JP2011049444A - Gas laser oscillator - Google Patents

Gas laser oscillator Download PDF

Info

Publication number
JP2011049444A
JP2011049444A JP2009198073A JP2009198073A JP2011049444A JP 2011049444 A JP2011049444 A JP 2011049444A JP 2009198073 A JP2009198073 A JP 2009198073A JP 2009198073 A JP2009198073 A JP 2009198073A JP 2011049444 A JP2011049444 A JP 2011049444A
Authority
JP
Japan
Prior art keywords
discharge
gas
laser oscillator
container
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009198073A
Other languages
Japanese (ja)
Inventor
Yoshiharu Kurosaki
芳晴 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009198073A priority Critical patent/JP2011049444A/en
Publication of JP2011049444A publication Critical patent/JP2011049444A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser oscillator that is compact, lightweight and inexpensive, does not require an airtight structure, is easy to handle since a discharge electrode container is not easily broken, and has a discharge electrode preventing a water leak and dew condensation in the discharge electrode container. <P>SOLUTION: A discharge box 12 has an easy-to-break inorganic insulator only on a surface where the discharge electrode 2 is provided and other surfaces are made of inorganic metal which is not easily broken, so attention may be paid only to a surface of the discharge electrode 2 during assembly and handling thereof is easier. Further, the insulator 16 is charged in the discharge box 12 and no large pressure difference is generated between the inside and outside of the discharge box 12, so strength is secured even when thin inorganic metal is used for the container 11. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、放電励起式ガスレーザ発振器に用いられる放電電極の構造に関するものである。   The present invention relates to the structure of a discharge electrode used in a discharge excitation gas laser oscillator.

従来の放電励起式ガスレーザ装置の放電電極は、金属電極がシリコンゴムなどの有機絶縁物からなる放電制限材によって覆われた構造であった(例えば、特許文献1参照)。また、容器によって筐体内のレーザ媒質ガスと区切られた大気雰囲気中に導電体電極を設置し、その容器を筐体に対して真空タイトに構成された放電電極もあった(例えば、特許文献2参照)。   A discharge electrode of a conventional discharge excitation gas laser apparatus has a structure in which a metal electrode is covered with a discharge limiting material made of an organic insulator such as silicon rubber (see, for example, Patent Document 1). In addition, there is a discharge electrode in which a conductive electrode is installed in an air atmosphere separated from a laser medium gas in a casing by a container, and the container is configured to be vacuum tight with respect to the casing (for example, Patent Document 2). reference).

特開平6−283782号公報Japanese Patent Laid-Open No. 6-283382 特開2002−261356JP2002-261356

特許文献1に記載された従来の放電励起式ガスレーザ発振器において、シリコンゴムなどの有機絶縁物からなる放電制限材は、放電に伴って発生する紫外線や反応性の高い活性ガスにより分解劣化され、この分解した汚染物がレーザ媒質ガスの劣化、およびミラーの汚染を招く。従来の放電電極において、無機質絶縁物によりシリコンゴムなどの有機絶縁物からなる放電制限材を覆うように構成することで、放電に伴って発生した紫外線や反応性の高い活性ガスによる放電制限材の分解劣化を抑制している。しかしながら、無機質絶縁物は割れなどの破損が発生しやすいことから、その取扱いには注意を要する。また、割れが発生すると、その隙間から紫外線や活性ガスが照射、侵入し、放電制限材を分解劣化してしまう。   In the conventional discharge-excited gas laser oscillator described in Patent Document 1, a discharge limiting material made of an organic insulator such as silicon rubber is decomposed and deteriorated by an ultraviolet ray generated due to discharge or an active gas having high reactivity. Decomposed contaminants cause laser medium gas degradation and mirror contamination. In a conventional discharge electrode, the discharge limiting material made of organic insulator such as silicon rubber is covered with an inorganic insulating material, so that the discharge limiting material due to ultraviolet rays generated due to the discharge or highly reactive active gas. Degradation is suppressed. However, since inorganic insulators are easily damaged, such as cracks, they must be handled with care. In addition, when cracking occurs, ultraviolet light or active gas is irradiated and invaded through the gap, and the discharge limiting material is decomposed and deteriorated.

また、特許文献2に示される放電電極では、容器の内部が筐体のレーザ媒質ガス雰囲気と区切られた大気雰囲気となるように構成されている。例えば炭酸ガスレーザの場合、筐体内のレーザガス圧力は通常7kPa〜33kPa程度であり、大気圧101.325kPaとの圧力差に耐えうる強度が容器には必要となる。このため、容器は強度を確保するために肉厚なものとなり放電電極の大型化、重量化を招き、また高価なものとなってしまう。また、容器と誘電体との接合に気密構造を必要とするため、構造が複雑になり、製造不良により筐体内のレーザガス雰囲気中に大気が流入するという問題があった。また、放電電極に冷却手段を設けた際には、その冷却手段からの水漏れや夏場のような高温多湿の環境下では、その冷却手段が大気雰囲気と接するため放電電極内部で結露が起こり、放電電極内部で放電が発生し、電極内部の配水管がダメージを受け更なる水漏れを誘発し冷却不足となり、絶縁基台が割れる等の破損に至る危険があった。   Further, the discharge electrode disclosed in Patent Document 2 is configured such that the interior of the container is an air atmosphere separated from the laser medium gas atmosphere of the housing. For example, in the case of a carbon dioxide laser, the laser gas pressure in the casing is usually about 7 kPa to 33 kPa, and the container needs to be strong enough to withstand the pressure difference from the atmospheric pressure of 101.325 kPa. For this reason, the container becomes thick in order to ensure strength, leading to an increase in the size and weight of the discharge electrode, and an expensive one. In addition, since an airtight structure is required for joining the container and the dielectric, the structure is complicated, and there is a problem that air flows into the laser gas atmosphere in the housing due to manufacturing defects. In addition, when the cooling means is provided in the discharge electrode, in a high temperature and high humidity environment such as water leakage from the cooling means or summer, the cooling means comes into contact with the air atmosphere, so condensation occurs inside the discharge electrode, There was a risk of discharge occurring inside the discharge electrode, causing damage to the water distribution pipe inside the electrode, causing further water leakage, resulting in insufficient cooling, and breaking the insulation base.

本発明は上記したような従来のものの欠点を除去するためになされたもので、小型軽量かつ安価で気密構造を必要とせず、また放電電極容器が破損しにくく取り扱いが容易である放電電極を備えたガスレーザ発振器を得るものである。   The present invention has been made in order to eliminate the disadvantages of the conventional ones as described above, and is provided with a discharge electrode that is small, light and inexpensive, does not require an airtight structure, and that the discharge electrode container is hard to break and easy to handle. A gas laser oscillator is obtained.

この発明に係るガスレーザ発振器においては、放電箱を放電電極が設けられた面だけに破損しやすい無機絶縁物を配置し、その他の面は破損しにくい無機金属で構成し、さらに絶縁物を放電箱の内部に充填したものである。   In the gas laser oscillator according to the present invention, the discharge box is formed of an inorganic insulator that is easily damaged only on the surface provided with the discharge electrode, and the other surface is made of an inorganic metal that is not easily damaged, and the insulator is further formed of the discharge box. The inside is filled.

この発明は、放電箱を放電電極が設けられた面だけに破損しやすい無機絶縁物を配置し、その他の面は破損しにくい無機金属で構成することにより取り扱いが容易となる。また、絶縁物を放電箱の内部に充填することにより、気密構造を必要とせず小型軽量かつ安価な放電電極を得ることができる。   In the present invention, the discharge box is provided with an inorganic insulator that is easily damaged only on the surface provided with the discharge electrode, and the other surface is made of an inorganic metal that is not easily damaged, thereby facilitating handling. Further, by filling the inside of the discharge box with an insulator, a small, light and inexpensive discharge electrode can be obtained without requiring an airtight structure.

この発明の実施の形態1を示すガスレーザ発振器の構成を表す図である。It is a figure showing the structure of the gas laser oscillator which shows Embodiment 1 of this invention. この発明の実施の形態1を示すガスレーザ発振器の断面図である。It is sectional drawing of the gas laser oscillator which shows Embodiment 1 of this invention. この発明の実施の形態1であるガスレーザ発振器の放電電極の断面図である。It is sectional drawing of the discharge electrode of the gas laser oscillator which is Embodiment 1 of this invention. この発明の実施の形態1を示すガスレーザ発振器の断面図である。It is sectional drawing of the gas laser oscillator which shows Embodiment 1 of this invention. この発明の実施の形態2であるガスレーザ発振器の放電電極の断面図である。It is sectional drawing of the discharge electrode of the gas laser oscillator which is Embodiment 2 of this invention. この発明の実施の形態2の他の例であるガスレーザ発振器の放電電極の断面図である。It is sectional drawing of the discharge electrode of the gas laser oscillator which is another example of Embodiment 2 of this invention.

実施の形態1.
図1は、この発明を実施するための実施の形態1におけるレーザ発振器の構成を示すものである。図1において、1は筐体、2は放電電極である。3は放電空隙、4はCO、CO2、O2、N2、Heガス等を含むレーザ媒質ガス、5は送風機である。6および7はレーザ光を発振増幅するためのそれぞれ全反射鏡および部分反射鏡、8は1対の放電電極2の間に高周波高電圧を供給する電源である。
Embodiment 1 FIG.
FIG. 1 shows the configuration of a laser oscillator according to Embodiment 1 for carrying out the present invention. In FIG. 1, 1 is a housing | casing and 2 is a discharge electrode. 3 is a discharge gap, 4 is a laser medium gas containing CO, CO2, O2, N2, He gas, etc., and 5 is a blower. Reference numerals 6 and 7 denote a total reflection mirror and a partial reflection mirror, respectively, for oscillating and amplifying the laser beam. Reference numeral 8 denotes a power supply for supplying a high frequency high voltage between the pair of discharge electrodes 2.

図1において、筺体1内にはレーザ媒質ガス4が充填されており、筐体1内に収容される送風機5によって同様に収容される1対の放電電極2の間を通るように循環されている。1対の放電電極2間には交流電圧を印加することによって放電が発生し、レーザ媒質ガス4を励起し、反転分布を生成する。このようにして反転分布が発生したレーザ媒質ガス4は光を発生し、全反射鏡6および部分反射鏡7によって反射、増幅される。これらの全反射鏡6や部分反射鏡7からなる共振ミラー間で増幅された光L1は、部分反射鏡7からレーザ発振器外部にレーザ光L2として取り出される。放電電極2間で励起され高温となつたレーザ媒質ガス4は、図示していない熱交換器を通過する間に冷却され再び放電電極間へと循環される。   In FIG. 1, a housing 1 is filled with a laser medium gas 4, and is circulated so as to pass between a pair of discharge electrodes 2 similarly housed by a blower 5 housed in a housing 1. Yes. A discharge is generated by applying an alternating voltage between the pair of discharge electrodes 2 to excite the laser medium gas 4 to generate an inversion distribution. The laser medium gas 4 in which the inversion distribution is generated in this way generates light and is reflected and amplified by the total reflection mirror 6 and the partial reflection mirror 7. The light L1 amplified between the resonance mirrors including the total reflection mirror 6 and the partial reflection mirror 7 is extracted from the partial reflection mirror 7 to the outside of the laser oscillator as laser light L2. The laser medium gas 4 that has been excited between the discharge electrodes 2 and has reached a high temperature is cooled while passing through a heat exchanger (not shown) and is circulated again between the discharge electrodes.

図2は、図1におけるレーザ発振器のA−A断面図である。図2において、9は鉄や銅などの導電体電極であり、10は板形状の誘電体で主としてセラミックスなどを用いる。導電体電極9はろう付け等によって誘電体10の一方の面に接合され、放電電極2を構成する。11は、アルミ、鉄、ステンレスなど外部からの衝撃に対して割れなどを起しにくい無機金属で構成される容器である。この容器11の開口面に、放電電極2の導電体電極9が接続された面が向かい合うように配置される。これにより、容器11により放電電極2の導電体電極9が接続された面が覆われるように構成され、放電箱12を構成する。このように構成された1組の放電箱12は図2に示すように、放電電極2が向かい合うように配置されると共に、放電電極2が向かい合う側の面は誘電体10により構成され、それ以外の面は無機金属で構成されている。   FIG. 2 is a cross-sectional view taken along the line AA of the laser oscillator in FIG. In FIG. 2, 9 is a conductor electrode such as iron or copper, 10 is a plate-shaped dielectric, and ceramics are mainly used. The conductor electrode 9 is joined to one surface of the dielectric 10 by brazing or the like to form the discharge electrode 2. Reference numeral 11 denotes a container made of an inorganic metal such as aluminum, iron, and stainless steel that hardly cracks due to external impact. It arrange | positions so that the surface to which the conductor electrode 9 of the discharge electrode 2 was connected to the opening surface of this container 11 may face. Thereby, it is comprised so that the surface to which the conductor electrode 9 of the discharge electrode 2 was connected with the container 11 may be covered, and the discharge box 12 is comprised. As shown in FIG. 2, the set of discharge boxes 12 configured in this manner is arranged so that the discharge electrodes 2 face each other, and the surface on the side where the discharge electrodes 2 face each other is constituted by the dielectric 10, and the others The surface is made of an inorganic metal.

更に、放電箱12の内部、すなわち容器11と放電電極2によって囲まれた空間には絶縁物16が充填される。絶縁物16は、空間に充填する必要があるため、型による成形が容易である樹脂を用いるのがよい。なお、樹脂には熱硬化性樹脂と熱可塑性樹脂の2種類が存在するが、熱硬化性樹脂を用いるのが、より望ましい。熱硬化性樹脂は、加熱もしくは2種混合により硬化する樹脂であるが、硬化以前は常温で液体であり、型へ流し込んで硬化させる作業においては、製造が容易となる。一方、熱可塑性樹脂は、加熱することで軟化し冷却して硬化させるため、型へ流し込むには射出成形機等の設備が必要となり、製造の容易性からは熱硬化性樹脂より劣る。熱硬化性樹脂としては、例えば液体状の2つの樹脂材料を適当な分量で混合することによって硬化するシリコーンゴム等が例としてあげられる。この場合、樹脂を放電箱12内に充填するのは容易であるが、隙間や気泡を発生させないように注意する必要がある。隙間や気泡が放電箱12内に存在すると、筐体1内を真空状態にしたときに破裂等が発生する恐れがあるためである。   Further, an insulator 16 is filled in the inside of the discharge box 12, that is, the space surrounded by the container 11 and the discharge electrode 2. Since the insulator 16 needs to be filled in a space, it is preferable to use a resin that can be easily molded by a mold. Although there are two types of resins, thermosetting resins and thermoplastic resins, it is more desirable to use thermosetting resins. The thermosetting resin is a resin that is cured by heating or mixing two types, but is a liquid at room temperature before curing, and is easy to manufacture in an operation of pouring into a mold and curing. On the other hand, since a thermoplastic resin is softened by heating and cooled and cured, equipment such as an injection molding machine is required for pouring into a mold, and it is inferior to a thermosetting resin in terms of ease of manufacture. Examples of the thermosetting resin include silicone rubber that is cured by mixing two liquid resin materials in an appropriate amount. In this case, it is easy to fill the discharge box 12 with resin, but care must be taken not to generate gaps or bubbles. This is because if there are gaps or bubbles in the discharge box 12, rupture or the like may occur when the inside of the housing 1 is evacuated.

図3は、放電箱12における誘電体10と容器11の接続方法を示した図である。図3において、誘電体10の周辺部は、容器11の端部と押さえ部材19との間に挟み込まれる形で保持される。また、押さえ部材19は、例えばネジにより容器11の端部に締結される。これにより、破損しやすい誘電体10の端部を直接ネジ止めする等局所的に圧力を加えずに済み、誘電体10の破損を防止することができる。   FIG. 3 is a view showing a method of connecting the dielectric 10 and the container 11 in the discharge box 12. In FIG. 3, the peripheral portion of the dielectric 10 is held in a form that is sandwiched between the end of the container 11 and the pressing member 19. Further, the pressing member 19 is fastened to the end of the container 11 with a screw, for example. As a result, it is not necessary to apply pressure locally, such as by directly screwing the end of the dielectric 10 that is easily damaged, and damage to the dielectric 10 can be prevented.

図4は、図1におけるレーザ発振器のA−A以外の断面図であり、放電電極2への電力の供給の様子を示したのものである。図4において、13は給電線であり、放電電極2に接続され、容器11の内部を通り、容器11と筐体1間に配置されたベローズ14を介して、筐体1の開口15から図1で示した電源8に配線されている。ベローズ7の内部については、絶縁物16を充填してもよいし、図4に示したように絶縁物16を充填せず筐体1の外部とつながった大気雰囲気としてもよい。ただし、ベローズ7内部を大気雰囲気とした場合、ベローズ7内部と外部に大きな圧力差が生じるので、ベローズ7は圧力差に耐えられる強度が必要となる。一方、ベローズ7内部を絶縁物16で充填した場合、充填する絶縁物16が必要になるが、ベローズ7内部と外部に大きな圧力差が生じ無いので、ベローズ7は内部を大気雰囲気とするほどの強度は必要ない。   FIG. 4 is a cross-sectional view of the laser oscillator other than A-A in FIG. 1 and shows the state of power supply to the discharge electrode 2. In FIG. 4, reference numeral 13 denotes a power supply line, which is connected to the discharge electrode 2, passes through the inside of the container 11, and passes through the bellows 14 disposed between the container 11 and the casing 1, and is viewed from the opening 15 of the casing 1. 1 is wired to the power source 8 indicated by 1. The inside of the bellows 7 may be filled with an insulator 16 or may be an air atmosphere connected to the outside of the housing 1 without being filled with the insulator 16 as shown in FIG. However, when the inside of the bellows 7 is an air atmosphere, a large pressure difference is generated between the inside of the bellows 7 and the outside. Therefore, the bellows 7 needs to be strong enough to withstand the pressure difference. On the other hand, when the inside of the bellows 7 is filled with the insulator 16, the insulator 16 to be filled is required. However, since a large pressure difference does not occur between the inside and outside of the bellows 7, the bellows 7 has an air atmosphere inside. There is no need for strength.

このように構成されたガスレーザ発振器においては、放電箱12は、放電電極2が設けられた面だけに破損しやすい無機絶縁物を配置し、その他の面は破損しにくい無機金属で構成されているため、組立の際には放電電極2の面だけを注意すればよく、取り扱いが容易となる。また、絶縁物16を放電箱12の内部に充填することで、放電箱12の内部と外部に大きな圧力差が生じないため、容器11には厚みの薄い無機金属の板材を用いても強度を確保できる。これにより、小型軽量かつ安価で気密構造を必要とせず、また放電電極容器が破損しにくく取り扱いが容易な放電電極が得られる。   In the gas laser oscillator configured as described above, the discharge box 12 is formed of an inorganic insulator that is easily damaged only on the surface on which the discharge electrode 2 is provided, and the other surface is formed of an inorganic metal that is not easily damaged. Therefore, it is only necessary to pay attention to the surface of the discharge electrode 2 at the time of assembly, and handling becomes easy. In addition, since the insulator 16 is filled in the discharge box 12 so that a large pressure difference does not occur between the inside and the outside of the discharge box 12, the container 11 can be made strong even if a thin inorganic metal plate is used. It can be secured. This makes it possible to obtain a discharge electrode that is small, light, inexpensive, does not require an airtight structure, and that the discharge electrode container is hard to break and easy to handle.

なお、絶縁物16に発泡樹脂を用いることで、より軽量にすることもできる。また、容器11に用いる無機金属は、レーザガス雰囲気中に暴露されるため、錆びたり腐食したりしないものが望ましく、例えばステンレスやアルミが好ましい材質である。   In addition, it can also be reduced in weight by using a foamed resin for the insulator 16. Moreover, since the inorganic metal used for the container 11 is exposed to a laser gas atmosphere, it is desirable that the metal does not rust or corrode, and for example, stainless steel or aluminum is a preferable material.

実施の形態2.
図5および図6は、本発明の実施の形態2を示す放電電極の断面図であり、実施の形態1に係るガスレーザ発振器よりも放電電極の冷却性を向上させたものである。以下、実施の形態1と異なる部分につき説明する。
Embodiment 2. FIG.
5 and 6 are cross-sectional views of the discharge electrode showing Embodiment 2 of the present invention, in which the cooling performance of the discharge electrode is improved as compared with the gas laser oscillator according to Embodiment 1. FIG. Hereinafter, parts different from the first embodiment will be described.

図5において、17は冷却管で、銅等の金属あるいは合成樹脂からなり、その内部に冷却用媒体である水や窒素ガス等を流すことが可能な構造、例えば図5に示したような孔20を有する。冷却管17は、実施の形態1と同様に放電箱12に充填する絶縁物16で固定されている。また、冷却管17は絶縁物16で覆われるため、絶縁物16がシール材として働き、冷却用媒質として水を使用した場合には冷却管17からの水漏れを防ぐこともでき、放電箱12の内部で結露が発生することもなく、放電箱12の内部での水漏れや結露による放電電極の破損を防ぐことができる。   In FIG. 5, a cooling pipe 17 is made of a metal such as copper or a synthetic resin, and has a structure in which water, nitrogen gas, or the like, which is a cooling medium, can flow inside, for example, a hole as shown in FIG. 20 The cooling tube 17 is fixed by an insulator 16 that fills the discharge box 12 as in the first embodiment. Further, since the cooling tube 17 is covered with the insulator 16, the insulator 16 serves as a sealing material, and when water is used as a cooling medium, water leakage from the cooling tube 17 can be prevented. Condensation does not occur inside the discharge box 12, and damage to the discharge electrode due to water leakage or condensation inside the discharge box 12 can be prevented.

図5では、冷却管17を絶縁物16にて固定したが、冷却管17をより導電対電極9に密着させるため、図6に示したように固定部材18を用いて放電箱12内で冷却管17を固定しても良い。ここで、固定部材18は、機械的特性すなわち引張り強さや伸びおよび剛性等が優れていて、耐熱温度が高く、電気絶縁性が高いものが望ましく、例えばポリオキシメチレン(ポリアセタール)やポリブチレンテレフタレート樹脂からなるものである。また、固定部材18の形状は、図6においては断面形状が台形をしているが、冷却管17を固定できるならば、その形は適宜決定すればよい。   In FIG. 5, the cooling tube 17 is fixed by the insulator 16. However, in order to make the cooling tube 17 more closely contact the conductive counter electrode 9, the cooling member 17 is cooled in the discharge box 12 using the fixing member 18 as shown in FIG. 6. The tube 17 may be fixed. Here, it is desirable that the fixing member 18 has excellent mechanical properties, that is, tensile strength, elongation, rigidity, etc., has a high heat resistance temperature, and high electrical insulation properties. For example, polyoxymethylene (polyacetal) or polybutylene terephthalate resin is preferable. It consists of Further, the shape of the fixing member 18 is trapezoidal in cross section in FIG. 6, but if the cooling pipe 17 can be fixed, the shape may be appropriately determined.

固定部材18の作用は、冷却管17と導電対電極9との密着性を良化することであり、これにより、図5に示した絶縁物16で冷却管17を固定する場合に比べて、取付作業やコストの増加が発生するが、冷却効率を更に向上することができる。固定部材18と容器11との間には、実施の形態1と同様に絶縁物16が充填されるので、図5の構成と同様に、放電箱12の内部での水漏れや結露による放電電極の破損を防ぐこともできる。   The action of the fixing member 18 is to improve the adhesion between the cooling pipe 17 and the conductive counter electrode 9, thereby comparing with the case where the cooling pipe 17 is fixed with the insulator 16 shown in FIG. 5. Although installation work and cost increase occur, the cooling efficiency can be further improved. Since the insulator 16 is filled between the fixing member 18 and the container 11 as in the first embodiment, the discharge electrode is caused by water leakage or condensation inside the discharge box 12 as in the configuration of FIG. Can also prevent damage.

なお、図5および図6において冷却管は1本のみ示しているが、多数存在する場合においても同様に、絶縁物16もしくは固定部材18で固定すればよい。また、絶縁物16や固定部材18に熱伝達性の優れた樹脂(放熱用のシリコーンゴム等)を用いることで、冷却効率を向上させることができ、冷却管の小型化や冷却用媒質の使用量を削減することができる。   Although only one cooling pipe is shown in FIGS. 5 and 6, similarly, when there are many cooling pipes, they may be fixed by the insulator 16 or the fixing member 18. Further, by using a resin having excellent heat transfer properties (such as silicone rubber for heat dissipation) for the insulator 16 and the fixing member 18, the cooling efficiency can be improved, and the cooling pipe can be downsized and the cooling medium used. The amount can be reduced.

1 筐体
2 放電電極
4 レーザ媒質ガス
9 導電体電極
10 誘電体
11 容器
12 放電箱
16 絶縁物
17 冷却管
18 固定部材
DESCRIPTION OF SYMBOLS 1 Case 2 Discharge electrode 4 Laser medium gas 9 Conductor electrode 10 Dielectric 11 Container 12 Discharge box 16 Insulator 17 Cooling pipe 18 Fixing member

Claims (7)

一対の放電電極の間にレーザガスを流し、前記放電電極間に高電圧を印加して前記放電電極の間で放電を発生させ、前記レーザガスを励起してレーザ発振を行うガスレーザ発振器において、
前記放電電極は、前記高電圧を印加する導体電極と、前記導体電極を一方の面に接合された板形状の誘電体とからなり、前記誘電体の前記導体電極が接合されていない側の面を向かい合うように配置され
前記放電電極の導体電極が接合された側の面を覆う無機金属からなる容器を備え、
前記放電電極と前記容器とから囲まれる空間に絶縁物を充填したガスレーザ発振器。
In a gas laser oscillator in which a laser gas is caused to flow between a pair of discharge electrodes, a high voltage is applied between the discharge electrodes to generate a discharge between the discharge electrodes, and the laser gas is excited to perform laser oscillation.
The discharge electrode includes a conductor electrode to which the high voltage is applied and a plate-shaped dielectric material in which the conductor electrode is joined to one surface, and the surface of the dielectric on the side where the conductor electrode is not joined. A container made of an inorganic metal that covers the surface of the discharge electrode that is disposed so as to face the conductive electrode.
A gas laser oscillator in which a space surrounded by the discharge electrode and the container is filled with an insulator.
前記絶縁物が樹脂である請求項1に記載のガスレーザ発振器。   The gas laser oscillator according to claim 1, wherein the insulator is a resin. 前記樹脂が熱硬化性樹脂である請求項2に記載のガスレーザ発振器。   The gas laser oscillator according to claim 2, wherein the resin is a thermosetting resin. 前記樹脂が発泡樹脂である請求項2に記載のガスレーザ発振器。   The gas laser oscillator according to claim 2, wherein the resin is a foamed resin. 前記容器がステンレスもしくはアルミからなる請求項1乃至4に記載のガスレーザ発振器。   5. The gas laser oscillator according to claim 1, wherein the container is made of stainless steel or aluminum. 前記導体電極を冷却する冷却管を備え、この冷却管の位置決めを前記絶縁物によって行う請求項1乃至5いずれかに記載のガスレーザ発振器。   The gas laser oscillator according to claim 1, further comprising a cooling pipe for cooling the conductor electrode, wherein the cooling pipe is positioned by the insulator. 前記レーザガスを封入し前記放電電極および容器を収納する筐体と、この筐体と前記容器の間に設けられ、前記導体電極と電源とをつなぐ電線を内部に配線すると共に、内部に前記絶縁物を充填したベローズを備えた請求項1乃至6いずれかに記載のガスレーザ発振器。   A housing that encloses the laser gas and houses the discharge electrode and the container, and an electric wire that is provided between the housing and the container and connects the conductor electrode and the power source, and the insulator inside. The gas laser oscillator according to claim 1, further comprising a bellows filled with a gas.
JP2009198073A 2009-08-28 2009-08-28 Gas laser oscillator Pending JP2011049444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009198073A JP2011049444A (en) 2009-08-28 2009-08-28 Gas laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009198073A JP2011049444A (en) 2009-08-28 2009-08-28 Gas laser oscillator

Publications (1)

Publication Number Publication Date
JP2011049444A true JP2011049444A (en) 2011-03-10

Family

ID=43835474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009198073A Pending JP2011049444A (en) 2009-08-28 2009-08-28 Gas laser oscillator

Country Status (1)

Country Link
JP (1) JP2011049444A (en)

Similar Documents

Publication Publication Date Title
US6137209A (en) High power ultrasonic transducer
US6016023A (en) Tubular ultrasonic transducer
TWI425527B (en) Electronic wire generating device
KR20090119276A (en) Electromagnetic switch and making method thereof
TWI241275B (en) Ozonizer
JP2011513948A5 (en)
US6866829B2 (en) Ozonizer
JP2011049444A (en) Gas laser oscillator
ITFI20070142A1 (en) &#34;GAS LASER SOURCE EXCITED IN RADIO FREQUENCY&#34;
JP4907491B2 (en) High frequency induction heating device and method of manufacturing high frequency induction heating device
EP1314691B1 (en) Ozonizer
KR20140060364A (en) Hf-resonator and particle accelerator with hf-resonator
JP4848410B2 (en) Gas laser oscillator
US2295404A (en) Dynamoelectric machine
JP5399976B2 (en) Vacuum seal and piping connection mechanism
JP3592700B2 (en) Ozone generator
JP3900662B2 (en) Ozone generator
JP7426709B2 (en) plasma source
JPH0582863A (en) Laser oscillator
TW200536220A (en) Laser oscillator and laser processing machine
JP2003077373A (en) Power receiving and distributing device
JPH04256387A (en) Gas laser device
JP2003072821A (en) Housing container
JPH0945493A (en) X-ray tube device
JPH07221372A (en) Dielectric electrode for ac discharge gas laser device