WO2020090277A1 - Spindle device having built-in motor - Google Patents

Spindle device having built-in motor Download PDF

Info

Publication number
WO2020090277A1
WO2020090277A1 PCT/JP2019/036849 JP2019036849W WO2020090277A1 WO 2020090277 A1 WO2020090277 A1 WO 2020090277A1 JP 2019036849 W JP2019036849 W JP 2019036849W WO 2020090277 A1 WO2020090277 A1 WO 2020090277A1
Authority
WO
WIPO (PCT)
Prior art keywords
spindle device
motor
housing
air
bearing
Prior art date
Application number
PCT/JP2019/036849
Other languages
French (fr)
Japanese (ja)
Inventor
恭平 松永
翔一郎 小栗
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to JP2020554813A priority Critical patent/JP7067637B2/en
Publication of WO2020090277A1 publication Critical patent/WO2020090277A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/04Headstocks; Working-spindles; Features relating thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B47/00Drives or gearings; Equipment therefor
    • B24B47/10Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces
    • B24B47/12Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces by mechanical gearing or electric power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/06Dust extraction equipment on grinding or polishing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/80Labyrinth sealings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers

Definitions

  • the present invention relates to a motor built-in type spindle device.
  • a spindle device applied to machine tools, etc. is equipped with a cutting tool at the tip of the rotary shaft and rotates at high speed to perform cutting and grinding of the workpiece.
  • a large amount of machining liquid is supplied to the machining site for the purpose of lubricating and cooling the cutting tool and the machining site. That is, due to the lubricating effect of the working fluid, it is possible to improve the machinability, suppress the wear of the working edge, and extend the tool life.
  • the cooling effect of the machining fluid suppresses the thermal expansion of the cutting tool and the workpiece to improve the machining accuracy and prevent the heat welding of the machining site to improve the machining efficiency and the surface texture of the machined surface. Planned.
  • the distance between the spindle device and the machining area may be short, and problems may occur due to the large amount of machining fluid also on the front surface of the spindle device. That is, a large amount of machining fluid supplied may infiltrate into the bearing that supports the rotary shaft, and if the machining fluid infiltrates into the bearing, it may cause lubrication failure or seizure of the bearing. Therefore, various waterproof mechanisms are applied to the spindle device for the purpose of improving the waterproof property of the spindle device and preventing the machining fluid from entering the inside of the bearing.
  • a spindle device used in a machine tool
  • the bearing has a dmn value of 400,000 or more (more preferably 500,000 or more)
  • the spindle device rotates integrally with the rotary shaft at the front end (tool side).
  • a non-contact waterproof mechanism called a flinger is often applied.
  • the flinger narrows the clearance between the flinger and the housing to form a so-called labyrinth seal to improve waterproofness. This is because contact seals such as oil seals and V seals generate a large amount of heat from the seal contact portion during high-speed rotation, and the seal members wear and it is difficult to maintain waterproof performance for a long period of time.
  • Patent Document 1 discloses a spindle device having a motor built-in structure including a flinger.
  • FIG. 4 is a sectional view showing an example of a conventional spindle device having a motor built-in structure including a flinger.
  • the spindle device 100 has a motor 101 inside the spindle device 100, and drives the motor 101 to rotate a rotary shaft 102.
  • the flinger 105 is fixed to the front end portion of the spindle device 100 so as to rotate integrally with the rotary shaft 102, and forms a labyrinth seal portion 108 between the front housing 106 of the housing 103 and the front outer ring retainer 107. ..
  • the flinger 105 integrally rotates at a high speed together with the rotary shaft 102, so that the working fluid applied to the flinger 105 is spun outward in the radial direction by centrifugal force along with the above-mentioned labyrinth effect, and the inside of the spindle device 100, in particular, Also, it has an effect of suppressing the infiltration of the working fluid into the inside of the front bearing 109.
  • the spindle device 100 As shown in FIG. 4, thermal energy is generated in the motor 101 due to various losses that occur when the motor is driven.
  • the heat energy heats the air in the motor chamber 104, in which the motor 101 is housed, into high-temperature air, particularly inside the housing 103.
  • the spindle device 100 is generally designed so that air, water, dust, etc. do not enter from the outside as much as possible, except for the labyrinth seal portion 108 provided in the front portion of the rotary shaft 102, In many cases, there is no hole or the like that connects the internal space of the spindle device 100 to the outside. Therefore, the internal space of the spindle device 100 (in particular, the motor chamber 104) has a higher pressure than the outside due to the high temperature air.
  • the vicinity of the flinger 105 is the portion where the peripheral speed becomes the highest during the rotation of the rotary shaft 102, and the air near the flinger 105 is accompanied by the rotation of the flinger 105.
  • the pressure drops as the velocity of the fluid increases. That is, the air that accompanies the rotation of the flinger 105, which has the highest peripheral speed in the spindle device 100, has the highest speed in the air in the vicinity of the spindle device 100, and thus the pressure thereof is also the lowest.
  • the thermal energy generated in the motor 101 raises the pressure of the air in the motor chamber 104, while the rotation of the flinger 105 lowers the pressure of the air in the vicinity of the flinger 105.
  • the front bearing 109 is located in the middle of the space connecting the internal space of the spindle device 100 and the labyrinth seal portion 108, the high temperature air in the motor chamber 104 is rotated by the front bearing while the rotating shaft 102 is rotating. It passes through the gap in 109.
  • the movement of the hot air forcedly moves the lubricant (oil, grease, etc.) of the front bearing 109 from a place suitable for lubrication, and the hot air passes through the inside of the front bearing 109, so that the bearing Since the internal temperature of the bearing 109 rises and the environment in which the bearing 109 is used becomes harsh, there is a risk that the bearing 109 may be damaged early.
  • the present invention has been made in view of the above-mentioned problems, and an object thereof is to improve the waterproof performance, suppress hot air due to heat generation of a motor from passing through the front bearing, and prevent early damage of the bearing. It is an object of the present invention to provide a spindle device of a motor built-in system capable of preventing the above.
  • the above object of the present invention is achieved by the following configurations.
  • a motor built-in spindle device comprising: A flinger fixed to the front end side of the rotating shaft to form a labyrinth seal with the housing, The motor-built-in type spindle device, wherein the housing has at least one air purge hole communicating with the outside of the spindle device, and an annular groove having the air purge hole opened and facing the labyrinth seal.
  • the waterproof performance is improved by the flinger, and one end of the air purge hole is opened in the annular groove facing the labyrinth seal to supply the air from the outside of the spindle device to the labyrinth seal.
  • the pressure difference between the labyrinth seal and the motor chamber is eliminated. This prevents hot air in the motor chamber, which is heated by the heat energy generated from the motor, from passing through the front bearing, reducing the temperature rise inside the front bearing, and improving the reliability of the front bearing and, by extension, the spindle device. Can be improved.
  • FIG. 1 is a sectional view of a motor built-in type spindle device according to a first embodiment of the present invention. It is sectional drawing of the spindle device of a motor built-in system which concerns on 2nd Embodiment of this invention. It is sectional drawing of the spindle device of a motor built-in system which concerns on 3rd Embodiment of this invention. It is sectional drawing of the conventional spindle device.
  • the side of the rotary shaft on which the tool is attached (tool side) is also referred to as the front side, and the side opposite to the tool side is also referred to as the rear side.
  • FIG. 1 is a cross-sectional view of a motor built-in type spindle device according to a first embodiment of the present invention.
  • a motor-built-in type spindle device 10 for machine tool spindles hereinafter also simply referred to as “spindle device 10”
  • a rotary shaft 11 is arranged on the tool side (left side in FIG. 1). It is rotatably supported by the housing H by two rows of front bearings 50, 50 and two rows of rear bearings 60, 60 arranged on the opposite side of the tool (on the right side in FIG. 1).
  • the housing H is mainly composed of a front housing 12, an outer cylinder 13, a rear housing 14, and a rear lid 15 in this order from the tool side, and is fastened and fixed by bolts (not shown).
  • Each front bearing 50 is an angular ball bearing having an outer ring 51, an inner ring 52, balls 53 as rolling elements arranged with a contact angle, and a cage (not shown), and each rear bearing 60.
  • the front bearings 50, 50 (parallel combination) and the rear bearings 60, 60 (parallel combination) are arranged so as to cooperate with each other to form a back surface combination.
  • the outer rings 51, 51 of the front bearings 50, 50 are internally fitted to the front housing 12, and the outer ring spacer 54 is fixed by the front outer ring retainer 16 screwed and fixed to the female screw 27 formed in the front housing 12. It is positioned and fixed in the axial direction with respect to the front housing 12 via.
  • the female screw 27 projects forward from the front end surface 12a of the portion of the front housing 12 into which the outer races 51, 51 are fitted, and is formed on the inner peripheral surface of the front cylindrical portion 12b facing the flinger 40 described later. ..
  • the inner rings 52, 52 of the front bearings 50, 50 are fitted onto the rotary shaft 11 by the nut 17 fastened to the rotary shaft 11 via a flinger 40 and an inner ring spacer 55 described later. It is positioned and fixed in the axial direction.
  • the outer rings 61, 61 of the rear bearings 60, 60 are fitted in the sleeve 18 which is slidably fitted in the rear housing 14 in the axial direction, and are integrally formed in the sleeve 18 by bolts (not shown).
  • the fixed rear outer ring retainer 19 positions and fixes the sleeve 18 in the axial direction via the outer ring spacer 64.
  • the inner rings 62, 62 of the rear bearings 60, 60 are fitted onto the rotating shaft 11 by another nut 21, which is fastened to the rotating shaft 11, via the inner ring spacers 65, 65. It is positioned and fixed in the axial direction.
  • a coil spring 23 is arranged between the rear housing 14 and the rear outer ring retainer 19, and the spring force of the coil spring 23 pushes the rear outer ring retainer 19 together with the sleeve 18 rearward. As a result, preload is applied to the front bearings 50, 50 and the rear bearings 60, 60.
  • the tool side of the rotary shaft 11 is provided with a tool mounting hole and a female screw (not shown) formed in the axial direction through the center of the shaft.
  • the tool mounting hole and the female screw are used to mount a tool (not shown) such as a cutting tool on the rotary shaft 11.
  • a conventionally known draw bar (not shown) may be slidably inserted into the shaft core of the rotary shaft 11.
  • Each of the drawbars has a collet portion for fixing a tool holder (not shown), and is biased in the direction opposite to the tool side by the force of the disc spring.
  • a rotor 31 that is integrally rotatable with the rotating shaft 11 and a stator 32 that is arranged around the rotor 31 are disposed substantially in the axial center between the front bearings 50 and 50 and the rear bearings 60 and 60 of the rotating shaft 11.
  • a motor 30 including is provided.
  • the stator 32 is fixed to the outer cylinder 13 by fitting the cooling jacket 33 shrink-fitted into the stator 32 into the outer cylinder 13 forming the housing H.
  • An electric wire 35 that is connected to the coil of the stator 32 and supplies electric power to the stator 32 is inserted into the rear housing 14 and the wiring holes 36 a and 36 b provided in the rear lid 15, and is connected to an external power source.
  • the motor 30 supplies electric power to the stator 32 via the electric wire 35 to generate a rotational force in the rotor 31 to rotate the rotating shaft 11.
  • the motor 30 is housed in a motor chamber 34 that is a space surrounded by the front housing 12, the outer cylinder 13, the rear housing 14, and the sleeve 18 around the rotary shaft 11.
  • the rear lid 15 has an opening cover 28 that closes the opening 15a formed at the rear end.
  • the flinger 40 is externally fitted to the front end side of the rotary shaft 11 on the tool side (left side in the drawing) of the front bearings 50, 50, and is fixed to the rotary shaft 11 together with the inner rings 52, 52 by the nut 17. ing.
  • the flinger 40 includes a boss portion 41 which is fitted onto the rotary shaft 11, a disc portion 42 which extends radially outward from the boss portion 41, and a ring shape which extends rearward from the outer peripheral portion of the disc portion 42. And an extended annular portion 43.
  • the inner side surface of the disk portion 42 in the axial direction is arranged to face the front housing 12 and the front end surface of the front outer ring retainer 16 in the axial direction with a slight axial clearance, for example, a clearance of about 0.5 mm.
  • the inner peripheral surface of 43 is radially opposed to the outer peripheral surface of the front housing 12 with a slight radial gap, for example, a gap of about 0.5 mm.
  • a so-called labyrinth seal 44 is formed between the flinger 40, which is a rotating member, and the front housing 12 and the front outer ring retainer 16, which are non-rotating members.
  • annular groove 71 is formed on the outer peripheral surface of the front housing 12 facing the inner peripheral surface of the annular portion 43 of the flinger 40, over the entire circumference.
  • the annular groove 71 is connected to one end of an air purge hole 72 that is formed by bending through the housing H (rear lid 15, rear housing 14, outer cylinder 13, and the housing 12), and the other end of the air purge hole 72 is connected. Is connected to a pump P to supply air to the annular groove 71 from the outside of the spindle device 10. Since the annular groove 71 is a circumferential groove formed on the outer peripheral surface of the front housing 12 over the entire circumference, air is supplied over the entire circumference of the annular groove 71, and the pressure of the labyrinth seal 44 is reduced.
  • the other end of the air purge hole 72 is not connected to the pump P, and even if it is opened, it has the effect of sending air to the opening to the flinger 40, but more preferably the pump P is used. By using it, the above effect can be further promoted. Further, when the pump P is used, the air pressure and the air flow rate of the pump P can be arbitrarily set, but the air is sent by using the pump P having appropriate specifications according to the maximum rotation speed of the spindle and the size of the flinger 40. Thereby, the internal pressure in the annular groove 71 can be quickly equalized.
  • the pressure of the motor chamber 34 is controlled by supplying the external air from the air purge hole 72 to the annular groove 71.
  • the pressure on the labyrinth seal 44 is balanced. Therefore, the air in the motor chamber 34, which has become hot due to the heat generated by the motor 30, does not easily move to the front of the spindle device 10 through the gap in the front bearing 50. Therefore, the forced movement of the lubricant in the front bearing 50 and the abnormal temperature rise of the bearing portion are suppressed, the early damage of the front bearing 50 can be prevented, and the reliability of the spindle device 10 is improved.
  • the pressure of the labyrinth seal 44 becomes higher than that of the outside of the spindle device 10, and an air curtain is formed. It is possible to prevent the machining fluid that falls on the spindle device 10 from entering the front bearings 50, 50 side. Further, even if the machining fluid or dust enters the labyrinth portion, it can be discharged from the annular portion 43 to the outside by the swinging-off effect by the centrifugal force of the flinger 40, and the machining fluid or dust enters the rotary shaft 11. Can be prevented.
  • the number of air purge holes 72, the phase in the circumferential direction, the cross-sectional area of the opening, and the like can be appropriately designed according to the specifications of the spindle device 10, usage conditions, and the like.
  • a filter member such as a silencer may be attached to the pump P in order to prevent foreign matter such as dust and mist from entering.
  • the annular groove 73 of the present embodiment is formed in an annular shape on the axial end surface of the front housing 12 facing the disk portion 42 of the flinger 40.
  • Air is supplied to the annular groove 73 from the outside of the spindle device 10A by the air purge hole 72 to which the pump P is connected, as in the spindle device 10 of the first embodiment. Therefore, as in the first embodiment, by supplying external air from the air purge hole 72 to the annular groove 73, the pressure in the motor chamber 34 and the pressure in the labyrinth seal 44 are balanced, and the heat generated by the motor 30 causes a high temperature.
  • annular groove 73 is also a circumferential groove formed over the entire circumference on the axial end surface of the front housing 12, the pressure of the labyrinth seal 44 is equalized in the circumferential direction.
  • Other configurations and operations are similar to those of the first embodiment of the present invention.
  • the spindle device 10B of the present embodiment has a plurality of bypass holes 24 that connect the motor chamber 34 and the labyrinth seal 44 to the front housing. 12 are formed.
  • the air resistance of the bypass hole 24 is smaller than the air resistance of the internal clearance of the front bearing 50 due to the size of the cross-sectional area and the like.
  • the bypass hole 24 is a straight hole that extends in the front housing 12 in the axial direction, and has a circular cross-sectional area that does not change in the longitudinal direction, and can be easily processed.
  • the plurality of bypass holes 24 are formed by the inner peripheral surface of the portion of the front housing 12 into which the outer rings 51, 51 of the front bearings 50, 50 are fitted, and the female screw 27 with which the front outer ring retainer 16 is screwed. It is formed on the outer diameter side with respect to the outer diameter side and on the inner diameter side with respect to the cooling groove 26 formed on the outer peripheral surface in the radial direction.
  • the present invention is not limited to the above-described respective embodiments, and modifications, improvements, etc. can be made as appropriate.
  • the motor built-in type spindle device of the present invention can be preferably used for a spindle of a grinder.
  • a motor built-in spindle device comprising: A flinger fixed to the front end side of the rotating shaft to form a labyrinth seal with the housing, The motor-built-in type spindle device, wherein the housing has at least one air purge hole communicating with the outside of the spindle device, and an annular groove having the air purge hole opened and facing the labyrinth seal.
  • the waterproof performance is improved by the flinger, one end of the air purge hole is opened in the annular groove facing the labyrinth seal, and the air is supplied from the outside of the spindle device, so that the motor chamber and the labyrinth seal are separated. Balance the pressure.
  • the high temperature air in the motor chamber is suppressed from moving in the front bearing due to the pressure difference between the motor chamber and the labyrinth seal, so that the temperature rise of the front bearing is reduced and the front bearing, and by extension, the spindle device.
  • the reliability can be improved.
  • the motor built-in spindle device according to (1) or (2) which is for a machine tool spindle. According to this structure, it can be suitably used for a machine tool spindle.
  • the motor built-in type spindle device according to (1) or (2) which is for a spindle of a grinding machine. According to this structure, it can be suitably used for a spindle of a grinding machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Turning (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Motor Or Generator Frames (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

A spindle device (10) having a built-in motor, wherein a flinger (40) is fixed to one end side of a rotating shaft (11) and a labyrinth seal (44) is formed between the flinger (40) and a housing H. The housing H has: at least one air purge hole (72) that connects to outside the spindle device (10); and an annular groove (71) into which the air purge hole (72) opens and which faces the labyrinth seal (44). As a result, water-resistance performance can be improved, high-temperature air from heat generated by the motor can be prevented from passing through front bearings, and premature damage to bearings can be prevented.

Description

モータビルトイン方式のスピンドル装置Motor built-in spindle device
 本発明は、モータビルトイン方式のスピンドル装置に関する。 The present invention relates to a motor built-in type spindle device.
 工作機械等に適用されるスピンドル装置は、回転軸の先端に刃具を備え、高速回転して被加工物の切削加工や研削加工を行っている。一般的に加工に際しては、刃具および加工部位の潤滑や冷却を目的として、多量の加工液が加工部位に供給される。即ち、加工液の潤滑効果により、被削特性の向上、加工刃先の摩耗抑制、工具寿命の延長などが図られる。また、加工液の冷却効果により、刃具及び被加工物の熱膨張を抑制して、加工精度の向上や、加工部位の熱溶着を防止して加工効率の向上や加工面の表面性状の向上が図られる。 A spindle device applied to machine tools, etc., is equipped with a cutting tool at the tip of the rotary shaft and rotates at high speed to perform cutting and grinding of the workpiece. Generally, in machining, a large amount of machining liquid is supplied to the machining site for the purpose of lubricating and cooling the cutting tool and the machining site. That is, due to the lubricating effect of the working fluid, it is possible to improve the machinability, suppress the wear of the working edge, and extend the tool life. In addition, the cooling effect of the machining fluid suppresses the thermal expansion of the cutting tool and the workpiece to improve the machining accuracy and prevent the heat welding of the machining site to improve the machining efficiency and the surface texture of the machined surface. Planned.
 しかしながら、スピンドル装置と加工部位との距離が近いこともあり、加工液がスピンドル装置の前面にも多量にかかることで問題が発生する場合がある。即ち、多量に供給される加工液が回転軸を支持する軸受内部に浸入することがあり、加工液が軸受内部に浸入した場合、軸受の潤滑不良や焼付きなどの原因となる。そのため、スピンドル装置の防水性を高め、軸受内部への加工液浸入を防止する目的で様々な防水機構が、スピンドル装置に適用される。 However, the distance between the spindle device and the machining area may be short, and problems may occur due to the large amount of machining fluid also on the front surface of the spindle device. That is, a large amount of machining fluid supplied may infiltrate into the bearing that supports the rotary shaft, and if the machining fluid infiltrates into the bearing, it may cause lubrication failure or seizure of the bearing. Therefore, various waterproof mechanisms are applied to the spindle device for the purpose of improving the waterproof property of the spindle device and preventing the machining fluid from entering the inside of the bearing.
 特に、工作機械に使用されるスピンドル装置では、軸受のdmn値が40万以上(より好ましくは50万以上)で使用される場合、スピンドル装置の前端部(工具側)に、回転軸と一体回転するフリンガーと呼ばれる非接触の防水機構が適用されることが多い。フリンガーは、当該フリンガーとハウジングとの間のすきまを狭くして、所謂ラビリンスシールを構成して防水性の向上を図るものである。これは、オイルシールやVシールなどの接触シールでは、高速回転時にシール接触部からの発熱が大きく、シール部材が摩耗して防水性能を長期間にわたって維持することが難しいためである。 In particular, in a spindle device used in a machine tool, when the bearing has a dmn value of 400,000 or more (more preferably 500,000 or more), the spindle device rotates integrally with the rotary shaft at the front end (tool side). A non-contact waterproof mechanism called a flinger is often applied. The flinger narrows the clearance between the flinger and the housing to form a so-called labyrinth seal to improve waterproofness. This is because contact seals such as oil seals and V seals generate a large amount of heat from the seal contact portion during high-speed rotation, and the seal members wear and it is difficult to maintain waterproof performance for a long period of time.
 また、近年の工作機械用主軸においては、加工効率を向上させるために主軸回転数の高速化が進んできており、それに伴い、モータビルトイン方式のスピンドル装置が採用されてきている。例えば、特許文献1には、フリンガーを備えるモータビルトイン構造のスピンドル装置が開示されている。 In addition, in recent years, in spindles for machine tools, the spindle speed has been increasing in order to improve machining efficiency, and along with that, motor built-in spindle devices have been adopted. For example, Patent Document 1 discloses a spindle device having a motor built-in structure including a flinger.
 図4は、フリンガーを備える従来のモータビルトイン構造のスピンドル装置の一例を示す断面図である。このスピンドル装置100は、スピンドル装置100の内部にモータ101を有し、このモータ101を駆動させて回転軸102を回転させる。また、フリンガー105は、スピンドル装置100の前端部に、回転軸102と一体回転するように固定され、ハウジング103の前側ハウジング106及び前側外輪押さえ107との間にラビリンスシール部108を形成している。これにより、フリンガー105は、回転軸102とともに高速で一体回転するため、上記のラビリンス効果とともに、フリンガー105にかかる加工液を遠心力で径方向外方に振り飛ばして、スピンドル装置100の内部、特に、前側軸受109の内部への加工液の浸入を抑制する効果も有している。 FIG. 4 is a sectional view showing an example of a conventional spindle device having a motor built-in structure including a flinger. The spindle device 100 has a motor 101 inside the spindle device 100, and drives the motor 101 to rotate a rotary shaft 102. The flinger 105 is fixed to the front end portion of the spindle device 100 so as to rotate integrally with the rotary shaft 102, and forms a labyrinth seal portion 108 between the front housing 106 of the housing 103 and the front outer ring retainer 107. .. As a result, the flinger 105 integrally rotates at a high speed together with the rotary shaft 102, so that the working fluid applied to the flinger 105 is spun outward in the radial direction by centrifugal force along with the above-mentioned labyrinth effect, and the inside of the spindle device 100, in particular, Also, it has an effect of suppressing the infiltration of the working fluid into the inside of the front bearing 109.
日本国特開2016-26900号公報Japanese Patent Laid-Open No. 2016-26900
 ところで、図4に示すようなスピンドル装置100では、モータ駆動時に発生する種々の損失によりモータ101において熱エネルギーが発生する。この熱エネルギーによって、ハウジング103の内部では、特に、モータ101が収容されるモータ室104の空気が加熱されて高温の空気となる。さらに、スピンドル装置100は、外部から空気や水分、ゴミ等が極力入り込まないように設計されるのが一般的なため、回転軸102の前部に設けられたラビリンスシール部108を除いては、スピンドル装置100の内部空間が外部と繋がるような穴等が開いていないことが多い。そのため、上記の高温空気によりスピンドル装置100の内部空間(特に、モータ室104)は、外部に比べて圧力が高くなる。 By the way, in the spindle device 100 as shown in FIG. 4, thermal energy is generated in the motor 101 due to various losses that occur when the motor is driven. The heat energy heats the air in the motor chamber 104, in which the motor 101 is housed, into high-temperature air, particularly inside the housing 103. Further, since the spindle device 100 is generally designed so that air, water, dust, etc. do not enter from the outside as much as possible, except for the labyrinth seal portion 108 provided in the front portion of the rotary shaft 102, In many cases, there is no hole or the like that connects the internal space of the spindle device 100 to the outside. Therefore, the internal space of the spindle device 100 (in particular, the motor chamber 104) has a higher pressure than the outside due to the high temperature air.
 一方、フリンガー105の近傍は、回転軸102の回転中に最も周速が速くなる部分であり、フリンガー105近傍の空気はフリンガー105の回転に連れ回る。ベルヌーイの定理によると、流体の速度が増加するとその圧力は低下する。すなわち、スピンドル装置100中で最も周速の速いフリンガー105の回転に連れ回る空気は、スピンドル装置100の近傍の空気中で最も速度が高くなるため、その圧力も最も低くなる。 On the other hand, the vicinity of the flinger 105 is the portion where the peripheral speed becomes the highest during the rotation of the rotary shaft 102, and the air near the flinger 105 is accompanied by the rotation of the flinger 105. According to Bernoulli's theorem, the pressure drops as the velocity of the fluid increases. That is, the air that accompanies the rotation of the flinger 105, which has the highest peripheral speed in the spindle device 100, has the highest speed in the air in the vicinity of the spindle device 100, and thus the pressure thereof is also the lowest.
 上記のように、モータ101で発生した熱エネルギーによりモータ室104内の空気の圧力が高くなる一方、フリンガー105の回転によりフリンガー105近傍の空気の圧力が低くなることで、スピンドル装置100の内部においては、モータ室104からスピンドル装置100の前面方向(フリンガー105に向かう方向)に空気が流れる現象が発生する。 As described above, the thermal energy generated in the motor 101 raises the pressure of the air in the motor chamber 104, while the rotation of the flinger 105 lowers the pressure of the air in the vicinity of the flinger 105. Causes a phenomenon in which air flows from the motor chamber 104 toward the front surface of the spindle device 100 (direction toward the flinger 105).
 また、この場合、スピンドル装置100の内部空間とラビリンスシール部108とをつなぐ空間の途中には前側軸受109が位置しているため、回転軸102の回転中にモータ室104の高温空気が前側軸受109内の隙間を通過する。この高温空気の移動によって、前側軸受109の潤滑剤(オイルやグリースなど)が潤滑に適切な場所から強制的に移動させられること、および、高温の空気が前側軸受109内部を通過することにより軸受109の内部温度が上昇して、軸受109の使用環境が苛酷なものとなることから、軸受109の早期損傷につながる虞があった。 Further, in this case, since the front bearing 109 is located in the middle of the space connecting the internal space of the spindle device 100 and the labyrinth seal portion 108, the high temperature air in the motor chamber 104 is rotated by the front bearing while the rotating shaft 102 is rotating. It passes through the gap in 109. The movement of the hot air forcedly moves the lubricant (oil, grease, etc.) of the front bearing 109 from a place suitable for lubrication, and the hot air passes through the inside of the front bearing 109, so that the bearing Since the internal temperature of the bearing 109 rises and the environment in which the bearing 109 is used becomes harsh, there is a risk that the bearing 109 may be damaged early.
 本発明は、前述した課題に鑑みてなされたものであり、その目的は、防水性能の向上を図ると共に、モータの発熱による高温空気が前側軸受を通ることを抑制して、軸受の早期損傷を防止することができるモータビルトイン方式のスピンドル装置を提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object thereof is to improve the waterproof performance, suppress hot air due to heat generation of a motor from passing through the front bearing, and prevent early damage of the bearing. It is an object of the present invention to provide a spindle device of a motor built-in system capable of preventing the above.
 本発明の上記目的は、下記の構成により達成される。
(1) 回転軸と、
 前記回転軸をハウジングに対して回転自在にそれぞれ支持する前側軸受及び後側軸受と、
 該前側軸受及び後側軸受との間で前記回転軸と一体回転可能に配置されるロータと、該ロータの周囲に配置されるステータと、を有するモータと、
を備えるモータビルトイン方式のスピンドル装置であって、
 前記回転軸の前端部側に固定されて、前記ハウジングとの間にラビリンスシールを形成するフリンガーを備え、
 前記ハウジングは、前記スピンドル装置の外部とを連通する少なくとも1つのエアパージ孔と、該エアパージ孔が開口し、前記ラビリンスシールに臨む環状溝と、を有する、モータビルトイン方式のスピンドル装置。
The above object of the present invention is achieved by the following configurations.
(1) The rotation axis,
A front bearing and a rear bearing that rotatably support the rotating shaft with respect to the housing,
A motor having a rotor arranged to be rotatable integrally with the rotary shaft between the front bearing and the rear bearing, and a stator arranged around the rotor.
A motor built-in spindle device comprising:
A flinger fixed to the front end side of the rotating shaft to form a labyrinth seal with the housing,
The motor-built-in type spindle device, wherein the housing has at least one air purge hole communicating with the outside of the spindle device, and an annular groove having the air purge hole opened and facing the labyrinth seal.
 本発明のモータビルトイン方式のスピンドル装置によれば、フリンガーにより防水性能を向上させると共に、ラビリンスシールに臨む環状溝にエアパージ孔の一端を開口させて、スピンドル装置の外部からのエアをラビリンスシールに供給することで、ラビリンスシールとモータ室の圧力差を解消する。これにより、モータから発生した熱エネルギーにより昇温するモータ室内の高温の空気が前側軸受を通ることが抑制され、前側軸受の内部の温度上昇を低減させ、前側軸受、ひいてはスピンドル装置の信頼性を向上させることができる。 According to the motor built-in type spindle device of the present invention, the waterproof performance is improved by the flinger, and one end of the air purge hole is opened in the annular groove facing the labyrinth seal to supply the air from the outside of the spindle device to the labyrinth seal. By doing so, the pressure difference between the labyrinth seal and the motor chamber is eliminated. This prevents hot air in the motor chamber, which is heated by the heat energy generated from the motor, from passing through the front bearing, reducing the temperature rise inside the front bearing, and improving the reliability of the front bearing and, by extension, the spindle device. Can be improved.
本発明の第1実施形態に係るモータビルトイン方式のスピンドル装置の断面図である。1 is a sectional view of a motor built-in type spindle device according to a first embodiment of the present invention. 本発明の第2実施形態に係るモータビルトイン方式のスピンドル装置の断面図である。It is sectional drawing of the spindle device of a motor built-in system which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るモータビルトイン方式のスピンドル装置の断面図である。It is sectional drawing of the spindle device of a motor built-in system which concerns on 3rd Embodiment of this invention. 従来のスピンドル装置の断面図である。It is sectional drawing of the conventional spindle device.
 以下、本発明に係るモータビルトイン方式のスピンドル装置の各実施形態を図面に基づいて詳細に説明する。なお、以下の説明においては、回転軸の工具が取り付けられる側(工具側)を前側、工具側と反対側を後側とも言う。 Hereinafter, each embodiment of the motor built-in type spindle device according to the present invention will be described in detail with reference to the drawings. In the following description, the side of the rotary shaft on which the tool is attached (tool side) is also referred to as the front side, and the side opposite to the tool side is also referred to as the rear side.
(第1実施形態)
 図1は本発明の第1実施形態のモータビルトイン方式のスピンドル装置の断面図である。
 図1に示すように、工作機械主軸用のモータビルトイン方式のスピンドル装置10(以下、単に「スピンドル装置10」とも言う)では、回転軸11が、その工具側(図1において左側)に配置される2列の前側軸受50,50と、反工具側(図1において右側)に配置される2列の後側軸受60,60とによって、ハウジングHに回転自在に支持されている。ハウジングHは、工具側から順に、前側ハウジング12、外筒13、後側ハウジング14、及び後蓋15によって主に構成されており、不図示のボルトによってそれぞれ締結固定されている。
(First embodiment)
FIG. 1 is a cross-sectional view of a motor built-in type spindle device according to a first embodiment of the present invention.
As shown in FIG. 1, in a motor-built-in type spindle device 10 for machine tool spindles (hereinafter also simply referred to as “spindle device 10”), a rotary shaft 11 is arranged on the tool side (left side in FIG. 1). It is rotatably supported by the housing H by two rows of front bearings 50, 50 and two rows of rear bearings 60, 60 arranged on the opposite side of the tool (on the right side in FIG. 1). The housing H is mainly composed of a front housing 12, an outer cylinder 13, a rear housing 14, and a rear lid 15 in this order from the tool side, and is fastened and fixed by bolts (not shown).
 各前側軸受50は、外輪51と、内輪52と、接触角を持って配置される転動体としての玉53と、図示しない保持器と、をそれぞれ有するアンギュラ玉軸受であり、各後側軸受60は、外輪61と、内輪62と、接触角を持って配置される転動体としての玉63と、図示しない保持器と、を有するアンギュラ玉軸受である。前側軸受50,50(並列組合せ)と後側軸受60,60(並列組合せ)とは、互いに協働して背面組み合わせとなるように配置されている。 Each front bearing 50 is an angular ball bearing having an outer ring 51, an inner ring 52, balls 53 as rolling elements arranged with a contact angle, and a cage (not shown), and each rear bearing 60. Is an angular contact ball bearing having an outer ring 61, an inner ring 62, balls 63 as rolling elements arranged with a contact angle, and a cage (not shown). The front bearings 50, 50 (parallel combination) and the rear bearings 60, 60 (parallel combination) are arranged so as to cooperate with each other to form a back surface combination.
 前側軸受50,50の外輪51,51は、前側ハウジング12に内嵌されており、また、前側ハウジング12に形成された雌ねじ27に螺合固定された前側外輪押さえ16によって、外輪間座54を介して前側ハウジング12に対し軸方向に位置決め固定されている。なお、雌ねじ27は、前側ハウジング12の外輪51、51が内嵌される部分の前端面12aから前方に突出して、後述するフリンガー40と対向する前側筒部12bの内周面に形成されている。 The outer rings 51, 51 of the front bearings 50, 50 are internally fitted to the front housing 12, and the outer ring spacer 54 is fixed by the front outer ring retainer 16 screwed and fixed to the female screw 27 formed in the front housing 12. It is positioned and fixed in the axial direction with respect to the front housing 12 via. The female screw 27 projects forward from the front end surface 12a of the portion of the front housing 12 into which the outer races 51, 51 are fitted, and is formed on the inner peripheral surface of the front cylindrical portion 12b facing the flinger 40 described later. ..
 また、前側軸受50,50の内輪52,52は、回転軸11に外嵌されており、回転軸11に締結されたナット17によって、後述するフリンガー40及び内輪間座55を介して回転軸11に対し軸方向に位置決め固定されている。 The inner rings 52, 52 of the front bearings 50, 50 are fitted onto the rotary shaft 11 by the nut 17 fastened to the rotary shaft 11 via a flinger 40 and an inner ring spacer 55 described later. It is positioned and fixed in the axial direction.
 後側軸受60,60の外輪61,61は、後側ハウジング14に対して軸方向に摺動自在に内嵌するスリーブ18に内嵌すると共に、このスリーブ18に不図示のボルトで一体的に固定された後側外輪押さえ19によって、外輪間座64を介してスリーブ18に対し軸方向に位置決め固定されている。 The outer rings 61, 61 of the rear bearings 60, 60 are fitted in the sleeve 18 which is slidably fitted in the rear housing 14 in the axial direction, and are integrally formed in the sleeve 18 by bolts (not shown). The fixed rear outer ring retainer 19 positions and fixes the sleeve 18 in the axial direction via the outer ring spacer 64.
 後側軸受60,60の内輪62,62は、回転軸11に外嵌されており、また、回転軸11に締結された他のナット21によって、内輪間座65、65を介して回転軸11に対し軸方向に位置決め固定されている。後側ハウジング14と後側外輪押さえ19との間にはコイルばね23が配設され、このコイルばね23のばね力が、後側外輪押さえ19をスリーブ18と共に後方に押圧する。これにより、前側軸受50、50及び後側軸受60,60に予圧が付与される。 The inner rings 62, 62 of the rear bearings 60, 60 are fitted onto the rotating shaft 11 by another nut 21, which is fastened to the rotating shaft 11, via the inner ring spacers 65, 65. It is positioned and fixed in the axial direction. A coil spring 23 is arranged between the rear housing 14 and the rear outer ring retainer 19, and the spring force of the coil spring 23 pushes the rear outer ring retainer 19 together with the sleeve 18 rearward. As a result, preload is applied to the front bearings 50, 50 and the rear bearings 60, 60.
 回転軸11の工具側には、軸中心を通り軸方向に形成された不図示の工具取付孔及び雌ねじが設けられている。工具取付孔及び雌ねじは、刃具などの不図示の工具を回転軸11に取付けるために使用される。なお、工具取付孔及び雌ねじの代わりに、回転軸11の軸芯に従来公知のドローバー(図示せず)を摺動自在に挿嵌するようにしてもよい。ドローバーは、いずれも不図示の工具ホルダを固定するコレット部を備え、皿ばねの力によって反工具側方向に付勢する。 The tool side of the rotary shaft 11 is provided with a tool mounting hole and a female screw (not shown) formed in the axial direction through the center of the shaft. The tool mounting hole and the female screw are used to mount a tool (not shown) such as a cutting tool on the rotary shaft 11. Instead of the tool mounting hole and the female screw, a conventionally known draw bar (not shown) may be slidably inserted into the shaft core of the rotary shaft 11. Each of the drawbars has a collet portion for fixing a tool holder (not shown), and is biased in the direction opposite to the tool side by the force of the disc spring.
 回転軸11の前側軸受50,50と後側軸受60,60間の軸方向略中央には、回転軸11と一体回転可能に配置されるロータ31と、ロータ31の周囲に配置されるステータ32とを備えるモータ30が配設されている。ステータ32は、ステータ32に焼き嵌めされた冷却ジャケット33を、ハウジングHを構成する外筒13に内嵌することで、外筒13に固定される。 A rotor 31 that is integrally rotatable with the rotating shaft 11 and a stator 32 that is arranged around the rotor 31 are disposed substantially in the axial center between the front bearings 50 and 50 and the rear bearings 60 and 60 of the rotating shaft 11. A motor 30 including is provided. The stator 32 is fixed to the outer cylinder 13 by fitting the cooling jacket 33 shrink-fitted into the stator 32 into the outer cylinder 13 forming the housing H.
 ステータ32のコイルに接続されてステータ32に電力を供給する電線35は、後側ハウジング14、及び後蓋15に設けられた配索孔36a、36bに挿通されて外部電源に接続されている。モータ30は、電線35を介してステータ32に電力を供給することでロータ31に回転力を発生させて回転軸11を回転させる。モータ30は、回転軸11の周囲で、前側ハウジング12、外筒13、後側ハウジング14及びスリーブ18によって囲まれた空間であるモータ室34内に収容されている。なお、後蓋15は、後端部に形成された開口部分15aを塞ぐ開口カバー28を有する。 An electric wire 35 that is connected to the coil of the stator 32 and supplies electric power to the stator 32 is inserted into the rear housing 14 and the wiring holes 36 a and 36 b provided in the rear lid 15, and is connected to an external power source. The motor 30 supplies electric power to the stator 32 via the electric wire 35 to generate a rotational force in the rotor 31 to rotate the rotating shaft 11. The motor 30 is housed in a motor chamber 34 that is a space surrounded by the front housing 12, the outer cylinder 13, the rear housing 14, and the sleeve 18 around the rotary shaft 11. The rear lid 15 has an opening cover 28 that closes the opening 15a formed at the rear end.
 フリンガー40は、上述したように、前側軸受50,50より工具側(図中左側)で、回転軸11の前端部側に外嵌し、ナット17で内輪52,52と共に回転軸11に固定されている。 As described above, the flinger 40 is externally fitted to the front end side of the rotary shaft 11 on the tool side (left side in the drawing) of the front bearings 50, 50, and is fixed to the rotary shaft 11 together with the inner rings 52, 52 by the nut 17. ing.
 フリンガー40は、回転軸11に外嵌されるボス部41と、ボス部41から径方向外方に延設された円盤部42と、該円盤部42の外周部から後方に向かってリング状に延設された円環部43と、を有する。 The flinger 40 includes a boss portion 41 which is fitted onto the rotary shaft 11, a disc portion 42 which extends radially outward from the boss portion 41, and a ring shape which extends rearward from the outer peripheral portion of the disc portion 42. And an extended annular portion 43.
 円盤部42の軸方向内側面は、前側ハウジング12、及び前側外輪押さえ16の前端面と、僅かな軸方向隙間、例えば0.5mm程度の隙間を介して軸方向に対向配置され、円環部43の内周面が、前側ハウジング12の外周面と、僅かな径方向隙間、例えば0.5mm程度の隙間を介して径方向に対向配置される。これにより、回転部材であるフリンガー40と、非回転部材である前側ハウジング12及び前側外輪押さえ16との間には、所謂ラビリンスシール44が構成される。 The inner side surface of the disk portion 42 in the axial direction is arranged to face the front housing 12 and the front end surface of the front outer ring retainer 16 in the axial direction with a slight axial clearance, for example, a clearance of about 0.5 mm. The inner peripheral surface of 43 is radially opposed to the outer peripheral surface of the front housing 12 with a slight radial gap, for example, a gap of about 0.5 mm. As a result, a so-called labyrinth seal 44 is formed between the flinger 40, which is a rotating member, and the front housing 12 and the front outer ring retainer 16, which are non-rotating members.
 また、フリンガー40の円環部43の内周面に対向する前側ハウジング12の外周面には、全周に亘って環状溝71が形成されている。環状溝71には、ハウジングH(後蓋15、後側ハウジング14、外筒13、及び前記ハウジング12)を貫通して屈曲形成されたエアパージ孔72の一端が接続され、エアパージ孔72の他端には、ポンプPが接続されてスピンドル装置10の外部からエアを環状溝71に供給する。環状溝71は、前側ハウジング12の外周面に、全周に亘って形成された周方向溝であるので、エアは環状溝71の全周に亘って供給され、ラビリンスシール44の圧力は、周方向で均一化される。
 なお、エアパージ孔72の他端は、ポンプPと接続されておらず、開放するのみであっても、フリンガー40への開口部へ空気が送り込まれる効果を有するが、より好ましくは、ポンプPを使用することで、上記効果をさらに促進することができる。
 また、ポンプPを使用する場合、ポンプPのエア圧、エア流量は任意に設定できるが、スピンドルの最高回転数やフリンガー40のサイズに応じて、適切な仕様のポンプPを用いてエアを送り込むことで、環状溝71内の内圧を迅速に均等にすることができる。
An annular groove 71 is formed on the outer peripheral surface of the front housing 12 facing the inner peripheral surface of the annular portion 43 of the flinger 40, over the entire circumference. The annular groove 71 is connected to one end of an air purge hole 72 that is formed by bending through the housing H (rear lid 15, rear housing 14, outer cylinder 13, and the housing 12), and the other end of the air purge hole 72 is connected. Is connected to a pump P to supply air to the annular groove 71 from the outside of the spindle device 10. Since the annular groove 71 is a circumferential groove formed on the outer peripheral surface of the front housing 12 over the entire circumference, air is supplied over the entire circumference of the annular groove 71, and the pressure of the labyrinth seal 44 is reduced. Is homogenized in the direction.
The other end of the air purge hole 72 is not connected to the pump P, and even if it is opened, it has the effect of sending air to the opening to the flinger 40, but more preferably the pump P is used. By using it, the above effect can be further promoted.
Further, when the pump P is used, the air pressure and the air flow rate of the pump P can be arbitrarily set, but the air is sent by using the pump P having appropriate specifications according to the maximum rotation speed of the spindle and the size of the flinger 40. Thereby, the internal pressure in the annular groove 71 can be quickly equalized.
 また、本実施形態のスピンドル装置10においては、フリンガー40が回転軸11と共に回転する場合であっても、エアパージ孔72から環状溝71に外部のエアを供給することで、モータ室34の圧力とラビリンスシール44の圧力とが均衡する。このため、モータ30からの発熱によって高温になったモータ室34の空気が、前側軸受50内の隙間を通ってスピンドル装置10の前方に移動するのが発生しにくくなる。従って、前側軸受50内の潤滑剤の強制移動や軸受部の異常温度上昇が抑制されて、前側軸受50の早期損傷を防止することができ、スピンドル装置10の信頼性が向上する。 Further, in the spindle device 10 of the present embodiment, even when the flinger 40 rotates together with the rotating shaft 11, the pressure of the motor chamber 34 is controlled by supplying the external air from the air purge hole 72 to the annular groove 71. The pressure on the labyrinth seal 44 is balanced. Therefore, the air in the motor chamber 34, which has become hot due to the heat generated by the motor 30, does not easily move to the front of the spindle device 10 through the gap in the front bearing 50. Therefore, the forced movement of the lubricant in the front bearing 50 and the abnormal temperature rise of the bearing portion are suppressed, the early damage of the front bearing 50 can be prevented, and the reliability of the spindle device 10 is improved.
 さらに、エアパージ孔72からラビリンスシール44に外部のエアを導入することで、ラビリンスシール44の圧力が、スピンドル装置10の外部よりも高くなってエアカーテンが形成され、被加工物を加工する際、スピンドル装置10に降りかかる加工液が前側軸受50,50側に入ることを抑制する。また、ラビリンス部位に加工液や粉塵が侵入したとしても、フリンガー40の遠心力による振り切り効果で、円環部43から外部に排出することができ、回転軸11の内部に加工液や粉塵が侵入するのを防止することができる。 Furthermore, by introducing external air into the labyrinth seal 44 from the air purge hole 72, the pressure of the labyrinth seal 44 becomes higher than that of the outside of the spindle device 10, and an air curtain is formed. It is possible to prevent the machining fluid that falls on the spindle device 10 from entering the front bearings 50, 50 side. Further, even if the machining fluid or dust enters the labyrinth portion, it can be discharged from the annular portion 43 to the outside by the swinging-off effect by the centrifugal force of the flinger 40, and the machining fluid or dust enters the rotary shaft 11. Can be prevented.
 なお、本実施形態では、エアパージ孔72の本数や周方向位相、開口部断面積等はスピンドル装置10の仕様や使用条件などに合わせて、適切に設計することができる。また、ポンプPには、ゴミやミストなどの異物の侵入を防止するため、サイレンサなどの不図示のフィルター部材が取り付けられてもよい。 In the present embodiment, the number of air purge holes 72, the phase in the circumferential direction, the cross-sectional area of the opening, and the like can be appropriately designed according to the specifications of the spindle device 10, usage conditions, and the like. Further, a filter member (not shown) such as a silencer may be attached to the pump P in order to prevent foreign matter such as dust and mist from entering.
(第2実施形態)
 次に、スピンドル装置の第2実施形態について図2を参照して説明する。図2に示すように、本実施形態の環状溝73は、フリンガー40の円盤部42に対向する前側ハウジング12の軸方向端面に円環状に形成されている。環状溝73には、第1実施形態のスピンドル装置10と同様に、ポンプPが接続されたエアパージ孔72によってスピンドル装置10Aの外部からエアが供給される。したがって、第1実施形態と同様に、エアパージ孔72から環状溝73に外部のエアを供給することで、モータ室34の圧力とラビリンスシール44の圧力とが均衡し、モータ30からの発熱によって高温になったモータ室34の空気が、前側軸受50内の隙間を通ってスピンドル装置10の前方に移動するのが発生しにくくなる。また、環状溝73も、前側ハウジング12の軸方向端面に、全周に亘って形成された周方向溝であるので、ラビリンスシール44の圧力は、周方向で均一化される。
 その他の構成及び作用については、本発明の第1実施形態と同様である。
(Second embodiment)
Next, a second embodiment of the spindle device will be described with reference to FIG. As shown in FIG. 2, the annular groove 73 of the present embodiment is formed in an annular shape on the axial end surface of the front housing 12 facing the disk portion 42 of the flinger 40. Air is supplied to the annular groove 73 from the outside of the spindle device 10A by the air purge hole 72 to which the pump P is connected, as in the spindle device 10 of the first embodiment. Therefore, as in the first embodiment, by supplying external air from the air purge hole 72 to the annular groove 73, the pressure in the motor chamber 34 and the pressure in the labyrinth seal 44 are balanced, and the heat generated by the motor 30 causes a high temperature. It becomes difficult for the air in the motor chamber 34, which has become the above, to move to the front of the spindle device 10 through the gap in the front bearing 50. Further, since the annular groove 73 is also a circumferential groove formed over the entire circumference on the axial end surface of the front housing 12, the pressure of the labyrinth seal 44 is equalized in the circumferential direction.
Other configurations and operations are similar to those of the first embodiment of the present invention.
(第3実施形態)
 次に、スピンドル装置の第3実施形態について図3を参照して説明する。図3に示すように、本実施形態のスピンドル装置10Bは、第1実施形態のスピンドル装置10の構成に加えて、モータ室34とラビリンスシール44とを連通する複数のバイパス孔24が、前側ハウジング12に形成されている。バイパス孔24の空気抵抗は、断面積の大きさ等の関係から、前側軸受50の内部隙間の空気抵抗より小さくなっている。
(Third Embodiment)
Next, a third embodiment of the spindle device will be described with reference to FIG. As shown in FIG. 3, in addition to the configuration of the spindle device 10 of the first embodiment, the spindle device 10B of the present embodiment has a plurality of bypass holes 24 that connect the motor chamber 34 and the labyrinth seal 44 to the front housing. 12 are formed. The air resistance of the bypass hole 24 is smaller than the air resistance of the internal clearance of the front bearing 50 due to the size of the cross-sectional area and the like.
 バイパス孔24は、前側ハウジング12内を軸方向に延びるストレート孔であり、断面積が長手方向で変わらない円形断面とされており、容易に加工することができる。なお、本実施形態では、複数のバイパス孔24は、前側軸受50、50の外輪51、51が内嵌される前側ハウジング12の部分の内周面や、前側外輪押さえ16が螺合する雌ねじ27よりも外径側で、且つ、外周面に形成された冷却溝26よりも内径側の径方向位置に形成されている。 The bypass hole 24 is a straight hole that extends in the front housing 12 in the axial direction, and has a circular cross-sectional area that does not change in the longitudinal direction, and can be easily processed. In addition, in this embodiment, the plurality of bypass holes 24 are formed by the inner peripheral surface of the portion of the front housing 12 into which the outer rings 51, 51 of the front bearings 50, 50 are fitted, and the female screw 27 with which the front outer ring retainer 16 is screwed. It is formed on the outer diameter side with respect to the outer diameter side and on the inner diameter side with respect to the cooling groove 26 formed on the outer peripheral surface in the radial direction.
 環状溝71とスピンドル装置10Bの外部を接続するエアパージ孔72と、バイパス孔24を組み合わせて設けることで、回転軸11の回転初期や停止時初期、つまりラビリンスシール44の圧力とモータ室34の圧力が均衡していないときに空気の移動が発生する虞があるが、移動する該空気は前側軸受50内を通らずにバイパス孔24を通るため、前側軸受50の温度上昇が抑制されて前側軸受50の早期損傷を防止することができる。
 その他の構成及び作用については、本発明の第1実施形態と同様である。
By providing the air purge hole 72 connecting the annular groove 71 and the outside of the spindle device 10B and the bypass hole 24 in combination, the rotation of the rotary shaft 11 at the initial stage of rotation and at the initial stage of stoppage, that is, the pressure of the labyrinth seal 44 and the pressure of the motor chamber 34. There is a risk that air will move when the front bearing 50 is not balanced, but since the moving air passes through the bypass hole 24 without passing through the front bearing 50, the temperature rise of the front bearing 50 is suppressed and the front bearing 50 is suppressed. The early damage of 50 can be prevented.
Other configurations and operations are similar to those of the first embodiment of the present invention.
 尚、本発明は、前述した各実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。
 例えば、本発明のモータビルトイン方式のスピンドル装置は、研削盤主軸用としても好適に使用できる。
It should be noted that the present invention is not limited to the above-described respective embodiments, and modifications, improvements, etc. can be made as appropriate.
For example, the motor built-in type spindle device of the present invention can be preferably used for a spindle of a grinder.
 以上の通り、本明細書には次の事項が開示されている。
(1) 回転軸と、
 前記回転軸をハウジングに対して回転自在にそれぞれ支持する前側軸受及び後側軸受と、
 該前側軸受及び後側軸受との間で前記回転軸と一体回転可能に配置されるロータと、該ロータの周囲に配置されるステータと、を有するモータと、
を備えるモータビルトイン方式のスピンドル装置であって、
 前記回転軸の前端部側に固定されて、前記ハウジングとの間にラビリンスシールを形成するフリンガーを備え、
 前記ハウジングは、前記スピンドル装置の外部とを連通する少なくとも1つのエアパージ孔と、該エアパージ孔が開口し、前記ラビリンスシールに臨む環状溝と、を有する、モータビルトイン方式のスピンドル装置。
 この構成によれば、フリンガーにより防水性能を向上させると共に、ラビリンスシールに臨む環状溝にエアパージ孔の一端を開口させて、スピンドル装置の外部からのエアを供給することで、モータ室とラビリンスシールの圧力を均衡させる。これにより、モータ室とラビリンスシールとの圧力差により、モータ室内の高温空気が前側軸受内を移動するのが抑制されるので、前側軸受の温度上昇を低減して、前側軸受、ひいてはスピンドル装置の信頼性を向上させることができる。
As described above, the following items are disclosed in this specification.
(1) The rotation axis,
A front bearing and a rear bearing that rotatably support the rotating shaft with respect to the housing,
A motor having a rotor arranged to be rotatable integrally with the rotary shaft between the front bearing and the rear bearing, and a stator arranged around the rotor.
A motor built-in spindle device comprising:
A flinger fixed to the front end side of the rotating shaft to form a labyrinth seal with the housing,
The motor-built-in type spindle device, wherein the housing has at least one air purge hole communicating with the outside of the spindle device, and an annular groove having the air purge hole opened and facing the labyrinth seal.
According to this configuration, the waterproof performance is improved by the flinger, one end of the air purge hole is opened in the annular groove facing the labyrinth seal, and the air is supplied from the outside of the spindle device, so that the motor chamber and the labyrinth seal are separated. Balance the pressure. As a result, the high temperature air in the motor chamber is suppressed from moving in the front bearing due to the pressure difference between the motor chamber and the labyrinth seal, so that the temperature rise of the front bearing is reduced and the front bearing, and by extension, the spindle device. The reliability can be improved.
(2) 前記ハウジングは、前記モータが配置されるモータ室と、前記ラビリンスシールとを連通する、少なくとも1つのバイパス孔を備える、(1)に記載のモータビルトイン方式のスピンドル装置。
 この構成によれば、モータから発生した熱エネルギーにより昇温したモータ室内の高温の空気を、前側軸受を通さずに、モータ室とラビリンスシールとを連通するバイパス孔から排気することで、前側軸受の内部の温度上昇を抑制し、前側軸受、ひいてはスピンドル装置の信頼性を向上させることができる。
(2) The motor built-in type spindle device according to (1), wherein the housing includes at least one bypass hole that communicates the motor chamber in which the motor is arranged with the labyrinth seal.
According to this configuration, the high-temperature air in the motor chamber, which has been heated by the thermal energy generated from the motor, is exhausted from the bypass hole that communicates the motor chamber and the labyrinth seal without passing through the front bearing. It is possible to suppress the temperature rise inside the bearing and improve the reliability of the front bearing, and thus the spindle device.
(3) 工作機械主軸用である、(1)又は(2)に記載のモータビルトイン方式のスピンドル装置。
 この構成によれば、工作機械主軸用として好適に使用できる。
(3) The motor built-in spindle device according to (1) or (2), which is for a machine tool spindle.
According to this structure, it can be suitably used for a machine tool spindle.
(4) 研削盤主軸用である、(1)又は(2)に記載のモータビルトイン方式のスピンドル装置。
 この構成によれば、研削盤主軸用として好適に使用できる。
(4) The motor built-in type spindle device according to (1) or (2), which is for a spindle of a grinding machine.
According to this structure, it can be suitably used for a spindle of a grinding machine.
 なお、本出願は、2018年10月31日出願の日本特許出願(特願2018-205652)に基づくものであり、その内容は本出願の中に参照として援用される。 The present application is based on the Japanese patent application (Japanese Patent Application No. 2018-205652) filed on October 31, 2018, the contents of which are incorporated by reference into the present application.
10、10A、10B   モータビルトイン方式のスピンドル装置
11  回転軸
12  前側ハウジング
13  外筒
14  後側ハウジング
15  後蓋
24  バイパス孔
30  モータ
31  ロータ
32  ステータ
34  モータ室
40  フリンガー
41  ボス部
42  円盤部
43  円環部
44  ラビリンスシール
50  前側軸受
51  外輪
52  内輪
53  玉
60  後側軸受
61  外輪
62  内輪
63  玉
71,73  環状溝
72  エアパージ孔
H   ハウジング
10, 10A, 10B Motor built-in type spindle device 11 Rotating shaft 12 Front housing 13 Outer cylinder 14 Rear housing 15 Rear lid 24 Bypass hole 30 Motor 31 Rotor 32 Stator 34 Motor chamber 40 Flinger 41 Boss portion 42 Disc portion 43 Circular ring Part 44 Labyrinth seal 50 Front bearing 51 Outer ring 52 Inner ring 53 Ball 60 Rear bearing 61 Outer ring 62 Inner ring 63 Balls 71, 73 Annular groove 72 Air purge hole H Housing

Claims (4)

  1.  回転軸と、
     前記回転軸をハウジングに対して回転自在にそれぞれ支持する前側軸受及び後側軸受と、
     該前側軸受及び後側軸受との間で前記回転軸と一体回転可能に配置されるロータと、該ロータの周囲に配置されるステータと、を有するモータと、
    を備えるモータビルトイン方式のスピンドル装置であって、
     前記回転軸の前端部側に固定されて、前記ハウジングとの間にラビリンスシールを形成するフリンガーを備え、
     前記ハウジングは、前記スピンドル装置の外部とを連通する少なくとも1つのエアパージ孔と、該エアパージ孔が開口し、前記ラビリンスシールに臨む環状溝と、を有する、モータビルトイン方式のスピンドル装置。
    A rotation axis,
    A front bearing and a rear bearing that rotatably support the rotating shaft with respect to the housing,
    A motor having a rotor arranged to be rotatable integrally with the rotary shaft between the front bearing and the rear bearing, and a stator arranged around the rotor.
    A motor built-in spindle device comprising:
    A flinger fixed to the front end side of the rotating shaft to form a labyrinth seal with the housing,
    The motor-built-in type spindle device, wherein the housing has at least one air purge hole communicating with the outside of the spindle device, and an annular groove having the air purge hole opened and facing the labyrinth seal.
  2.  前記ハウジングは、前記モータが配置されるモータ室と、前記ラビリンスシールとを連通する、少なくとも1つのバイパス孔を備える、請求項1に記載のモータビルトイン方式のスピンドル装置。 The motor built-in spindle device according to claim 1, wherein the housing includes at least one bypass hole that communicates a motor chamber in which the motor is arranged with the labyrinth seal.
  3.  工作機械主軸用である、請求項1又は2に記載のモータビルトイン方式のスピンドル装置。 The motor built-in spindle device according to claim 1 or 2 for a machine tool spindle.
  4.  研削盤主軸用である、請求項1又は2に記載のモータビルトイン方式のスピンドル装置。 The motor built-in type spindle device according to claim 1 or 2 for a spindle of a grinding machine.
PCT/JP2019/036849 2018-10-31 2019-09-19 Spindle device having built-in motor WO2020090277A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020554813A JP7067637B2 (en) 2018-10-31 2019-09-19 Motor built-in spindle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-205652 2018-10-31
JP2018205652 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020090277A1 true WO2020090277A1 (en) 2020-05-07

Family

ID=70463062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036849 WO2020090277A1 (en) 2018-10-31 2019-09-19 Spindle device having built-in motor

Country Status (3)

Country Link
JP (1) JP7067637B2 (en)
TW (1) TW202017678A (en)
WO (1) WO2020090277A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113500216A (en) * 2021-07-01 2021-10-15 厦门势拓伺服科技股份有限公司 Main shaft atmoseal structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210091A (en) * 2006-01-13 2007-08-23 Nsk Ltd Spindle device
WO2013100099A1 (en) * 2011-12-27 2013-07-04 日本精工株式会社 Spindle device
JP2014046408A (en) * 2012-08-31 2014-03-17 Nsk Ltd Spindle device
WO2015068750A1 (en) * 2013-11-07 2015-05-14 株式会社 明電舎 Elevator hoist
JP2015223022A (en) * 2014-05-22 2015-12-10 ファナック株式会社 Electric motor having air purge function
JP2016010204A (en) * 2014-06-23 2016-01-18 ファナック株式会社 Air purge system capable of controlling air flow rate
JP2018157715A (en) * 2017-03-21 2018-10-04 ファナック株式会社 Electric motor
JP2019097246A (en) * 2017-11-20 2019-06-20 ファナック株式会社 Motor with terminal box, and machine tool

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210091A (en) * 2006-01-13 2007-08-23 Nsk Ltd Spindle device
WO2013100099A1 (en) * 2011-12-27 2013-07-04 日本精工株式会社 Spindle device
JP2014046408A (en) * 2012-08-31 2014-03-17 Nsk Ltd Spindle device
WO2015068750A1 (en) * 2013-11-07 2015-05-14 株式会社 明電舎 Elevator hoist
JP2015223022A (en) * 2014-05-22 2015-12-10 ファナック株式会社 Electric motor having air purge function
JP2016010204A (en) * 2014-06-23 2016-01-18 ファナック株式会社 Air purge system capable of controlling air flow rate
JP2018157715A (en) * 2017-03-21 2018-10-04 ファナック株式会社 Electric motor
JP2019097246A (en) * 2017-11-20 2019-06-20 ファナック株式会社 Motor with terminal box, and machine tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113500216A (en) * 2021-07-01 2021-10-15 厦门势拓伺服科技股份有限公司 Main shaft atmoseal structure

Also Published As

Publication number Publication date
JP7067637B2 (en) 2022-05-16
TW202017678A (en) 2020-05-16
JPWO2020090277A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
CN107249816B (en) Main shaft device
RU2621091C2 (en) Machine spindle unit
WO2020090278A1 (en) Spindle device with built-in motor
JP2007024256A (en) Lubricating device of rolling bearing
JP5899933B2 (en) Spindle device
JP6206469B2 (en) Spindle device
WO2020090277A1 (en) Spindle device having built-in motor
JP7164962B2 (en) Cooling structure of bearing device
WO2020090276A1 (en) Spindle device having built-in motor
JP5887923B2 (en) Spindle device
JP5834920B2 (en) Spindle device
JP2020069604A (en) Motor built-in type spindle device
JP2016026900A (en) Spindle device
JP4527622B2 (en) Rolling bearing lubrication system
KR100397972B1 (en) Spindle cooling device of machine tools
JP5899932B2 (en) Spindle device
JP2018169040A (en) Cooling structure of bearing device
JP5962343B2 (en) Spindle device and flinger for spindle device
JP6213548B2 (en) Spindle device
JP3080253B2 (en) Spindle device of machine tool
KR20180016778A (en) Spindle Housing
KR101727813B1 (en) Hydrostatic bearing and machine tool having the same
KR20020049248A (en) Spindle cooling device of machine tools
JP2007024249A (en) Lubricating device of rolling bearing
KR20000046422A (en) Apparatus for cooling rotator of built-in motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554813

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19877925

Country of ref document: EP

Kind code of ref document: A1