventional product.

(試験4)
さらに、以下の試験条件にて、アキシャル荷重負荷時の1列目、2列目の軸受の荷重分担率、及び1列目に対する2列目の接触面圧比を比較した。
(Test 4)
Furthermore, under the following test conditions, the load sharing ratios of the first and second rows of bearings when an axial load was applied, and the contact surface pressure ratio of the second row to the first row were compared.

<試験条件>
・ 予圧すきま:−17μm
・ 外部アキシャル荷重:3000N
<Test conditions>
・ Preload clearance: -17μm
・ External axial load: 3000N

Figure 2011052714
Figure 2011052714

Figure 2011052714
Figure 2011052714

表4に示す計算結果から、アキシャル荷重を負荷した場合、負荷側である1・2列目において、接触角が大きい1列目の方が荷重分担が増える作用がある。つまり、高速回転でアキシャル方向の外部荷重を負荷した場合、内側軸受である2列目の負荷荷重を小さくでき、この点でも内側軸受が焼付きなどの損傷を受けづらくなることがわかる。   From the calculation results shown in Table 4, when an axial load is applied, in the first and second rows on the load side, the first row having a larger contact angle has the effect of increasing the load sharing. That is, when an external load in the axial direction is applied at high speed rotation, the load load in the second row, which is the inner bearing, can be reduced, and it can be understood that the inner bearing is less susceptible to damage such as seizure.

また、表5に示す計算結果から、本考案品は、従来品に比べ、1列目に対する2列目軸受の内外輪溝と玉間の接触面圧の比が低下しているのがわかる。本考案品の低下の度合いは、従来品に比べ、わずか2〜5%程度と見受けられるが、焼付き発生の有無は、転がり接触部でPV値が増加し、局部発熱大となり、油膜が切れるか否かの境界点、いわゆるクリティカルポイントを越えるかどうかで決まる。   From the calculation results shown in Table 5, it can be seen that the ratio of the contact surface pressure between the inner and outer ring grooves of the second row bearing and the ball of the present invention product is lower than that of the conventional product. The degree of decrease in the inventive product seems to be only about 2 to 5% compared to the conventional product. However, the presence or absence of seizure increases the PV value at the rolling contact portion, increases local heat generation, and cuts the oil film. It is determined by whether the boundary point of whether or not, so-called critical point is exceeded.

主軸用高速軸受の予圧は、主軸軸受剛性をできるだけ大きくする必要があり、このクリティカルポイント近傍に設定されるため、わずかでも接触面圧を下げた方が焼付きが発生し難くなるので、この接触面圧の減少は効果として大きい。   The preload of the high-speed bearing for the main shaft needs to increase the rigidity of the main shaft bearing as much as possible and is set in the vicinity of this critical point. The reduction in surface pressure is significant.

20 主軸装置
22 回転軸
30 ロータ
32 ステータ
40,50,60,70,80,90 前側軸受(多列組合せアンギュラ玉軸受)
α1、α2、α3、α4、α5、α6 接触角
PCD1,PCD2,PCD3,PCD4、PCD5,PCD6 玉ピッチ円径
H ハウジング
20 Spindle device 22 Rotating shaft 30 Rotor 32 Stator 40, 50, 60, 70, 80, 90 Front bearing (multi-row angular contact ball bearing)
α1, α2, α3, α4, α5, α6 Contact angle PCD1, PCD2, PCD3, PCD4, PCD5, PCD6 Ball pitch circle diameter H Housing

Claims (3)

3個以上のアンギュラ玉軸受を軸方向に配列してなる多列組合せアンギュラ玉軸受において、
軸方向内側に配置される前記アンギュラ玉軸受の玉ピッチ円径が軸方向外側に配置される前記アンギュラ玉軸受の玉ピッチ円径よりも小さいことを特徴とする多列組合せアンギュラ玉軸受。
In a multi-row combination angular contact ball bearing in which three or more angular contact ball bearings are arranged in the axial direction,
A multi-row combination angular contact ball bearing characterized in that a ball pitch circle diameter of the angular ball bearing arranged on the inner side in the axial direction is smaller than a ball pitch circle diameter of the angular ball bearing arranged on the outer side in the axial direction.
前記軸方向内側に配置される前記アンギュラ玉軸受の接触角は、前記軸方向外側に配置される前記アンギュラ玉軸受の接触角よりも小さいことを特徴とする請求項1に記載の多列組合せアンギュラ玉軸受。   The contact angle of the angular ball bearing disposed on the inner side in the axial direction is smaller than the contact angle of the angular ball bearing disposed on the outer side in the axial direction. Ball bearing. 工作機械主軸を支持することを特徴とする請求項1または2に記載の多列組合せアンギュラ玉軸受。   The multi-row combination angular contact ball bearing according to claim 1, wherein the multi-row combination angular contact ball bearing supports a machine tool main shaft.
JP2009199748A 2009-08-31 2009-08-31 Multi-row combination angular ball bearing Pending JP2011052714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009199748A JP2011052714A (en) 2009-08-31 2009-08-31 Multi-row combination angular ball bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009199748A JP2011052714A (en) 2009-08-31 2009-08-31 Multi-row combination angular ball bearing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013216744A Division JP2014059060A (en) 2013-10-17 2013-10-17 Multi-row combination angular contact ball bearing

Publications (1)

Publication Number Publication Date
JP2011052714A true JP2011052714A (en) 2011-03-17

Family

ID=43941940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009199748A Pending JP2011052714A (en) 2009-08-31 2009-08-31 Multi-row combination angular ball bearing

Country Status (1)

Country Link
JP (1) JP2011052714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI724509B (en) * 2018-09-13 2021-04-11 日商日本精工股份有限公司 Spindle device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039191A (en) * 2000-07-18 2002-02-06 Nsk Ltd Rotating support device for turbocharger
JP2006029473A (en) * 2004-07-16 2006-02-02 Nsk Ltd Angular ball bearing and machine tool
JP2006322496A (en) * 2005-05-18 2006-11-30 Ntn Corp Multi-row angular ball bearing
JP2006329265A (en) * 2005-05-24 2006-12-07 Nsk Ltd Rolling bearing
JP2007262146A (en) * 2006-03-27 2007-10-11 Nsk Ltd Grease composition and spindle apparatus
JP2008019943A (en) * 2006-07-12 2008-01-31 Ntn Corp Combination bearing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039191A (en) * 2000-07-18 2002-02-06 Nsk Ltd Rotating support device for turbocharger
JP2006029473A (en) * 2004-07-16 2006-02-02 Nsk Ltd Angular ball bearing and machine tool
JP2006322496A (en) * 2005-05-18 2006-11-30 Ntn Corp Multi-row angular ball bearing
JP2006329265A (en) * 2005-05-24 2006-12-07 Nsk Ltd Rolling bearing
JP2007262146A (en) * 2006-03-27 2007-10-11 Nsk Ltd Grease composition and spindle apparatus
JP2008019943A (en) * 2006-07-12 2008-01-31 Ntn Corp Combination bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI724509B (en) * 2018-09-13 2021-04-11 日商日本精工股份有限公司 Spindle device

Similar Documents

Publication Publication Date Title
JP5880707B2 (en) Compound plain bearing and wind power generator using this bearing
JP6527721B2 (en) Spindle device
KR102026075B1 (en) Combination ball bearing and main shaft device for machine tool
JP2014059060A (en) Multi-row combination angular contact ball bearing
JP6502128B2 (en) Spindle device
JP6289845B2 (en) Tapered roller bearing
JP2006326695A (en) Bearing device for main spindle of machine tool
JP2008019943A (en) Combination bearing
JP2011052714A (en) Multi-row combination angular ball bearing
JP6565454B2 (en) Combination ball bearing, spindle device, and machine tool
JP2013053713A (en) Roller bearing and wind power generator speed increasing gear
JP2008110426A (en) Spindle device
JP2007120767A (en) Machine tool
EP3875190A1 (en) Spindle device having built-in motor
WO2020090277A1 (en) Spindle device having built-in motor
JP7367298B2 (en) Spindle device
JPH1043909A (en) Rotary body driving device
JP2005240881A (en) Angular ball bearing for machine tool
JP2020193698A (en) Spindle device and motor device
JP5786302B2 (en) Sealed multi-row tapered roller bearings
JP2008044082A (en) Running-in process of rolling bearing device
JP2006177486A (en) Support device for rotating shaft
JP2010249274A (en) Roll bearing
JP2003227525A (en) Running-in method of roller bearing
JP2005042850A (en) Double row roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131025

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210