JP2011052311A - Electroplating tool and method of manufacturing the same - Google Patents

Electroplating tool and method of manufacturing the same Download PDF

Info

Publication number
JP2011052311A
JP2011052311A JP2009204627A JP2009204627A JP2011052311A JP 2011052311 A JP2011052311 A JP 2011052311A JP 2009204627 A JP2009204627 A JP 2009204627A JP 2009204627 A JP2009204627 A JP 2009204627A JP 2011052311 A JP2011052311 A JP 2011052311A
Authority
JP
Japan
Prior art keywords
wiring
electroplating jig
support
wiring member
electroplating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009204627A
Other languages
Japanese (ja)
Other versions
JP5746463B2 (en
Inventor
Yoshitaka Yoshida
由孝 吉田
Kazumasa Suzuki
和政 鈴木
Kazuya Kakiuchi
和也 垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshida SKT KK
Original Assignee
Yoshida SKT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshida SKT KK filed Critical Yoshida SKT KK
Priority to JP2009204627A priority Critical patent/JP5746463B2/en
Publication of JP2011052311A publication Critical patent/JP2011052311A/en
Application granted granted Critical
Publication of JP5746463B2 publication Critical patent/JP5746463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroplating tool having excellent durability compared to the conventional one. <P>SOLUTION: The electroplating tool has: a wiring member 2 having energizing parts 21, 22 comprising at least one of copper and a copper alloy and electrically connected to a member to be treated and a wiring part 23 for supplying current to the energizing parts 21, 22; a supporting body 1 at least one of which is formed from a metal and which supports the wiring member 2 and a material to be treated and a protective containing film for covering the metal part of the supporting body 1; and the wiring part 2 to have 50-1,000 μm thickness with a tetrafluoroethylene copolymer having 100-220°C melting point. Because the tetrafluoroethylene having excellent stability is used as a coating film, the influence on the electroplating tool due to the plating solution is suppressed. Also, because the tetrafluoroethylene copolymer has 100-220°C melting point, the protective coating film is formed in a melting state to form the excellent protective coating film. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、耐久性に優れた電気めっき治具及びその製造方法に関する。   The present invention relates to an electroplating jig excellent in durability and a method for manufacturing the same.

ニッケルめっき、金めっき、銀めっき、銅めっきなどの電気めっきを被処理部材に施す際に、被処理部材を挟む、載せる、吊す、付ける、入れる、締め付ける、絡ませるなどの支持・固定用の治具(電気めっき治具)が必要である。また、電気めっき治具は被処理部材の支持の他、被処理部材への電流の供給をも行うことが一般的である。被処理部材への電流の供給は特性に優れた銅又は銅合金にて形成された電極などの配線部材にて行うことが一般的である。ところで、電気めっき治具は電気めっきを行うめっき浴中に浸漬して使用するため、耐久性が問題になる。   When applying electroplating such as nickel plating, gold plating, silver plating, copper plating, etc. to the treated member, support / fixing treatment such as sandwiching, placing, hanging, attaching, putting, tightening, entanglement of the treated member A tool (electroplating jig) is required. In general, the electroplating jig not only supports the member to be processed but also supplies current to the member to be processed. In general, the current is supplied to the member to be processed by a wiring member such as an electrode formed of copper or a copper alloy having excellent characteristics. By the way, since the electroplating jig is used by being immersed in a plating bath for performing electroplating, durability becomes a problem.

従来、電気めっき治具はポリエチレン、ポリ塩化ビニルなどで被膜を形成することにより、耐久性の向上を目指していた。しかしながら、銅及び銅合金で構成された電極の周りは、発熱が進行したり、めっき液が浸潤して被膜が膨潤するなどの理由により、被膜が損傷し充分な耐久性が実現できないことがあった。   Conventionally, an electroplating jig has been aimed at improving durability by forming a film with polyethylene, polyvinyl chloride or the like. However, around the electrodes made of copper and copper alloy, the coating may be damaged and sufficient durability may not be realized due to heat generation or swelling of the coating due to infiltration of the plating solution. It was.

めっき浴の組成は上記めっきにてめっきされる金属イオン以外に、緩衝剤としてのコハク酸、酢酸、クエン酸、乳酸などの有機酸或いはこれらの塩、エタノールアミン、トリエタノールアミンなどのアミン化合物、ホウ酸などが添加されたり、導電剤としての塩化合物(ハロゲン化塩(アルカリ金属、アルカリ土類金属、アルミニウムなどの塩。例えば塩化リチウム、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化アルミニウムなど)、硫酸塩、スルファミン酸塩、メタスルホン酸塩など)も添加されるなど非常に厳しい条件である。更に、めっき浴の温度も50〜80℃と高く、0.1〜10A/dmの電流密度とpHが2〜6の範囲であり、電極周りの発熱部分では従来のポリエチレンなどにて形成した被膜では耐久性に問題があった。従来から耐久性が高い材料としてポリテトラフルオロエチレン、ETFE、PFA、FEPなどの従来から知られるフッ素樹脂があるが、これらフッ素樹脂は耐蝕性には優れるが加工温度として300℃以上に上げなければならず、銅、銅合金を酸化させてしまい被覆材との密着性を損なう結果になる。 In addition to the metal ions plated by the above plating, the composition of the plating bath includes organic acids such as succinic acid, acetic acid, citric acid and lactic acid as salts, or salts thereof, amine compounds such as ethanolamine and triethanolamine, Boric acid or the like is added, or a salt compound as a conductive agent (halogenated salts (salts such as alkali metals, alkaline earth metals, and aluminum. For example, lithium chloride, sodium chloride, potassium chloride, magnesium chloride, aluminum chloride, etc.) Sulfate, sulfamate, metasulfonate, etc.) are also added, which is a very severe condition. Furthermore, the temperature of the plating bath is as high as 50 to 80 ° C., the current density of 0.1 to 10 A / dm 2 and the pH is in the range of 2 to 6, and the heat generation part around the electrode is formed of conventional polyethylene or the like. The coating had a problem with durability. Conventionally known fluororesins such as polytetrafluoroethylene, ETFE, PFA, FEP, etc. are highly durable materials, but these fluororesins are excellent in corrosion resistance, but the processing temperature must be raised to 300 ° C or higher. In other words, copper and copper alloy are oxidized and the adhesion to the coating material is impaired.

国際公開第98/58973号パンフレットInternational Publication No. 98/58973 Pamphlet

本発明は上記実情に鑑み完成したものであり、従来のポリエチレン、ポリ塩化ビニルなどで被覆された電気めっき治具よりも優れた耐久性をもつ電気めっき治具及びその製造方法を提供することを解決すべき課題とする。   The present invention has been completed in view of the above circumstances, and provides an electroplating jig having durability superior to that of a conventional electroplating jig coated with polyethylene, polyvinyl chloride, or the like, and a method for manufacturing the same. It is a problem to be solved.

上記課題を解決する請求項1に係る電気めっき治具の特徴は、銅及び銅合金の少なくとも一方にて構成され、被処理部材に電気的に接続される通電部と前記通電部に電流を供給する配線部とをもつ配線部材と、
少なくとも一部が金属から形成され、前記配線部材及び前記被処理部材を支持する支持体と、
融点が100℃〜220℃の範囲にあるテトラフルオロエチレン共重合体で厚み50μm〜1000μmになるように前記支持体の金属部分及び前記配線部を被覆する保護被膜と、
を有することにある。
A feature of the electroplating jig according to claim 1 that solves the above-described problem is that the electroplating jig is made of at least one of copper and copper alloy, and supplies current to the energization unit that is electrically connected to the member to be processed. A wiring member having a wiring portion to perform,
A support body that is at least partially formed of metal and supports the wiring member and the member to be processed;
A protective film for covering the metal part of the support and the wiring part so as to have a thickness of 50 μm to 1000 μm with a tetrafluoroethylene copolymer having a melting point in the range of 100 ° C. to 220 ° C .;
It is in having.

上記課題を解決する請求項2に係る電気めっき治具の特徴は、請求項1において、前記保護被膜が一体化していることにある。   A feature of the electroplating jig according to claim 2 that solves the above-mentioned problem is that, in claim 1, the protective coating is integrated.

上記課題を解決する請求項3に係る電気めっき治具の製造方法は、請求項1又は2に記載の電気めっき治具を製造する方法であって、
前記テトラフルオロエチレン共重合体の粉末を浮遊させて流動体化する流動体化工程と、
表面温度を前記テトラフルオロエチレン共重合体の融点以上に調節した、前記配線部材を支持した前記支持体を前記流動体中に浸漬し、前記配線部材及び前記支持体の表面に前記保護被膜を形成する被覆工程と、
を有することにある。
The method for producing an electroplating jig according to claim 3 for solving the above-mentioned problem is a method for producing the electroplating jig according to claim 1 or 2,
A fluidizing step of floating the tetrafluoroethylene copolymer powder to form a fluid;
The support member supporting the wiring member, the surface temperature of which is adjusted to be equal to or higher than the melting point of the tetrafluoroethylene copolymer, is immersed in the fluid to form the protective film on the surfaces of the wiring member and the support member. A coating process to
It is in having.

請求項1に係る発明によると、この電気めっき治具は化学的・物理的な安定性に優れたテトラフルオロエチレン共重合体を被膜として用いているためにめっき液による電気めっき治具への影響を抑制することができる。また、このテトラフルオロエチレン共重合体は100℃〜220℃の範囲の融点をもつため、溶融させた状態にて保護被膜の形成を行うことが可能になり、優れた保護被膜を形成できる。特に融点が100℃以上であるため、電気めっきを行うめっき浴中で溶融するおそれが無くなることになる。また、融点が220℃以下であるため、保護被膜を形成する際に高温の条件を選択する必要が無く、銅又は銅合金の表面に酸化皮膜が形成されるおそれが無くなる。銅又は銅合金は大気中などの酸化雰囲気下で高温(例えば、250℃以上)に曝されることにより保護被膜との密着性を損なう絶縁体の酸化皮膜が表面に形成される。酸化皮膜の形成を抑制するためには無酸素状態などの不活性雰囲気にて加熱を行う方法があるが、工数の増加となって望ましくなかった。   According to the invention according to claim 1, since this electroplating jig uses a tetrafluoroethylene copolymer excellent in chemical and physical stability as a film, the influence of the plating solution on the electroplating jig. Can be suppressed. Moreover, since this tetrafluoroethylene copolymer has a melting point in the range of 100 ° C. to 220 ° C., it is possible to form a protective coating in a molten state, and an excellent protective coating can be formed. Since especially melting | fusing point is 100 degreeC or more, there exists no possibility of fuse | melting in the plating bath which performs electroplating. Moreover, since melting | fusing point is 220 degrees C or less, it is not necessary to select high temperature conditions when forming a protective film, and there exists no possibility that an oxide film may be formed on the surface of copper or a copper alloy. When copper or a copper alloy is exposed to a high temperature (for example, 250 ° C. or more) in an oxidizing atmosphere such as the air, an oxide film of an insulator that impairs adhesion to the protective film is formed on the surface. In order to suppress the formation of the oxide film, there is a method in which heating is performed in an inert atmosphere such as an oxygen-free state.

請求項2に係る発明によると、保護被膜が一体化していることにより、配線部材及び支持体と保護被膜との間にめっき液が侵入する隙間の形成が少なくなって、保護被膜の耐久性が更に高くなる利点がある。   According to the second aspect of the present invention, since the protective coating is integrated, the formation of a gap through which the plating solution enters between the wiring member and the support and the protective coating is reduced, and the durability of the protective coating is improved. There is an advantage of higher.

請求項3に係る発明によると、流動体化させることにより、配線部材及び支持体の表面に満遍なく行き渡らせることが可能になって、均一に保護被膜を形成することが可能になるという利点がある。   According to the invention of claim 3, by forming the fluid, there is an advantage that the surface of the wiring member and the support can be evenly distributed, and the protective film can be uniformly formed. .

実施例にて用いた電気めっき治具Aの概略図である。It is the schematic of the electroplating jig | tool A used in the Example. 実施例にて用いた電気めっき治具Bの概略図である。It is the schematic of the electroplating jig | tool B used in the Example.

本発明の電気めっき治具及びその製造方法について実施形態に基づき以下詳細に説明する。本実施形態における電気めっき治具は被処理部材に電気めっきを行う際に被処理部材に電流を供給すると共に被処理部材を支持する治具である。   The electroplating jig and its manufacturing method of the present invention will be described in detail below based on the embodiments. The electroplating jig in the present embodiment is a jig that supplies a current to the member to be processed and supports the member to be processed when electroplating the member to be processed.

(電気めっき治具)
本実施形態の電気めっき治具は配線部材と支持体とを有する。これらの部材の表面のうちの一部には保護被膜が形成されている。保護被膜の形成方法としては特に限定されず、後述する本発明の方法、一般的な静電粉体塗装などの方法が挙げられる。配線部材は通電部と配線部とをもつ。通電部は被処理部材に電気的に接続される部材であり、配線部はその通電部に電流を供給する部材である。配線部材は銅及び銅合金の少なくとも一方にて構成される。通電部と配線部とは一体化する場合もある。
(Electroplating jig)
The electroplating jig of this embodiment has a wiring member and a support. A protective film is formed on a part of the surfaces of these members. It does not specifically limit as a formation method of a protective film, Methods, such as the method of this invention mentioned later and general electrostatic powder coating, are mentioned. The wiring member has an energization part and a wiring part. The energization unit is a member that is electrically connected to the member to be processed, and the wiring unit is a member that supplies current to the energization unit. The wiring member is made of at least one of copper and copper alloy. The energization part and the wiring part may be integrated.

支持体は配線部材及び被処理部材を支持する部材である。支持体の形状は特に限定されない。支持体の形状は被処理部材の形態に応じて適正に形成することができる。支持体の形状としてははしご状、棒状、板状、網状、そしてそれらの形状を組み合わせた形状などが挙げられる。支持体は少なくとも一部が金属から形成される。支持体は全体を金属にて形成する以外、一部を金属にて形成し他の部分を適正な材料から形成することもできる。例えば、PEEK、PEI、PIなどのエンジニアリングプラスチックから一部を形成することができる。   The support is a member that supports the wiring member and the member to be processed. The shape of the support is not particularly limited. The shape of the support can be appropriately formed according to the form of the member to be processed. Examples of the shape of the support include a ladder shape, a rod shape, a plate shape, a net shape, and a shape obtained by combining these shapes. The support is at least partially formed from metal. In addition to forming the support entirely from metal, a part of the support can be formed of metal and the other part can be formed of an appropriate material. For example, a part can be formed from engineering plastics such as PEEK, PEI, and PI.

保護被膜は配線部材及び支持体の表面のうちの少なくとも一部を被覆する被膜である。保護被膜にて被覆することにより配線部材及び支持体の被覆した表面をめっき液から遮断でき、めっき液による影響を抑制できる。保護被膜の厚みは50μm〜1000μm、好ましくは100μm〜800μmである。この範囲にすることにより、形成された保護被膜にはピンホールなどの欠陥もなく、また、充分な効果を発揮できる。保護被膜は全体として一体化していることが望ましい。   A protective film is a film which coat | covers at least one part of the surface of a wiring member and a support body. By covering with a protective film, the surface coated with the wiring member and the support can be blocked from the plating solution, and the influence of the plating solution can be suppressed. The thickness of the protective coating is 50 μm to 1000 μm, preferably 100 μm to 800 μm. By setting it in this range, the formed protective film has no defects such as pinholes and can exhibit a sufficient effect. It is desirable that the protective coating is integrated as a whole.

保護被膜はテトラフルオロエチレン共重合体から形成される。テトラフルオロエチレン共重合体としてはテトラフルオロエチレンとその他のモノマーとの共重合体であり、融点が100℃以上、220℃以下である。特許文献1にて挙げられている重合体のうち、融点が100℃以上220℃以下のものを一例として挙げることができる。ダイキン工業株式会社よりネオフロンEFEP(グレードとしては、RP−4020(融点155〜170℃)、RP−4040、RP−5000(融点190〜200℃))として販売されているものが例示できる。特に後述する方法発明の製造方法や、静電塗装方法にて保護被膜を製造する場合には、粉体塗料として販売されているものを採用することが望ましい。粉体塗料としてはこれらネオフロンEFEP(RP−4020、RP−4040、RP−5000)のうちのいずれのグレードのものを粉体化したものであっても良い。   The protective coating is formed from a tetrafluoroethylene copolymer. The tetrafluoroethylene copolymer is a copolymer of tetrafluoroethylene and other monomers, and has a melting point of 100 ° C. or higher and 220 ° C. or lower. Among the polymers listed in Patent Document 1, one having a melting point of 100 ° C. or higher and 220 ° C. or lower can be cited as an example. Examples include those sold by Daikin Industries, Ltd. as NEOFRON EFEP (as grades, RP-4020 (melting point 155 to 170 ° C.), RP-4040, RP-5000 (melting point 190 to 200 ° C.)). In particular, when a protective coating is produced by the production method of the method invention described later or by the electrostatic coating method, it is desirable to adopt what is sold as a powder coating. As the powder coating material, any of these grades of NEOFRON EFEP (RP-4020, RP-4040, RP-5000) may be powdered.

この共重合体の末端は配線部材及び支持体の表面への密着性向上の観点からはカーボネート末端が導入されていることが好ましい。カーボネート末端は共重合体を合成するときに用いる重合開始剤としてパーオキシカーボネートを用いることにより導入可能である。カーボネート末端の含有量としては、赤外線吸収スペクトルにおいて、主鎖のCH基に起因する2881cm−1での吸収ピークの高さに対する、カーボネート末端に起因する1808cm−1での吸収ピークの高さ(1808cm−1/2881cm−1)で表して0.7以上であることが望ましい。なお、この吸収ピークの高さはベースラインを補正したものである。この比の好ましい範囲としては0.7〜5.0であり、1.0〜3.0であることがより好ましい。共重合体における具体的なモノマーの比率としてはテトラフルオロエチレン(TFE)が40〜81モル%、エチレン(Et)が6〜43モル%、ヘキサフルオロプロピレン(HFP)が10〜30モル%が挙げられる。 From the viewpoint of improving adhesion to the surfaces of the wiring member and the support, it is preferable that carbonate ends are introduced into the ends of the copolymer. The carbonate terminal can be introduced by using peroxycarbonate as a polymerization initiator used when a copolymer is synthesized. As the content of the carbonate terminal, in the infrared absorption spectrum, the height of the absorption peak at 1808 cm −1 due to the carbonate terminal (1808 cm) with respect to the height of the absorption peak at 2881 cm −1 due to the CH group of the main chain. -1 / it is desirable 2881Cm -1) is expressed by 0.7 or more. The height of the absorption peak is obtained by correcting the baseline. A preferable range of this ratio is 0.7 to 5.0, and more preferably 1.0 to 3.0. Specific monomer ratios in the copolymer include 40 to 81 mol% tetrafluoroethylene (TFE), 6 to 43 mol% ethylene (Et), and 10 to 30 mol% hexafluoropropylene (HFP). It is done.

また、これらのモノマーに加えて(又は一部に代えて)式(1):CH=CFRfで表されるモノマーを用いても良い。ここで、Rfは炭素数2〜10のフルオロアルキル基である。得られる共重合体の耐熱性の点からは、Rf基はパーフルオロアルキル基、ω−ハイドロパーフルオロアルキル基、又はω−クロロパーフルオロアルキル基であることが好ましい。式(1)で表されるフルオロビニル化合物のうち、共重合性、モノマーの製造時の経済性、得られた共重合体の物性から、式(2):CH=CF(CF)H(式中、nは2〜10の数である。)で表されるフルオロビニル化合物が好ましく、とりわけnが3〜5の数であるフルオロビニル化合物が好ましい。 In addition to (or in place of) these monomers, a monomer represented by the formula (1): CH 2 = CFRf may be used. Here, Rf is a C2-C10 fluoroalkyl group. From the viewpoint of heat resistance of the resulting copolymer, the Rf group is preferably a perfluoroalkyl group, a ω-hydroperfluoroalkyl group, or a ω-chloroperfluoroalkyl group. Among the fluorovinyl compounds represented by the formula (1), from the copolymerizability, the economical efficiency during production of the monomer, and the physical properties of the obtained copolymer, the formula (2): CH 2 = CF (CF 2 ) n A fluorovinyl compound represented by H (wherein n is a number of 2 to 10) is preferable, and a fluorovinyl compound in which n is a number of 3 to 5 is particularly preferable.

変性モノマーとして式(1)のフルオロビニル化合物を用いる場合のモノマー組成は、 TFEとEtのモル比が40:60〜90:10であり、フルオロビニル化合物の含有量が(共重合体全体に対して)0〜10モル%であ り、HPPの含有量が(共重合体全体に対して)10〜30モル%を採用できる。これらのテトラフルオロエチレン共重合体は、ETFEの重合に採用されている重合方法によって製造することができる。   When the fluorovinyl compound of the formula (1) is used as the modifying monomer, the molar ratio of TFE to Et is 40:60 to 90:10, and the content of the fluorovinyl compound is (with respect to the entire copolymer) And 10 to 30 mol% of the HPP content (relative to the whole copolymer). These tetrafluoroethylene copolymers can be produced by a polymerization method employed for the polymerization of ETFE.

カーボネート末端を導入するために用いられるパーオキシカーボネートとしては式(a):ROCOOOCOOR’、式(b):ROCOOOR’、式(c):   The peroxycarbonate used for introducing the carbonate terminal is represented by formula (a): ROCOOOCOOR ', formula (b): ROCOOOOR', formula (c):

Figure 2011052311
Figure 2011052311

、式(d):ROR”OCOOOCOOR”OR’に示す化合物を用いることが望ましい。ここで、式中のRおよびR'は、炭素数1〜15の直鎖状または分岐状の一価飽和炭化水素基、もしくは末端にアルコキシ基を含有する炭素数1〜15の直鎖状または 分岐状の一価飽和炭化水素基、R"は、炭素数1〜15の直鎖状または分岐状の二価飽和炭化水素基、もしくは末端にアルコキシ基を含有する炭素数1〜15の 直鎖状または分岐状の二価飽和炭化水素基を表す。 It is desirable to use a compound represented by the formula (d): ROR "OCOOOCOOR" OR '. Here, R and R ′ in the formula are a linear or branched monovalent saturated hydrocarbon group having 1 to 15 carbon atoms, or a linear or branched chain having 1 to 15 carbon atoms containing an alkoxy group at the end, or A branched monovalent saturated hydrocarbon group, R ″ is a linear or branched divalent saturated hydrocarbon group having 1 to 15 carbon atoms, or a straight chain having 1 to 15 carbon atoms containing an alkoxy group at the terminal. Represents a branched or branched divalent saturated hydrocarbon group.

とりわけ、ジイソプロピルパーオキジカーボネート、ジ−n−プロピルパーオキシジカーボネート、t−ブチルパーオキシイソプロピルカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネートが好ましい。   Among these, diisopropyl peroxycarbonate, di-n-propyl peroxydicarbonate, t-butyl peroxyisopropyl carbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate preferable.

重合方法としては、工業的にはフッ素系溶媒を用い、重合開始剤としてパーオキシカーボネートを使用した水性媒体中での懸濁重合が好ましいが、他の重合方法、例えば溶液重合、塊状重合、なども採用できる。   As the polymerization method, suspension polymerization in an aqueous medium using a fluorinated solvent industrially and using peroxycarbonate as a polymerization initiator is preferable, but other polymerization methods such as solution polymerization, bulk polymerization, etc. Can also be adopted.

フッ素系溶媒としては、ハイドロクロロフルオロアルカン類(例えば、CHCClF、CHCClFCFCFCClH、CFClCFCFHCl)、クロロフルオロアルカン類(例えば、CFClCFClCFCF、CFCFClCFClCF)、パーフルオロアルカン類(例えば、パーフルオロシクロブタン,CFCFCFCF,CFCFCFCFCF,CFCFCFCFCFCF)が使用でき、中でもパーフルオロアルカン類が好ましい。 Examples of the fluorine-based solvent include hydrochlorofluoroalkanes (for example, CH 3 CClF 2 , CH 3 CCl 2 FCF 3 CF 2 CCl 2 H, CF 2 ClCF 2 CFHCl), chlorofluoroalkanes (for example, CF 2 ClCFClCF 2 CF 3 , CF 3 CFClCFClCF 3 ), perfluoroalkanes (eg, perfluorocyclobutane, CF 3 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 2 CF 3 ) can be used, and perfluoroalkanes are particularly preferable.

溶媒の使用量は、懸濁性、経済性の面から、水に対し10〜100質量%とするのが好ましい。   The amount of the solvent used is preferably 10 to 100% by mass with respect to water from the viewpoint of suspendability and economy.

重合温度は特に限定されないが、0〜100℃でよい。共重合体中のエチレン−エチレン連鎖生成による耐熱性の低下を避けるためには、一般に低温が好ましい。   The polymerization temperature is not particularly limited, but may be 0 to 100 ° C. In order to avoid a decrease in heat resistance due to ethylene-ethylene chain formation in the copolymer, a low temperature is generally preferred.

重合圧力は、用いる溶媒の種類、量および蒸気圧、重合温度などの他の重合条件に応じて適宜定められるが、ゲージ圧で0〜4.9MPa(0〜50kgf/cm)の条件が例示できる。 The polymerization pressure is appropriately determined according to other polymerization conditions such as the type, amount and vapor pressure of the solvent to be used, polymerization temperature, etc., but the gauge pressure is 0 to 4.9 MPa (0 to 50 kgf / cm 2 ). it can.

テトラフルオロエチレン共重合体の製造に際しては、分子量調整のために、通常の連鎖移動剤、例えばイソペンタン、n−ペンタン、n−ヘキサン、シ クロヘキサンなどの炭化水素;メタノール、エタノールなどのアルコール;四塩化炭素、クロロホルム、塩化メチレン、塩化メチルなどのハロゲン化炭化水素を用いることができる。   In the production of the tetrafluoroethylene copolymer, in order to adjust the molecular weight, conventional chain transfer agents such as hydrocarbons such as isopentane, n-pentane, n-hexane and cyclohexane; alcohols such as methanol and ethanol; Halogenated hydrocarbons such as carbon chloride, chloroform, methylene chloride, and methyl chloride can be used.

(電気めっき治具の製造方法)
本実施形態の電気めっき治具の製造方法は、前述した本実施形態の電気めっき治具を製造する方法である。
(Method for manufacturing electroplating jig)
The manufacturing method of the electroplating jig of this embodiment is a method of manufacturing the electroplating jig of this embodiment described above.

本製造方法は流動体化工程と被覆工程とを有する。これらの製造方法に供する前に配線部材は支持体に支持させておく。配線部材及び支持体の表面のうち保護被膜を形成する部分についてはアンカー効果を期待して粗面化することが望ましい。粗面化の方法はサンドブラスト加工、グリッドショット加工などが挙げられる。また、配線部材及び支持体の表面のうち保護被膜を形成しない部分には保護被膜が付着しないようにマスキングする。マスキングの方法としては特に限定されない。例えば、保護被膜の形成するにあたり、配線部材、支持体の表面に何らかのマスキング部材を付着させて、保護被膜形成後に剥離する。マスキング部材としてはテトラフルオロエチレン共重合体からなる保護被膜の形成条件においても安定的に存在可能な材料から形成される。例えば、耐熱性が高いマスキングテープによりマスキングを行い、保護被膜形成後にマスキングテープを剥離する方法が挙げられる。保護被膜を形成しない部分としては、被処理部材に直接接触して通電する通電部の他、配線部へ電流を供給する部分が挙げられる。また、支持体であってもめっき液に耐性をもつ材料にて形成された部材の表面に保護被膜を形成することは必ずしも必要ではない(もちろんめっき液に耐性をもつ材料から形成されていても保護被膜を形成しても良い)。   This manufacturing method has a fluidizing step and a coating step. The wiring member is supported by the support before being subjected to these manufacturing methods. Of the surfaces of the wiring member and the support, it is desirable to roughen the portion where the protective coating is formed in anticipation of the anchor effect. Examples of the roughening method include sandblasting and grid shot processing. Further, masking is performed so that the protective film does not adhere to portions of the surface of the wiring member and the support that do not form the protective film. The masking method is not particularly limited. For example, in forming the protective film, a masking member is attached to the surfaces of the wiring member and the support and peeled off after the protective film is formed. The masking member is made of a material that can exist stably even under the conditions for forming a protective film made of a tetrafluoroethylene copolymer. For example, the masking tape with high heat resistance is masked, and the masking tape is peeled off after the protective film is formed. As a part which does not form a protective film, the part which supplies an electric current to a wiring part other than the electricity supply part which contacts a to-be-processed member directly and energizes is mentioned. Further, it is not always necessary to form a protective film on the surface of a member formed of a material resistant to the plating solution even if it is a support (even if it is formed of a material resistant to the plating solution). A protective film may be formed).

流動体化工程はテトラフルオロエチレン共重合体の粉末を浮遊させて流動体化する工程である。テトラフルオロエチレン共重合体の粉末の粒径は特に限定しないが15μm〜200μmとすることが望ましく、20μm〜80μmとすることがより望ましい。粉末は見かけ密度が0.3g/mL〜1.0g/mLが望ましく、0.4g/mL〜0.8g/mLがより望ましい。この粉末に流体(空気などの気体が望ましい)を供給することで流動体化できる。流動体化の程度としては粉体の見かけ体積を基準として2〜4倍程度になるように行うことが好ましい。流動体化に際し、流体の導入に加えて(又は代えて)粉末に振動を与えることもできる。振動を与えることにより円滑に流動体化することができる。振動の付与方法としてはバイブレーションモータ、超音波、音波などを用いることもできる。   The fluidizing step is a step of floating the powder of tetrafluoroethylene copolymer to form a fluid. The particle size of the tetrafluoroethylene copolymer powder is not particularly limited, but is preferably 15 μm to 200 μm, and more preferably 20 μm to 80 μm. The powder preferably has an apparent density of 0.3 g / mL to 1.0 g / mL, more preferably 0.4 g / mL to 0.8 g / mL. A fluid can be obtained by supplying a fluid (preferably a gas such as air) to the powder. The degree of fluidization is preferably about 2 to 4 times based on the apparent volume of the powder. During fluidization, in addition to (or instead of) introducing the fluid, the powder can be vibrated. By applying vibration, the fluid can be smoothly formed. As a method for applying vibration, a vibration motor, ultrasonic waves, sound waves, or the like can be used.

被覆工程は、配線部材を支持した支持体を流動体中に浸漬する工程である。配線部材及び支持体の表面のうち、少なくとも保護被膜を形成を行う部分についてテトラフルオロエチレン共重合体の融点以上の温度に加熱する。なお、加熱温度は250℃以下にすることが望ましい。250℃を超えて加熱すると銅、銅合金の表面に酸化皮膜が形成されるからである。加熱の方法は特に限定しない。融点以上の温度に加熱された配線部材及び支持体が流動体中に浸漬されることにより、付着した粉末がの少なくとも一部が溶融して被膜を形成する。付着した粉末は、その融点以上に加熱することにより溶融させることもできる。形成した被膜は冷却・固化することで一体化し、保護被膜になる。付着した粉末のうち、余分に付着したもの、溶融して一体化していないものについては吹き飛ばすなどの方法により除去することが望ましい。   The covering step is a step of immersing the support supporting the wiring member in the fluid. Of the surfaces of the wiring member and the support, at least the portion where the protective film is formed is heated to a temperature equal to or higher than the melting point of the tetrafluoroethylene copolymer. The heating temperature is desirably 250 ° C. or lower. It is because an oxide film will be formed on the surface of copper and a copper alloy if it heats exceeding 250 degreeC. The heating method is not particularly limited. When the wiring member and the support heated to a temperature equal to or higher than the melting point are immersed in the fluid, at least a part of the adhered powder is melted to form a coating. The adhering powder can be melted by heating above its melting point. The formed film is integrated by cooling and solidifying to become a protective film. Of the adhering powder, it is desirable to remove the extra adhering powder or the one not melted and integrated by a method such as blowing off.

配線部材及び支持体を加熱する温度、粉末を流動体化する程度、粉末の量などを制御することにより形成される保護被膜の厚みを制御できる。加熱する温度を高くすると粉末の付着の程度が多くなり、粉末の流動体化の程度(流動体の体積)を大きくすると粉末の付着の程度が少なくなり、粉末の量を多くすると粉末の付着の程度を多くできる。また、流動体中に浸漬させる回数を増やすことにより保護被膜の厚みが大きくなる。   The thickness of the protective coating formed can be controlled by controlling the temperature at which the wiring member and the support are heated, the degree to which the powder is fluidized, the amount of powder, and the like. Increasing the heating temperature increases the degree of powder adhesion, increasing the degree of powder fluidization (fluid volume) decreases the degree of powder adhesion, and increasing the amount of powder increases the powder adhesion. You can increase the degree. Moreover, the thickness of a protective film becomes large by increasing the frequency | count of immersing in a fluid.

流動体中に浸漬する本方法によると、従来の静電粉体塗装に比べ、塗装効率が3〜5倍にできると共に、塗装時間も1/1.5〜1/3に短縮される。   According to the present method of immersing in a fluid, the coating efficiency can be increased by 3 to 5 times and the coating time is shortened to 1 / 1.5-1 to 比 べ as compared with the conventional electrostatic powder coating.

本発明の電気めっき治具について実施例に基づき以下具体的に説明する。本実施例の電気めっき治具は、図1に示すように、支持体1と配線部材2とを組み合わせた部材の表面に保護被膜(図略)が形成されている(電気めっき治具A)。支持体1は、縦枠11及び12と、縦枠11及び12に両端が溶接固定された横枠13〜15とから構成される。横枠13〜15は縦枠11及び12の長さ方向に間隔を開けて固定される。配線部材2は通電部21及び22と配線部23とをもつ。配線部23は縦枠11及び12の端部近傍に両端にて固定される。通電部21及び22は配線部23に一端が溶接・固定されている。通電部21及び22の他端は被処理部材に接続される。この電気めっき治具は被処理部材の形状やめっき槽の形状などを考慮した上で任意の向きに配置して使用される。図2に示すように、横枠13〜15にはPEEK製の止め具16及び17を備えることができる(電気めっき治具B)。止め具16は横枠13に間隔を開けて2個配設され、止め具17は横枠15に間隔を開けて2個配設される。   The electroplating jig of the present invention will be specifically described below based on examples. In the electroplating jig of this example, as shown in FIG. 1, a protective film (not shown) is formed on the surface of a member in which the support 1 and the wiring member 2 are combined (electroplating jig A). . The support 1 includes vertical frames 11 and 12 and horizontal frames 13 to 15 having both ends fixed to the vertical frames 11 and 12 by welding. The horizontal frames 13 to 15 are fixed at intervals in the length direction of the vertical frames 11 and 12. The wiring member 2 has current-carrying parts 21 and 22 and a wiring part 23. The wiring portion 23 is fixed at both ends near the ends of the vertical frames 11 and 12. The energization parts 21 and 22 are welded and fixed to the wiring part 23 at one end. The other ends of the energization parts 21 and 22 are connected to the member to be processed. The electroplating jig is used by being arranged in an arbitrary direction in consideration of the shape of the member to be processed and the shape of the plating tank. As shown in FIG. 2, the horizontal frames 13-15 can be equipped with PEEK fasteners 16 and 17 (electroplating jig B). Two stoppers 16 are disposed on the horizontal frame 13 with a space therebetween, and two stoppers 17 are disposed on the horizontal frame 15 with a space therebetween.

(試験1)
電気めっき治具Aを製造した。縦枠11及び12のサイズとして20mm×500mm×2mm、横枠13〜15のサイズとして20mm×200mm×2mm、縦枠11及び12並びに横枠13〜15の素材としてSUS304を用い、これらの接合は溶接にて行った。配線部23のサイズとして20mm×200mm×2mm、素材が銅とした。通電部21及び22のサイズとして5mmφ×100mmとした。
(Test 1)
An electroplating jig A was manufactured. The size of the vertical frames 11 and 12 is 20 mm × 500 mm × 2 mm, the size of the horizontal frames 13 to 15 is 20 mm × 200 mm × 2 mm, and the vertical frames 11 and 12 and the horizontal frames 13 to 15 are made of SUS304. This was done by welding. The size of the wiring part 23 was 20 mm × 200 mm × 2 mm, and the material was copper. The size of the energization parts 21 and 22 was 5 mmφ × 100 mm.

電気めっき治具Aにおける保護被膜形成方法について以下に説明する。
電気めっき治具Aの配線部材及び支持体をアセトンで溶剤脱脂し、#240のサンドブラストで粗面化した。その後、通電部を耐熱テープにてマスキングした状態で250℃に加温された電気炉内に60分間放置し加温した。200mm×300mm×1200mmのSUS304製の流動浸漬槽を用い、その槽内にテトラフルオロエチレン共重合体粉末としてのダイキン工業社製ネオフロンEFEP RC−4520(粒径25μm〜50μm(レーザー回折法);見かけ密度0.45〜0.95g/mL(JIS K6891 に準拠);融点155℃〜170℃(DSC))を15Kg投入した。振動板で振動しながら1000mmの高さまで粉末を浮遊させて流動体化させた。その流動体中に加熱された治具Aを通電部21及び22側から侵入させて30秒間浸漬した。余分に付着した粉末をエアーで除去し、再度250℃の電気炉内に20分間加熱させた。250℃に加熱した後、流動体中に30秒間浸漬することを計4回繰り返した。結果、平均膜厚550μmの保護被膜が形成された。使用した粉体は82gであった。厚みむらは±50μmであった。
A method for forming a protective film in the electroplating jig A will be described below.
The wiring member and support of the electroplating jig A were degreased with acetone and roughened with sandblasting # 240. Thereafter, the energized portion was masked with a heat-resistant tape and heated in an electric furnace heated to 250 ° C. for 60 minutes. A SUS304 fluid immersion bath of 200 mm × 300 mm × 1200 mm is used, and Daikin Industries, Ltd. Neoflon EFEP RC-4520 (particle size: 25 μm to 50 μm (laser diffraction method)) as a tetrafluoroethylene copolymer powder; A density of 0.45 to 0.95 g / mL (based on JIS K6891); melting point 155 ° C. to 170 ° C. (DSC)) was added at 15 kg. The powder was suspended to a height of 1000 mm while being vibrated by a vibration plate to form a fluid. The heated jig A was inserted into the fluid from the current-carrying parts 21 and 22 side and immersed for 30 seconds. The excess powder was removed with air and again heated in an electric furnace at 250 ° C. for 20 minutes. After heating to 250 ° C., immersion in the fluid for 30 seconds was repeated a total of 4 times. As a result, a protective film having an average film thickness of 550 μm was formed. The powder used was 82 g. The thickness unevenness was ± 50 μm.

(試験2)
電気めっき治具Bをした。電気めっき治具Bは電気めっき治具Aにおける配線部材及び支持体に止め具16及び17を設けた以外は同様の構成である。止め具16及び17はPEEK製であり、サイズが1.5mmφ×20mmである。試験例1と同様の操作を行うことにより平均膜厚580μmの電気めっき治具Bを得た。使用した粉体は95gであった。厚みむらは±40μmであった。
(Test 2)
Electroplating jig B was used. The electroplating jig B has the same configuration except that the stoppers 16 and 17 are provided on the wiring member and the support in the electroplating jig A. The stops 16 and 17 are made of PEEK and have a size of 1.5 mmφ × 20 mm. By performing the same operation as in Test Example 1, an electroplating jig B having an average film thickness of 580 μm was obtained. The powder used was 95 g. The thickness unevenness was ± 40 μm.

(試験3)
電気めっき治具Aを製造した。保護被膜の形成方法として静電塗装を採用した。試験1と同様に加熱を行い、その後、静電塗装機で塗装を行った。加熱及び塗装のサイクルを計9回行い、最終的に加熱して保護被膜とした。保護被膜は平均膜厚510μmのめっき治具Aを得た。使用した粉体塗料は145gであった。厚みむらは±60μmであった。
(Test 3)
An electroplating jig A was manufactured. Electrostatic coating was adopted as a method for forming the protective coating. Heating was performed in the same manner as in Test 1, and then coating was performed with an electrostatic coating machine. A total of nine heating and coating cycles were performed, and finally heated to form a protective coating. As the protective coating, a plating jig A having an average film thickness of 510 μm was obtained. The powder coating used was 145 g. The thickness unevenness was ± 60 μm.

(試験4)
流動体中に浸漬する方向を反対(通電部21及び22とは反対方向から侵入させた)にした以外は試験1と同様の方法にて電気めっき治具Aを製造した。保護被膜は平均膜厚450μm、使用した粉体は70g、厚みむらは±150μmであった。
(Test 4)
An electroplating jig A was produced in the same manner as in Test 1 except that the direction of immersion in the fluid was reversed (intrusion from the direction opposite to the energizing portions 21 and 22). The protective film had an average film thickness of 450 μm, the powder used was 70 g, and the thickness unevenness was ± 150 μm.

(考察)
試験1〜4より明らかなように、本発明の流動体を用いた保護被膜の製造方法を採用すると、従来の静電塗装を用いた保護被膜の製造方法よりも塗装回数が少なくなると共に、厚みむらも小さくなった。すなわち、加工工数が大幅に低減されると共に厚みむらも小さく精度の高い保護被膜の製造が可能になった。
(Discussion)
As is clear from Tests 1 to 4, when the method for producing a protective coating using the fluid of the present invention is adopted, the number of coatings is less than the conventional method for producing a protective coating using electrostatic coating, and the thickness is increased. The unevenness has also become smaller. That is, the number of processing steps can be greatly reduced, and the thickness of the unevenness of the thickness can be reduced, so that a highly accurate protective coating can be produced.

(耐久試験)
めっき槽(600mm×400mm×1200mm)内に、硫酸ニッケル300g/L、塩化ニッケル55g/L、ホウ酸40g/Lになるように調製しためっき液を250L入れ温度を60℃に調整した。試験2で作成した電気めっき治具Bにて100dmの被処理部材を支持した状態で、1A/dmの条件で20分間電流を供給した。この工程を1サイクルとし、40サイクル毎にめっき浴を新たに調製した。1日あたり60サイクルのめっき操作を行い、電気めっき治具Bの外観などを観察した。試験2の電気めっき治具Bは1200サイクル後にも大きな変化が認められなかったのでそこで試験を中止した。比較試験として電気めっき治具Bにおける保護被膜に代えて従来の保護被膜(ポリエチレン:膜厚800μm、塩ビゾル(塩化ビニル):膜厚1000μm)を形成した電気めっき治具についても耐久性を検討した。
(An endurance test)
In a plating tank (600 mm × 400 mm × 1200 mm), 250 L of a plating solution prepared to be 300 g / L of nickel sulfate, 55 g / L of nickel chloride, and 40 g / L of boric acid was put, and the temperature was adjusted to 60 ° C. At electroplating jig B created in Test 2 while supporting the member to be processed of 100 dm 2, it was supplied for 20 minutes current under the condition of 1A / dm 2. This step was defined as one cycle, and a plating bath was newly prepared every 40 cycles. The plating operation was performed 60 cycles per day, and the appearance of the electroplating jig B was observed. Since the electroplating jig B of Test 2 did not change significantly after 1200 cycles, the test was stopped there. As a comparative test, durability was also examined for an electroplating jig in which a conventional protective film (polyethylene: film thickness 800 μm, vinyl chloride (vinyl chloride): film thickness 1000 μm) was formed instead of the protective film in the electroplating jig B. .

Figure 2011052311
Figure 2011052311

表1より明らかなように、テトラフルオロエチレン共重合体から形成される保護被膜を採用することにより、従来の保護被膜に比べて膜厚が薄いにもかかわらず優れた耐久性を示すことが分かった。   As is clear from Table 1, it was found that the use of a protective coating formed from a tetrafluoroethylene copolymer showed excellent durability even though the film thickness was thinner than that of a conventional protective coating. It was.

1…支持体 11、12…縦枠 13〜15…横枠 16、17…止め具
2…配線部材 21、22…通電部 23…配線部
DESCRIPTION OF SYMBOLS 1 ... Support body 11, 12 ... Vertical frame 13-15 ... Horizontal frame 16, 17 ... Stopper 2 ... Wiring member 21, 22 ... Current supply part 23 ... Wiring part

Claims (3)

銅及び銅合金の少なくとも一方にて構成され、被処理部材に電気的に接続される通電部と前記通電部に電流を供給する配線部とをもつ配線部材と、
少なくとも一部が金属から形成され、前記配線部材及び前記被処理部材を支持する支持体と、
融点が100℃〜220℃の範囲にあるテトラフルオロエチレン共重合体で厚み50μm〜1000μmになるように前記支持体の金属部分及び前記配線部を被覆する保護被膜と、
を有することを特徴とする電気めっき治具。
A wiring member comprising at least one of copper and a copper alloy, and having a current-carrying part electrically connected to the member to be treated and a wiring part for supplying a current to the current-carrying part;
A support body that is at least partially formed of metal and supports the wiring member and the member to be processed;
A protective film for covering the metal part of the support and the wiring part so as to have a thickness of 50 μm to 1000 μm with a tetrafluoroethylene copolymer having a melting point in the range of 100 ° C. to 220 ° C .;
An electroplating jig characterized by comprising:
前記保護被膜は一体化している請求項1に記載の電気めっき治具。   The electroplating jig according to claim 1, wherein the protective coating is integrated. 請求項1又は2に記載の電気めっき治具を製造する方法であって、
前記テトラフルオロエチレン共重合体の粉末を浮遊させて流動体化する流動体化工程と、
表面温度を前記テトラフルオロエチレン共重合体の融点以上に調節した、前記配線部材を支持した前記支持体を前記流動体中に浸漬し、前記配線部材及び前記支持体の表面に前記保護被膜を形成する被覆工程と、
を有することを特徴とする電気めっき治具の製造方法。
A method for producing the electroplating jig according to claim 1 or 2,
A fluidizing step of floating the tetrafluoroethylene copolymer powder to form a fluid;
The support member supporting the wiring member, the surface temperature of which is adjusted to be equal to or higher than the melting point of the tetrafluoroethylene copolymer, is immersed in the fluid to form the protective film on the surfaces of the wiring member and the support member. A coating process to
A method for producing an electroplating jig, comprising:
JP2009204627A 2009-09-04 2009-09-04 Electroplating jig and manufacturing method thereof Active JP5746463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009204627A JP5746463B2 (en) 2009-09-04 2009-09-04 Electroplating jig and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009204627A JP5746463B2 (en) 2009-09-04 2009-09-04 Electroplating jig and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011052311A true JP2011052311A (en) 2011-03-17
JP5746463B2 JP5746463B2 (en) 2015-07-08

Family

ID=43941605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009204627A Active JP5746463B2 (en) 2009-09-04 2009-09-04 Electroplating jig and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5746463B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187899A (en) * 1984-10-05 1986-05-06 Daikin Ind Ltd Plating jig
JPS61187975A (en) * 1985-02-16 1986-08-21 Toyota Motor Corp Method for coating synthetic resin powder on metallic member
JPS61218612A (en) * 1985-03-25 1986-09-29 Daikin Ind Ltd Plating jig
JPH0577263U (en) * 1992-03-30 1993-10-22 株式会社アルメックス Jig for holding objects
JP2002030493A (en) * 2000-07-10 2002-01-31 Hiroshi Nagayama Hanger for plating
JP2002249522A (en) * 2001-02-23 2002-09-06 Nippon Mektron Ltd Carboxy group-containing fluorocopolymer
JP2006111885A (en) * 1997-06-23 2006-04-27 Daikin Ind Ltd Tetrafluoroethylene copolymer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187899A (en) * 1984-10-05 1986-05-06 Daikin Ind Ltd Plating jig
JPS61187975A (en) * 1985-02-16 1986-08-21 Toyota Motor Corp Method for coating synthetic resin powder on metallic member
JPS61218612A (en) * 1985-03-25 1986-09-29 Daikin Ind Ltd Plating jig
JPH0577263U (en) * 1992-03-30 1993-10-22 株式会社アルメックス Jig for holding objects
JP2006111885A (en) * 1997-06-23 2006-04-27 Daikin Ind Ltd Tetrafluoroethylene copolymer
JP2002030493A (en) * 2000-07-10 2002-01-31 Hiroshi Nagayama Hanger for plating
JP2002249522A (en) * 2001-02-23 2002-09-06 Nippon Mektron Ltd Carboxy group-containing fluorocopolymer

Also Published As

Publication number Publication date
JP5746463B2 (en) 2015-07-08

Similar Documents

Publication Publication Date Title
JP4424246B2 (en) Fluorine-containing copolymer and use thereof
JP4206638B2 (en) Fluorine-containing adhesive material and laminate using the same
JP6477709B2 (en) Resin-coated metal tube and manufacturing method thereof
JP2005523979A5 (en)
CA2904209C (en) Adhesion of fluoropolymer to metal
JP5445583B2 (en) Ethylene / tetrafluoroethylene copolymer, electric wire and rotational molding fluororesin powder
JP6919661B2 (en) Laminated body and its manufacturing method
CN101522735A (en) Vinylidene fluoride copolymer functionalized by radiation grafting of an unsaturated polar monomer
KR102458474B1 (en) Molded article and its manufacturing method
JP4639820B2 (en) Ethylene / tetrafluoroethylene copolymer powder and articles coated with the same
JP2010053209A (en) Fluorine-containing copolymer and its usage
JP4844788B2 (en) Fluorine-containing copolymer
JP5746463B2 (en) Electroplating jig and manufacturing method thereof
JP6929780B2 (en) New heat-processable fluoropolymer
JP2017214478A (en) Release film
JP4425008B2 (en) Laminated body containing fluororesin coating and film-forming fluororesin
JP6476664B2 (en) Resin-coated metal tube and manufacturing method thereof
JP6644088B2 (en) Multi-layer assembly
JP2009185301A (en) Coating formable fluororesin composition
JP2010234770A (en) Method for manufacturing flat membrane containing filler and polymer
JP2015189053A (en) Resin-coated article
JP2005231080A (en) Fluoroplastic laminate
JP2019083838A (en) Non-pressure-sensitive adhesive sheet for food processing apparatus, food processing apparatus, method of manufacturing food processing apparatus and surface modification method for food processing apparatus
JP2020146980A (en) Laminate with peel resistance having non-adhesive surface
EP3612662A1 (en) Article and method for its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150508

R150 Certificate of patent or registration of utility model

Ref document number: 5746463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250