JP2011047787A - Object detector - Google Patents

Object detector Download PDF

Info

Publication number
JP2011047787A
JP2011047787A JP2009196358A JP2009196358A JP2011047787A JP 2011047787 A JP2011047787 A JP 2011047787A JP 2009196358 A JP2009196358 A JP 2009196358A JP 2009196358 A JP2009196358 A JP 2009196358A JP 2011047787 A JP2011047787 A JP 2011047787A
Authority
JP
Japan
Prior art keywords
contact
curved surface
curvature
detection device
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009196358A
Other languages
Japanese (ja)
Inventor
Keisuke Uchiyama
敬介 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kodenshi Corp
Original Assignee
Kodenshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kodenshi Corp filed Critical Kodenshi Corp
Priority to JP2009196358A priority Critical patent/JP2011047787A/en
Publication of JP2011047787A publication Critical patent/JP2011047787A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detector that is excellent in detection accuracy and resolution and is capable of attaining size reduction, at low cost. <P>SOLUTION: A detector, which detects a thickness of an object or a traveling amount in a constant direction based on a datum face, includes a lever portion 1, one end of which is supported by a rotating shaft 3 and the other end of which has the datum face or a curved surface capable of abutting on an object and which oscillates with the abutment of the object, and a displacement transmission portion 2 which is supported by the rotating shaft 3 and is displaceable with the oscillation of the lever portion 1. The curved surface is machined to abut on the object at a point which substantially meets on one straight line V orthogonal to the datum face during the oscillation with the abutment of the object in an estimated range. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、対象物の厚さ又は一定方向の移動量を検出する装置に関する。   The present invention relates to an apparatus for detecting the thickness of an object or the amount of movement in a certain direction.

印刷機、スキャナ、自動改札機、自動販売機、ATMなどの機械においては、用紙、切符、紙幣などの取り扱い対象物の厚さ又は一定方向の移動量を供給または排出の過程で検出することが要請される。   In machines such as printing presses, scanners, automatic ticket gates, vending machines, ATMs, etc., the thickness or the amount of movement in a certain direction of objects to be handled such as paper, tickets, banknotes, etc. can be detected during the supply or discharge process. Requested.

この種の検出装置として、用紙の供給路に対向して配置された上下のローラとLED及びPSDを備えたもの、並びにLED及びPSDに代えてレバーと、レバーの後端に取り付けられた反射板と、反射板に向かって発光するとともに反射光を受光するフォトセンサとを備えたものが知られている(特許文献1[従来技術]欄)。前者は、図16に示すように常時はバネ103によって上ローラ101が下ローラ102に近づく方向に付勢されており、用紙の通過時にバネ103の復元力に抗して用紙の厚み分だけ上ローラ101が下ローラ102から遠ざかり、上ローラ101の変位量をLEDとPSDとで光学的に検知するものである。後者は、図17に示すようにレバー104が支点に揺動可能に固定されていて、レバー104の先端が上ローラ101の軸に連結されており、常時はバネ103によってレバー104が上ローラ101を下ローラ102に近づける方向に付勢されており、用紙の通過に伴って揺動するレバー104後端の変位量をフォトセンサ105で検知するものである。   This type of detection device includes an upper and lower roller disposed facing a paper supply path, an LED and a PSD, a lever instead of the LED and PSD, and a reflector attached to the rear end of the lever. And a photosensor that emits light toward the reflector and receives the reflected light is known (Patent Document 1 [Prior Art] column). As shown in FIG. 16, the former is normally urged by the spring 103 in the direction in which the upper roller 101 approaches the lower roller 102, and is moved upward by the thickness of the paper against the restoring force of the spring 103 when the paper passes. The roller 101 moves away from the lower roller 102, and the displacement amount of the upper roller 101 is optically detected by the LED and PSD. In the latter case, as shown in FIG. 17, the lever 104 is swingably fixed to a fulcrum, and the tip of the lever 104 is connected to the shaft of the upper roller 101. Is urged in a direction to approach the lower roller 102, and the photo sensor 105 detects the amount of displacement of the rear end of the lever 104 that swings as the paper passes.

また、これを改良し、図18に示すようにレバー104後端を複数の枝106に分岐させたり、レバー後端を扇形にして放射状のスリットを設けたりして、フォトインタラプタの光が通過する枝やスリットの数をもって検知するようにしたものも知られている(特許文献1[実施形態])。図17の装置にしても図18の装置にしても対象物の微小な変化を検出するためには、支点からレバー後端までの長さbと支点からレバー先端までの長さaの比b/aを大きくする必要がある。この比を大きくするにはbを大きくするかaを小さくするかのいずれかであり、装置の小型化を達成するためにはaを小さくすることが望まれる。   Further, by improving this, as shown in FIG. 18, the rear end of the lever 104 is branched into a plurality of branches 106, or the rear end of the lever is fan-shaped to provide a radial slit so that the light of the photo interrupter passes. A device that detects the number of branches and slits is also known (Patent Document 1 [Embodiment]). In order to detect a minute change in the object in either the apparatus of FIG. 17 or the apparatus of FIG. 18, the ratio b of the length b from the fulcrum to the rear end of the lever and the length a from the fulcrum to the lever tip is b. It is necessary to increase / a. In order to increase this ratio, either b is increased or a is decreased. In order to achieve a reduction in the size of the apparatus, it is desired to decrease a.

特開2003−294401JP2003-294401A

しかし、図16の装置は、PSD自体が高価であるうえに、上ローラに反りが生じないように高い精度で加工する必要があることから、製造コストが著しく高い。一方、図17の装置や図18の装置は、装置の小型化を達成しようとaを小さくすると、レバー先端における変位量の円周方向成分が本来検出したい鉛直方向成分に対して大きくなってしまい、これが比b/aを大きくして検出精度を上げることの妨げとなっている。
それ故、この発明の課題は、検出精度に優れて小型化可能な検出装置を低コストで提供することにある。
However, since the PSD of FIG. 16 is expensive and the upper roller needs to be processed with high accuracy so as not to warp, the manufacturing cost is extremely high. On the other hand, in the apparatus shown in FIG. 17 and the apparatus shown in FIG. 18, if a is made small in order to achieve miniaturization of the apparatus, the circumferential component of the displacement amount at the lever tip becomes larger than the vertical component originally desired to be detected. This hinders an increase in the detection accuracy by increasing the ratio b / a.
Therefore, an object of the present invention is to provide a detection device that is excellent in detection accuracy and can be miniaturized at low cost.

上記課題を解決するために、この発明の検出装置は、
基準面に基づいて対象物の厚さ又は一定方向の移動量を検出する装置であって、
一端が回転軸Cに支持され、基準面又は対象物と当接可能な曲面を他端に有し、対象物の当接に伴って揺動するレバー部と、
前記回転軸Cに支持され、レバー部の揺動に応じて変位可能な変位量伝達部とを備えるものにおいて、
前記曲面が、想定範囲の対象物の当接に伴って揺動する間は基準面と直交する一つの直線V上にほぼ一致する点で対象物と当接するように加工されていることを特徴とする。
In order to solve the above-described problem, the detection device of the present invention provides:
An apparatus for detecting the thickness of an object or the amount of movement in a certain direction based on a reference plane,
A lever portion having one end supported by the rotation axis C and having a curved surface capable of coming into contact with a reference surface or an object at the other end, and swinging with the contact of the object;
In what is provided with the displacement amount transmission part supported by the rotating shaft C and displaceable according to the swing of the lever part,
The curved surface is processed so as to abut on the object at a point that substantially coincides with one straight line V orthogonal to the reference surface while the curved surface swings with the abutment of the object within the assumed range. And

図1は、この発明の検出装置の作用を示す図である。用紙が存在せずレバー部1の最高位が基準面と接しているとき(図中、実線の位置)から、供給されてくる用紙に押されてレバー部1の最高位がΔt低下したとする(図中、破線の位置)。レバー部1の最高位から回転軸3の中心までの長さをL、そのときのレバー部1の水平に対する角度をそれぞれθ、回転軸3の中心から変位量伝達部であるスケール部2の光軸中心までの長さをJ、レバー部1の変位に伴うスケール部2の微小変位量をΔdとする。レバー部1の最高位が常に基準面と直交する一つの垂線V上に存在するように設計することにより、相似の関係から、L:Δt/cosθ=J:Δdとなり、Δt=Δd(1/J)Lcosθが導かれる。レバー部1の最高位から回転軸3の中心までの長さ及びレバー部1の水平に対する角度は、いずれも変数であるが、レバー部1の最高位の低下に伴うLの減少とともにcosθが増加するから、互いに相殺しあう。従って、(1/J)Lcosθはほぼ一定値を保つ。その結果、ΔtとΔdが比例する。   FIG. 1 is a diagram showing the operation of the detection device of the present invention. Assume that the highest position of the lever portion 1 is lowered by Δt by being pushed by the supplied paper from the time when there is no paper and the highest position of the lever portion 1 is in contact with the reference surface (the position of the solid line in the figure). (Position of broken line in the figure). The length from the highest position of the lever part 1 to the center of the rotating shaft 3 is L, the angle of the lever part 1 with respect to the horizontal at that time is θ, and the light of the scale part 2 that is the displacement amount transmitting part from the center of the rotating shaft 3 The length to the center of the axis is J, and the minute displacement amount of the scale portion 2 accompanying the displacement of the lever portion 1 is Δd. By designing so that the highest position of the lever portion 1 always exists on one perpendicular line V orthogonal to the reference plane, L: Δt / cos θ = J: Δd and Δt = Δd (1 / J) Lcos θ is derived. The length from the highest position of the lever portion 1 to the center of the rotary shaft 3 and the angle of the lever portion 1 with respect to the horizontal are both variables, but cos θ increases with a decrease in L as the highest position of the lever portion 1 decreases. So they cancel each other out. Therefore, (1 / J) L cos θ maintains a substantially constant value. As a result, Δt and Δd are proportional.

前記曲面が、想定範囲の対象物の当接に伴って揺動する間は基準面と直交する一つの直線V上にほぼ一致する点で対象物と当接するように加工されている一つの基本的な構成は、次の通りである。即ち、図2に示すように前記レバー部が基準面と当接する接点をP、想定検出限界とする最大厚さもしくは最大移動量の特定対象物と当接する接点をQ、接点Pと当接する基準面上の点をS、接点P及びQにおける前記曲面の曲率半径をそれぞれRp及びRqとするとき、基準面と当接しているときの接点P及び前記特定対象物と当接しているときの接点Qにおける前記曲面の曲率中心Op及びOqが、前記直線V上に位置し、且つRpがRqよりも小さくならないように前記曲面が加工されたものである。   One basic machined so that the curved surface abuts on the object at a point that substantially coincides with one straight line V orthogonal to the reference surface while the curved surface swings as the object abuts within the assumed range. A typical configuration is as follows. That is, as shown in FIG. 2, the contact point where the lever part contacts the reference surface is P, the contact point that contacts the specific object having the maximum thickness or the maximum movement amount as the assumed detection limit, and the reference point where the contact point contacts the contact point P. When the point on the surface is S, and the curvature radii of the curved surface at the contacts P and Q are Rp and Rq, respectively, the contact P when contacting the reference surface and the contact when contacting the specific object The curved surface is processed so that the curvature centers Op and Oq of the curved surface at Q are located on the straight line V and Rp is not smaller than Rq.

このように接点によって曲率半径の異なる複数の円弧からなる曲面とすることにより、ほぼ直線V上でレバー部が常に最高点に位置するようになる。そして、接点PQ間の前記曲面については、例えば接点P及びQにおけるRqとRpの半径の各円弧を直接つないでも良いし、RqとRpの中間の半径の円弧でつないでも良い。あるいはRq以上Rp以下で接点Qに近づくほど曲率半径が小さくなる複数の微小円弧からなり、それらの微小円弧が前記直線V上の定位置もしくは接点Qに近づくほど基準面から遠ざかる前記直線V上の位置に曲率中心を有するようにしてもよい。尚、曲率中心Op及びOqの位置は一致していてもしなくても良い。   In this way, by forming a curved surface composed of a plurality of arcs having different curvature radii depending on the contact point, the lever portion is always positioned at the highest point on the substantially straight line V. For the curved surface between the contacts PQ, for example, the arcs of radius Rq and Rp at the contacts P and Q may be directly connected, or may be connected by an arc having a radius between Rq and Rp. Alternatively, it is composed of a plurality of minute arcs whose radius of curvature decreases as it approaches the contact point Q between Rq and Rp, and on the straight line V that moves away from the reference plane as these fine arcs approach a fixed position on the straight line V or the contact point Q. You may make it have a curvature center in a position. The positions of the curvature centers Op and Oq may or may not coincide.

前記曲面が、想定範囲の対象物の当接に伴って揺動する間は基準面と直交する一つの直線V上にほぼ一致する点で対象物と当接するように加工されているもう一つの基本的な構成は、図3に示すように前記特定対象物の最大厚さもしくは最大移動量をw、接点Pが基準面と当接しているときのレバー部と基準面とのなす角度をθ、回転軸Cの中心から接点Pまでの長さをLとするとき、前記曲面を、前記直線V上に曲率中心を有し、Rm=Lsinθ−nw(n=0.3±0.1)を充足する曲率半径を有する単一の円弧で構成したものである。種々の条件でシミュレーションしたところ、上記式を充足する範囲でΔtとΔdとが最も比例に近い関係を有するからである。   While the curved surface oscillates with the contact of the object within the assumed range, the curved surface is processed so as to contact the object at a point that substantially coincides with one straight line V orthogonal to the reference surface. As shown in FIG. 3, the basic configuration is that the maximum thickness or the maximum movement amount of the specific object is w, and the angle formed between the lever portion and the reference surface when the contact P is in contact with the reference surface is θ. When the length from the center of the rotation axis C to the contact point P is L, the curved surface has a center of curvature on the straight line V, and Rm = Lsin θ−nw (n = 0.3 ± 0.1) Is composed of a single arc having a radius of curvature that satisfies This is because, when simulation is performed under various conditions, Δt and Δd have the most proportional relationship within a range that satisfies the above formula.

以上のように、この発明の検出装置によれば、レバー部の長さに関わらずΔtとΔdが比例することから、レバー部の長さを短くして検出精度向上と小型化を同時に達成することができる。   As described above, according to the detection device of the present invention, Δt and Δd are proportional regardless of the length of the lever portion. Therefore, the detection accuracy can be improved and the size can be reduced simultaneously by shortening the length of the lever portion. be able to.

この発明の検出装置の作用を示す図である。It is a figure which shows the effect | action of the detection apparatus of this invention. この発明の検出装置の一つの基本的構成を示す図である。It is a figure which shows one basic composition of the detection apparatus of this invention. この発明の検出装置のもう一つの基本的構成を示す図である。It is a figure which shows another basic structure of the detection apparatus of this invention. 実施形態1の検出装置を示す断面図である。It is sectional drawing which shows the detection apparatus of Embodiment 1. 同検出装置に適用されているスケール一体型レバーを示す正面図である。It is a front view which shows the scale integrated lever applied to the detection apparatus. 図5のXX断面図である。It is XX sectional drawing of FIG. (a)は実施形態1の検出装置に用いられるレバー部の設計方法を示す図、(b)はその拡大図である。(A) is a figure which shows the design method of the lever part used for the detection apparatus of Embodiment 1, (b) is the enlarged view. 実施形態2の検出装置に用いられるレバー部の設計方法を示す図である。It is a figure which shows the design method of the lever part used for the detection apparatus of Embodiment 2. 実施形態3の検出装置に用いられるレバー部の設計方法を示す図である。It is a figure which shows the design method of the lever part used for the detection apparatus of Embodiment 3. 種々の曲率半径についての実施形態4における接点PQ間の曲面の軌道を示す図である。It is a figure which shows the track | orbit of the curved surface between the contact points PQ in Embodiment 4 about various curvature radii. 曲率半径をパラメータとしてスケール部の微小変位Δdに対するレバー部の微小変位Δtの値をシミュレーションした結果を示すグラフである。It is a graph which shows the result of having simulated the value of the minute displacement (DELTA) t of the lever part with respect to the minute displacement (DELTA) d of a scale part by making a curvature radius into a parameter. θをパラメータとしてスケール部の微小変位Δdに対するレバー部の微小変位Δtの値をシミュレーションした結果を示すグラフである。It is a graph which shows the result of having simulated the value of the minute displacement (DELTA) t of the lever part with respect to the minute displacement (DELTA) d of a scale part using (theta) as a parameter. θをパラメータとしてスケール部の微小変位Δdに対するレバー部の微小変位Δtの値をシミュレーションした結果を示すもう一つのグラフである。It is another graph which shows the result of having simulated the value of the minute displacement (DELTA) t of the lever part with respect to the minute displacement (DELTA) d of a scale part using (theta) as a parameter. 実施形態5の検出装置を示す正面図である。FIG. 10 is a front view illustrating a detection device according to a fifth embodiment. 実施形態6の検出装置を示す正面図である。It is a front view which shows the detection apparatus of Embodiment 6. 従来の検出装置を示す断面図である。It is sectional drawing which shows the conventional detection apparatus. 従来のもう一つの検出装置を示す断面図である。It is sectional drawing which shows another conventional detection apparatus. 従来の更にもう一つ検出装置を示す断面図である。It is sectional drawing which shows another conventional detection apparatus.

−実施形態1−
以下、この発明を実施形態に基づいて具体的に説明する。図4は第一の実施形態の検出装置の回転軸に平行な鉛直方向断面図、図5は同検出装置に適用されているスケール一体型レバーを示す正面図である。
Embodiment 1
Hereinafter, the present invention will be specifically described based on embodiments. FIG. 4 is a vertical sectional view parallel to the rotation axis of the detection device of the first embodiment, and FIG. 5 is a front view showing a scale-integrated lever applied to the detection device.

検出装置11は、用紙の厚みを検出する装置であって、ホルダー12、受光素子13、コリメートレンズ14、発光素子15及びスケール一体型レバー10を備える。
スケール一体型レバー10は、全体が光透過性樹脂からなり、図5に示すようにレバー部16、スケール部17、回転軸18及びストッパー19が回転軸18部分を除いて厚さ1.3mm程度の板状に一体成形されたものである。スケール一体型レバー10の輪郭は、正面視で互いに直交する二辺a、b、これらの二辺のうち一辺aと平行で辺aよりも短い辺c、及び辺aと辺cとを結ぶ斜めの辺dとからなる略台形をなす。そして、辺aと辺dとが交差する角にほぼ辺dに沿って延びるようにレバー部16が形成され、辺bと辺cとが交差する角に辺cに沿って延びるようにストッパー19が形成されている。レバー部16の周面は、先端に向かうほどに辺dの延長線から離れて辺bに近づくように滑らかに曲がっており、検出対象となる用紙との接点を形成している。この曲面の形状については後述する。
The detection device 11 is a device that detects the thickness of the paper, and includes a holder 12, a light receiving element 13, a collimating lens 14, a light emitting element 15, and a scale-integrated lever 10.
The scale-integrated lever 10 is entirely made of a light-transmitting resin. As shown in FIG. 5, the lever portion 16, the scale portion 17, the rotating shaft 18 and the stopper 19 are about 1.3 mm thick except for the rotating shaft 18 portion. It is integrally formed into a plate shape. The outline of the scale-integrated lever 10 includes two sides a and b that are orthogonal to each other when viewed from the front, a side c that is parallel to one side a and shorter than the side a, and an angle that connects side a and side c. It forms a substantially trapezoid consisting of the side d. The lever portion 16 is formed so as to extend substantially along the side d at the corner where the side a and the side d intersect, and the stopper 19 so as to extend along the side c at the corner where the side b and the side c intersect. Is formed. The peripheral surface of the lever portion 16 is smoothly bent so as to move away from the extension line of the side d and approach the side b as it goes toward the tip, and forms a contact point with the paper to be detected. The shape of this curved surface will be described later.

回転軸18は、辺dの中間部に前記板状部分の両面に直交するように突出した円柱状をなしている。従って、レバー部16とストッパー19とは回転軸18を間にして互いにほぼ対角位置にある。また、辺aと辺bとが交差する角の付近には、回転軸18を中心とする周方向に等間隔に交互に配列した多数の遮光領域と透光領域とからなるスケール部17が形成されている。スケール部17を設ける手段としては、図6に図5のXX断面図として示すように、前記板状部分の一方の主面に形成された透光領域17aとしての水平の滑面と遮光領域17bとしての非水平の滑面とからなるプリズム(図6(a)及び(b))でもよいし、透光領域17aとしての水平の滑面の隣に遮光材料を印刷するか粗面処理をするかして遮光領域17b(図6(c))としてもよい。   The rotating shaft 18 has a columnar shape protruding at an intermediate portion of the side d so as to be orthogonal to both surfaces of the plate-like portion. Accordingly, the lever portion 16 and the stopper 19 are substantially diagonal to each other with the rotation shaft 18 therebetween. Further, in the vicinity of the corner where side a and side b intersect, a scale portion 17 formed of a large number of light-shielding regions and light-transmitting regions arranged alternately at equal intervals in the circumferential direction around the rotation axis 18 is formed. Has been. As a means for providing the scale portion 17, as shown in FIG. 6 as an XX sectional view of FIG. 5, a horizontal smooth surface and a light shielding region 17b as a light transmitting region 17a formed on one main surface of the plate-like portion. A prism composed of a non-horizontal smooth surface (FIGS. 6A and 6B) may be used, or a light shielding material is printed or roughened next to the horizontal smooth surface as the light-transmitting region 17a. However, the light shielding region 17b (FIG. 6C) may be used.

回転軸18は、ホルダー12の上端にある軸受け部にレバー部16が上でスケール部17が下になるように支持されている。回転軸18の外周面にはレバー部16が上に付勢される方向に復元力が働くコイルバネ5が取り付けられている。そして、その復元力はストッパー19がホルダー12と係り合うことにより抑制されて、レバー部16の前記接点と回転軸18とを結ぶ線が水平に対してほぼ30度の傾きとなるように保たれている。スケール部17の両端の透光領域17aまたは遮光領域17bは、この線から100〜150度回転した位置にある。   The rotary shaft 18 is supported by a bearing portion at the upper end of the holder 12 so that the lever portion 16 is on the upper side and the scale portion 17 is on the lower side. A coil spring 5 is attached to the outer peripheral surface of the rotary shaft 18 to exert a restoring force in a direction in which the lever portion 16 is urged upward. The restoring force is suppressed by engaging the stopper 19 with the holder 12, and the line connecting the contact point of the lever portion 16 and the rotary shaft 18 is kept at an inclination of approximately 30 degrees with respect to the horizontal. ing. The translucent area 17a or the light-shielding area 17b at both ends of the scale portion 17 is at a position rotated by 100 to 150 degrees from this line.

レバー部16における用紙との接点を構成する前記曲面は、次の通りに加工されている。即ち、図7(a)に示すように前記レバー部が基準面と当接する接点をP、想定検出限界とする最大厚さもしくは最大移動量の特定対象物Kと当接する接点をQ、接点Pと当接する基準面上の点をS、前記特定対象物Kの最大厚さもしくは最大移動量をw、接点P及びQにおける前記曲面の曲率半径をそれぞれRp及びRqとする。このとき、接点P及びQ近辺においては、基準面と当接しているときの接点P及び前記特定対象物と当接しているときの接点Qにおける前記曲面の曲率中心Op及びOqが、いずれも前記直線V上に位置し、且つRp=Rq+0.5wとなるように加工されている。   The curved surface constituting the contact point with the paper in the lever portion 16 is processed as follows. That is, as shown in FIG. 7A, the contact point at which the lever portion contacts the reference surface is P, the contact point that contacts the specific object K having the maximum thickness or the maximum movement amount as the assumed detection limit is Q, and the contact point P Let S be the point on the reference surface that makes contact with S, W be the maximum thickness or maximum movement amount of the specific object K, and Rp and Rq be the radius of curvature of the curved surface at the contacts P and Q, respectively. At this time, in the vicinity of the contacts P and Q, the curvature centers Op and Oq of the curved surface at the contact P when contacting the reference surface and the contact Q when contacting the specific object are both described above. It is located on the straight line V and processed so that Rp = Rq + 0.5w.

そして、接点PQ間の前記曲面については、例えばRqとRpの中間の半径の円弧でつないでも良いし、あるいは図7(b)に図7(a)の拡大図として示すようにRq以上Rp以下で接点Qに近づくほど曲率半径が小さくなる複数(図示は3つ)の微小円弧からなり、それらの微小円弧が前記直線V上の定位置もしくは接点Qに近づくほど基準面から遠ざかる前記直線V上の位置Oa、Ob、Oc・・・に曲率中心を有するようにしてもよい。このように接点によって曲率半径の異なる複数の円弧からなる曲面とすることにより、ほぼ直線V上でレバー部が常に最高点に位置するようになる。その結果、対象物の厚さ又は移動量Δtとスケール部17の変位量Δdとが比例することとなり、検出精度に優れる。この比例関係は、レバー部16の長さにあまり依存しないうえ、レバー部16とスケール部17とが回転軸18を中心として180°でない角度をなしているので、スケール一体型レバー10を小型化し、装置全体の小型化を達成することができる。   The curved surface between the contact points PQ may be connected by, for example, an arc having a radius between Rq and Rp, or may be Rq or more and Rp or less as shown in FIG. 7 (b) as an enlarged view of FIG. 7 (a). On the straight line V, the radius of curvature decreases as the distance from the contact point Q decreases (three in the figure), and the fine arcs move away from the reference plane as they approach the fixed position on the straight line V or the contact point Q. The positions Oa, Ob, Oc... May have a center of curvature. In this way, by forming a curved surface composed of a plurality of arcs having different curvature radii depending on the contact point, the lever portion is always positioned at the highest point on the substantially straight line V. As a result, the thickness or movement amount Δt of the object is proportional to the displacement amount Δd of the scale portion 17, and the detection accuracy is excellent. This proportional relationship does not depend much on the length of the lever portion 16, and the lever portion 16 and the scale portion 17 form an angle other than 180 ° with the rotation shaft 18 as the center. Thus, the overall size of the apparatus can be reduced.

−実施形態2−
実施形態1における接点PQ間の前記曲面を、前記直線V上に曲率中心Op(=Oq)を有し、接点Pを通る半径Rpの円弧と、接点Qを通る半径Rq(=Rp−0.5w)の円弧とからなる二つの円弧で形成すること以外は、実施形態1と同一構成としてレバー部16を設計し、その動作をシミュレーションした。図8は、接点PQ間の曲面の設計方法及び軌道を示す図である。尚、接点PQ間の両側部分については、接点Qから離れる方向に接点Pより延びる曲率半径Rpの微小円弧と、接点Pから離れる方向に接点Qより延びる曲率半径Rqの微小円弧とでそれぞれ形成されている。
Embodiment 2
The curved surface between the contact points PQ in the first embodiment has a curvature center Op (= Oq) on the straight line V, a circular arc of radius Rp passing through the contact point P, and a radius Rq passing through the contact point Q (= Rp-0. The lever portion 16 was designed as the same configuration as in the first embodiment except that it was formed by two arcs composed of 5w) arcs, and the operation thereof was simulated. FIG. 8 is a diagram showing a curved surface design method and trajectory between the contacts PQ. Incidentally, both side portions between the contacts PQ are formed by a micro arc having a radius of curvature Rp extending from the contact P in a direction away from the contact Q and a micro arc having a radius of curvature Rq extending from the contact Q in a direction away from the contact P, respectively. ing.

図8に示されるように、対象物が存在せずレバー部16が上昇しているときは接点Pが直線V上で最高位となり、他方厚さwの対象物が存在してレバー部16が下降しているときは接点Qが直線V上で最高位となっている。その結果、実施形態1におけると同様にΔtとΔdとが比例することとなり、検出精度に優れ、且つ装置全体の小型化を達成することができる。また、接点PQ間の両側部分も接点PQ間に連なる所定の微小円弧で形成されているから、回転軸18の取り付け位置が少々誤差を生じていたり、対象物の厚さがwを少し超えていたりしても、ΔtとΔdとの比例関係は成立する。   As shown in FIG. 8, when the object is not present and the lever portion 16 is raised, the contact P is the highest on the straight line V, while the object having the thickness w is present and the lever portion 16 is When descending, the contact Q is at the highest position on the straight line V. As a result, Δt and Δd are proportional to each other as in the first embodiment, so that the detection accuracy is excellent and the size of the entire apparatus can be reduced. Further, since both side portions between the contact points PQ are formed by a predetermined minute arc connected between the contact points PQ, the mounting position of the rotating shaft 18 is slightly different, or the thickness of the object is slightly over w. Even in such a case, the proportional relationship between Δt and Δd is established.

−実施形態3−
実施形態1における接点PQ間の前記曲面を、前記直線V上に曲率中心Op(=Oq=Od=Oe)を有し、接点Pを通る半径Rpの円弧と、接点Qを通る半径Rq(=Rp−0.75w)の円弧と、これら二つの円弧をつなぐ半径Rd(=Rp−0.25w)の円弧及び半径Re(=Rp−0.50w)の円弧の合計四つの円弧で形成すること以外は、実施形態1と同一構成としてレバー部16を設計し、その動作をシミュレーションした。図9は、接点PQ間の曲面の設計方法及び軌道を示す図である。レバー部16の角度に関わらず、レバー部16の最高点の位置がますます直線Vに近くなり、実施形態2よりも検出精度が更に優れる。
尚、これとは逆に設計を簡易にするために、検出精度は実施形態2よりも若干劣るが、接点PQ間の前記曲面をRm=Rp−nW(n=0.3±0.1)を充足する半径Rmの単一の円弧で形成しても良い。
Embodiment 3
In the first embodiment, the curved surface between the contact points PQ has a curvature center Op (= Oq = Od = Oe) on the straight line V, a circular arc of radius Rp passing through the contact point P, and a radius Rq passing through the contact point Q (= Rp-0.75w), a radius Rd (= Rp-0.25w) connecting the two arcs, and a circle having a radius Re (= Rp-0.50w), a total of four arcs. Except for the above, the lever portion 16 was designed as the same configuration as in the first embodiment, and the operation was simulated. FIG. 9 is a diagram showing a curved surface design method and track between the contact points PQ. Regardless of the angle of the lever portion 16, the position of the highest point of the lever portion 16 becomes closer to the straight line V, and the detection accuracy is further superior to that of the second embodiment.
On the contrary, in order to simplify the design, the detection accuracy is slightly inferior to that of the second embodiment, but the curved surface between the contacts PQ is represented by Rm = Rp-nW (n = 0.3 ± 0.1). May be formed by a single arc of radius Rm that satisfies

−実施形態4−
実施形態1における接点PQ間の前記曲面を、前記直線V上に曲率中心を有し、曲率半径がRm=Lsinθ−nw(n=0.3±0.1)である単一の円弧で形成したこと以外は、実施形態1と同一構成としてレバー部16の動作をシミュレーションした。ここで、wは用紙の最大厚さ、θは接点Pが基準面と当接しているときのレバー部と基準面とのなす角度、Lは回転軸Cの中心から接点Pまでの長さである。比較のためにRmが上記範囲に属さない条件でもシミュレーションした。
Embodiment 4
In the first embodiment, the curved surface between the contact points PQ is formed by a single arc having a center of curvature on the straight line V and a radius of curvature of Rm = Lsin θ−nw (n = 0.3 ± 0.1). Except for this, the operation of the lever portion 16 was simulated as the same configuration as in the first embodiment. Here, w is the maximum thickness of the paper, θ is the angle formed by the lever portion and the reference surface when the contact P is in contact with the reference surface, and L is the length from the center of the rotation axis C to the contact P. is there. For comparison, a simulation was also performed under conditions where Rm did not belong to the above range.

L=8mm、w=2mm、θ=30°であるときの、種々のRmについての前記曲面の軌道を図10、Δdに対するΔtの値をシミュレーションした結果を表1に示す。表2は、Δd=Δtとなる理想値に対するシミュレーション値の誤差の程度を示し、図11はこれをグラフ化したものである。   FIG. 10 shows the trajectory of the curved surface for various Rm when L = 8 mm, w = 2 mm, and θ = 30 °, and Table 1 shows the result of simulating the value of Δt with respect to Δd. Table 2 shows the degree of error of the simulation value with respect to the ideal value where Δd = Δt, and FIG. 11 is a graph of this.

Figure 2011047787
Figure 2011047787

Figure 2011047787
Figure 2011047787

シミュレーションから示されるように、Rm=Lsinθ−0.3wを満たすように設計することで理想値とのずれが最小となり、次いでRm=Lsinθ±0.5wのときが小さく、実際の使用における許容範囲となる。   As shown from the simulation, the deviation from the ideal value is minimized by designing so as to satisfy Rm = Lsinθ−0.3w, and then when Rm = Lsinθ ± 0.5w is small, the allowable range in actual use It becomes.

次に、Rm=Lsinθ−0.3wであるときのθを変化させてシミュレーションしたときの、Δd=Δtとなる理想値に対するシミュレーション値の誤差の程度を表3に示し、これをグラフ化したものを図12に示す。   Next, Table 3 shows the degree of error of the simulation value with respect to the ideal value where Δd = Δt when the simulation is performed by changing θ when Rm = Lsinθ−0.3w. Is shown in FIG.

Figure 2011047787
Figure 2011047787

表3及び図12に示されるように、Rm=Lsinθ−0.3wを充足すればθが異なっていても支障ないことが明らかである。
次に、Rm=Lsinθ−0.3wであってw=4mmに変えてθを変化させてシミュレーションしたときの、Δd=Δtとなる理想値に対するシミュレーション値の誤差の程度を表4に示し、これをグラフ化したものを図13に示す。
As shown in Table 3 and FIG. 12, it is apparent that there is no problem even if θ is different as long as Rm = Lsin θ−0.3w is satisfied.
Next, Table 4 shows the degree of error of the simulation value with respect to an ideal value where Δd = Δt when Rm = Lsin θ−0.3w and simulation is performed by changing θ to w = 4 mm. FIG. 13 shows a graph of the above.

Figure 2011047787
Figure 2011047787

表4及び図13に示されるように、θ=60°でシミュレーション値が理想値から大きくずれており、θ=45°でも無視できないずれが生じている。従って、L≧2wとなるようにLを設計するか又はwを設定するのが好ましい。   As shown in Table 4 and FIG. 13, the simulation value greatly deviates from the ideal value at θ = 60 °, and a non-negligible deviation occurs even at θ = 45 °. Therefore, it is preferable to design L or set w so that L ≧ 2w.

−実施形態5−
第五の実施形態の検出装置では、図14に示すようにレバー部16とスケール部17との角度を180°より大きくすることにより、鉛直方向に移動する対象物の検出も可能とされている。この場合、スケール一体型レバー10を実施形態1又は2のものと交換するだけでよい。
-Embodiment 5
In the detection apparatus according to the fifth embodiment, as shown in FIG. 14, the object moving in the vertical direction can be detected by making the angle between the lever portion 16 and the scale portion 17 larger than 180 °. . In this case, it is only necessary to replace the scale integrated lever 10 with that of the first or second embodiment.

−実施形態6−
第六の実施形態の検出装置は、図15に示すように対象物の移動方向をレバー部16の変位方向とほぼ一致させたもので、対象物の移動速度の検出に好適である。
-Embodiment 6
As shown in FIG. 15, the detection device of the sixth embodiment has the moving direction of the object substantially coincident with the displacement direction of the lever portion 16 and is suitable for detecting the moving speed of the object.

11 検出装置
12 ホルダー
13 受光素子
14 レンズ
15 発光素子
10 スケール一体型レバー
1,16 レバー部
2,17 スケール部
3,18 回転軸
19 ストッパー
5 コイルバネ
DESCRIPTION OF SYMBOLS 11 Detection apparatus 12 Holder 13 Light receiving element 14 Lens 15 Light emitting element 10 Scale integrated lever 1,16 Lever part 2,17 Scale part 3,18 Rotating shaft 19 Stopper 5 Coil spring

Claims (8)

基準面に基づいて対象物の厚さ又は一定方向の移動量を検出する装置であって、
一端が回転軸Cに支持され、基準面又は対象物と当接可能な曲面を他端に有し、対象物の当接に伴って揺動するレバー部と、
前記回転軸Cに支持され、レバー部の揺動に応じて変位可能な変位量伝達部とを備えるものにおいて、
前記曲面が、想定範囲の対象物の当接に伴って揺動する間は基準面と直交する一つの直線V上にほぼ一致する点で対象物と当接するように加工されていることを特徴とする検出装置。
An apparatus for detecting the thickness of an object or the amount of movement in a certain direction based on a reference plane,
A lever portion having one end supported by the rotation axis C and having a curved surface capable of coming into contact with a reference surface or an object at the other end, and swinging with the contact of the object;
In what is provided with the displacement amount transmission part supported by the rotating shaft C and displaceable according to the swing of the lever part,
The curved surface is processed so as to abut on the object at a point that substantially coincides with one straight line V orthogonal to the reference surface while the curved surface swings with the abutment of the object within the assumed range. Detection device.
前記レバー部が基準面と当接する接点をP、想定検出限界とする最大厚さもしくは最大移動量の特定対象物と当接する接点をQ、接点Pと当接する基準面上の点をS、接点P及びQにおける前記曲面の曲率半径をそれぞれRp及びRqとするとき、基準面と当接しているときの接点P及び前記特定対象物と当接しているときの接点Qにおける前記曲面の曲率中心Op及びOqが、前記直線V上に位置し、且つRpがRqよりも小さくならないように前記曲面が加工されている請求項1に記載の検出装置。   The contact point where the lever part contacts the reference surface is P, the contact point which contacts the specific object having the maximum thickness or the maximum movement amount as the assumed detection limit is Q, the point on the reference surface which contacts the contact point P is S, the contact point When the curvature radii of the curved surface at P and Q are Rp and Rq, respectively, the curvature center Op of the curved surface at the contact P when in contact with the reference surface and the contact Q when in contact with the specific object. And Oq are positioned on the straight line V, and the curved surface is processed so that Rp does not become smaller than Rq. 前記曲面が、接点Qから離れる方向に接点Pより延びる曲率半径Rpの微小円弧と、接点Pから離れる方向に接点Qより延びる曲率半径Rqの微小円弧とを含む輪郭を有する請求項2に記載の検出装置。   The curved surface has a contour including a micro arc having a radius of curvature Rp extending from the contact P in a direction away from the contact Q and a micro arc having a radius of curvature Rq extending from the contact Q in a direction away from the contact P. Detection device. 前記特定対象物の最大厚さもしくは最大移動量をwとするとき、Rp=Rq+1/2wである請求項2または3に記載の検出装置。   4. The detection device according to claim 2, wherein Rp = Rq + ½w, where w is a maximum thickness or a maximum movement amount of the specific object. 接点PQ間の前記曲面が、Rq以上Rp以下で接点Qに近づくほど曲率半径が小さくなる複数の微小円弧からなり、それらの微小円弧が前記直線V上の定位置もしくは接点Qに近づくほど基準面から遠ざかる前記直線V上の位置に曲率中心を有する請求項2〜4のいずれかに記載の検出装置。、   The curved surface between the contact points PQ is composed of a plurality of minute arcs having a radius of curvature that is smaller than or equal to Rq and less than or equal to Rp and decreases in radius of curvature, and the reference surface becomes closer to the fixed position on the line V or the contact point Q The detection device according to claim 2, wherein the detection device has a center of curvature at a position on the straight line V away from the center. , 接点PQ間の前記曲面が、Rm=Rp−nW(n=0.3±0.1)を充足する曲率半径Rmを有する単一の円弧からなる請求項5に記載の検出装置。   6. The detection device according to claim 5, wherein the curved surface between the contact points PQ is a single arc having a radius of curvature Rm that satisfies Rm = Rp-nW (n = 0.3 ± 0.1). 前記特定対象物の最大厚さもしくは最大移動量をw、接点Pが基準面と当接しているときのレバー部と基準面とのなす角度をθ、回転軸Cの中心から接点Pまでの長さをLとするとき、前記曲面が、前記直線V上に曲率中心を有し、Rm=Lsinθ−nw(n=0.3±0.1)を充足する曲率半径を有する単一の円弧からなる請求項1に記載の検出装置。   The maximum thickness or the maximum movement amount of the specific object is w, the angle between the lever part and the reference plane when the contact P is in contact with the reference plane is θ, and the length from the center of the rotation axis C to the contact P When the thickness is L, the curved surface has a center of curvature on the straight line V, and has a radius of curvature satisfying Rm = Lsin θ−nw (n = 0.3 ± 0.1). The detection device according to claim 1. 前記変位量伝達部が、周方向に周期的な加工が施されたスケール部である請求項1〜7のいずれかに記載の検出装置。   The detection device according to claim 1, wherein the displacement amount transmitting unit is a scale unit that is periodically processed in a circumferential direction.
JP2009196358A 2009-08-27 2009-08-27 Object detector Pending JP2011047787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009196358A JP2011047787A (en) 2009-08-27 2009-08-27 Object detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009196358A JP2011047787A (en) 2009-08-27 2009-08-27 Object detector

Publications (1)

Publication Number Publication Date
JP2011047787A true JP2011047787A (en) 2011-03-10

Family

ID=43834266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009196358A Pending JP2011047787A (en) 2009-08-27 2009-08-27 Object detector

Country Status (1)

Country Link
JP (1) JP2011047787A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984460A (en) * 1972-12-18 1974-08-14
JPH04198802A (en) * 1990-11-29 1992-07-20 Toshiba Corp Device for detecting thickness of sheet paper or the like
JPH04215001A (en) * 1990-12-10 1992-08-05 Omron Corp Sheet thickness detecting mechanism
JP2003294401A (en) * 2002-03-29 2003-10-15 Canon Inc Displacement detector and image forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984460A (en) * 1972-12-18 1974-08-14
JPH04198802A (en) * 1990-11-29 1992-07-20 Toshiba Corp Device for detecting thickness of sheet paper or the like
JPH04215001A (en) * 1990-12-10 1992-08-05 Omron Corp Sheet thickness detecting mechanism
JP2003294401A (en) * 2002-03-29 2003-10-15 Canon Inc Displacement detector and image forming apparatus

Similar Documents

Publication Publication Date Title
JP4429037B2 (en) Stage device and control method thereof
JP5192717B2 (en) Flat top reflective optical encoder
JP2009176956A (en) Bonding device, and adjusting method of height of bonding stage of bonding device
JP3168922U (en) Optical pen type input device
JP2008055436A (en) Laser beam irradiation device
JP2011047787A (en) Object detector
CN110757011B (en) Perforating device for improving online cigarette laser perforating operation stability
JP5365744B2 (en) Magnetic encoder
JP2010117353A (en) Coriolis type fluid flow sensor system
JP2018189460A (en) Encoder scale and manufacturing method of the same, encoder, robot, and printer
JP2006013362A (en) Exposure device, exposure method, and exposure mask
JP6748428B2 (en) Lithographic apparatus, article manufacturing method, stage apparatus, and measuring apparatus
JP2010039347A (en) Projection exposure apparatus
JP2004212822A (en) Lens barrel
JP2009080463A (en) Combined lens, lens unit, imaging apparatus, and optical equipment
JP5068234B2 (en) Reader
JP2011022019A (en) Object detection device
KR100445128B1 (en) laser scanning apparatus
WO2019074036A1 (en) Marker
JP2009121920A (en) Transparent substrate position measuring apparatus, exposure apparatus provided with the position measuring apparatus, substrate measuring method, and prealignment apparatus
JP6407058B2 (en) Printing apparatus and printing method
JP4340281B2 (en) Manufacturing method of optical module
JP3998644B2 (en) Position detection device
JP3149596U (en) Single-piece fθ lens for microelectromechanical system laser scanner
WO2019053780A1 (en) Optical module and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130903