JP2011050890A - Desalting treatment system of incineration bottom ash and desalting treatment method of the same - Google Patents

Desalting treatment system of incineration bottom ash and desalting treatment method of the same Download PDF

Info

Publication number
JP2011050890A
JP2011050890A JP2009203479A JP2009203479A JP2011050890A JP 2011050890 A JP2011050890 A JP 2011050890A JP 2009203479 A JP2009203479 A JP 2009203479A JP 2009203479 A JP2009203479 A JP 2009203479A JP 2011050890 A JP2011050890 A JP 2011050890A
Authority
JP
Japan
Prior art keywords
water
gas
main ash
cement
pit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009203479A
Other languages
Japanese (ja)
Other versions
JP5403677B2 (en
Inventor
Soichiro Okamura
聰一郎 岡村
Toshio Imai
敏夫 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2009203479A priority Critical patent/JP5403677B2/en
Publication of JP2011050890A publication Critical patent/JP2011050890A/en
Application granted granted Critical
Publication of JP5403677B2 publication Critical patent/JP5403677B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

<P>PROBLEM TO BE SOLVED: To treat incineration bottom ash at a low cost without causing the deterioration of heat consumption rate in a cement firing process. <P>SOLUTION: The desalting treatment system 21 of incineration bottom ash includes: a pit 22 in which the incineration bottom ash (A) is submerged and salts are eluted; a concentration device 23 in which desalted water W1 discharged from the pit 22 is concentrated by a gas G3 of 200°C or lower discharged from cement manufacturing equipment 1; a condensation device 24 which condenses water vapor S generated by the concentration device 23; and a circulation device 42 which returns condensed water W4 produced by the condensation device 24 to the pit 22. The concentration device 23 includes: a preheating pipe 32 whose outer surface is brought into contact with the flow of the gas G and in the inside of which the desalted water W1 flows; and a vaporizing and concentrating pipe 33 which is arranged on the upstream side of the preheating pipe 32 in the flow of the gas G, whose outer surface is brought into contact with the flow of the gas G and in the inside of which the desalted water W1 preheated by the preheating pipe 32 flows. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、都市ごみ等の焼却炉で発生した焼却主灰を脱塩処理してセメント原料等として有効利用するためのシステム及び方法に関する。   The present invention relates to a system and method for desalinating incineration main ash generated in an incinerator such as municipal waste and effectively using it as a cement raw material or the like.

都市ごみ等の焼却炉からは、炉床からの焼却主灰(以下、適宜「主灰」と略称する)と燃焼排ガスの飛灰が発生し、飛灰は無害化処理をした後、管理型処分場で埋め立て処理され、主灰は一般廃棄物として管理型処分場にそのまま埋め立て処分されている。しかし、近年、最終埋め立て処分場の残余容量が減少しているため、様々な代替処理方法が検討、実施されている。   From incinerators such as municipal waste, incineration main ash from the hearth (hereinafter abbreviated as “main ash” as appropriate) and flue gas fly ash are generated. The main ash is landfilled as a general waste in a managed landfill. However, in recent years, since the remaining capacity of the final landfill site has decreased, various alternative processing methods have been studied and implemented.

塩素含有率が高く、粒度の細かい飛灰は、水洗により脱塩処理されてセメント原料に利用されている。一方、塩素含有率が低く、粒度が粗い主灰は、飛灰と比べて水洗による塩素除去効果が低い。そのため、脱塩原料として十分な除去率を得るには多量の水が必要となる。このため、多量の排水が発生し、大型の排水処理設備が必要となり、低コストで脱塩処理を行うことが困難である。   Fly ash with a high chlorine content and fine particle size is desalted by washing with water and used as a raw material for cement. On the other hand, the main ash having a low chlorine content and a coarse particle size has a low chlorine removal effect by washing with water compared to fly ash. Therefore, a large amount of water is required to obtain a sufficient removal rate as a desalting raw material. For this reason, a large amount of wastewater is generated, a large wastewater treatment facility is required, and it is difficult to perform desalting at a low cost.

そこで、特許文献1には、2段以上の複数の機械式湿式分級機を直列に配置し、前段の分級機に焼却灰を投入し、後段の分級機に洗浄水を添加し、洗浄脱水作用と粒子分級作用を伴いながら、焼却灰を前段から後段へ、水を後段から前段へ向流的に接触移動させ、粗粒の焼却灰を後段から系外に取り出し、微粒の焼却灰を含んだ洗浄液を前段から取り出し、その後、洗浄液と微粒とを分離させ、脱塩された焼却灰と含塩洗浄液を得る方法が記載されている。   Therefore, in Patent Document 1, a plurality of mechanical wet classifiers of two or more stages are arranged in series, incineration ash is added to the former classifier, washing water is added to the latter classifier, and washing dehydration action Incinerated ash was moved counter-currently from the former stage to the latter stage and water was countercurrently moved from the latter stage to the former stage, and the coarse incinerated ash was taken out of the system from the latter stage and contained fine incinerated ash. A method is described in which the cleaning liquid is taken out from the previous stage, and then the cleaning liquid and fine particles are separated to obtain desalted incineration ash and a salt-containing cleaning liquid.

特開2003−80199号公報JP 2003-80199 A

しかし、上記特許文献1に記載の処理方法では、スクリュー方式のエーキンス分級機を2台設置する必要があり、設備コストが高くなるのに加え、灰粒子を撹拌槽で充分に撹拌するために水分量を調整し、撹拌に適した粘度に調整する必要があるなど運転コストも高くなり、その結果、主灰の処理コストを低減することは困難である。   However, in the treatment method described in Patent Document 1, it is necessary to install two screw-type Akins classifiers, and in addition to the increase in equipment cost, moisture is required to sufficiently stir ash particles in a stirring tank. It is necessary to adjust the amount and adjust the viscosity to be suitable for agitation, so that the operation cost becomes high. As a result, it is difficult to reduce the main ash treatment cost.

そのため、実際には、主灰については脱塩処理せずにセメントキルンに投入し、焼成工程で塩素分を濃縮して排出し、脱塩処理している。しかし、この主灰の処理方法では、焼成工程での加熱により塩素を揮発させ、揮発した塩素を高温部から系外へ排出するため、熱量原単位の悪化を引き起こすことになる。   Therefore, in practice, the main ash is put into the cement kiln without being desalted, and the chlorine content is concentrated and discharged in the firing process, and is desalted. However, in this main ash treatment method, chlorine is volatilized by heating in the firing step, and the volatilized chlorine is discharged out of the system from the high-temperature part, so that the calorific intensity is deteriorated.

そこで、本発明は、上記従来の技術における問題点に鑑みてなされたものであって、セメント焼成工程における熱量原単位の悪化を引き起こすことなく、低コストで主灰を処理することを目的とする。   Then, this invention is made | formed in view of the problem in the said prior art, Comprising: It aims at processing main ash at low cost, without causing deterioration of the calorific value basic unit in a cement baking process. .

上記目的を達成するため、本発明は、焼却主灰の脱塩処理システムであって、焼却主灰を水没させて塩類を溶出させるピットと、該ピットから排出される脱塩水を、セメント製造設備から排出された200℃以下のガスによって濃縮する濃縮装置と、該濃縮装置で発生した水蒸気を凝縮させる凝縮装置と、該凝縮装置で生成された凝縮水を前記ピットへ戻す循環装置とを備えることを特徴とする。   In order to achieve the above object, the present invention provides a desalination treatment system for incineration main ash, wherein a pit for submerging the incineration main ash to elute salts, and demineralized water discharged from the pit are used as a cement production facility. A concentrating device for concentrating with a gas of 200 ° C. or less discharged from the condensing device, a condensing device for condensing water vapor generated by the concentrating device, and a circulating device for returning condensed water generated by the condensing device to the pit. It is characterized by.

そして、本発明によれば、濃縮装置によって焼却主灰の脱塩水を濃縮し、濃縮によって発生した水蒸気を凝縮させた凝縮水を循環使用することで、脱塩水の排水処理設備を小型化することができるとともに、脱塩水の濃縮に従来利用されていなかったセメント製造設備から排出された200℃以下のガスを用いるため、焼却主灰の処理コストを大幅に低減することができ、セメント焼成工程における熱量原単位の悪化を引き起こすこともない。   And according to the present invention, the desalinated water of the incinerated main ash is concentrated by the concentrating device, and the condensed water obtained by condensing the water vapor generated by the concentration is circulated to reduce the size of the wastewater treatment facility for the desalted water. In addition, since the gas of 200 ° C. or less discharged from the cement production facility that has not been used for the concentration of demineralized water is used, the processing cost of the incinerated main ash can be greatly reduced. It does not cause deterioration of the caloric intensity.

上記焼却主灰の脱塩処理システムにおいて、前記濃縮装置を、前記200℃以下のガス流れに外表面が接触し、内部を前記脱塩水が流れる予熱管と、前記200℃以下のガス流れにおいて前記予熱管の上流側に配置され、該200℃以下のガス流れに外表面が接触し、内部を前記予熱管によって予熱された脱塩水が流れる蒸発濃縮管とを備えるように構成することができる。この構成により、200℃以下のガス流れと、脱塩排水とを向流的に接触させることができ、効率よく脱塩排水を蒸発濃縮することができる。   In the demineralization treatment system for the incinerated main ash, the concentrator is configured so that the outer surface is in contact with the gas flow of 200 ° C. or less, the preheating pipe through which the demineralized water flows, An evaporative concentrating tube that is disposed on the upstream side of the preheating tube, has an outer surface in contact with the gas flow of 200 ° C. or less, and flows in the demineralized water preheated by the preheating tube can be provided. With this configuration, the gas flow of 200 ° C. or less and the desalted waste water can be brought into countercurrent contact, and the desalted waste water can be efficiently concentrated by evaporation.

上記焼却主灰の脱塩処理システムにおいて、前記濃縮装置を、前記セメント製造設備のセメントキルン排ガスを大気に放出する煙突の上流側煙道に配置することができる。   In the above-described incineration main ash desalination system, the concentrating device can be disposed in the chimney upstream of the chimney that releases the cement kiln exhaust gas of the cement production facility to the atmosphere.

また、本発明は、焼却主灰の脱塩処理方法であって、焼却主灰を水洗して塩類を溶出させ、該塩類を溶出させた脱塩水を、セメント製造工程における200℃以下のガスを用いて濃縮し、該濃縮によって発生した水蒸気を凝縮させ、該凝縮によって生成された凝縮水を前記焼却主灰の水洗に用いることを特徴とする。本発明によれば、上記発明と同様に、脱塩水の排水処理設備を小型化し、従来利用されていなかったセメント製造設備から排出された200℃以下のガスを用いることで、焼却主灰の処理コストを大幅に低減することができ、セメント焼成工程における熱量原単位の悪化も回避することができる。   The present invention is also a method for desalinating the incinerated main ash, wherein the incinerated main ash is washed with water to elute the salts, and the demineralized water from which the salts are eluted is treated with a gas of 200 ° C. or less in the cement production process. And condensing water vapor generated by the concentration, and using the condensed water generated by the condensation for washing the incinerated main ash. According to the present invention, similarly to the above-described invention, the wastewater treatment facility for desalted water is miniaturized, and the incineration main ash is treated by using a gas of 200 ° C. or less discharged from a cement production facility that has not been conventionally used. Cost can be significantly reduced, and deterioration of the calorific value in the cement firing process can also be avoided.

上記焼却主灰の脱塩処理方法において、前記セメント製造工程における200℃以下のガスを、セメントキルンの排ガスとすることができる。   In the desalting method of the incinerated main ash, a gas of 200 ° C. or lower in the cement manufacturing process can be used as an exhaust gas of a cement kiln.

以上のように、本発明によれば、焼却主灰の脱塩水の排水処理設備を小型化し、従来利用されていなかったセメント製造設備からの排ガスを用い、セメント焼成工程における熱量原単位の悪化を引き起こすことなく、低コストで焼却主灰を処理することが可能となる。   As described above, according to the present invention, the wastewater treatment facility for incinerated main ash demineralized water is miniaturized, and exhaust gas from a cement production facility that has not been conventionally used is used to reduce the calorific value in the cement firing process. Incineration main ash can be processed at low cost without causing it.

本発明にかかる焼却主灰の脱塩処理システムを設置したセメント製造設備をを示す全体構成図である。It is a whole block diagram which shows the cement manufacturing equipment which installed the desalination processing system of the incineration main ash concerning this invention. 本発明にかかる焼却主灰の脱塩処理システムの濃縮装置及びその近傍を示す図であって、(a)は平面図、(b)は正面図である。It is a figure which shows the concentration apparatus of the desalination processing system of the incineration main ash concerning this invention, and its vicinity, Comprising: (a) is a top view, (b) is a front view. 本発明にかかる焼却主灰の脱塩処理システムの動作説明図である。It is operation | movement explanatory drawing of the desalination processing system of the incineration main ash concerning this invention.

次に、本発明を実施するための形態について、図面を参照しながら詳細に説明する。   Next, an embodiment for carrying out the present invention will be described in detail with reference to the drawings.

図1は、本発明にかかる焼却主灰の脱塩処理システム(以下、「脱塩処理システム」と略称する)を設置したセメント製造設備を示し、このセメント製造設備1は、セメント原料を粉砕する原料粉砕装置3と、原料粉砕装置3で粉砕されたセメント原料Rを予熱するプレヒーター7と、予熱されたセメント原料Rを仮焼する仮焼炉8と、仮焼したセメント原料Rを焼成するセメントキルン9と、焼成により得られたセメントクリンカを冷却するクリンカクーラー11と、プレヒーター7から排出された燃焼排ガスG1の顕熱を利用して発電を行う廃熱発電設備2と、原料粉砕装置3の排ガスG2の集塵を行うバグフィルター4と、上記排ガスを吸引するファン5と、ファン5からの排ガスG3を大気に放出する煙突6等で構成され、本発明にかかる脱塩処理システム21は、ファン5と煙突6との間の煙道51及びその近傍に配置される。   FIG. 1 shows a cement production facility in which a desalination treatment system for incinerated main ash according to the present invention (hereinafter abbreviated as “demineralization treatment system”) is installed. This cement production facility 1 grinds cement raw materials. The raw material pulverizer 3, the preheater 7 for preheating the cement raw material R crushed by the raw material pulverizer 3, the calcining furnace 8 for calcining the preheated cement raw material R, and the calcined cement raw material R are fired. Cement kiln 9, clinker cooler 11 for cooling cement clinker obtained by firing, waste heat power generation facility 2 for generating power using sensible heat of combustion exhaust gas G1 discharged from preheater 7, and raw material crusher 3 is configured by a bag filter 4 for collecting the exhaust gas G2, a fan 5 for sucking the exhaust gas, a chimney 6 for discharging the exhaust gas G3 from the fan 5 to the atmosphere, and the like. Cal desalination system 21 is arranged in the flue 51 and the vicinity thereof between the fan 5 and the chimney 6.

脱塩処理システム21は、主灰Aに水Wを添加し、主灰Aを水没させて塩類を溶出させるピット22と、ピット22から排出される脱塩水W1をファン5からの排ガスG3を用いて濃縮する濃縮装置23と、濃縮装置23で発生した水蒸気Sを凝縮させる凝縮装置24等を備え、凝縮装置24で生成した凝縮水W4は、ピット22に戻される。   The desalination treatment system 21 uses the pit 22 for adding water W to the main ash A, submerging the main ash A to elute the salts, and the desalted water W1 discharged from the pit 22 using the exhaust gas G3 from the fan 5. The condensing device 23 for condensing the water vapor S generated by the concentrating device 23 and the condensing water 24 generated by the condensing device 24 are returned to the pit 22.

濃縮装置23は、図2に示すように、上記ピット22からの脱塩水W1を搬送するポンプ31と、ポンプ31によって搬送された脱塩水W1を煙道51内を流れる排ガスG3によって加熱して蒸発させるために煙道51内に配置される予熱管32及び蒸発濃縮管33と、加熱された脱塩水W1を貯留する第1貯槽34と、第1貯槽34に貯留された脱塩水W1を蒸発濃縮管33に搬送するポンプ35と、蒸発濃縮管33で濃縮された濃縮水W2を貯留する第2貯槽36と、第2貯槽36に貯留した濃縮水W2を排水処理設備(不図示)に搬送するポンプ37等で構成される。   As shown in FIG. 2, the concentrating device 23 evaporates by heating the demineralized water W <b> 1 from the pit 22 and the demineralized water W <b> 1 conveyed by the pump 31 by the exhaust gas G <b> 3 flowing in the flue 51. Therefore, the preheating pipe 32 and the evaporative concentration pipe 33 arranged in the flue 51, the first storage tank 34 storing the heated demineralized water W1, and the demineralized water W1 stored in the first storage tank 34 are evaporated and concentrated. The pump 35 transported to the pipe 33, the second storage tank 36 storing the concentrated water W2 concentrated in the evaporative concentration pipe 33, and the concentrated water W2 stored in the second storage tank 36 are transported to a wastewater treatment facility (not shown). It is composed of a pump 37 and the like.

予熱管32及び蒸発濃縮管33は、煙道51内に鉛直方向に各々複数本延設され、予熱管32が排ガスG3流れの下流側に、蒸発濃縮管33が上流側に配置される。予熱管32及び蒸発濃縮管33は、各々の管の上方に供給された脱塩水W1を排ガスG3と直接接触させずに熱交換させて加熱する。蒸発濃縮管33は、薄膜流下式蒸留を行うように構成され、蒸発した水蒸気Sを蒸気搬送管38を介して凝縮装置24に搬送する。   A plurality of preheating pipes 32 and evaporative concentrating pipes 33 are each extended in the vertical direction in the flue 51, and the preheating pipes 32 are arranged on the downstream side of the exhaust gas G3 flow, and the evaporating and concentrating pipes 33 are arranged on the upstream side. The preheating pipe 32 and the evaporative concentration pipe 33 heat the demineralized water W1 supplied above each pipe by heat exchange without directly contacting the exhaust gas G3. The evaporating and concentrating tube 33 is configured to perform thin film flow distillation, and conveys the evaporated water vapor S to the condensing device 24 via the vapor conveying tube 38.

凝縮装置24は、濃縮装置23の下流側に配置され、蒸気搬送管38を介して搬送された水蒸気Sを吸引する真空ポンプ41と、凝縮装置24に供給された冷却水によって水蒸気Sを凝縮させて発生した凝縮水W4をピット22へ戻すためのポンプ(循環装置)42を備える。   The condensing device 24 is disposed on the downstream side of the concentrating device 23, and condenses the water vapor S by the vacuum pump 41 that sucks the water vapor S conveyed through the vapor conveying pipe 38 and the cooling water supplied to the condensing device 24. A pump (circulation device) 42 for returning the condensed water W4 generated in this way to the pit 22 is provided.

次に、上記構成を有する脱塩処理システム21を用いた焼却主灰の脱塩処理方法について説明するが、まず、脱塩処理システム21が配置されたセメント製造設備1のフローについて図1を参照しながら説明する。   Next, a method for desalting incinerated main ash using the desalination processing system 21 having the above-described configuration will be described. First, refer to FIG. 1 for the flow of the cement manufacturing facility 1 in which the desalination processing system 21 is arranged. While explaining.

原料粉砕装置3で粉砕され、プレヒーター7に供給されたセメント原料Rは、プレヒーター7で予熱され、仮焼炉8で仮焼された後、セメントキルン9で焼成されてクリンカが生成される。セメントキルン9から排出されたクリンカは、クリンカクーラー11で冷却され、後段のセメント粉砕ミル(不図示)で石膏等とともに粉砕されてセメントが製造される。   The cement raw material R pulverized by the raw material pulverizer 3 and supplied to the preheater 7 is preheated by the preheater 7, calcined by the calcining furnace 8, and then baked by the cement kiln 9 to generate clinker. . The clinker discharged from the cement kiln 9 is cooled by a clinker cooler 11 and pulverized with gypsum etc. in a subsequent cement pulverizing mill (not shown) to produce cement.

一方、プレヒーター7から排出される燃焼排ガスG1は、廃熱発電設備2に導入され、燃焼排ガスG1が保有する熱を廃熱発電設備2の廃熱ボイラーで回収し、廃熱ボイラーで発生した蒸気を用いて発電が行われる。そして、廃熱発電設備2から排出され、原料粉砕装置3を経た150℃程度の排ガスG2は、バグフィルター4によって集塵される。回収されたダストDは、セメント製造工程に戻される。一方、バグフィルター4から排出され、ファン5を通過した約150℃の排ガスG3は、脱塩処理システム21において利用された後、煙突6から大気に放出される。   On the other hand, the combustion exhaust gas G1 discharged from the preheater 7 is introduced into the waste heat power generation facility 2, and the heat held in the combustion exhaust gas G1 is recovered by the waste heat boiler of the waste heat power generation facility 2, and is generated in the waste heat boiler. Electricity is generated using steam. Then, the exhaust gas G2 having a temperature of about 150 ° C. discharged from the waste heat power generation facility 2 and passed through the raw material crushing device 3 is collected by the bag filter 4. The collected dust D is returned to the cement manufacturing process. On the other hand, about 150 ° C. exhaust gas G3 discharged from the bag filter 4 and passing through the fan 5 is used in the desalination treatment system 21 and then released from the chimney 6 to the atmosphere.

次に、脱塩処理システム21を用いた焼却主灰の脱塩処理方法について、図3を中心に参照しながら説明する。   Next, a method for desalting incinerated main ash using the desalination processing system 21 will be described with reference to FIG.

図3の左上断面図に示すように、塩素濃度が約1%の主灰Aをピット22に導入し、主灰Aと等重量程度の水Wを加え、主灰Aに含まれている塩類を水Wに溶出させる。この際、水温は30℃以上、溶出時間は6時間以上とするのが好ましい。塩類の溶出後、ピット22から塩類を含む脱塩水W1を抜き出す。これによって、脱塩主灰A’を得ることができる。ここで、脱塩水W1の塩素濃度は約0.4%となっている。   As shown in the upper left cross-sectional view of FIG. 3, main ash A having a chlorine concentration of about 1% is introduced into the pit 22, and water W having the same weight as the main ash A is added, and the salts contained in the main ash A Is eluted in water W. At this time, the water temperature is preferably 30 ° C. or more, and the elution time is preferably 6 hours or more. After elution of the salts, the demineralized water W1 containing the salts is extracted from the pit 22. Thereby, desalted main ash A 'can be obtained. Here, the chlorine concentration of the desalted water W1 is about 0.4%.

次に、脱塩水W1を図2に示した濃縮装置23を用いて濃縮し、2%程度の塩素分を含む濃縮水W2(W1の1/5の量)と、塩素分をほとんど含まない水蒸気S(W1の4/5の量)に分離する。   Next, the demineralized water W1 is concentrated using the concentrating device 23 shown in FIG. 2, and the concentrated water W2 containing about 2% of the chlorine content (1/5 of W1) and the water vapor containing almost no chlorine. Separated into S (4/5 of W1).

具体的には、図2において、ポンプ31によって脱塩水W1を予熱管32に導入し、煙道51内を通過する約150℃の排ガスG3によって加熱する。これにより、脱塩水W1は、約80℃に予熱され、この際に発生した水蒸気Sは、蒸気搬送管38を介して凝縮装置24に取り込まれ、未蒸発分は第1貯槽34に一時的に貯留された後、ポンプ34によって上流側の蒸発濃縮管33に注入される。蒸発濃縮管33において脱塩水W1が排ガスG3によって加熱され、発生した水蒸気Sは蒸気搬送管38を介して凝縮装置24に取り込まれ、未蒸発分(濃縮水W2)は、ポンプ37によって排水処理設備へ搬送される。   Specifically, in FIG. 2, demineralized water W <b> 1 is introduced into the preheating pipe 32 by the pump 31 and heated by the exhaust gas G <b> 3 at about 150 ° C. passing through the flue 51. As a result, the demineralized water W1 is preheated to about 80 ° C., and the water vapor S generated at this time is taken into the condensing device 24 via the vapor transport pipe 38, and the unevaporated portion is temporarily stored in the first storage tank 34. After being stored, it is injected into the evaporative concentration pipe 33 on the upstream side by the pump 34. The demineralized water W1 is heated by the exhaust gas G3 in the evaporative concentration pipe 33, and the generated water vapor S is taken into the condensing device 24 via the vapor transport pipe 38, and the unevaporated portion (concentrated water W2) is discharged into the wastewater treatment facility by the pump 37 It is conveyed to.

次に、濃縮工程で得られた水蒸気Sを真空ポンプ41によって吸引し、凝縮装置24に供給された冷却水によって水蒸気Sを凝縮させ、発生した凝縮水W4をポンプ42によってピット22へ搬送し、主灰Aの洗浄用に再利用する。一方、濃縮水W2には重金属も含まれるため、排水処理工程でキレート処理した後、放流する。重金属が除去された濃縮水W3には約2%の塩素分が含まれているが、この濃度は海水中の塩分と同程度であるため、そのまま放流することができる。   Next, the water vapor S obtained in the concentration step is sucked by the vacuum pump 41, the water vapor S is condensed by the cooling water supplied to the condensing device 24, and the generated condensed water W4 is conveyed to the pit 22 by the pump 42, Reuse for cleaning main ash A. On the other hand, since the concentrated water W2 includes heavy metals, it is discharged after being chelated in the wastewater treatment process. Concentrated water W3 from which heavy metals have been removed contains about 2% of chlorine, but since this concentration is similar to the salt in seawater, it can be discharged as it is.

以上のように、本実施の形態では、濃縮装置23によって脱塩水W1を濃縮し、濃縮によって発生した水蒸気Sを凝縮させた凝縮水W4を循環使用することで、濃縮水W2のみを排水処理すればよく、この際、濃縮水W2の量は、脱塩水W1の1/5となっているため、排水処理設備を大幅に小型化することができる。   As described above, in the present embodiment, the desalinated water W1 is concentrated by the concentrating device 23, and the condensed water W4 obtained by condensing the water vapor S generated by the concentration is circulated and used, so that only the concentrated water W2 is drained. In this case, the amount of the concentrated water W2 is 1/5 of the demineralized water W1, so that the waste water treatment facility can be greatly downsized.

また、脱塩水W1を濃縮するにあたって、従来利用されていなかった排ガスG3を用い、この排ガスG3は、温度が約150℃で、風量としては、2.0Nm3/kg−cem(セメント製造設備1で1kgのセメントを製造する際に2.0Nm3発生する)程度の大量の熱量を有するため、廃熱の有効利用を図ることができるとともに、この排ガスG3は、セメント焼成に関与するものではないため、セメント焼成における熱量原単位の悪化を引き起こすこともない。 Further, in condensing the desalted water W1, an exhaust gas G3 that has not been conventionally used is used. The exhaust gas G3 has a temperature of about 150 ° C. and an air volume of 2.0 Nm 3 / kg-cem (cement production facility 1 In addition, since it has a large amount of heat of about 2.0 Nm 3 when producing 1 kg of cement, waste heat can be used effectively, and this exhaust gas G3 is not involved in cement firing. Therefore, it does not cause deterioration of the calorific value in cement firing.

また、上記実施の形態では、予熱管32及び蒸発濃縮管33を用いることにより、脱塩水W1に排ガスG3を直接接触させず、排ガスG3の有する熱のみを利用した間接加熱であるため、脱塩水W1中に排ガスG3内の微細なダストが混入するなどの問題は発生しない。   Moreover, in the said embodiment, since it uses the preheating pipe | tube 32 and the evaporative concentration pipe | tube 33, since it is the indirect heating using only the heat | fever which the waste gas G3 does not contact the waste gas G3 directly to the desalinated water W1, the desalted water There is no problem that fine dust in the exhaust gas G3 is mixed into W1.

尚、上記実施の形態では、セメント製造設備1の廃熱発電設備2の下流側に原料粉砕装置3が配置されている場合を例示したが、原料粉砕装置3に代えて原料乾燥装置等が配置されていてもよく、また、バグフィルター4に代えて電機集塵機が配置されている場合などでも本発明を適用することができる。   In the above embodiment, the case where the raw material crushing device 3 is arranged on the downstream side of the waste heat power generation facility 2 of the cement manufacturing facility 1 is illustrated, but a raw material drying device or the like is arranged instead of the raw material crushing device 3. The present invention can be applied even when an electric dust collector is arranged in place of the bag filter 4.

また、セメント製造設備1における脱塩処理システム21の設置位置は、ファン5と煙突6の間に限定されず、バグフィルター4とファン5の間であってもよく、セメント製造設備1から排出された200℃以下のガスを利用することができればよい。従って、セメントキルン9の燃焼排ガスに留まらず、クリンカクーラー11からの排気を利用することもできる。   In addition, the installation position of the desalination treatment system 21 in the cement manufacturing facility 1 is not limited between the fan 5 and the chimney 6, and may be between the bag filter 4 and the fan 5 and is discharged from the cement manufacturing facility 1. It is sufficient that a gas of 200 ° C. or lower can be used. Therefore, not only the combustion exhaust gas of the cement kiln 9 but also the exhaust from the clinker cooler 11 can be used.

さらに、上記実施の形態では、濃縮装置23の予熱管32を排ガスG3の流れの下流側に、蒸発濃縮管33を上流側に配置したが、これとは逆に、予熱管32を上流側に、蒸発濃縮管33を下流側に配置することもできる。   Further, in the above embodiment, the preheating pipe 32 of the concentrating device 23 is arranged on the downstream side of the flow of the exhaust gas G3, and the evaporation concentrating pipe 33 is arranged on the upstream side. On the contrary, the preheating pipe 32 is arranged on the upstream side. The evaporative concentration tube 33 can also be arranged on the downstream side.

1 セメント製造設備
2 廃熱発電設備
3 原料粉砕装置
4 バグフィルター
5 ファン
6 煙突
7 プレヒーター
8 仮焼炉
9 セメントキルン
11 クリンカクーラー
21 脱塩処理システム
22 ピット
23 濃縮装置
24 凝縮装置
31 ポンプ
32 予熱管
33 蒸発濃縮管
34 第1貯槽
35 ポンプ
36 第2貯槽
37 ポンプ
38 蒸気搬送管
41 真空ポンプ
42 ポンプ
51 煙道
A 主灰
A’ 脱塩主灰
G1 燃焼排ガス
G2、G3 排ガス
S 水蒸気
R セメント原料
W 水
W1 脱塩水
W2、W3 濃縮水
W4 凝縮水
DESCRIPTION OF SYMBOLS 1 Cement production facility 2 Waste heat power generation facility 3 Raw material crusher 4 Bag filter 5 Fan 6 Chimney 7 Preheater 8 Calciner 9 Cement kiln 11 Clinker cooler 21 Desalination processing system 22 Pit 23 Concentrator 24 Condenser 31 Pump 32 Preheating Pipe 33 Evaporative concentration pipe 34 First storage tank 35 Pump 36 Second storage tank 37 Pump 38 Steam transport pipe 41 Vacuum pump 42 Pump 51 Flue A Main ash A 'Desalination main ash G1 Combustion exhaust gas G2, G3 Exhaust gas S Water vapor R Cement raw material W Water W1 Demineralized water W2, W3 Concentrated water W4 Condensed water

Claims (5)

焼却主灰を水没させて塩類を溶出させるピットと、
該ピットから排出される脱塩水を、セメント製造設備から排出された200℃以下のガスによって濃縮する濃縮装置と、
該濃縮装置で発生した水蒸気を凝縮させる凝縮装置と、
該凝縮装置で生成された凝縮水を前記ピットへ戻す循環装置とを備えることを特徴とする焼却主灰の脱塩処理システム。
A pit to submerge the incinerator main ash to elute the salt,
A concentrating device for concentrating demineralized water discharged from the pit with a gas of 200 ° C. or less discharged from a cement manufacturing facility;
A condensing device for condensing water vapor generated in the concentrating device;
A demineralization treatment system for incinerated main ash, comprising: a circulation device for returning condensed water produced by the condensing device to the pit.
前記濃縮装置は、
前記200℃以下のガス流れに外表面が接触し、内部を前記脱塩水が流れる予熱管と、
前記200℃以下のガス流れにおいて前記予熱管の上流側に配置され、該200℃以下のガス流れに外表面が接触し、内部を前記予熱管によって予熱された脱塩水が流れる蒸発濃縮管とを備えることを特徴とする請求項1に記載の脱塩処理システム。
The concentrator is
A preheat pipe in which an outer surface is in contact with the gas flow of 200 ° C. or less, and the demineralized water flows therein;
An evaporative condensing tube disposed on the upstream side of the preheating pipe in the gas flow of 200 ° C. or less, having an outer surface in contact with the gas flow of 200 ° C. or less, and in which demineralized water preheated by the preheating pipe flows. The desalination processing system according to claim 1, further comprising:
前記濃縮装置は、前記セメント製造設備のセメントキルン排ガスを大気に放出する煙突の上流側煙道に配置されることを特徴とする請求項1又は2に記載の脱塩処理システム。   3. The desalination treatment system according to claim 1, wherein the concentrating device is disposed in a flue upstream of a chimney that releases a cement kiln exhaust gas of the cement manufacturing facility to the atmosphere. 焼却主灰を水洗して塩類を溶出させ、
該塩類を溶出させた脱塩水を、セメント製造工程における200℃以下のガスを用いて濃縮し、
該濃縮によって発生した水蒸気を凝縮させ、
該凝縮によって生成された凝縮水を前記焼却主灰の水洗に用いることを特徴とする焼却主灰の脱塩処理方法。
Incineration main ash is washed with water to elute salts,
The demineralized water from which the salts have been eluted is concentrated using a gas of 200 ° C. or lower in the cement manufacturing process,
Condensing water vapor generated by the concentration;
A demineralization method for incinerated main ash, wherein the condensed water generated by the condensation is used for washing the incinerated main ash.
前記セメント製造工程における200℃以下のガスは、セメントキルンの排ガスであることを特徴とする請求項4に記載の焼却主灰の脱塩処理方法。   The incineration main ash desalting method according to claim 4, wherein the gas of 200 ° C. or less in the cement manufacturing process is an exhaust gas of cement kiln.
JP2009203479A 2009-09-03 2009-09-03 Incineration main ash desalination system Expired - Fee Related JP5403677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009203479A JP5403677B2 (en) 2009-09-03 2009-09-03 Incineration main ash desalination system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009203479A JP5403677B2 (en) 2009-09-03 2009-09-03 Incineration main ash desalination system

Publications (2)

Publication Number Publication Date
JP2011050890A true JP2011050890A (en) 2011-03-17
JP5403677B2 JP5403677B2 (en) 2014-01-29

Family

ID=43940482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009203479A Expired - Fee Related JP5403677B2 (en) 2009-09-03 2009-09-03 Incineration main ash desalination system

Country Status (1)

Country Link
JP (1) JP5403677B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115846358A (en) * 2023-01-30 2023-03-28 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) Solid waste incineration fly ash recycling treatment device and method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155814A (en) * 1984-01-26 1985-08-15 Mitsubishi Heavy Ind Ltd Method of dedusting of waste heat recovery boiler
JPS61236639A (en) * 1985-04-09 1986-10-21 三菱重工業株式会社 Cement waste heat collection apparatus
JPH05305279A (en) * 1992-04-30 1993-11-19 Kubota Corp Method and device for desalting ash discharged from incinerator
JP2002239530A (en) * 2001-02-14 2002-08-27 Fuji Kikai Kk Method for treating incineration ash and incineration ash washing liquid
JP2004305839A (en) * 2003-04-03 2004-11-04 Kyowa Exeo Corp Vacuum evaporative concentration type leached water treatment method and apparatus therefor
JP2005349299A (en) * 2004-06-10 2005-12-22 Mitsubishi Heavy Ind Ltd Freshwater production apparatus
JP2006051451A (en) * 2004-08-12 2006-02-23 Xenesys Inc Power generation and seawater desalination system
JP2006272168A (en) * 2005-03-29 2006-10-12 Kurita Water Ind Ltd Chlorine and heavy metal containing waste treatment method
JP2008157183A (en) * 2006-12-26 2008-07-10 Kawasaki Plant Systems Ltd Waste heat power generation system for cement baking plant

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155814A (en) * 1984-01-26 1985-08-15 Mitsubishi Heavy Ind Ltd Method of dedusting of waste heat recovery boiler
JPS61236639A (en) * 1985-04-09 1986-10-21 三菱重工業株式会社 Cement waste heat collection apparatus
JPH05305279A (en) * 1992-04-30 1993-11-19 Kubota Corp Method and device for desalting ash discharged from incinerator
JP2002239530A (en) * 2001-02-14 2002-08-27 Fuji Kikai Kk Method for treating incineration ash and incineration ash washing liquid
JP2004305839A (en) * 2003-04-03 2004-11-04 Kyowa Exeo Corp Vacuum evaporative concentration type leached water treatment method and apparatus therefor
JP2005349299A (en) * 2004-06-10 2005-12-22 Mitsubishi Heavy Ind Ltd Freshwater production apparatus
JP2006051451A (en) * 2004-08-12 2006-02-23 Xenesys Inc Power generation and seawater desalination system
JP2006272168A (en) * 2005-03-29 2006-10-12 Kurita Water Ind Ltd Chlorine and heavy metal containing waste treatment method
JP2008157183A (en) * 2006-12-26 2008-07-10 Kawasaki Plant Systems Ltd Waste heat power generation system for cement baking plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115846358A (en) * 2023-01-30 2023-03-28 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) Solid waste incineration fly ash recycling treatment device and method
CN115846358B (en) * 2023-01-30 2023-05-05 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) Device and method for recycling solid waste incineration fly ash

Also Published As

Publication number Publication date
JP5403677B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP4688842B2 (en) Wastewater treatment method
WO2008001747A1 (en) Cement burning apparatus and method of drying highly hydrous organic waste
JP2011036796A (en) Drying treatment system for organic sludge and drying treatment method therefor
JPS6038611B2 (en) Method and device for evaporating and concentrating waste sludge using exhaust gas from an incinerator
JP2011084425A (en) Method for decreasing mercury component and organic chlorine compound in exhaust gas from cement production equipment
CN107923608B (en) Cogeneration systems
JP2010167369A (en) System and method for drying water-containing organic waste
JP2009220048A (en) Drying system and drying method for water-containing organic sludge
JP5403677B2 (en) Incineration main ash desalination system
CN109205909B (en) System and method for treating flue gas desulfurization wastewater of coal-fired power plant boiler
CN209721907U (en) A kind of sludge treating system
JP2004024998A (en) Treatment method of contaminated soil
JP6020024B2 (en) Method for reducing heavy metals in exhaust gas from cement production facilities
JP5573754B2 (en) Method and apparatus for reducing heavy metals in exhaust gas from cement manufacturing equipment
JP6260404B2 (en) Exhaust gas treatment method and treatment apparatus
JP2011036795A (en) Drying treatment system and drying treatment method for organic sludge
JP5582569B2 (en) System and method of using recovered water from cement kiln exhaust gas
JP5908204B2 (en) Method and apparatus for reducing heavy metals in exhaust gas from cement manufacturing equipment
KR102235341B1 (en) Complex system for resource recovery from organic waste water and separation of organic acids
JP2007015875A (en) Method for producing cement
JP6287477B2 (en) Exhaust gas treatment method and treatment apparatus
JP2010051922A (en) Method of treating waste incineration treatment debris
JP2008049204A (en) Baking method of heavy metal-containing raw material
JP2015178060A (en) Exhaust gas processing method and processing device
CN217585267U (en) Fly ash treatment system for counter-current rotary kiln system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131024

R150 Certificate of patent or registration of utility model

Ref document number: 5403677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees