JP2011051889A - Method for manufacturing slag hardened body - Google Patents

Method for manufacturing slag hardened body Download PDF

Info

Publication number
JP2011051889A
JP2011051889A JP2010233670A JP2010233670A JP2011051889A JP 2011051889 A JP2011051889 A JP 2011051889A JP 2010233670 A JP2010233670 A JP 2010233670A JP 2010233670 A JP2010233670 A JP 2010233670A JP 2011051889 A JP2011051889 A JP 2011051889A
Authority
JP
Japan
Prior art keywords
slag
mass
less
mgo
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010233670A
Other languages
Japanese (ja)
Other versions
JP5195866B2 (en
Inventor
Hisahiro Matsunaga
久宏 松永
Masato Takagi
正人 高木
Fumio Kogiku
史男 小菊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010233670A priority Critical patent/JP5195866B2/en
Publication of JP2011051889A publication Critical patent/JP2011051889A/en
Application granted granted Critical
Publication of JP5195866B2 publication Critical patent/JP5195866B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing slag hardened body solving problems such as insufficient strength, generation of crack and expansion due to free MgO of a slag hardened body obtained by using converter slag and ladle refining slag as a part of the raw material, at a bound. <P>SOLUTION: In the method for manufacturing the slag hardened body by compounding a particulate steel-making slag and a substance containing SiO<SB>2</SB>having latent hydraulicity with water, the converter slag of un-smelted MgO of 1 mass% or less and crystallized MgO of 10 mass% or less and/or the ladle refining slag are used as steel-making slag, and blast furnace slag fine powder is used as the substance containing SiO<SB>2</SB>having latent hydraulicity, wherein the content of the converter slag and/or the ladle refining slag having a particle size of 1.18 mm or less in the whole compounding material except water is made to be 10 to 90 mass% and the content of the blast furnace slag fine powder is made to be 9 to 40 mass%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、スラグ硬化体の製造方法に係わり、詳しくは、製鋼スラグ、とりわけ従来は路盤材等として有効利用することが困難であった粉粒状の転炉スラグ及び/又は取鍋精錬スラグを主原料とし、ひび割れを可及的に低減した硬化体とする技術に関する。   The present invention relates to a method for producing a slag hardened body, and in particular, mainly steelmaking slag, in particular, powdered converter slag and / or ladle smelting slag that has been difficult to effectively use as roadbed materials. The present invention relates to a technology for using as a raw material a cured body with as few cracks as possible.

製鋼工程で発生するスラグは、塩基度(CaO/SiO2で表す)が高くて遊離CaOを多量に含有するために水分を吸って膨張し易く、高炉スラグのように土木・建設資材としての用途には向かず、その処理は困難を極めている。そこで、このような製鋼スラグを積極的に活用しようとする試みが幾つかなされている。 The slag generated in the steelmaking process has high basicity (expressed as CaO / SiO 2 ) and contains a large amount of free CaO, so it easily absorbs moisture and is used as civil engineering and construction materials like blast furnace slag. However, the processing is extremely difficult. Therefore, some attempts have been made to actively utilize such steelmaking slag.

例えば、製鋼スラグを含有する骨材と、潜在水硬性を有するシリカ含有物質と、ポゾラン反応性を有するシリカ含有物質のうち1種又は2種を50%以上含有する水和反応によって硬化する結合材とを含有してなることを特徴とする製鋼スラグを利用した水和硬化体が開示されている(特許文献1参照)。また、他の例として、結合材、細骨材、粗骨材の全てを粉砕又は破砕した鉄鋼スラグ(高炉スラグも含む)にすると共に、結合材として高炉スラグ及び製鋼スラグを配合したスラグ・ブロックが開示されている(特許文献2参照)。さらに、転炉スラグを5mm以下に粉砕後、磁選、乾燥して、さらに比表面積が3000〜5000cm2/gになるように微粉砕し、この転炉スラグ微粉末を、含水比が1%以下で比表面積が3800〜4200cm2/gの高炉スラグ微粉末に、10〜30重量%混合してなる転炉スラグを用いた高炉セメントの例も開示されている(特許文献3参照)。加えて、高炉水砕スラグに、転炉スラグ破砕設備で発生する集塵ダストを絶乾重量比で、10〜60%添加混合した強化路盤材も開示されている(特許文献4参照)。 For example, an aggregate containing steelmaking slag, a silica-containing substance having latent hydraulic properties, and a binder that hardens by a hydration reaction containing 50% or more of one or two kinds of silica-containing substances having pozzolanic reactivity. There is disclosed a hydrated and hardened body using a steelmaking slag characterized by containing (see Patent Document 1). In addition, as another example, a steel slag (including blast furnace slag) obtained by pulverizing or crushing all of the binder, fine aggregate, and coarse aggregate, and a slag block containing blast furnace slag and steelmaking slag as a binder. Is disclosed (see Patent Document 2). Further, after the converter slag is pulverized to 5 mm or less, magnetically separated and dried, and further pulverized to have a specific surface area of 3000 to 5000 cm 2 / g, the converter slag fine powder has a moisture content of 1% or less. An example of blast furnace cement using converter slag obtained by mixing 10 to 30% by weight with blast furnace slag fine powder having a specific surface area of 3800 to 4200 cm 2 / g is also disclosed (see Patent Document 3). In addition, a reinforced roadbed material is also disclosed in which 10 to 60% of dust collection dust generated in the converter slag crushing equipment is added and mixed with the blast furnace granulated slag in an absolutely dry weight ratio (see Patent Document 4).

なお、ここで、製鋼スラグとは、溶鋼を溶製するために利用するあらゆる精錬容器で形成されたスラグを意味し、溶銑予備処理スラグ、転炉スラグ、電気炉スラグを始めとして、高Cr溶鋼を得るための溶融還元炉スラグ、ステンレス脱炭炉スラグ、二次精錬スラグ(転炉や電気炉から取鍋に出鋼した溶鋼を真空脱ガス槽内あるいは取鍋のままで精錬処理した場合に発生する)がある。このうち、本発明でいう取鍋精錬スラグとは、溶鋼をVOD,RH,DH,LF等の取鍋精錬設備において、脱硫、脱酸、脱炭、脱ガス等の二次精錬を行う際に発生したスラグである。   Here, the steelmaking slag means slag formed in any refining vessel used for melting molten steel, and high Cr molten steel including hot metal pretreatment slag, converter slag, electric furnace slag, etc. Smelting reduction furnace slag, stainless steel decarburization furnace slag, secondary refining slag (in the case of refining the molten steel from the converter or electric furnace to the ladle in the vacuum degassing tank or in the ladle Occur). Among these, the ladle refining slag as used in the present invention means that when molten steel is subjected to secondary refining such as desulfurization, deoxidation, decarburization, and degassing in ladle refining equipment such as VOD, RH, DH, and LF. It is generated slag.

特開平10−152364号公報JP-A-10-152364 特開平2−233539号公報JP-A-2-233539 特開平1−126246号公報JP-A-1-126246 特開昭59−169966号公報JP 59-169966 A

しかしながら、本発明者が上記した従来技術を用いて転炉スラグ及び/又は取鍋精錬スラグを原料として、スラグ硬化体を試作しようとしたところ、下記のような問題点が明らかとなった。   However, when the present inventor tried to prototype a slag hardened body using the converter slag and / or ladle smelting slag as a raw material using the above-described conventional technology, the following problems were revealed.

まず、特許文献1、特許文献2及び特許文献3に開示された方法に従ってスラグ硬化体(以下、単に硬化体という)を試作したが、一部の製鋼スラグを用いると、得られた硬化体の圧縮強度は20N/mm2に満たず、セメント・コンクリートの代替としての使用に耐えるものにならなかった。また、多数のひび割れが発生し、特に強度と外観の美麗さが要求されるような建設用硬化体ブロックのような用途には、到底使用に堪えないことが判明した。さらに、特許文献1に開示されている水浸膨脹比が0.5%以下の製鋼スラグを用いても、その硬化体の圧縮強度は20N/mm2に満たず、またひび割れが発生した。 First, a slag hardened body (hereinafter simply referred to as a hardened body) was prototyped according to the methods disclosed in Patent Document 1, Patent Document 2 and Patent Document 3, but when some steelmaking slag was used, The compressive strength was less than 20 N / mm 2 , and it did not withstand use as an alternative to cement and concrete. In addition, it has been proved that it cannot be used for applications such as hardened building blocks for construction, in which many cracks are generated and particularly strength and appearance are required. Furthermore, even when a steelmaking slag having a water immersion expansion ratio of 0.5% or less disclosed in Patent Document 1 was used, the compression strength of the cured body was less than 20 N / mm 2 and cracking occurred.

この原因を詳細に調査したところ、近年転炉、取鍋の内張り耐火物を保護する目的でスラグ中に添加されているドロマイトやマグネシア・クリンカ等に起因して、転炉スラグ及び/又は取鍋精錬スラグのMgO濃度が高くなっているが、このMgO濃度が高い転炉スラグ及び/又は取鍋精錬スラグを用いると、水中養生の際に該転炉スラグ及び/又は取鍋精錬スラグに含まれる遊離MgOが水和膨張して、硬化体が崩壊することがわかった。つまり、遊離MgOは、遊離CaOとは異なり、水蒸気エージング等のエージング処理では、容易に安定な水酸化物にはならず、ゆっくりと水和反応が進むために硬化体の強度発現が遅れ、崩壊するのである。ここで、遊離MgOには、精錬中に融け残った未滓化MgOと、溶融状態または溶融物と固形物の混合状態のスラグが冷却過程で固化する際に発生する晶出MgOが存在する。   When this cause was investigated in detail, converter slag and / or ladle caused by dolomite, magnesia clinker, etc. added to slag in recent years for the purpose of protecting the refractory lining of converter and ladle. Although the MgO concentration of the smelting slag is high, if a converter slag and / or ladle smelting slag having a high MgO concentration is used, it is included in the converter slag and / or ladle smelting slag during water curing. It was found that the free MgO hydrated and expanded, and the cured product collapsed. In other words, unlike free CaO, free MgO does not easily become a stable hydroxide by aging treatment such as steam aging, and since the hydration reaction proceeds slowly, the strength expression of the cured product is delayed and collapsed. To do. Here, free MgO includes undehydrated MgO that remains unmelted during refining and crystallized MgO that is generated when slag in a molten state or a mixed state of a melt and a solid is solidified in the cooling process.

そこで、本発明者は、製鋼スラグとして遊離MgOをほとんど含有しない転炉スラグ及び/又は取鍋精錬スラグを選び、上記公報記載の技術と同様の方法で硬化体の製造を試みたが、硬化体の圧縮強度は20N/mm2に満たず、また多数のひび割れが発生する場合があり、セメント・コンクリートの代替としての使用に耐えるものが得られなかった。また、特許文献3記載の技術において、比表面積3000cm2/g以上、つまり粒径が約0.07mm以下の転炉スラグ及び/又は取鍋精錬スラグを含むようにしたところ、ほとんど硬化もしなかった。さらに、特許文献4に記載された技術で硬化体の製造を試みたところ、スラグが凝集するだけで、コンクリートのような硬化体は得られなかった。 Therefore, the present inventor selected converter slag and / or ladle smelting slag containing almost no free MgO as steelmaking slag, and tried to produce a hardened body by a method similar to the technique described in the above publication. The compressive strength of No. 2 was less than 20 N / mm 2 , and many cracks could occur, so that it was not possible to withstand use as an alternative to cement and concrete. In addition, in the technique described in Patent Document 3, when a converter slag and / or ladle smelting slag having a specific surface area of 3000 cm 2 / g or more, that is, a particle size of about 0.07 mm or less is included, almost no hardening occurs. . Furthermore, when an attempt was made to produce a cured product using the technique described in Patent Document 4, only a slag aggregated, and a cured product such as concrete could not be obtained.

本発明は、かかる転炉スラグ及び取鍋精錬スラグを原料の一部として使用して得たスラグ硬化体の強度不足、ひび割れの発生、遊離MgOに起因する膨張等の問題を一挙に解決可能なスラグ硬化体の製造方法を提供することを目的としている。   The present invention can solve problems such as insufficient strength, cracking, expansion due to free MgO, etc. of a slag hardened body obtained by using such converter slag and ladle refining slag as a part of raw materials at once. It aims at providing the manufacturing method of a slag hardening body.

発明者は、上記目的を達成するため鋭意研究を重ね、その成果を本発明に具現化した。   The inventor has intensively studied to achieve the above object, and the results have been embodied in the present invention.

すなわち、本発明は、粉粒状の製鋼スラグと潜在水硬性を有するSiO2含有物質とを水で混練してスラグ硬化体を製造する方法において、前記製鋼スラグとして未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下の転炉スラグ及び/又は取鍋精錬スラグを、前記潜在水硬性を有するSiO2含有物質として高炉スラグ微粉末を使用すると共に、水を除く全配合物質における粒径1.18mm以下の該転炉スラグ及び/又は取鍋精錬スラグの含有率を10〜90質量%、高炉スラグ微粉末の含有率を9〜40質量%とすることを特徴とするスラグ硬化体の製造方法である。 That is, the present invention is a method for producing a slag hardened body by kneading a granular steel-making slag and a SiO 2 -containing substance having latent hydraulic properties with water, wherein the unsteeled MgO is 1% by mass or less as the steel-making slag. In addition, the converter slag and / or ladle smelting slag having a crystallization MgO of 10% by mass or less are used as the SiO 2 -containing substance having latent hydraulic property, and all the blended substances excluding water are used. The content ratio of the converter slag and / or ladle smelting slag having a particle size of 1.18 mm or less is 10 to 90% by mass, and the content of blast furnace slag fine powder is 9 to 40% by mass. It is a manufacturing method of a hardening body.

また、本発明は、粉粒状の製鋼スラグと潜在水硬性を有するSiO2含有物質とを水で混練してスラグ硬化体を製造する方法において、前記製鋼スラグとして未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下の転炉スラグ及び/又は取鍋精錬スラグを、潜在水硬性を有するSiO2含有物質として高炉スラグ微粉末及びフライアッシュを使用すると共に、水を除く全配合物質における粒径1.18mm以下の該転炉スラグ及び/又は取鍋精錬スラグの含有率を10〜90質量%、高炉スラグ微粉末の含有率を3〜36質量%、フライアッシュの含有率を1.5〜30質量%とし、且つ高炉スラグ微粉末とフライアッシュの合計含有量に対するフライアッシュの含有量の質量比を0.1〜0.75とすることを特徴とするスラグ硬化体の製造方法である。 Further, the present invention provides a method for producing a slag hardened body by kneading a granular steel-making slag and a SiO 2 -containing substance having latent hydraulic properties with water, wherein the unsteeled MgO is 1% by mass or less as the steel-making slag. In addition, the converter slag and / or ladle smelting slag having a crystallized MgO content of 10% by mass or less is used as the SiO 2 -containing material having latent hydraulic properties, and blast furnace slag fine powder and fly ash are used, and all water is removed. The content of the converter slag and / or ladle smelting slag having a particle size of 1.18 mm or less in the blended material is 10 to 90% by mass, the content of fine blast furnace slag powder is 3 to 36% by mass, and the content of fly ash 1.5-30 mass%, and the mass ratio of the fly ash content to the total content of blast furnace slag fine powder and fly ash is 0.1-0.75. It is a manufacturing method of a hardening body.

この場合、高炉スラグ微粉末、フライアッシュ、粒径1.8mm以下の転炉スラグ及び/又は取鍋精錬スラグの合計含有量に対する転炉スラグ及び/又は取鍋精錬スラグの含有量の質量比を0.2超としたり、あるいは前記水を除く全配合物質に、さらにアルカリ金属及び/又はアルカリ土類金属の酸化物、水酸化物、硫酸塩、塩化物から選ばれた1種又は2種以上を、高炉スラグ微粉末とフライアッシュの合計含有量に対して0.2〜20質量%添加するのが良い。   In this case, the mass ratio of the content of converter slag and / or ladle smelting slag to the total content of blast furnace slag fine powder, fly ash, converter slag having a particle size of 1.8 mm or less and / or ladle smelting slag, More than 0.2, or one or two or more selected from oxides, hydroxides, sulfates, and chlorides of alkali metals and / or alkaline earth metals in addition to all the compounded substances except water It is good to add 0.2-20 mass% with respect to the total content of blast furnace slag fine powder and fly ash.

以上述べたように、本発明により、高強度で、且つ表面層にひび割れがほとんど無いスラグ硬化体が得られ、また、原料スラグからのF、B、Se、Vの溶出量が抑制ができる。この硬化体は、消波ブロック、魚礁、藻場造成用ブロック、人工石等の海洋構造物、その他コンクリート代替品として、また破砕処理をすれば路盤材、土木材として使用可能である。従って、本発明は、資源の再利用、環境の向上等に寄与するところが大である。   As described above, according to the present invention, a slag hardened body having high strength and almost no cracks in the surface layer can be obtained, and the elution amounts of F, B, Se, and V from the raw material slag can be suppressed. This hardened body can be used as wave-dissipating blocks, fish reefs, seaweed building blocks, marine structures such as artificial stones, and other concrete substitutes, or as roadbed materials and earthen timber if crushed. Therefore, the present invention greatly contributes to the reuse of resources and the improvement of the environment.

転炉スラグ中の未滓化MgO濃度と硬化体の圧縮強度との関係を示す図である。It is a figure which shows the relationship between the un- hatched MgO density | concentration in converter slag, and the compressive strength of a hardening body. 転炉スラグ中の晶出MgO濃度と硬化体の圧縮強度との関係を示す図である。It is a figure which shows the relationship between the crystallization MgO density | concentration in converter slag, and the compressive strength of a hardening body.

以下に、発明をなすに至った経緯に沿い、本発明の実施の形態を詳しく説明する。   In the following, the embodiments of the present invention will be described in detail along with the process leading to the invention.

まず、発明者は、粉粒状の製鋼スラグと潜在水硬性を有するSiO2含有物質とを水で混練してスラグ硬化体を製造する方法において、製鋼スラグとして、特に未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下である粉粒状の転炉スラグ及び取鍋精錬スラグを使用することにした。これは、特許文献1及び特許文献2に開示される方法に従い、これらスラグを主原料にして硬化体を試作したところ、得られた硬化体に強度低下やひび割れ発生を生じたが、配合量を適正に調整すれば、高強度で、ひび割れがほとんど無い硬化体の得られることがわかったからである。なお、発明者が、製鋼スラグとして、特に未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下の転炉スラグ及び取鍋精錬スラグを採用したのは、以下のように考えたことに基づいている。 First, the inventor, in a method for producing a slag hardened body by kneading a granular steelmaking slag and a SiO 2 -containing substance having latent hydraulic properties with water, in particular, 1% by mass of unfogged MgO is used as the steelmaking slag. In the following, granular converter slag and ladle refining slag having a crystallization MgO of 10% by mass or less were used. According to the methods disclosed in Patent Document 1 and Patent Document 2, when a cured product was prototyped using these slag as the main raw materials, the resulting cured product was reduced in strength and cracked. This is because it has been found that a hardened body having high strength and almost no cracks can be obtained if adjusted appropriately. In addition, the inventor adopted converter slag and ladle smelting slag having 1% by mass or less of uncontained MgO and 10% by mass or less of crystallized MgO as steelmaking slag as follows. Based on what I thought.

(1)他の製鋼スラグと比較して、CaO/SiO2が2以上と高いため、スラグ中に活性が高い2CaO・SiO2を多く含む。従って、硬化反応促進への寄与が大きく、それ自体が高炉スラグ微粉末やフライアッシュの代替になりえる。 (1) as compared to other steel slag, since CaO / SiO 2 is as high as 2 or more, containing many active high 2CaO · SiO 2 in the slag. Therefore, it greatly contributes to the acceleration of the curing reaction, and can itself be a substitute for blast furnace slag fine powder and fly ash.

(2)他の製鋼スラグと比較して、鉄分を多く含むため、比重が高い。従って、硬化体の比重も大きくなり、消波ブロック等の海洋構造物として使用した際には、波浪安定性に優れる。   (2) Compared to other steelmaking slag, it contains a lot of iron, so its specific gravity is high. Accordingly, the specific gravity of the cured body is increased, and when used as an offshore structure such as a wave-dissipating block, the wave stability is excellent.

(3)遊離MgOの水和膨張による強度低下及びひび割れ発生を防ぐことができる。
そして、発明者は、上記考えに基づき、遊離MgOを含有する転炉スラグ及び取鍋精錬スラグを用いて、得られる硬化体が遊離MgOの水和膨張による強度低下やひび割れ発生を解消する研究を進めることにし、遊離MgOの水和膨張が、製造した硬化体に及ぼす影響を見出すべく、実験を繰り返した。
(3) It is possible to prevent strength reduction and cracking due to hydration expansion of free MgO.
Then, based on the above idea, the inventor conducted research on the use of converter slag and ladle smelting slag containing free MgO to eliminate the strength reduction and cracking caused by hydration expansion of free MgO. In order to proceed, the experiment was repeated in order to find out the influence of the hydrated expansion of free MgO on the produced cured product.

その結果、遊離MgOのうち、特に未滓化MgOの存在が硬化体の強度低下やひび割れ発生に極めて大きな影響を及ぼすことを突きとめた。つまり、転炉スラグ中の未滓化MgO濃度と硬化体の圧縮強度との関係を図1に示すが、未滓化MgO濃度が1質量%を超えると、強度が低下していくことが明らかである。また、引き続き実験を重ねた結果、図2に示すように、晶出MgO濃度が10質量%を超えると、強度が低下することもわかった。   As a result, it has been found that the presence of undehydrated MgO among the free MgO has a great influence on the strength reduction and crack generation of the cured body. That is, FIG. 1 shows the relationship between the undehydrated MgO concentration in the converter slag and the compressive strength of the hardened body, but it is clear that the strength decreases when the undehydrated MgO concentration exceeds 1 mass%. It is. Moreover, as a result of continuing experiments, as shown in FIG. 2, it was found that the strength decreases when the crystallized MgO concentration exceeds 10 mass%.

そこで、発明者は、この知見を本発明の要件の一つにすることにした。つまり、転炉スラグ及び/又は取鍋精錬スラグが含有する未滓化MgOを1質量%以下で、且つ晶出MgOを10質量%にすることで、硬化体の遊離MgOの水和膨張による強度低下やひび割れ発生を防ぐようにしたのである。なお、本発明で使用する転炉スラグ及び取鍋精錬スラグは、いずれも予めエージング処理して遊離CaOを安定なCa(OH)2又はCaCO3にするのが好ましい。すなわち、JIS A 5015に規定されている80℃×6時間/日×10日の水浸膨張試験による膨張率が1.5%以下の転炉スラグ及び取鍋精錬スラグにすることが好ましい。膨張率が1.5%を超えると、硬化体の強度低下やひび割れ発生が生じるからである。 Therefore, the inventor decided to make this knowledge one of the requirements of the present invention. That is, the strength due to the hydration expansion of free MgO of the cured product by making unconverted MgO contained in the converter slag and / or ladle smelting slag 1 mass% or less and crystallized MgO 10 mass%. This is to prevent the occurrence of cracks and cracks. The converter slag and ladle refining slag used in the present invention are preferably pre-aged to convert free CaO into stable Ca (OH) 2 or CaCO 3 . That is, it is preferable to use converter slag and ladle smelting slag having an expansion rate of 1.5% or less according to a water immersion expansion test of 80 ° C. × 6 hours / day × 10 days defined in JIS A 5015. This is because when the expansion coefficient exceeds 1.5%, the strength of the cured body is reduced and cracks are generated.

しかしながら、遊離MgOは、前述したように、エージング処理では容易に安定な水酸化物にはならず、ゆっくりと水和反応が進む。例えば、遊離CaOを含まない未滓化MgOが1質量%で、且つ晶出Mg0が10質量%の転炉スラグ及び取鍋精錬スラグのJIS A 5015による80℃×6時間/日×10日間の膨張率は約1.0%であるが、その膨張は10日間では停止せずに持続する。そのため、遊離CaOを安定させるだけでは不十分で、得られる硬化体の強度向上やひび割れの発生抑制は満足できる状態でないと考えられる。   However, as described above, free MgO does not easily become a stable hydroxide in the aging treatment, and the hydration reaction proceeds slowly. For example, 80 ° C. × 6 hours / day × 10 days according to JIS A 5015 of converter slag and ladle smelting slag containing 1% by mass of unoxidized MgO not containing free CaO and 10% by mass of crystallized MgO The expansion rate is about 1.0%, but the expansion continues without stopping for 10 days. Therefore, it is not sufficient to stabilize free CaO, and it is considered that the improvement in strength of the obtained cured product and suppression of occurrence of cracks are not satisfactory.

そこで、発明者は、対策として、このような未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下の転炉スラグ及び取鍋精錬スラグを使用するにあたって、そのうちの粒径1.18mm以下の部分が、水を除く全配合物質における含有率が10〜90質量%とすることを想到した。これらスラグのうちで硬化反応に大きく寄与する部分を詳細に調査したところ、粒径1.18mm以下のものが特に反応性が良好で、得られる硬化体の強度が高く、しかもひび割れの発生が著しく小さくなることを見いだしたからである。また、これらスラグを硬化体の原料にすることで、環境問題となるスラグからのF、B、Se、Vの溶出を抑制できることもわかった。そして、発明者は、この知見、つまり未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下の転炉スラグ及び取鍋精錬スラグに含まれる粒径1.18mm以下の粒度部分の全配合物質での含有量について、理由は後で述べるが10〜90質量%の制限を設けることを本発明の要件に加えることにしたのである。なお、このことは、配合に使用する未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下の転炉スラグ及び取鍋精錬スラグの中に、これよりも粒度の大きいものが含まれていることを妨げるものではない。粒度の大きい未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下の転炉スラグ及び取鍋精錬スラグは、粉砕の過程で粉砕され難くかったことを意味するだけであり、結合材としては硬化体の製造に寄与するからである。ここで、本発明における粒径とは、篩い分けで定める数値であり、JIS A 1102に規定された方法等で測定すれば良い。   Therefore, the inventor, as a countermeasure, when using such converter slag and ladle smelting slag having 1% by mass or less of undehydrated MgO and 10% by mass or less of crystallized MgO, The portion of 1.18 mm or less was conceived to have a content of 10 to 90% by mass in all the compounded substances excluding water. Of these slags, the portion that greatly contributes to the curing reaction was investigated in detail, and those having a particle size of 1.18 mm or less have particularly good reactivity, the strength of the obtained cured body is high, and cracks are remarkably generated. This is because it has been found to be smaller. Moreover, it turned out that the elution of F, B, Se, and V from the slag which becomes an environmental problem can be suppressed by using these slag as a raw material of a hardening body. The inventor then found that the particle size of 1.18 mm or less contained in the converter slag and ladle smelting slag having 1 mass% or less of undehydrated MgO and 10 mass% or less of crystallized MgO. Regarding the content of the part in all the compounded substances, the reason will be described later, but it was decided to add a limitation of 10 to 90% by mass to the requirement of the present invention. In addition, this means that the unsaturated MgO used in the blending is 1% by mass or less and the converter slag and ladle refining slag having a crystallized MgO of 10% by mass or less have a larger particle size than this. Does not preclude inclusion. The converter slag and ladle smelting slag having a large particle size of unaggregated MgO of 1% by mass or less and a crystallized MgO of 10% by mass or less only means that it was not easily pulverized during the pulverization process. This is because the binder contributes to the production of a cured body. Here, the particle size in the present invention is a numerical value determined by sieving, and may be measured by a method defined in JIS A 1102.

次に、未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下の転炉スラグ及び/又は取鍋精錬スラグと反応させる潜在水硬性を有するSiO2含有物質について検討した。その結果、SiO2含有物質としては、高炉スラグ微粉末が好ましいことがわかった。ここでいう高炉スラグ微粉末とは、高炉水砕スラグを粉砕したものであり、その粒径は約0.1mm以下、つまりブレーン法による比表面積が約3000cm2/g以上のものが好ましい。また、約4000cm2/g以上の高炉スラグ微粉末を用いると、より活性が高くなり一層好ましい。 Next, a SiO 2 -containing material having latent hydraulic properties to be reacted with converter slag and / or ladle smelting slag having 1% by mass or less of undehydrated MgO and 10% by mass or less of crystallized MgO was examined. As a result, it was found that blast furnace slag fine powder is preferable as the SiO 2 -containing substance. The blast furnace slag fine powder referred to here is obtained by pulverizing blast furnace granulated slag, and preferably has a particle size of about 0.1 mm or less, that is, a specific surface area of about 3000 cm 2 / g or more by the brane method. Further, it is more preferable to use fine powder of blast furnace slag of about 4000 cm 2 / g or more because the activity becomes higher.

この高炉スラグ微粉末の適正な配合量については、前記した転炉スラグ及び/又は取鍋精錬スラグの量との関連で定まるが、その適正配合量は、5〜40質量%であった。そして、前記2つの要件にこの限定を加え、本発明を完成したのである。   The proper blending amount of the blast furnace slag fine powder is determined in relation to the amount of the converter slag and / or the ladle refining slag, but the proper blending amount is 5 to 40% by mass. Then, this limitation is added to the above two requirements to complete the present invention.

なお、高炉スラグ微粉末の使用量限定の理由は、以下の通りである。すなわち、粒径1.18mm以下の未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下の転炉スラグ及び/又は取鍋精錬スラグの含有率が10質量%未満、あるいは高炉スラグ微粉末の含有量が40質量%超えでは、相対的にSiOと反応して硬化するアルカリ(またはアルカリ土類)イオンの供給が不足がちとなり、得られる硬化体の強度が低下するからである。一方、粒径1.18mm以下の未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下の転炉スラグ及び/又は取鍋精錬スラグの含有率が90質量%超え、あるいは高炉スラグ微粉末の含有量が5質量%未満では、該転炉スラグ及び取鍋精錬スラグの水和膨張性を有するCaO、MgO等の成分を固定するSiO2が不足気味となるため、得られる硬化体を養生する過程で硬化体の膨張や粉化が発生し、著しく強度が低下するからである。 The reason for limiting the amount of blast furnace slag fine powder used is as follows. That is, the content of unsaturated MgO having a particle size of 1.18 mm or less and 1% by mass or less and the content of converter slag and / or ladle smelting slag having a crystallized MgO of 10% by mass or less is less than 10% by mass, or When the content of the blast furnace slag fine powder exceeds 40% by mass, the supply of alkali (or alkaline earth) ions that are relatively cured by reacting with SiO 2 tends to be insufficient, and the strength of the resulting cured product is reduced. It is. On the other hand, the content of unsaturated MgO having a particle size of 1.18 mm or less is 1% by mass or less and the content of converter slag and / or ladle smelting slag having a crystallized MgO of 10% by mass or more exceeds 90% by mass, or If the content of the blast furnace slag fine powder is less than 5% by mass, SiO 2 for fixing components such as CaO and MgO having the hydration expansibility of the converter slag and ladle smelting slag becomes scarcely obtained. This is because the cured body is expanded and pulverized in the process of curing the cured body, and the strength is significantly reduced.

以上述べたように、本発明に係るスラグ硬化体の製造方法は、粉粒状の製鋼スラグと潜在水硬性を有するSiO2含潜有物質とを水で混練して養生するスラグ硬化体の製造方法において、製鋼スラグとして、特に未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下である粉粒状の転炉スラグ及び/又は取鍋精錬スラグを使用し、且つその使用量を制限すると共に、配合する高炉微粉末の量も適正にするようにして、水で混練、養生するものである。これにより、転炉スラグ及び取鍋精錬スラグ中の遊離MgOは、養生中に水和膨張を起さないようになる。その結果、得られるスラグ硬化体は、製造直後から強度が高いばかりでなく、ひび割れを発生しない。また、該硬化体は、乾燥による収縮を低減し、その結果ひび割れを防ぐことができる。 As described above, the method for producing a slag cured body according to the present invention is a method for producing a cured slag body in which powdered steelmaking slag and a SiO 2 -containing substance having latent hydraulic properties are kneaded with water and cured. In particular, as the steelmaking slag, granular converter slag and / or ladle smelting slag in which uncontained MgO is 1% by mass or less and crystallization MgO is 10% by mass or less are used, and the amount of use Kneading with water and curing so that the amount of fine powder of blast furnace to be blended is also appropriate. Thereby, free MgO in converter slag and ladle refining slag does not cause hydration expansion during curing. As a result, the obtained slag cured body has not only high strength immediately after production, but also does not generate cracks. Moreover, this hardening body can reduce the shrinkage | contraction by drying and can prevent a crack as a result.

引き続き、発明者は、この本発明に係るスラグ硬化体の製造方法について、さらなる改良を検討した。そして、高炉スラグ微粉末に代用できる潜在水硬性を有するSiO2含潜有物質としてフライアッシュを見出し、前記した本発明の別形態を提案する。 Subsequently, the inventor examined further improvements in the method for producing a slag cured body according to the present invention. Then, fly ash is found as a SiO 2 -containing material having latent hydraulic properties that can be substituted for the blast furnace slag fine powder, and another embodiment of the present invention described above is proposed.

このフライアッシュとは、石炭燃焼時に発生する灰であり、JISによる規格品は勿論のこと、規格外のものも使用できる。ただし、JIS A 6201の規格I種又はII種を用いると、それらは微粉であることから、より活性が高いので好ましい。これを高炉スラグ微粉末の一部代替として使用することで、未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下の転炉スラグや取鍋精錬スラグとの反応性が一層向上し、硬化体のひび割れ発生の抑制と、長時間養生後における強度向上が可能となる。さらに、硬化体の乾燥収縮によるひび割れ発生を防ぐこともできる。   This fly ash is ash generated during coal combustion, and not only JIS standard products but also non-standard products can be used. However, it is preferable to use JIS A 6201 standard type I or type II because they are fine powders and are therefore more active. By using this as a partial substitute for blast furnace slag fine powder, the reactivity with converter slag and ladle smelting slag with 1% by mass or less of undehydrated MgO and 10% by mass or less of crystallized MgO is achieved. Further improvement is possible, and it is possible to suppress the occurrence of cracks in the cured body and to improve the strength after long-term curing. Furthermore, the generation of cracks due to drying shrinkage of the cured body can also be prevented.

このフライアッシュを高炉スラグ微粉末に混合して使用する場合、配合物質の適正な含有量は、未滓化MgOが1質量%以下、且つ晶出MgOが10質量%以下で粒径1.18mm以下の転炉スラグ及び/又は取鍋精錬スラグが10〜90質量%、高炉スラグ微粉末が3〜36質量%、フライアッシュが1.5〜30質量%とするのが良い。そして、この場合、高炉スラグ微粉末とフライアッシュの合計含有量に対するフライアッシュの含有量の質量比を0.1〜0.75とすることも必要である。特に、その含有量が1.5重量%以上で、且つ高炉スラグ微粉末とフライアッシュの合計含有量に対するフライアッシュの含有量の質量比が0.1以上の範囲においてその効果が顕著であった。しかしながら、フライアッシュは、常温での硬化性が高炉スラグ微粉末よりも劣る傾向があり、フライアッシュの含有率が30質量%超えたり、あるいは高炉スラグ微粉末とフライアッシュの合計含有量に対するフライアッシュの含有量の質量比が0.75を超えると、硬化体全体としての硬化を遅らせるので、好ましくない。従って、この別形態の本発明では、フライアッシュの含有率は、1.5〜30質量%で、且つ高炉スラグ微粉末とフライアッシュの合計含有量に対するフライアッシュの含有量の質量比を0.1〜0.75とする。   When this fly ash is mixed with blast furnace slag fine powder and used, the proper content of the compounded materials is 1% by mass or less of un-enriched MgO, 10% by mass or less of crystallized MgO and a particle size of 1.18 mm. The following converter slag and / or ladle refining slag is preferably 10 to 90 mass%, blast furnace slag fine powder is 3-36 mass%, and fly ash is 1.5 to 30 mass%. In this case, the mass ratio of the fly ash content to the total content of the blast furnace slag fine powder and fly ash must be 0.1 to 0.75. In particular, the effect is remarkable when the content is 1.5% by weight or more and the mass ratio of the fly ash content to the total content of the blast furnace slag fine powder and fly ash is 0.1 or more. . However, fly ash tends to be inferior in curability at room temperature to blast furnace slag fine powder, and the fly ash content exceeds 30% by mass, or fly ash with respect to the total content of blast furnace slag fine powder and fly ash. If the mass ratio of the content exceeds 0.75, curing of the entire cured body is delayed, which is not preferable. Therefore, in this embodiment of the present invention, the fly ash content is 1.5 to 30% by mass, and the mass ratio of the fly ash content to the total content of the blast furnace slag fine powder and fly ash is 0.00. 1 to 0.75.

また、さらなる研究により、高炉スラグ微粉末、フライアッシュ並びに未滓化MgOが1質量%以下、且つ晶出MgOが10質量%以下で粒径1.18mm以下の転炉スラグ及び/又は取鍋精錬スラグの合計含有量に対する、未滓化MgOが1質量%以下、且つ晶出MgOが10質量%以下の転炉スラグ及び/又は取鍋精錬スラグの含有量の質量比を0.2超とするのが良いことがわかった。そのため、これも要件とした本発明を完成させた。このような範囲に限定することで、未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下の転炉スラグや取鍋精錬スラグから供給されるアルカリ(あるいはアルカリ土類)イオンと、潜在水硬性を有するSiO2含有物質中の反応性SiO2との量的バランスが一層適正となり、得られる硬化体のひび割れ防止効果が高まるためである。 Furthermore, further research has shown that blast furnace slag fine powder, fly ash and un-dehydrated MgO are 1% by mass or less, crystallized MgO is 10% by mass and grain size is 1.18mm or less, and / or ladle refining. The mass ratio of the content of converter slag and / or ladle smelting slag containing 1% by mass or less of undehydrated MgO and 10% by mass or less of crystallized MgO with respect to the total content of slag is more than 0.2. I found that was good. Therefore, the present invention, which is also a requirement, has been completed. By limiting to such a range, the alkali (or alkaline earth) supplied from converter slag or ladle refining slag having 1% by mass or less of undehydrated MgO and 10% by mass or less of crystallized MgO. This is because the quantitative balance between ions and reactive SiO 2 in the SiO 2 -containing substance having latent hydraulic properties becomes more appropriate, and the effect of preventing cracks of the resulting cured body is enhanced.

以上述べた別形態をも含む本発明によれば、硬化体の強度向上やひび割れ発生低減に著しい効果が得られるが、これら本発明に、さらにアルカリ金属及び/又はアルカリ土類金属の酸化物、水酸化物、硫酸塩、塩化物から選ばれた1種若しくは2種以上を、高炉スラグ微粉末とフライアッシュの合計含有量に対して0.2〜20質量%添加する要件を加えても良い。   According to the present invention including the other embodiments described above, a remarkable effect can be obtained in improving the strength of the cured body and reducing the occurrence of cracks. In addition, the present invention further includes oxides of alkali metals and / or alkaline earth metals, You may add the requirement to add 0.2-20 mass% of 1 type, or 2 or more types chosen from hydroxide, sulfate, and chloride with respect to the total content of blast furnace slag fine powder and fly ash. .

アルカリ金属及び/又はアルカリ土類金属の酸化物、水酸化物、硫酸塩、塩化物から選ばれた1種若しくは2種以上を0.2質量%以上添加することによって、硬化体の硬化を促進することが可能となり、養生に要する時間を短縮できるからである。しかしながら、20質量%を超えて添加してもその効果が飽和するため、上限は20質量%とする。このような物質として好ましいものとして、Ca(OH)2、NaOH、CaO、CaSO4・2H2O及びCaCl2等が挙げられる。 By adding 0.2% by mass or more of one or more selected from oxides, hydroxides, sulfates and chlorides of alkali metals and / or alkaline earth metals, curing of the cured product is accelerated. This is because the time required for curing can be shortened. However, even if added over 20% by mass, the effect is saturated, so the upper limit is made 20% by mass. Preferred examples of such a substance include Ca (OH) 2 , NaOH, CaO, CaSO 4 .2H 2 O, and CaCl 2 .

以下に、製鋼スラグとして表1に組成を示す未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下である粉粒状の転炉スラグ及び/又は取鍋精錬スラグを用いての実施例並びに比較例を説明する。なお、高炉スラグ微粉末は、ブレーン法による比表面積が約4000cm2/gの品、フライアッシュは、JIS A 6201のII種品を使用した。
(実施例1)
配合原料として粉砕した未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下である粉粒状の転炉スラグ及び/又は取鍋精錬スラグ、高炉スラグ微粉末、Ca(OH)2を水で混練して型枠に流し込み、これを20℃の水中で養生をして硬化体を製造した。配合物中の各原料物質の含有量、比率、混練水の添加量を表2に示す。得られた硬化体の20℃における28日水中養生後の強度、表面乾燥比重、20℃における28日大気養生後の表面ひび割れ本数、20℃における91日水中養生後の強度、20℃における28日大気養生後の環境庁告示46号法で測定したF、B、Se、Vの溶出量を表3に一括して示す。
Below, as a steelmaking slag, unconverted MgO whose composition is shown in Table 1 is 1% by mass or less, and powdered converter slag and / or ladle smelting slag having a crystallized MgO of 10% by mass or less are used. Examples and comparative examples will be described. In addition, the blast furnace slag fine powder used the product whose specific surface area by a brane method is about 4000 cm < 2 > / g, and fly ash used the II class product of JISA6201.
Example 1
Powdered converter slag and / or ladle smelting slag, ground granulated blast furnace slag, Ca (OH), containing 1% by mass or less of undehydrated MgO crushed as a blending raw material and 10% by mass or less of crystallized MgO 2 was kneaded with water, poured into a mold, and cured in water at 20 ° C. to produce a cured product. Table 2 shows the content and ratio of each raw material in the blend and the amount of kneading water added. The strength of the resulting cured body after 20 days of water curing at 20 ° C., surface dry specific gravity, number of surface cracks after air curing at 20 ° C., strength after 91 days of water curing at 20 ° C., 28 days at 20 ° C. Table 3 shows the elution amounts of F, B, Se, and V measured by the Environmental Agency Notification No. 46 method after air curing.

Figure 2011051889
Figure 2011051889

Figure 2011051889
Figure 2011051889

Figure 2011051889
Figure 2011051889

(実施例2)
配合原料として粉砕した未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下である粉粒状の転炉スラグ及び/又は取鍋精錬スラグ、高炉スラグ微粉末、フライアッシュ並びにCa(OH)2を水で混練して型枠に流し込み、これを20℃の水中で養生をして硬化体を製造した。配合物中の各原料物質の含有量、比率、混練水の添加量を表4に示す。得られた硬化体の20℃における28日水中養生後の強度、表面乾燥比重、20℃28日大気養生後の表面ひび割れ本数、20℃における91日水中養生後の強度、20℃における28日大気差生後の環境庁告示46号法で測定したF、B、Se、Vの溶出量を表5に一括して示す。
(Example 2)
Granulated converter slag and / or ladle smelting slag, ground blast furnace slag fine powder, fly ash, and Ca containing 1% by mass or less of undehydrated MgO crushed as a blending raw material and 10% by mass or less of crystallized MgO (OH) 2 was kneaded with water, poured into a mold, and cured in water at 20 ° C. to produce a cured product. Table 4 shows the content and ratio of each raw material in the blend and the amount of kneaded water added. The strength of the obtained cured body after 20 days of water curing at 20 ° C., surface dry specific gravity, the number of surface cracks after air curing at 20 ° C. for 28 days, strength after 91 days of water curing at 20 ° C., and the atmosphere for 28 days at 20 ° C. Table 5 collectively shows the elution amounts of F, B, Se, and V measured by the Environmental Agency Notification No. 46 after the birth.

Figure 2011051889
Figure 2011051889

Figure 2011051889
Figure 2011051889

(実施例3)
配合原料として粉砕した未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下である粉粒状の転炉スラグ及び/又は取鍋精錬スラグ、高炉スラグ微粉末、さらに一部についてはこれらにフライアッシュを加え、並びにCa(OH)2その他の添加剤を水で混練して型枠に流し込み、これを20℃の水中で養生をして硬化体を製造した。配合物中の各原料物質の含有量、比率、混練水の添加量を表6及び7に示す。得られた硬化体の20℃における28日水中養生後の強度、表面乾燥比重、20℃における28日大気養生後の表面ひび割れ本数、20℃における91日水中養生後の強度、20℃における28日大気養生後の環境庁告示46号法で測定したF、B、Se、Vの溶出量を表8及び9に一括して示す。
(Example 3)
About powdered converter slag and / or ladle smelting slag, ground granulated blast furnace slag, which is 1 mass% or less of pulverized un-contaminated MgO as a blending raw material and 10 mass% or less Added fly ash to them, and Ca (OH) 2 and other additives were kneaded with water and poured into a mold, which was cured in water at 20 ° C. to produce a cured product. Tables 6 and 7 show the content and ratio of each raw material in the blend and the amount of kneading water added. The strength of the obtained cured body after 20 days of water curing at 20 ° C, surface dry specific gravity, number of surface cracks after air curing at 20 ° C, strength after 91 days of water curing at 20 ° C, 28 days at 20 ° C The elution amounts of F, B, Se, and V measured by the Environmental Agency Notification No. 46 method after air curing are collectively shown in Tables 8 and 9.

Figure 2011051889
Figure 2011051889

Figure 2011051889
Figure 2011051889

Figure 2011051889
Figure 2011051889

Figure 2011051889
Figure 2011051889

(比較例)
配合原料として粉砕した未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%である粉粒状の転炉スラグ及び/又は取鍋精錬スラグ、高炉スラグ微粉末、さらに一部についてはこれらにフライアッシュ並びにCa(OH)2を、本発明範囲から外れる含有率の条件下において水で混練して型枠に流し込み、これを20℃の水中で養生をして硬化体を製造した。配合物中の各原料物質の含有量、比率、混練水の添加量を表10に示す。得られた硬化体の20℃における28日水中養生後の強度、表面乾燥比重、20℃における28日大気養生後の表面ひび割れ本数、20℃における91日水中養生後の強度、20℃における28日大気養生後の環境庁告示46号法で測定したF、B、Se、Vの溶出量を表11に併せて示す。
(Comparative example)
For powdered converter slag and / or ladle smelting slag, blast furnace slag fine powder, which is 1% by mass or less of undecontaminated MgO crushed as a blending raw material and 10% by mass of crystallized MgO, To these, fly ash and Ca (OH) 2 were kneaded with water under a condition with a content outside the scope of the present invention, poured into a mold, and cured in water at 20 ° C. to produce a cured product. Table 10 shows the content and ratio of each raw material in the blend and the amount of kneading water added. The strength of the obtained cured body after 20 days of water curing at 20 ° C, surface dry specific gravity, number of surface cracks after air curing at 20 ° C, strength after 91 days of water curing at 20 ° C, 28 days at 20 ° C Table 11 shows the elution amounts of F, B, Se, and V measured by the Environmental Agency Notification No. 46 after air curing.

なお、本実施例および比較例における硬化体の表面ひび割れ本数は、目視で確認可能な数を記載した。   In addition, the number which can be confirmed visually was described in the surface crack number of the hardening body in a present Example and a comparative example.

Figure 2011051889
Figure 2011051889

Figure 2011051889
Figure 2011051889

以上の実施例および比較例で得られた成績は、前記した各表を参照すると、以下のように総括できる。つまり、未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下である粉粒状の転炉スラグ及び/又は取鍋精錬スラグのうち、粒径が1.18mm以下のものの含有率が本発明の条件を満たさない比較例では、28日養生後の硬化体の表面ひび割れが3本/cm2であり、耐摩耗性が悪く、またハンドリング時の硬化体の割れや欠けが発生した。しかしながら、本発明例では、いずれの硬化体もひび割れが0.5本/cm2以下であり、ひび割れが著しく小さく、耐摩耗性やハンドリング時の割れや欠けの問題は生じなかった。特に、高炉スラグ微粉末、フライアッシュ並びに粒径0.425mm以下の未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下である粉粒状の転炉スラグ及び/又は取鍋精錬スラグの合計含有量に対する該転炉スラグ及び/又は取鍋精錬スラグの含有量の比(表中Cで示す比率)が質量で0.2超である本発明例の1−1、1−3、1−6、1−7、1−9、1−22では、硬化体のひび割れ本数が0.4本/cm2以下とさらに少なくなっている。 The results obtained in the above Examples and Comparative Examples can be summarized as follows by referring to the respective tables described above. In other words, among the granular converter slag and / or ladle smelting slag having an undehydrated MgO content of 1% by mass or less and a crystallized MgO content of 10% by mass or less, the inclusion of particles having a particle size of 1.18 mm or less In the comparative example in which the rate does not satisfy the conditions of the present invention, the surface cracks of the cured product after curing for 28 days are 3 / cm 2 , the wear resistance is poor, and the cured product is cracked or chipped during handling. did. However, in the examples of the present invention, all the cured bodies had cracks of 0.5 / cm 2 or less, the cracks were extremely small, and there was no problem of wear resistance or cracking or chipping during handling. In particular, blast furnace slag fine powder, fly ash, and granular converter slag and / or ladle in which unaggregated MgO having a particle size of 0.425 mm or less is 1% by mass or less and crystallization MgO is 10% by mass or less. The ratio of the content of the converter slag and / or ladle refining slag to the total content of the refining slag (ratio indicated by C in the table) is 1-1, 1- In 3, 1-6, 1-7, 1-9, 1-22, the number of cracks of the cured body is further reduced to 0.4 / cm 2 or less.

また、高炉スラグ微粉末、フライアッシュ並びに粒径0.1mm以下の未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下である粉粒状の転炉スラグ及び/又は取鍋精錬スラグの合計含有量に対する該転炉スラグ及び/又は取鍋精錬スラグの含有量の比(表中Dで示す比率)が質量で0.2超である本発明例の1−10〜1−22では、硬化体のひび割れ本数が0.3本/cm2以下とさらに少なくなっている。 Also, blast furnace slag fine powder, fly ash, and granular converter slag and / or ladle in which unaggregated MgO having a particle size of 0.1 mm or less is 1% by mass or less and crystallization MgO is 10% by mass or less. The ratio of the content of the converter slag and / or ladle smelting slag to the total content of the refining slag (ratio indicated by D in the table) is 1-10 to 1- In No. 22, the number of cracks of the cured body is further reduced to 0.3 / cm 2 or less.

さらに、高炉スラグ微粉末に加えて、フライアッシュを適量配合した実施例2の各例では、より一層硬化体のひび割れ本数が低減できている。加えて、各種の添加剤(Ca(OH)2,NaOH,CaSO4・2H2O等)を添加した実施例3の各例では、硬化体の強度向上とひび割れの低減が達成できた。さらに加えて、各実施例とも、F、B、Se、Vの溶出量が抑制できた。比較例4は、特許文献2の実施例相当の配合量と粒径によって製造したものであるが、硬化体の圧縮強度は低く、またF、B、Se、Vの溶出量の抑制効果もほとんど見られなかった。 Furthermore, in each example of Example 2 in which an appropriate amount of fly ash is blended in addition to the blast furnace slag fine powder, the number of cracks in the cured product can be further reduced. In addition, in each example of Example 3 to which various additives (Ca (OH) 2 , NaOH, CaSO 4 · 2H 2 O, etc.) were added, the strength of the cured product was improved and the cracks were reduced. In addition, the elution amounts of F, B, Se, and V could be suppressed in each example. Comparative Example 4 was produced with the blending amount and particle size corresponding to the example of Patent Document 2, but the compression strength of the cured body was low, and the effect of suppressing the elution amount of F, B, Se, and V was almost the same. I couldn't see it.

Claims (4)

粉粒状の製鋼スラグと潜在水硬性を有するSiO含有物質とを水で混練してスラグ硬化体を製造する方法において、
前記製鋼スラグとして未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下の転炉スラグ及び/又は取鍋精錬スラグを、前記潜在水硬性を有するSiO含有物質として高炉スラグ微粉末を使用すると共に、水を除く全配合物質における粒径1.18mm以下の該転炉スラグ及び/又は取鍋精錬スラグの含有率を10〜90質量%、高炉スラグ微粉末の含有率を9〜40質量%とすることを特徴とするスラグ硬化体の製造方法。
In a method for producing a slag hardened body by kneading a granular steel-making slag and a SiO 2 -containing substance having latent hydraulic properties with water,
As the steelmaking slag, converter slag and / or ladle smelting slag having 1% by mass or less of undehydrated MgO and 10% by mass or less of crystallized MgO is used as the blast furnace slag as the SiO 2 -containing material having the latent hydraulic property. While using fine powder, the content rate of the converter slag and / or ladle smelting slag having a particle size of 1.18 mm or less in all the compounded substances excluding water is 10 to 90% by mass, and the content rate of blast furnace slag fine powder. The manufacturing method of the slag hardening body characterized by setting it as 9-40 mass%.
粉粒状の製鋼スラグと潜在水硬性を有するSiO2含有物質とを水で混練してスラグ硬化体を製造する方法において、
前記製鋼スラグとして未滓化MgOが1質量%以下で、且つ晶出MgOが10質量%以下の転炉スラグ及び/又は取鍋精錬スラグを、潜在水硬性を有するSiO2含有物質として高炉スラグ微粉末及びフライアッシュを使用すると共に、水を除く全配合物質における粒径1.18mm以下の該転炉スラグ及び/又は取鍋精錬スラグの含有率を10〜90質量%、高炉スラグ微粉末の含有率を3〜36質量%、フライアッシュの含有率を1.5〜30質量%とし、且つ高炉スラグ微粉末とフライアッシュの合計含有量に対するフライアッシュの含有量の質量比を0.1〜0.75とすることを特徴とするスラグ硬化体の製造方法。
In a method for producing a slag hardened body by kneading a granular steel-making slag and a SiO 2 -containing substance having latent hydraulic properties with water,
As the steelmaking slag, converter slag and / or ladle smelting slag having 1% by mass or less of undecontaminated MgO and 10% by mass or less of crystallized MgO is used as a blast furnace slag fine material as a SiO 2 -containing substance having latent hydraulic properties. While using powder and fly ash, the content of the converter slag and / or ladle smelting slag having a particle size of 1.18 mm or less in all the compounded substances excluding water is 10 to 90% by mass, and the content of blast furnace slag fine powder The rate is 3 to 36% by mass, the fly ash content is 1.5 to 30% by mass, and the mass ratio of the fly ash content to the total content of the blast furnace slag fine powder and fly ash is 0.1 to 0. .75, A method for producing a cured slag product.
高炉スラグ微粉末、フライアッシュ並びに粒径1.18mm以下の転炉スラグ及び/又は取鍋精錬スラグの合計含有量に対する該転炉スラグ及び/又は取鍋精錬スラグの含有量の質量比を0.2超とする請求項1又は2記載のスラグ硬化体の製造方法。   The mass ratio of the content of the converter slag and / or ladle smelting slag to the total content of blast furnace slag fine powder, fly ash, and converter slag and / or ladle smelting slag having a particle size of 1.18 mm or less is 0. The manufacturing method of the slag hardening body of Claim 1 or 2 made more than two. 前記水を除く全配合物質に、さらにアルカリ金属及び/又はアルカリ土類金属の酸化物、水酸化物、硫酸塩、塩化物から選ばれた1種若しくは2種以上を、高炉スラグ微粉末とフライアッシュの合計含有量に対して0.2〜20質量%添加することを特徴とする請求項1〜3のいずれかに記載のスラグ硬化体の製造方法。
In addition to one or more selected from oxides, hydroxides, sulfates and chlorides of alkali metals and / or alkaline earth metals, blast furnace slag fine powder and fry It adds 0.2-20 mass% with respect to the total content of ash, The manufacturing method of the slag hardening body in any one of Claims 1-3 characterized by the above-mentioned.
JP2010233670A 2010-10-18 2010-10-18 Method for producing hardened slag Expired - Lifetime JP5195866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010233670A JP5195866B2 (en) 2010-10-18 2010-10-18 Method for producing hardened slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010233670A JP5195866B2 (en) 2010-10-18 2010-10-18 Method for producing hardened slag

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001112454A Division JP4644965B2 (en) 2001-04-11 2001-04-11 Method for producing hardened slag

Publications (2)

Publication Number Publication Date
JP2011051889A true JP2011051889A (en) 2011-03-17
JP5195866B2 JP5195866B2 (en) 2013-05-15

Family

ID=43941289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010233670A Expired - Lifetime JP5195866B2 (en) 2010-10-18 2010-10-18 Method for producing hardened slag

Country Status (1)

Country Link
JP (1) JP5195866B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106699059A (en) * 2016-12-25 2017-05-24 吴迪 Preparation method of fishing reef material with high durability
ES2895755A1 (en) * 2020-08-21 2022-02-22 Univ Burgos Sustainable concrete of dry consistency and its processing procedure (Machine-translation by Google Translate, not legally binding)
CN115418435A (en) * 2022-08-04 2022-12-02 河钢乐亭钢铁有限公司 Refining slag online modification method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349153A (en) * 1991-05-24 1992-12-03 Godo Seitetsu Kk Hydraulic composite subbase course material
JPH08157240A (en) * 1994-12-06 1996-06-18 Kawasaki Steel Corp Short time reforming method of steelmaking slag
JPH08259282A (en) * 1995-03-20 1996-10-08 Kawasaki Steel Corp Stabilization treatment of steel making slag
JPH1088220A (en) * 1996-09-12 1998-04-07 Kawasaki Steel Corp Method for reducing infiltrated expansibility of steel-making slag
JP2000104109A (en) * 1998-09-28 2000-04-11 Kawasaki Steel Corp Method for reducing unslagged calcium oxide and magnesium oxide in slag
JP2001049310A (en) * 1998-10-14 2001-02-20 Kawasaki Steel Corp Method for agglomerating steelmaking slag
JP2001270746A (en) * 2000-03-28 2001-10-02 Kawasaki Steel Corp Method for producing slag hardened body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349153A (en) * 1991-05-24 1992-12-03 Godo Seitetsu Kk Hydraulic composite subbase course material
JPH08157240A (en) * 1994-12-06 1996-06-18 Kawasaki Steel Corp Short time reforming method of steelmaking slag
JPH08259282A (en) * 1995-03-20 1996-10-08 Kawasaki Steel Corp Stabilization treatment of steel making slag
JPH1088220A (en) * 1996-09-12 1998-04-07 Kawasaki Steel Corp Method for reducing infiltrated expansibility of steel-making slag
JP2000104109A (en) * 1998-09-28 2000-04-11 Kawasaki Steel Corp Method for reducing unslagged calcium oxide and magnesium oxide in slag
JP2001049310A (en) * 1998-10-14 2001-02-20 Kawasaki Steel Corp Method for agglomerating steelmaking slag
JP2001270746A (en) * 2000-03-28 2001-10-02 Kawasaki Steel Corp Method for producing slag hardened body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106699059A (en) * 2016-12-25 2017-05-24 吴迪 Preparation method of fishing reef material with high durability
ES2895755A1 (en) * 2020-08-21 2022-02-22 Univ Burgos Sustainable concrete of dry consistency and its processing procedure (Machine-translation by Google Translate, not legally binding)
CN115418435A (en) * 2022-08-04 2022-12-02 河钢乐亭钢铁有限公司 Refining slag online modification method
CN115418435B (en) * 2022-08-04 2023-08-25 河钢乐亭钢铁有限公司 Refining slag online modification method

Also Published As

Publication number Publication date
JP5195866B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP3654122B2 (en) Method for producing hardened slag
JP4563835B2 (en) Mortar composition, mortar, and cured mortar using the same
JP6080340B2 (en) Steel slag hydrated solidified body
JP4644965B2 (en) Method for producing hardened slag
TWI543957B (en) Method for manufacturing hydrated solidified body and hydrated solidified body
JP3958090B2 (en) Hydrated cured body
JP5195866B2 (en) Method for producing hardened slag
JP2003119068A (en) Hydration cured body
KR101558893B1 (en) Admixture for Concrete and Concrete Composite Containing High Durability Additive
JP2016216274A (en) Artificial stone material
JP3823815B2 (en) Method for producing a steelmaking slag hardened body
JP6292257B2 (en) Hydrated solidified product using desulfurized slag
JP2002179451A (en) Concrete or mortar using slag aggregate
JP2016005994A (en) Geopolymer composition and mortar or concrete or secondary concrete product
JP4204922B2 (en) Roadbed material and method for manufacturing the same
JP4655337B2 (en) Roadbed material made from steelmaking slag
JP7253981B2 (en) Method for producing iron and steel slag hydrated solid
JP6015585B2 (en) Hydrated cured body
JP2013087011A (en) Steel slag hydration hardened body, and method for manufacturing the same
JP4180050B2 (en) Admixture for concrete containing non-ferrous smelt aggregate and concrete composition using the same
KR101328613B1 (en) Concrete composition using electric arc furnace slag
JP6315063B2 (en) Method for producing hydrated solid body
JP2003146732A (en) Method of producing slag hardened body
JP4399955B2 (en) Fishing reef block
TW201834999A (en) Concrete composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5195866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term