JP2011048951A - Method of manufacturing active material - Google Patents

Method of manufacturing active material Download PDF

Info

Publication number
JP2011048951A
JP2011048951A JP2009194575A JP2009194575A JP2011048951A JP 2011048951 A JP2011048951 A JP 2011048951A JP 2009194575 A JP2009194575 A JP 2009194575A JP 2009194575 A JP2009194575 A JP 2009194575A JP 2011048951 A JP2011048951 A JP 2011048951A
Authority
JP
Japan
Prior art keywords
mixture
active material
livopo
source
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009194575A
Other languages
Japanese (ja)
Other versions
JP5444942B2 (en
Inventor
Atsushi Sano
篤史 佐野
Keitaro Otsuki
佳太郎 大槻
Yousuke Miyaki
陽輔 宮木
Takeshi Takahashi
高橋  毅
Shoji Higuchi
章二 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2009194575A priority Critical patent/JP5444942B2/en
Priority to US12/854,572 priority patent/US20110052473A1/en
Priority to CN2010102632402A priority patent/CN101997117A/en
Publication of JP2011048951A publication Critical patent/JP2011048951A/en
Application granted granted Critical
Publication of JP5444942B2 publication Critical patent/JP5444942B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an active material capable of improving the discharge capacity of a lithium ion secondary battery. <P>SOLUTION: The method of manufacturing the active material includes a hydrothermal synthesis step of heating a mixture containing a lithium source, a phosphate source, a vanadium source, water and a reducing agent to 200-300°C under pressure, and adjusts the ratio [P]/[V] of the number of moles [P] of phosphorous element contained in the mixture before heating to the number of moles [V] of vanadium element contained in the mixture before heating to 0.9-1.5. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、活物質の製造方法に関する。   The present invention relates to a method for producing an active material.

従来、リチウムイオン二次電池の正極材料(正極活物質)としてLiCoOやLiNi1/3Mn1/3Co1/3等の層状化合物やLiMn等のスピネル化合物が用いられてきた。近年では、LiFePOに代表されるオリビン型構造の化合物が注目されている。オリビン構造を有する正極材料は高温での熱安定性が高く、安全性が高いことが知られている。しかし、LiFePOを用いたリチウムイオン二次電池は、その充放電電圧が3.5V程度と低く、エネルギー密度が低くなるという欠点を有する。そのため、高い充放電電圧を実現し得るリン酸系正極材料として、LiCoPO4やLiNiPO等が提案されている。しかし、これらの正極材料を用いたリチウムイオン二次電池においても、十分な容量が得られていないのが現状である。リン酸系正極材料の中でも4V級の充放電電圧を実現し得る化合物として、LiVOPOが知られている。しかし、LiVOPOを用いたリチウムイオン二次電池においても、十分な可逆容量やレート特性が得られていない。上記の正極材料は、例えば、下記特許文献1,2及び下記非特許文献1〜4に記載されている。なお、以下では、場合により、リチウムイオン二次電池を「電池」と記す。 Conventionally, a layered compound such as LiCoO 2 or LiNi 1/3 Mn 1/3 Co 1/3 O 2 or a spinel compound such as LiMn 2 O 4 has been used as a positive electrode material (positive electrode active material) of a lithium ion secondary battery. It was. In recent years, compounds having an olivine type structure typified by LiFePO 4 have attracted attention. It is known that a positive electrode material having an olivine structure has high thermal stability at high temperatures and high safety. However, the lithium ion secondary battery using LiFePO 4 has a drawback that its charge / discharge voltage is as low as about 3.5 V and the energy density is low. Therefore, as a phosphate-based positive electrode material capable of realizing a high charge-discharge voltage, such as LiCoPO4 and LiNiPO 4 it has been proposed. However, the present situation is that a sufficient capacity is not obtained even in lithium ion secondary batteries using these positive electrode materials. LiVOPO 4 is known as a compound that can realize a charge / discharge voltage of 4 V class among phosphoric acid positive electrode materials. However, even in a lithium ion secondary battery using LiVOPO 4 , sufficient reversible capacity and rate characteristics are not obtained. Said positive electrode material is described in the following patent documents 1, 2, and the following nonpatent literatures 1-4, for example. Hereinafter, in some cases, a lithium ion secondary battery is referred to as a “battery”.

特開2003−68304号公報JP 2003-68304 A 特開2004−303527号公報JP 2004-303527 A

J. Solid State Chem., 95, 352 (1991)J. et al. Solid State Chem. , 95, 352 (1991) N.Dupre et al.,Solid State Ionics,140,pp.209−221(2001)N. Dupre et al. , Solid State Ionics, 140, pp. 209-221 (2001) N.Dupre et al.,J. Power Sources,97−98,pp.532−534(2001)N. Dupre et al. , J .; Power Sources, 97-98, pp. 532-534 (2001) J. Baker et al. J. Electrochem. Soc., 151, A796 (2004)J. et al. Baker et al. J. et al. Electrochem. Soc. , 151, A796 (2004)

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、リチウムイオン二次電池の放電容量を向上させることが可能な活物質の製造方法を提供することを目的とする。   This invention is made | formed in view of the subject which the said prior art has, and aims at providing the manufacturing method of the active material which can improve the discharge capacity of a lithium ion secondary battery.

上記目的を達成するために、本発明に係る活物質の製造方法は、リチウム源とリン酸源とバナジウム源と水と還元剤とを含む混合物を加圧下で200〜300℃に加熱する水熱合成工程を備える。そして、本発明では、水熱合成工程において加熱前の混合物に含まれるリン元素のモル数[P]と加熱前の混合物に含まれるバナジウム元素のモル数[V]との比[P]/[V]を0.9〜1.5に調整する。   In order to achieve the above object, the method for producing an active material according to the present invention is a hydrothermal method in which a mixture containing a lithium source, a phosphate source, a vanadium source, water and a reducing agent is heated to 200 to 300 ° C. under pressure. A synthesis process is provided. In the present invention, in the hydrothermal synthesis step, the ratio [P] / [ratio of the number of moles of phosphorus element [P] contained in the mixture before heating to the number of moles [V] of vanadium element contained in the mixture before heating. V] is adjusted to 0.9 to 1.5.

上記本発明によればLiVOPOを得ることが可能となる。そして、本発明によって得られるLiVOPOを正極活物質として備えるリチウムイオン二次電池では、従来の製造方法によって得られるLiVOPOを用いたリチウムイオン二次電池に比べて、放電容量を向上させることが可能となる。 According to the present invention, LiVOPO 4 can be obtained. And in the lithium ion secondary battery provided with LiVOPO 4 obtained by the present invention as a positive electrode active material, the discharge capacity can be improved as compared with the lithium ion secondary battery using LiVOPO 4 obtained by the conventional manufacturing method. It becomes possible.

上記本発明では、加熱前の混合物に含まれるリチウム元素のモル数[Li]と[V]との比[Li]/[V]を0.9〜1.5に調整すればよい。なお、[Li]/[V]が1.5より大きい場合であっても、本発明の効果を奏することは可能である。   In the present invention, the ratio [Li] / [V] of the number of moles of lithium element [Li] and [V] contained in the mixture before heating may be adjusted to 0.9 to 1.5. Even when [Li] / [V] is larger than 1.5, the effects of the present invention can be obtained.

上記本発明では、リチウム源が、LiOH、LiCO、CHCOOLi及びLiPOからなる群より選ばれる少なくとも一種であることが好ましい。これらのリチウム源を用いて得たLiVOPOを備えるリチウムイオン二次電池では、リチウム源としてLiSOを用いて得たLiVOPOを備えるリチウムイオン二次電池に比べて、放電容量及びレート特性が向上する。 In the present invention, the lithium source is preferably at least one selected from the group consisting of LiOH, Li 2 CO 3 , CH 3 COOLi, and Li 3 PO 4 . In the lithium ion secondary battery provided with LiVOPO 4 obtained using these lithium sources, the discharge capacity and rate characteristics are compared with the lithium ion secondary battery provided with LiVOPO 4 obtained using Li 2 SO 4 as the lithium source. Will improve.

上記本発明は、水熱合成工程後に混合物を更に加熱する熱処理工程を備えることが好ましい。これにより、リチウムイオン二次電池のレート特性が向上する。   The present invention preferably includes a heat treatment step of further heating the mixture after the hydrothermal synthesis step. Thereby, the rate characteristic of a lithium ion secondary battery improves.

本発明によれば、リチウムイオン二次電池の放電容量を向上させることが可能な活物質の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the active material which can improve the discharge capacity of a lithium ion secondary battery can be provided.

(活物質の製造方法)
以下では、本発明の一実施形態に係る活物質の製造方法について説明する。
(Method for producing active material)
Below, the manufacturing method of the active material which concerns on one Embodiment of this invention is demonstrated.

<水熱合成工程>
水熱合成工程では、まず、内部を加熱、加圧する機能を有する反応容器(例えば、オートクレーブ等)内に、上述したリチウム源、リン酸源、バナジウム源、水及び還元剤を投入して、これらが分散した混合物(水溶液)を調製する。なお、混合物を調製する際は、例えば、最初に、リン酸源、バナジウム源、水及び還元剤を混合したものを還流した後、これにリチウム源を加えてもよい。この還流により、リン酸源及びバナジウム源の複合体を形成することができる。
<Hydrothermal synthesis process>
In the hydrothermal synthesis step, first, the above-described lithium source, phosphate source, vanadium source, water, and reducing agent are put into a reaction vessel (for example, an autoclave) having a function of heating and pressurizing the inside. A mixture (aqueous solution) in which is dispersed is prepared. In preparing the mixture, for example, first, a mixture of a phosphate source, a vanadium source, water and a reducing agent may be refluxed, and then a lithium source may be added thereto. By this reflux, a complex of a phosphate source and a vanadium source can be formed.

リチウム源としては、LiNO、LiCO、LiOH、LiCl、LiSO及びCHCOOLiからなる群より選ばれる少なくとも一種を用いることができる。 As the lithium source, at least one selected from the group consisting of LiNO 3 , Li 2 CO 3 , LiOH, LiCl, Li 2 SO 4 and CH 3 COOLi can be used.

リチウム源は、LiOH、LiCO、CHCOOLi及びLiPOからなる群より選ばれる少なくとも一種であることが好ましい。これにより、LiSOを用いた場合に比べて、電池の放電容量及びレート特性が向上する。 The lithium source is preferably at least one selected from the group consisting of LiOH, Li 2 CO 3 , CH 3 COOLi, and Li 3 PO 4 . Thus, as compared with the case of using the Li 2 SO 4, thereby improving the discharge capacity and rate characteristics of a battery.

リン酸源としては、HPO、NHPO、(NHHPO及びLiPOからなる群より選ばれる少なくとも一種を用いることができる。 As the phosphoric acid source, at least one selected from the group consisting of H 3 PO 4 , NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 and Li 3 PO 4 can be used.

バナジウム源としては、V及びNHVOからなる群より選ばれる少なくとも一種を用いることができる。 As the vanadium source, at least one selected from the group consisting of V 2 O 5 and NH 4 VO 3 can be used.

なお、二種以上のリチウム源、二種以上のリン酸源又は二種以上のバナジウム源を併用してもよい。   Two or more lithium sources, two or more phosphoric acid sources, or two or more vanadium sources may be used in combination.

還元剤としては、例えば、ヒドラジン(NHNH・HO)又は過酸化水素(H)の少なくともいずれかを用いることができる。 As the reducing agent, for example, at least one of hydrazine (NH 2 NH 2 .H 2 O) or hydrogen peroxide (H 2 O 2 ) can be used.

水熱合成工程では、混合物を加圧下で加熱する前に、混合物に含まれるリン元素のモル数[P]と混合物に含まれるバナジウム元素のモル数[V]との比[P]/[V]を0.9〜1.5に調整する。[P]/[V]を0.9〜1.5の数値範囲外に調整した場合に得られるLiVOPOを用いた電池では、放電容量を向上させることが困難となる。なお、[P]/[V]は、混合物に含まれるリン酸源とバナジウム源との配合比によって調整すればよい。 In the hydrothermal synthesis step, before heating the mixture under pressure, the ratio [P] / [V of the number of moles of phosphorus element [P] contained in the mixture to the number of moles [V] of vanadium element contained in the mixture. ] Is adjusted to 0.9 to 1.5. In a battery using LiVOPO 4 obtained when [P] / [V] is adjusted outside the numerical range of 0.9 to 1.5, it is difficult to improve the discharge capacity. [P] / [V] may be adjusted by the blending ratio of the phosphate source and the vanadium source contained in the mixture.

水熱合成工程では、混合物を加圧下で加熱する前に、混合物に含まれるリチウム元素のモル数[Li]と[V]との比[Li]/[V]を0.9〜1.5に調整すればよい。なお、[Li]/[V]を1.5より大きくした場合であっても、本発明の効果を奏することは可能である。なお、[Li]/[V]は、混合物に含まれるリチウム源とバナジウム源との配合比によって調整すればよい。   In the hydrothermal synthesis step, before heating the mixture under pressure, the ratio [Li] / [V] of the number of moles of lithium element contained in the mixture [Li] and [V] is set to 0.9 to 1.5. You may adjust to. Even when [Li] / [V] is larger than 1.5, the effects of the present invention can be obtained. [Li] / [V] may be adjusted by the blending ratio of the lithium source and the vanadium source contained in the mixture.

従来のLiVOPOの製造方法では、得られるLiVOPOにLiの欠損が発生することを抑制するために、[Li]/[V]を、LiVOPOの化学量論比である1より大きい値(例えば9)に調整する必要があった。一方、本実施形態では、[Li]/[V]を、LiVOPOの化学量論比に近い0.9〜1.5に調整した場合であっても、Liの欠損がなく、結晶性の高いLiVOPOを得ることが可能である。 In the conventional LiVOPO 4 production method, in order to suppress the occurrence of Li deficiency in the obtained LiVOPO 4 , [Li] / [V] is a value larger than 1 which is the stoichiometric ratio of LiVOPO 4 ( For example, it was necessary to adjust to 9). On the other hand, in this embodiment, even when [Li] / [V] is adjusted to 0.9 to 1.5, which is close to the stoichiometric ratio of LiVOPO 4 , there is no defect of Li and the crystalline High LiVOPO 4 can be obtained.

水熱合成工程では、混合物を加圧下で加熱する前に、混合物のpHを7.5以下に調整することが好ましい。これにより、LiVOPOのβ型結晶相が生成し易くなり、放電容量が顕著に向上する傾向がある。 In the hydrothermal synthesis step, it is preferable to adjust the pH of the mixture to 7.5 or less before heating the mixture under pressure. Thereby, the β-type crystal phase of LiVOPO 4 is likely to be generated, and the discharge capacity tends to be remarkably improved.

混合物のpHを調整する方法としては、様々な方法を採用し得るが、例えば、混合物に酸性試薬や塩基性試薬を添加することが挙げられる。酸性試薬としては、硝酸、塩酸又は硫酸等を用いればよい。塩基性試薬としては、例えば、アンモニア水溶液等を用いればよい。なお、混合物のpHは、混合物の量や、リチウム源、リン酸源及びバナジウム源の種類又は配合比に応じて変化する。したがって、酸性試薬や塩基性試薬の添加量は、混合物の量、リチウム源、リン酸源並びにバナジウム源の種類及び配合比に応じて適宜調整すればよい。   Various methods can be adopted as a method for adjusting the pH of the mixture. For example, an acidic reagent or a basic reagent is added to the mixture. As the acidic reagent, nitric acid, hydrochloric acid, sulfuric acid or the like may be used. For example, an aqueous ammonia solution or the like may be used as the basic reagent. In addition, pH of a mixture changes according to the quantity of a mixture, the kind or compounding ratio of a lithium source, a phosphate source, and a vanadium source. Therefore, the addition amount of the acidic reagent or basic reagent may be appropriately adjusted according to the amount of the mixture, the types of lithium source, phosphoric acid source and vanadium source and the mixing ratio.

水熱合成工程では、密閉した反応器内の混合物を加圧しながら加熱することにより、混合物中で水熱反応を進行させる。これにより、活物質であるLiVOPOが水熱合成される。 In the hydrothermal synthesis step, the hydrothermal reaction is allowed to proceed in the mixture by heating the mixture in the sealed reactor while applying pressure. Thus, LiVOPO 4 is hydrothermally synthesized as an active material.

水熱合成工程では、混合物を加圧下で200〜300℃に加熱する。混合物の温度が低過ぎると、LiVOPOの生成及び結晶成長が十分に進行しない。その結果、LiVOPOの結晶性が低下し、その容量密度が減少するため、LiVOPOを用いた電池の放電容量を向上させることが困難となる。また、混合物の温度が高過ぎると、LiVOPOの結晶成長が過剰に進行して、結晶におけるLiの拡散能が低下する。そのため、得られるLiVOPOを用いた電池の放電容量を向上させることが困難となる。また混合物の温度が高過ぎると、反応容器に高い耐熱性が求められ、活物質の製造コストが増大する。混合物の温度を上記の範囲内とすることによって、これらの傾向を抑制できる。 In the hydrothermal synthesis step, the mixture is heated to 200 to 300 ° C. under pressure. If the temperature of the mixture is too low, the formation of LiVOPO 4 and crystal growth do not proceed sufficiently. As a result, the crystallinity of LiVOPO 4 is lowered and the capacity density is reduced, so that it is difficult to improve the discharge capacity of the battery using LiVOPO 4 . On the other hand, if the temperature of the mixture is too high, the crystal growth of LiVOPO 4 proceeds excessively and the diffusibility of Li in the crystal decreases. Therefore, it becomes difficult to improve the discharge capacity of the battery using LiVOPO 4 obtained. Moreover, when the temperature of a mixture is too high, high heat resistance is calculated | required by the reaction container, and the manufacturing cost of an active material will increase. By setting the temperature of the mixture within the above range, these tendencies can be suppressed.

水熱合成工程において混合物に加える圧力は、0.2〜1MPaとすることが好ましい。混合物に加える圧力が低過ぎると、最終的に得られるLiVOPOの結晶性が低下し、その容量密度が減少する傾向がある。混合物に加える圧力が高過ぎると、反応容器に高い耐圧性が求められ、活物質の製造コストが増大する傾向がある。混合物に加える圧力を上記の範囲内とすることによって、これらの傾向を抑制できる。 The pressure applied to the mixture in the hydrothermal synthesis step is preferably 0.2 to 1 MPa. If the pressure applied to the mixture is too low, the crystallinity of LiVOPO 4 finally obtained tends to be reduced, and the capacity density tends to decrease. If the pressure applied to the mixture is too high, the reaction vessel is required to have high pressure resistance, and the production cost of the active material tends to increase. By setting the pressure applied to the mixture within the above range, these tendencies can be suppressed.

<熱処理工程>
本実施形態では、水熱合成工程後に混合物を更に加熱する熱処理工程を備えることが好ましい。熱処理工程によって、水熱合成工程で反応しなかったリチウム源、リン酸源及びバナジウム源の反応を進行させたり、水熱合成工程で生成したLiVOPOの結晶成長を促進したりすることができる。その結果、LiVOPOの容量密度が向上し、それを用いた電池の放電容量のみならず、レート特性も向上する。なお、本発明では、水熱合成工程において十分に高い温度で混合物を加熱するため、水熱合成工程後に熱処理工程を実施しなくとも、本発明の効果を奏することは可能である。
<Heat treatment process>
In this embodiment, it is preferable to provide a heat treatment step for further heating the mixture after the hydrothermal synthesis step. By the heat treatment step, the reaction of the lithium source, the phosphate source, and the vanadium source that did not react in the hydrothermal synthesis step can be advanced, or the crystal growth of LiVOPO 4 generated in the hydrothermal synthesis step can be promoted. As a result, the capacity density of LiVOPO 4 is improved, and not only the discharge capacity of the battery using the same but also the rate characteristics are improved. In the present invention, since the mixture is heated at a sufficiently high temperature in the hydrothermal synthesis step, the effect of the present invention can be achieved without performing the heat treatment step after the hydrothermal synthesis step.

熱処理工程における混合物の熱処理温度は400〜700℃とすることが好ましい。熱処理温度が低過ぎる場合、LiVOPOの結晶成長度が小さく、その容量密度の向上度が小さくなる傾向がある。熱処理温度が高過ぎる場合、LiVOPOの成長が過剰に進み、LiVOPOの粒径が増加する傾向がある。その結果、活物質におけるリチウムの拡散が遅くなり、活物質の容量密度の向上度が小さくなる傾向がある。熱処理温度を上記の範囲内とすることによって、これらの傾向を抑制できる。 The heat treatment temperature of the mixture in the heat treatment step is preferably 400 to 700 ° C. When the heat treatment temperature is too low, the degree of crystal growth of LiVOPO 4 tends to be small, and the degree of improvement in capacity density tends to be small. If the heat treatment temperature is too high, growth of the LiVOPO 4 proceeds excessively, tend to particle size of LiVOPO 4 is increased. As a result, the diffusion of lithium in the active material is slow, and the improvement in the capacity density of the active material tends to be small. By setting the heat treatment temperature within the above range, these tendencies can be suppressed.

混合物の熱処理時間は、3〜20時間とすることが好ましい。また、混合物の熱処理雰囲気は、窒素雰囲気、アルゴン雰囲気、又は空気雰囲気とすることが好ましい。   The heat treatment time of the mixture is preferably 3 to 20 hours. The heat treatment atmosphere of the mixture is preferably a nitrogen atmosphere, an argon atmosphere, or an air atmosphere.

なお、水熱合成工程で得られる混合物を、熱処理工程で加熱する前に60〜150℃程度で1〜30時間程度、予熱してもよい。予熱により、混合物が粉体となり、混合物から余計な水分や有機溶媒が除去される。その結果、熱処理工程においてLiVOPOに不純物が取り込まれることを防ぎ、粒子形状を均一化することが可能となる。 In addition, you may pre-heat the mixture obtained at a hydrothermal synthesis process at about 60-150 degreeC for about 1 to 30 hours, before heating at a heat processing process. By preheating, the mixture becomes powder, and excess water and organic solvent are removed from the mixture. As a result, it is possible to prevent impurities from being taken into LiVOPO 4 in the heat treatment step and to make the particle shape uniform.

上述した本実施形態で得られたLiVOPOは、リチウムイオン二次電池の正極活物質として好適である。 LiVOPO 4 obtained in the above-described embodiment is suitable as a positive electrode active material for a lithium ion secondary battery.

リチウムイオン二次電池は、互いに対向する板状の負極及び板状の正極と、負極と正極との間に隣接して配置される板状のセパレータと、を備える発電要素と、リチウムイオンを含む電解質溶液と、これらを密閉した状態で収容するケースと、負極に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出される負極リードと、正極に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出される正極リードとを備える。   A lithium ion secondary battery includes a power generation element including a plate-shaped negative electrode and a plate-shaped positive electrode facing each other, and a plate-shaped separator disposed adjacently between the negative electrode and the positive electrode, and lithium ions An electrolyte solution, a case for containing them in a sealed state, a negative electrode lead having one end electrically connected to the negative electrode and the other end protruding outside the case, and one end connected to the positive electrode And a positive electrode lead whose other end protrudes to the outside of the case.

負極は、負極集電体と、負極集電体上に形成された負極活物質層と、を有する。また、正極は、正極集電体と、正極集電体上に形成された正極活物質層と、を有する。セパレータは、負極活物質層と正極活物質層との間に位置している。   The negative electrode has a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector. The positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector. The separator is located between the negative electrode active material layer and the positive electrode active material layer.

正極活物質層は、上述した製造方法により得られたLiVOPOを含有する。 The positive electrode active material layer contains LiVOPO 4 obtained by the manufacturing method described above.

本実施形態に係る製造方法によって得られるLiVOPOを正極活物質として備える電池では、従来の製造方法によって得られるLiVOPOを用いた電池に比べて、放電容量を向上させることが可能となる。 In the battery including LiVOPO 4 obtained by the manufacturing method according to the present embodiment as the positive electrode active material, the discharge capacity can be improved as compared with the battery using LiVOPO 4 obtained by the conventional manufacturing method.

LiVOPOは、三斜晶(α型結晶)、斜方晶(β型結晶)等の複数の結晶構造を示し、その結晶構造に応じて異なる電気化学特性を有することが知られている。 LiVOPO 4 has a plurality of crystal structures such as triclinic crystal (α-type crystal) and orthorhombic crystal (β-type crystal), and is known to have different electrochemical characteristics depending on the crystal structure.

LiVOPOのβ型結晶は、α型結晶に比べて、直線的で短いイオン伝導経路を有するため、リチウムイオンを可逆的に挿入脱離する特性(以下、場合により「可逆性」と記す。)に優れる。そのため、活物質としてLiVOPOのβ型結晶を用いた電池は、α型結晶を用いた電池に比べて、大きな充放電容量を有し、レート特性に優れる。 Since the LiVOPO 4 β-type crystal has a linear and shorter ion conduction path than the α-type crystal, it has a characteristic of reversibly inserting and desorbing lithium ions (hereinafter, sometimes referred to as “reversible”). Excellent. Therefore, a battery using a LiVOPO 4 β-type crystal as an active material has a large charge / discharge capacity and excellent rate characteristics as compared with a battery using an α-type crystal.

本実施形態に係る活物質の製造方法で得られるLiVOPOは、β型結晶の単相であるため、これを用いた電池の放電容量が向上する、と本発明者らは考える。換言すれば、本実施形態に係る活物質の製造方法では、LiVOPOのβ型結晶を従来の製造方法に比べて高い収率で得ることが可能になる、と考える。 The present inventors think that LiVOPO 4 obtained by the method for producing an active material according to the present embodiment is a single phase of β-type crystal, so that the discharge capacity of a battery using this is improved. In other words, in the method for producing an active material according to the present embodiment, it is considered that a β-type crystal of LiVOPO 4 can be obtained with a higher yield than the conventional production method.

以上、本発明に係る活物質の製造方法の好適な一実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。   As mentioned above, although suitable one Embodiment of the manufacturing method of the active material which concerns on this invention was described in detail, this invention is not limited to the said embodiment.

例えば、水熱合成工程において、加熱前の混合物に炭素粒子を添加してもよい。これにより、LiVOPOの少なくとも一部が炭素粒子表面に生成し、炭素粒子にLiVOPOを担持させることが可能となる。その結果、得られる活物質の電気伝導性を向上させることが可能となる。炭素粒子を構成する物質としては、アセチレンブラック等のカーボンブラック(黒鉛)、活性炭、ハードカーボン、ソフトカーボン等が挙げられる。 For example, in the hydrothermal synthesis step, carbon particles may be added to the mixture before heating. Thereby, at least a part of LiVOPO 4 is generated on the surface of the carbon particles, and the LiVOPO 4 can be supported on the carbon particles. As a result, it is possible to improve the electrical conductivity of the obtained active material. Examples of substances constituting the carbon particles include carbon black (graphite) such as acetylene black, activated carbon, hard carbon, and soft carbon.

本発明の活物質は、リチウムイオン二次電池以外の電気化学素子の電極材料としても用いることができる。このような、電気化学素子としては、金属リチウム二次電池(本発明により得られたLiVOPOを含む電極をカソードとして用い、金属リチウムをアノードとして用いたもの)等のリチウムイオン二次電池以外の二次電池や、リチウムキャパシタ等の電気化学キャパシタ等が挙げられる。これらの電気化学素子は、自走式のマイクロマシン、ICカードなどの電源や、プリント基板上又はプリント基板内に配置される分散電源の用途に使用することが可能である。 The active material of the present invention can also be used as an electrode material for electrochemical devices other than lithium ion secondary batteries. As such an electrochemical element, other than lithium ion secondary batteries such as a metal lithium secondary battery (using the electrode containing LiVOPO 4 obtained by the present invention as a cathode and using metal lithium as an anode) Examples include secondary batteries and electrochemical capacitors such as lithium capacitors. These electrochemical elements can be used for power sources such as self-propelled micromachines and IC cards, and distributed power sources arranged on or in a printed circuit board.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
実施例1のLiVOPOの製造では、以下の原料を含む混合液を調製した。
Example 1
In the production of LiVOPO 4 of Example 1, a mixed solution containing the following raw materials was prepared.

リチウム源:8.48g(0.20mol)のLiOH・HO(分子量=41.96、ナカライテスク社製、特級、純度99重量%)。 Lithium source: 8.48 g (0.20 mol) of LiOH.H 2 O (molecular weight = 41.96, manufactured by Nacalai Tesque, special grade, purity 99% by weight).

リン酸源:23.06g(0.20mol)のHPO(分子量=98.00、関東化学社製、鹿1級、純度85重量%、ナカライテスク社製、1級、純度:85重量%)。 Phosphoric acid source: 23.06 g (0.20 mol) of H 3 PO 4 (molecular weight = 98.00, manufactured by Kanto Chemical Co., Inc., deer grade 1, purity 85 wt%, manufactured by Nacalai Tesque Co., grade 1, purity: 85 wt. %).

バナジウム源:18.37g(0.10mol)のV(分子量=181.88、ナカライテスク社製、特級、純度:99重量%)。 Vanadium source: 18.37 g (0.10 mol) of V 2 O 5 (molecular weight = 181.88, manufactured by Nacalai Tesque, special grade, purity: 99% by weight).

200gの蒸留水(ナカライテスク社製、HPLC(高速液体クロマトグラフィー)用)。なお、ガラス容器とオートクレーブとの間に別途30gの蒸留水も用いた。   200 g of distilled water (manufactured by Nacalai Tesque, for HPLC (high performance liquid chromatography)). Separately, 30 g of distilled water was also used between the glass container and the autoclave.

還元剤:2.58g(0.05mol)のNHNH・HO(分子量=50.06、ナカライテスク社製、特級、純度:98重量%)。 Reducing agent: 2.58 g (0.05 mol) of NH 2 NH 2 .H 2 O (molecular weight = 50.06, manufactured by Nacalai Tesque, special grade, purity: 98% by weight).

上記のリン酸源及びバナジウム源の各含有量から明らかなように、混合液に含まれるリン元素のモル数[P]と混合液に含まれるバナジウム元素のモル数[V]との比[P]/[V]を1に調整した。また、上記のリチウム源及びバナジウム源の各含有量から明らかなように、混合液に含まれるリチウム元素のモル数[Li]と[V]との比[Li]/[V]を1に調整した。また、リチウム源の含有量と蒸留水の量から明らかなように、混合液におけるLiの濃度を、1.0mol/Lに調整した。上記の原料の各仕込み量は、LiVOPO(分子量:168.85)に換算すると、化学量論的に約33.78g(0.2mol)のLiVOPOの収量に相当する。 As apparent from the contents of the phosphoric acid source and the vanadium source, the ratio [P] of the number of moles of phosphorus element [P] contained in the mixed solution and the number of moles [V] of vanadium element contained in the mixed solution [P] ] / [V] was adjusted to 1. Further, as is clear from the contents of the above lithium source and vanadium source, the ratio [Li] / [V] of the number of moles [Li] and [V] of the lithium element contained in the mixed solution is adjusted to 1. did. Further, as apparent from the content of the lithium source and the amount of distilled water, the concentration of Li + in the mixed solution was adjusted to 1.0 mol / L. Each amount of the raw materials is equivalent to a yield of about 33.78 g (0.2 mol) of LiVOPO 4 when converted to LiVOPO 4 (molecular weight: 168.85).

上記の混合液を以下の手順で調製した。まず、500mLのマイヤーフラスコに23.06gのHPOと180gの蒸留水を入れ、これらをマグネチックスターラーで攪拌した。そして、フラスコ内に18.37gのVを加えてから約2.5時間攪拌を継続したところ、フラスコ内に黄橙色の懸濁液を得た。懸濁液を激しく攪拌しながら2.58gのヒドラジン1水和物(NHNH・HO)を懸濁液に滴下した。ヒドラジン1水和物を滴下すると、懸濁液の液相は黄橙色からくすんだ緑色に変化した。なお、懸濁液を激しく攪拌していたので、滴下に伴う発泡は確認できなかった。さらに懸濁液の攪拌を続けて10分経過した時点で、懸濁液はくすんだ緑色の流動性のあるペーストとなった。このペーストのpHは3であった。ヒドラジン1水和物を投入してから約60分間懸濁液の攪拌を継続した。懸濁液の液相は、からし色の流動性のあるペーストの状態に維持された。引き続いてペーストに8.48gのLiOH・HOを10分程度かけて加えた。LiOH・HOを投入した直後のペーストのpHは7〜8であった。このペーストに20gの蒸留水を追加して、上記の混合液を得た。得られた混合液のpHは7.5であった。 The above mixture was prepared by the following procedure. First, 23.06 g of H 3 PO 4 and 180 g of distilled water were placed in a 500 mL Meyer flask, and these were stirred with a magnetic stirrer. Then, after adding 18.37 g of V 2 O 5 to the flask and stirring was continued for about 2.5 hours, a yellow-orange suspension was obtained in the flask. While the suspension was vigorously stirred, 2.58 g of hydrazine monohydrate (NH 2 NH 2 .H 2 O) was added dropwise to the suspension. When hydrazine monohydrate was added dropwise, the liquid phase of the suspension changed from yellow orange to dull green. In addition, since the suspension was vigorously stirred, foaming accompanying dropping was not confirmed. When the suspension was further stirred for 10 minutes, the suspension became a dull green fluid paste. The pH of this paste was 3. Stirring of the suspension was continued for about 60 minutes after adding hydrazine monohydrate. The liquid phase of the suspension was maintained in a mustard colored flowable paste. Subsequently, 8.48 g of LiOH.H 2 O was added to the paste over about 10 minutes. The pH of the paste immediately after charging LiOH.H 2 O was 7-8. 20 g of distilled water was added to this paste to obtain the above mixture. The pH of the obtained liquid mixture was 7.5.

原料の仕込み時に想定していた収量33.78gの98.4%に相当する原料を含む248.41gの混合液を、35mmフットボール型回転子を入れた0.5Lオートクレーブのガラス容器内に移した。ガラス容器を密閉して、ガラス容器内の混合液を強力マグネチックスターラー7で攪拌しながら、所定のPID制御で混合液の加熱を開始した。密閉されたガラス容器内の内圧を加熱に伴い上昇させた。このようにして、水熱合成工程では、ガラス容器内の混合液を、48時間にわたって加圧下で加熱した。水熱合成工程では、ガラス容器内の温度を250℃に保持した。ガラス容器内の圧力は、3.8MPaに保持した。   248.41 g of the mixed liquid containing 98.4% of the yield of 33.78 g expected at the time of charging the raw material was transferred into a 0.5 L autoclave glass container containing a 35 mm football rotor. . The glass container was sealed, and heating of the mixed liquid was started by predetermined PID control while stirring the mixed liquid in the glass container with the strong magnetic stirrer 7. The internal pressure in the sealed glass container was increased with heating. Thus, in the hydrothermal synthesis process, the liquid mixture in the glass container was heated under pressure for 48 hours. In the hydrothermal synthesis process, the temperature in the glass container was kept at 250 ° C. The pressure in the glass container was kept at 3.8 MPa.

加熱を停止した後、ガラス容器内の温度が38℃まで下がってからガラス容器内から混合液を取り出した。なお、加熱を停止してからガラス容器内の温度が38℃に下がるまで約2時間を要した。ガラス容器内から取り出た混合液は、茶色の沈殿を含む無色透明の溶液であった。また、混合液のpHは6であった。ガラス容器を静置して、容器内の上澄みを除去した。更に約200mlの蒸留水を容器内に追加して、容器内を攪拌洗浄した。その後直ぐに、茶色の沈殿を含む無色透明の溶液、除去した上澄み、及び容器内の洗浄に用いた蒸留水の全てを吸引ろ過して、ろ過された沈殿を再び水洗することにより、液体を得た。液体のpHは6〜7であった。そして、液体を再び吸引ろ過した。さらに、液体に含まれた茶色の沈殿を約200mlのアセトンで洗浄してから、液体を再び吸引ろ過した。これにより、ろ過物として非常に粘ちょうであるペーストを得た。半乾燥したろ過物をステンレスシャーレに移して、室温で15.5時間真空乾燥した。   After stopping the heating, the mixed solution was taken out from the glass container after the temperature in the glass container dropped to 38 ° C. In addition, it took about 2 hours until the temperature in a glass container fell to 38 degreeC after stopping a heating. The mixed solution taken out from the glass container was a colorless and transparent solution containing a brown precipitate. The pH of the mixed solution was 6. The glass container was left still and the supernatant in the container was removed. Further, about 200 ml of distilled water was added to the container, and the inside of the container was stirred and washed. Immediately thereafter, a colorless transparent solution containing a brown precipitate, the removed supernatant, and all distilled water used for washing in the container were suction filtered, and the filtered precipitate was washed again with water to obtain a liquid. . The pH of the liquid was 6-7. The liquid was suction filtered again. Further, the brown precipitate contained in the liquid was washed with about 200 ml of acetone, and the liquid was suction filtered again. Thereby, the paste which was very sticky as a filtrate was obtained. The semi-dried filtrate was transferred to a stainless steel dish and vacuum dried at room temperature for 15.5 hours.

以上の水熱合成工程により、実施例1の活物質として、茶色の固体31.39gを得た。LiVOPOに換算した茶色の固体の重量は、原料の仕込み時に想定していた収量33.78gの94.4%に相当することが確認された。 By the above hydrothermal synthesis process, 31.39 g of a brown solid was obtained as the active material of Example 1. It was confirmed that the weight of the brown solid converted to LiVOPO 4 corresponds to 94.4% of the yield of 33.78 g assumed when the raw materials were charged.

(実施例2)
実施例1と同様の方法で得た茶色の乾燥した固体のうち1.00gをアルミナ坩堝に入れた。アルミナ坩堝内の固体を、加熱炉を用いて450℃で4時間加熱する熱処理工程を実施した。熱処理工程では、Ar雰囲気中でアルミナ坩堝内の固体を加熱した。また、熱処理工程では、炉内の温度を45分かけて室温から450℃まで昇温させた。アルミナ坩堝内の固体を450℃で4時間加熱した後、加熱炉を自然冷却した。この熱処理工程により、実施例2の活物質として、緑色の粉体1.00gを得た。熱処理工程の前後で、固体の重量が変化しなかったことから、熱処理工程後の固体の残存率は100%であった。
(Example 2)
Of the brown dried solid obtained in the same manner as in Example 1, 1.00 g was placed in an alumina crucible. A heat treatment step was performed in which the solid in the alumina crucible was heated at 450 ° C. for 4 hours using a heating furnace. In the heat treatment step, the solid in the alumina crucible was heated in an Ar atmosphere. In the heat treatment step, the temperature in the furnace was raised from room temperature to 450 ° C. over 45 minutes. After heating the solid in the alumina crucible at 450 ° C. for 4 hours, the heating furnace was naturally cooled. By this heat treatment step, 1.00 g of green powder was obtained as the active material of Example 2. Since the weight of the solid did not change before and after the heat treatment step, the residual ratio of the solid after the heat treatment step was 100%.

(実施例3〜21)
実施例3〜21では、リチウム源として、表1に示す化合物を用いた。実施例3〜21では、[Li]/[V]、[P]/[V]をそれぞれ表1に示す値に調整した。実施例3〜21の水熱合成工程では、オートクレーブで加熱する直前の混合液のpHが表1に示す値であった。なお、実施例19では、アンモニア水溶液を用いて、混合液のpHを調整した。実施例3〜21の水熱合成工程では、混合液が密閉されたガラス容器内の温度を表1に示す値に保持した。実施例3〜21の熱処理工程では、表1に示す雰囲気中でアルミナ坩堝内の固体を加熱した。実施例12では、還元剤として、ヒドラジンの代わりに過酸化水素を用いた。
(Examples 3 to 21)
In Examples 3 to 21, the compounds shown in Table 1 were used as the lithium source. In Examples 3 to 21, [Li] / [V] and [P] / [V] were adjusted to the values shown in Table 1, respectively. In the hydrothermal synthesis steps of Examples 3 to 21, the pH of the mixed solution immediately before heating in the autoclave was a value shown in Table 1. In Example 19, the pH of the mixed solution was adjusted using an aqueous ammonia solution. In the hydrothermal synthesis steps of Examples 3 to 21, the temperature in the glass container in which the mixed solution was sealed was maintained at the values shown in Table 1. In the heat treatment steps of Examples 3 to 21, the solid in the alumina crucible was heated in the atmosphere shown in Table 1. In Example 12, hydrogen peroxide was used as a reducing agent instead of hydrazine.

以上の事項以外は、実施例2と同様の方法で、実施例3〜21の各活物質を得た。   Except for the above, the active materials of Examples 3 to 21 were obtained in the same manner as in Example 2.

(比較例1)
比較例1のLiVOPOの製造では、以下の原料を用いた。
(Comparative Example 1)
In the production of LiVOPO 4 of Comparative Example 1, the following raw materials were used.

リチウム源:5.95g(0.14mol)のLiOH・HO(分子量=41.96、ナカライテスク社製、特級、純度99重量%)。 Lithium source: 5.95 g (0.14 mol) of LiOH.H 2 O (molecular weight = 41.96, manufactured by Nacalai Tesque, special grade, purity 99% by weight).

リン酸源:5.42g(0.047mol)のHPO(分子量=98.00、ナカライテスク社製、1級、純度:85重量%)。 Phosphoric acid source: 5.42 g (0.047 mol) of H 3 PO 4 (molecular weight = 98.00, manufactured by Nacalai Tesque, first grade, purity: 85% by weight).

バナジウム源:1.43g(0.0078mol)のV(分子量=181.88、ナカライテスク社製、特級、純度:99重量%)。 Vanadium source: 1.43 g (0.0078 mol) of V 2 O 5 (molecular weight = 181.88, manufactured by Nacalai Tesque, special grade, purity: 99% by weight).

200gの蒸留水(ナカライテスク社製、HPLC(高速液体クロマトグラフィー)用)。なお、ガラス容器とオートクレーブとの間に別途30gの蒸留水も用いた。   200 g of distilled water (manufactured by Nacalai Tesque, for HPLC (high performance liquid chromatography)). Separately, 30 g of distilled water was also used between the glass container and the autoclave.

還元剤:0.40g(0.0080mol)のNHNH・HO(分子量=50.06、ナカライテスク社製、特級、純度:98重量%)。 Reducing agent: 0.40 g (0.0080 mol) of NH 2 NH 2 .H 2 O (molecular weight = 50.06, manufactured by Nacalai Tesque, special grade, purity: 98% by weight).

上記のリン酸源及びバナジウム源の各含有量から明らかなように、比較例1では、[P]/[V]を3に調整した。また、上記のリチウム源及びバナジウム源の各含有量から明らかなように、[Li]/[V]を9に調整した。また、リチウム源の含有量と蒸留水の量から明らかなように、混合液におけるLiの濃度を0.7mol/Lを調整した。上記の原料の各仕込み量は、LiVOPO(分子量:168.85)に換算すると、化学量論的に約2.63g(0.0156mol)のLiVOPOの収量に相当する。 As is clear from the contents of the phosphoric acid source and the vanadium source, in Comparative Example 1, [P] / [V] was adjusted to 3. Moreover, [Li] / [V] was adjusted to 9 so that it might become clear from each content of said lithium source and vanadium source. Further, as apparent from the content of the lithium source and the amount of distilled water, the concentration of Li + in the mixed solution was adjusted to 0.7 mol / L. Each amount of the raw materials is equivalent to a yield of about 2.63 g (0.0156 mol) of LiVOPO 4 in terms of stoichiometry when converted to LiVOPO 4 (molecular weight: 168.85).

0.5Lオートクレーブのガラス容器内にHPO及び蒸留水を入れ、これらをマグネチックスターラーで攪拌した。そして、ガラス容器内にVを加えて、懸濁液を得た。さらに、ガラス容器内を激しく攪拌しながらヒドラジン1水和物を懸濁液に滴下した。この時点で、懸濁液の液相は黄橙色から緑色に変化した。ヒドラジン1水和物の滴下に引き続いてLiOH・HOを10分程度かけて懸濁液に加えて、比較例1の混合液を得た。LiOH・HOを加えた直後の混合液のpHは7.5であり、その色は濃緑色であった。 H 3 PO 4 and distilled water were placed in a 0.5 L autoclave glass container, and these were stirred with a magnetic stirrer. Then, the addition of V 2 O 5 in the glass container, to obtain a suspension. Furthermore, hydrazine monohydrate was dropped into the suspension while vigorously stirring the inside of the glass container. At this point, the liquid phase of the suspension changed from yellow-orange to green. Following the dropwise addition of hydrazine monohydrate, LiOH.H 2 O was added to the suspension over about 10 minutes to obtain a mixed solution of Comparative Example 1. The pH of the mixture immediately after adding LiOH.H 2 O was 7.5, and the color was dark green.

ガラス容器を密閉し、所定の設定で混合液の攪拌を開始すると共に、所定のPID制御で混合液の加熱を開始した。密閉されたガラス容器内の内圧を加熱に伴い上昇させた。このようにして、比較例1の冷水熱合成工程では、ガラス容器内の混合液を、48時間にわたって加圧下で加熱して、ガラス容器内の温度を250℃に保持した。ガラス容器内の圧力は、3.8MPaに保持した。   The glass container was sealed, and stirring of the mixed liquid was started at a predetermined setting, and heating of the mixed liquid was started with predetermined PID control. The internal pressure in the sealed glass container was increased with heating. In this way, in the cold hydrothermal synthesis process of Comparative Example 1, the liquid mixture in the glass container was heated under pressure for 48 hours to keep the temperature in the glass container at 250 ° C. The pressure in the glass container was kept at 3.8 MPa.

加熱を停止した後、ガラス容器の空冷を開始した。そして、ガラス容器内の温度が25℃まで下がってから混合液を取り出した。なお、加熱を停止してからガラス容器内の温度が25℃に下がるまで約2時間を要した。ガラス容器内から取り出た混合液は、濃紺色の溶液であった。混合液のpHは8であった。混合液に100mlの蒸留水を3回追加した後、混合液をバットに広げた。そして、混合液を100℃で24時間乾燥させて、濃紺色の固体7.48gを得た。   After stopping the heating, air cooling of the glass container was started. And after the temperature in a glass container fell to 25 degreeC, the liquid mixture was taken out. In addition, it took about 2 hours until the temperature in a glass container fell to 25 degreeC after stopping a heating. The mixed solution taken out from the glass container was a dark blue solution. The pH of the mixed solution was 8. After adding 100 ml of distilled water three times to the mixture, the mixture was spread on a vat. The mixture was dried at 100 ° C. for 24 hours to obtain 7.48 g of a dark blue solid.

濃紺色の固体に対して、実施例3と同様の方法で、熱処理工程を施すことにより、比較例1の活物質を得た。   By applying a heat treatment step to the dark blue solid in the same manner as in Example 3, an active material of Comparative Example 1 was obtained.

(比較例2〜8)
比較例2〜8では、[Li]/[V]、[P]/[V]をそれぞれ表1に示す値に調整した。比較例2〜8の水熱合成工程では、オートクレーブを用いて加熱する直前の混合液のpHが表1に示す値であった。比較例2〜8の水熱合成工程では、混合液が密閉されたガラス容器内の温度を表1に示す値に保持した。比較例2〜8の熱処理工程では、表1に示す雰囲気中でアルミナ坩堝内の固体を加熱した。比較例6では、還元剤を用いずに活物質を得た。
(Comparative Examples 2 to 8)
In Comparative Examples 2 to 8, [Li] / [V] and [P] / [V] were adjusted to the values shown in Table 1, respectively. In the hydrothermal synthesis steps of Comparative Examples 2 to 8, the pH of the mixed solution immediately before heating using the autoclave was the value shown in Table 1. In the hydrothermal synthesis steps of Comparative Examples 2 to 8, the temperature in the glass container in which the mixed solution was sealed was maintained at the value shown in Table 1. In the heat treatment steps of Comparative Examples 2 to 8, the solid in the alumina crucible was heated in the atmosphere shown in Table 1. In Comparative Example 6, an active material was obtained without using a reducing agent.

以上の事項以外は、比較例1と同様の方法で、比較例2〜8の各活物質を得た。   Except for the above, the active materials of Comparative Examples 2 to 8 were obtained in the same manner as in Comparative Example 1.

[結晶構造の測定]
粉末X線回折(XRD)に基づくリートベルト解析の結果から、実施例1〜21及び比較例1〜8の各活物質は、LiVOPOのβ型結晶相を含むことが確認された。
[Measurement of crystal structure]
From the results of Rietveld analysis based on powder X-ray diffraction (XRD), it was confirmed that each of the active materials of Examples 1 to 21 and Comparative Examples 1 to 8 contained a β-type crystal phase of LiVOPO 4 .

[評価用セルの作製]
実施例1の活物質と、バインダーであるポリフッ化ビニリデン(PVDF)とアセチレンブラックを混合したものを、溶媒であるN−メチル−2−ピロリドン(NMP)中に分散させてスラリーを調製した。なお、スラリーにおいて活物質とアセチレンブラックとPVDFとの重量比が84:8:8となるように、スラリーを調製した。このスラリーを集電体であるアルミニウム箔上に塗布し、乾燥させた後、圧延を行い、実施例1の活物質を含む活物質層が形成された電極(正極)を得た。
[Production of evaluation cell]
A mixture of the active material of Example 1, polyvinylidene fluoride (PVDF) as a binder, and acetylene black was dispersed in N-methyl-2-pyrrolidone (NMP) as a solvent to prepare a slurry. The slurry was prepared so that the weight ratio of the active material, acetylene black, and PVDF was 84: 8: 8 in the slurry. This slurry was applied onto an aluminum foil as a current collector, dried, and then rolled to obtain an electrode (positive electrode) on which an active material layer containing the active material of Example 1 was formed.

次に、得られた電極と、その対極であるLi箔とを、それらの間にポリエチレン微多孔膜からなるセパレータを挟んで積層し、積層体(素体)を得た。この積層体を、アルミラミネーターパックに入れ、このアルミラミネートパックに、電解液として1MのLiPF溶液を注入した後、真空シールし、実施例1の評価用セルを作製した。 Next, the obtained electrode and the Li foil as the counter electrode were laminated with a separator made of a polyethylene microporous film interposed therebetween to obtain a laminate (element body). This laminate was put in an aluminum laminator pack, and 1M LiPF 6 solution was injected as an electrolyte into the aluminum laminate pack, followed by vacuum sealing to produce an evaluation cell of Example 1.

実施例1と同様の方法で、実施例2〜21及び比較例1〜8の活物質をそれぞれ単独で用いた評価用セルを作製した。   In the same manner as in Example 1, evaluation cells were produced using each of the active materials of Examples 2 to 21 and Comparative Examples 1 to 8 alone.

[放電容量の測定]
実施例1の評価用セルを用いて、放電レートを0.01C(25℃で定電流放電を行ったときに100時間で放電終了となる電流値)とした場合の放電容量(単位:mAh/g)を測定した。測定結果を表1に示す。また、実施例1の評価用セルを用いて、放電レートを0.1C(25℃で定電流放電を行ったときに10時間で放電終了となる電流値)とした場合の放電容量(単位:mAh/g)を測定した。測定結果を表1に示す。
[Measurement of discharge capacity]
Using the evaluation cell of Example 1, the discharge capacity (unit: mAh / unit) when the discharge rate is 0.01 C (current value at which discharge is completed in 100 hours when constant current discharge is performed at 25 ° C.) g) was measured. The measurement results are shown in Table 1. In addition, using the evaluation cell of Example 1, the discharge capacity (unit: unit) when the discharge rate is 0.1 C (current value at which discharge is completed in 10 hours when constant current discharge is performed at 25 ° C.). mAh / g) was measured. The measurement results are shown in Table 1.

実施例1と同様の方法で、実施例2〜21、比較例1〜8の各評価用セルの放電容量を測定した。結果を表1に示す。   In the same manner as in Example 1, the discharge capacities of the evaluation cells in Examples 2 to 21 and Comparative Examples 1 to 8 were measured. The results are shown in Table 1.

[レート特性の評価]
実施例1のレート特性(単位:%)を求めた。なお、レート特性とは、0.01Cでの放電容量を100%とした場合の0.1Cでの放電容量の比率である。結果を表1に示す。レート特性は大きいほど好ましい。
[Evaluation of rate characteristics]
The rate characteristics (unit:%) of Example 1 were determined. The rate characteristic is a ratio of the discharge capacity at 0.1 C when the discharge capacity at 0.01 C is 100%. The results are shown in Table 1. Larger rate characteristics are preferable.

実施例1と同様の方法で、実施例2〜21、比較例1〜8の各評価用セルのレート特性を測定した。結果を表1に示す。   In the same manner as in Example 1, the rate characteristics of the evaluation cells of Examples 2 to 21 and Comparative Examples 1 to 8 were measured. The results are shown in Table 1.

Figure 2011048951
Figure 2011048951

表1から明らかなように、実施例1〜21では、リチウム源とリン酸源とバナジウム源と水と還元剤とを含む混合液を加圧下で200〜300℃に加熱する水熱合成工程を備える製造方法により、LiVOPOを得た。また、実施例1〜21では、[P]/[V]を0.9〜1.5に調整した。 As apparent from Table 1, in Examples 1 to 21, a hydrothermal synthesis step of heating a mixed solution containing a lithium source, a phosphate source, a vanadium source, water, and a reducing agent to 200 to 300 ° C. under pressure. LiVOPO 4 was obtained by the manufacturing method provided. Moreover, in Examples 1-21, [P] / [V] was adjusted to 0.9-1.5.

実施例1〜21で得られたLiVOPOを用いた評価用セルの0.01Cでの放電容量は、比較例に比べて大きいことが確認された。また、実施例1〜21の評価用セルの0.1Cでの放電容量は、各比較例の放電容量以上であることが確認された。 It was confirmed that the discharge capacity at 0.01 C of the evaluation cell using LiVOPO 4 obtained in Examples 1 to 21 was larger than that of the comparative example. Moreover, it was confirmed that the discharge capacity at 0.1 C of the evaluation cells of Examples 1 to 21 is equal to or higher than the discharge capacity of each comparative example.

以上のことから、実施例1〜21では、比較例1〜8に比べて、LiVOPOのβ型結晶の収率が高い、と推測される。 From the above, it is estimated that in Examples 1 to 21, the yield of β-type crystals of LiVOPO 4 is higher than in Comparative Examples 1 to 8.

リチウム源としてLiSOを用いた実施例16の評価用セルの放電容量及びレート特性は、LiSO以外のリチウム源を用いた実施例4、13〜15に比べて小さいことが確認された。 Discharge capacity and rate characteristics of the evaluation cell of Example 16 using the Li 2 SO 4 as the lithium source, confirmed that as compared with Examples 4,13~15 using lithium source other than Li 2 SO 4 small It was done.

実施例1と、実施例2、3との対比から、熱処理工程を経た活物質を用いた評価用セルのレート特性は、熱処理工程を行わずに得た活物質を用いた評価用セルに比べて大きいことが確認された。   From the comparison between Example 1 and Examples 2 and 3, the rate characteristics of the evaluation cell using the active material that has undergone the heat treatment step are higher than those of the evaluation cell using the active material obtained without performing the heat treatment step. Was confirmed to be large.

実施例3と、実施例19との対比から、水熱合成工程において、オートクレーブを用いて加熱する直前の混合液のpHを7.5以下とすることにより、評価用セルの放電容量及びレート特性が向上することが確認された。   From the comparison between Example 3 and Example 19, in the hydrothermal synthesis step, the discharge capacity and rate characteristics of the evaluation cell were adjusted by adjusting the pH of the mixed solution immediately before heating using an autoclave to 7.5 or less. Has been confirmed to improve.

Claims (4)

リチウム源とリン酸源とバナジウム源と水と還元剤とを含む混合物を加圧下で200〜300℃に加熱する水熱合成工程を備え、
加熱前の前記混合物に含まれるリン元素のモル数[P]と加熱前の前記混合物に含まれるバナジウム元素のモル数[V]との比[P]/[V]を0.9〜1.5に調整する、
活物質の製造方法。
Comprising a hydrothermal synthesis step of heating a mixture containing a lithium source, a phosphate source, a vanadium source, water and a reducing agent to 200 to 300 ° C. under pressure,
The ratio [P] / [V] of the number of moles of phosphorus element [P] contained in the mixture before heating to the number of moles [V] of vanadium element contained in the mixture before heating is 0.9-1. Adjust to 5,
A method for producing an active material.
加熱前の前記混合物に含まれるリチウム元素のモル数[Li]と前記[V]との比[Li]/[V]を0.9〜1.5に調整する、
請求項1に記載の活物質の製造方法。
Adjusting the ratio [Li] / [V] of the number of moles of lithium element [Li] and [V] contained in the mixture before heating to 0.9 to 1.5;
The manufacturing method of the active material of Claim 1.
前記リチウム源が、LiOH、LiCO、CHCOOLi及びLiPOからなる群より選ばれる少なくとも一種である、
請求項1又は2に記載の活物質の製造方法。
The lithium source is at least one selected from the group consisting of LiOH, Li 2 CO 3 , CH 3 COOLi and Li 3 PO 4 ;
The manufacturing method of the active material of Claim 1 or 2.
前記水熱合成工程後に前記混合物を更に加熱する熱処理工程を備える、
請求項1〜3のいずれか一項に記載の活物質の製造方法。
A heat treatment step of further heating the mixture after the hydrothermal synthesis step;
The manufacturing method of the active material as described in any one of Claims 1-3.
JP2009194575A 2009-08-25 2009-08-25 Method for producing active material Active JP5444942B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009194575A JP5444942B2 (en) 2009-08-25 2009-08-25 Method for producing active material
US12/854,572 US20110052473A1 (en) 2009-08-25 2010-08-11 Method of manufacturing active material
CN2010102632402A CN101997117A (en) 2009-08-25 2010-08-25 Method of manufacturing active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009194575A JP5444942B2 (en) 2009-08-25 2009-08-25 Method for producing active material

Publications (2)

Publication Number Publication Date
JP2011048951A true JP2011048951A (en) 2011-03-10
JP5444942B2 JP5444942B2 (en) 2014-03-19

Family

ID=43835099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009194575A Active JP5444942B2 (en) 2009-08-25 2009-08-25 Method for producing active material

Country Status (1)

Country Link
JP (1) JP5444942B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232288A (en) * 2012-04-27 2013-11-14 Tdk Corp Positive electrode active material, positive electrode including the same, and lithium ion secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007067051A2 (en) * 2005-12-09 2007-06-14 C.A.J. Van Stokkum Vlijmen B.V. Demountable seating and method for erecting a demountable seating
WO2007124401A2 (en) * 2006-04-21 2007-11-01 Valence Technology, Inc. Method for making electrode active material
WO2009032808A1 (en) * 2007-09-06 2009-03-12 Valence Technology, Inc. Method of making active materials for use in secondary electrochemical cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007067051A2 (en) * 2005-12-09 2007-06-14 C.A.J. Van Stokkum Vlijmen B.V. Demountable seating and method for erecting a demountable seating
WO2007124401A2 (en) * 2006-04-21 2007-11-01 Valence Technology, Inc. Method for making electrode active material
WO2009032808A1 (en) * 2007-09-06 2009-03-12 Valence Technology, Inc. Method of making active materials for use in secondary electrochemical cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232288A (en) * 2012-04-27 2013-11-14 Tdk Corp Positive electrode active material, positive electrode including the same, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP5444942B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
EP2394956A1 (en) Method for producing lithium silicate compound
JP5347603B2 (en) Active material manufacturing method, active material, electrode, and lithium ion secondary battery
JP2005530676A (en) Carbon-coated Li-containing powder and method for producing the same
JP5741143B2 (en) Active material, method for producing active material, electrode, lithium ion secondary battery, and method for producing lithium ion secondary battery
JP5381192B2 (en) Method for producing active material for lithium ion secondary battery
US8734539B2 (en) Method of manufacturing active material containing vanadium and method of manufacturing lithium-ion secondary battery containing such active material
JP5810587B2 (en) Active material for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery
JP5515343B2 (en) Active material manufacturing method, active material, electrode, and lithium ion secondary battery
JP5277465B2 (en) LiFePO4 manufacturing method and lithium ion secondary battery
JP5444944B2 (en) Active material and method for producing active material
JP6455124B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2012004046A (en) Manufacturing method of active material, active material and lithium ion secondary battery
US20110052473A1 (en) Method of manufacturing active material
JP5444943B2 (en) Method for producing active material
JP2012004045A (en) Manufacturing method of active material, active material and lithium ion secondary battery
JP5444942B2 (en) Method for producing active material
JP5888046B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
JP6236956B2 (en) Positive electrode active material, positive electrode, lithium ion secondary battery and sodium ion secondary battery
JP5594007B2 (en) Method for producing active material for lithium ion secondary battery and method for producing lithium ion secondary battery
JP5609915B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery using the same
JP5594006B2 (en) Method for producing active material for lithium ion secondary battery and method for producing lithium ion secondary battery
JP2018156930A (en) Positive electrode active material, positive electrode using the same, and lithium ion secondary battery
JP5648732B2 (en) Positive electrode active material and lithium ion secondary battery
JP2018156823A (en) Cathode active material, and cathode and lithium ion secondary battery using the same
JP2017183045A (en) Positive electrode active material and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131106

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20131112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Ref document number: 5444942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150