JP2011047785A5 - - Google Patents

Download PDF

Info

Publication number
JP2011047785A5
JP2011047785A5 JP2009196229A JP2009196229A JP2011047785A5 JP 2011047785 A5 JP2011047785 A5 JP 2011047785A5 JP 2009196229 A JP2009196229 A JP 2009196229A JP 2009196229 A JP2009196229 A JP 2009196229A JP 2011047785 A5 JP2011047785 A5 JP 2011047785A5
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
equation
motion
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009196229A
Other languages
Japanese (ja)
Other versions
JP5478154B2 (en
JP2011047785A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2009196229A priority Critical patent/JP5478154B2/en
Priority claimed from JP2009196229A external-priority patent/JP5478154B2/en
Publication of JP2011047785A publication Critical patent/JP2011047785A/en
Publication of JP2011047785A5 publication Critical patent/JP2011047785A5/ja
Application granted granted Critical
Publication of JP5478154B2 publication Critical patent/JP5478154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (19)

磁性体が配置された空間における任意の点の磁場を情報処理装置を使って解析する磁場解析装置であって、
前記磁性体の形状と、スピン系で表現される前記磁性体の磁化と磁場の関係を有する解析条件と、磁場の運動方程式を記憶する記憶手段と、
前記解析条件から、前記磁性体を構成する粒子の磁場の運動方程式の係数、変数の初期値および定数を演算して、前記磁場の運動方程式の解を演算し、該解に基づき、前記空間における任意の点の磁場を演算する演算手段と、
を有することを特徴とする磁場解析装置。
A magnetic field analysis device for analyzing a magnetic field at an arbitrary point in a space where a magnetic material is arranged using an information processing device,
Storage means for storing the shape of the magnetic material, analysis conditions having a relationship between the magnetization and magnetic field of the magnetic material expressed by a spin system, and a motion equation of the magnetic field;
From the analysis conditions, the coefficient of the motion equation of the magnetic field of the particles constituting the magnetic body, the initial value and the constant of the variable are calculated, the solution of the motion equation of the magnetic field is calculated, and based on the solution, A computing means for computing the magnetic field at an arbitrary point;
A magnetic field analysis apparatus comprising:
前記磁性体の磁化と磁場の関係は、
磁性体モデルのスピン系の平衡状態で表現される磁場とスピンの関係と、
スピン系の平衡状態におけるスピンの総和で表現されるスピンと磁化の関係と、
を有することを特徴とする請求項記載の磁場解析装置。
The relationship between the magnetization and magnetic field of the magnetic material is
The relationship between the magnetic field and spin expressed in the equilibrium state of the spin system of the magnetic model,
The relationship between spin and magnetization expressed as the sum of spins in the equilibrium state of the spin system,
The magnetic field analysis apparatus according to claim 1, further comprising:
前記解析条件は、
磁性体モデルのスピン系のエネルギー式にモンテカルロ法を適用することによりスピン系の平衡状態を求める平衡状態算出手段を有することを特徴とする請求項記載の磁場解析装置。
The analysis conditions are:
3. The magnetic field analysis apparatus according to claim 2 , further comprising an equilibrium state calculation means for obtaining an equilibrium state of the spin system by applying a Monte Carlo method to the energy equation of the spin system of the magnetic material model.
前記平衡状態算出手段は、
前記磁性体のスピン系を設定し、前記スピン系を構成するスピンの一部を無作為に反転させ、反転前後のエネルギーの差分を求める差分算出手段と、
前記差分が0以下の場合、もしくは0より大きく、ボルツマン分布を用いた確率変数が一様乱数よりも大きい場合に反転後のスピン系を選択し、それ以外の場合は反転前のスピン系を選択する選択手段と、
前記差分算出手段、前記選択手段を1モンテカルロステップ繰り返す繰り返し手段と、
を有することを特徴とする請求項記載の磁場解析装置。
The equilibrium state calculating means includes
A difference calculation means for setting a spin system of the magnetic material, randomly inverting a part of the spins constituting the spin system, and obtaining a difference in energy before and after the inversion;
If the difference is less than or equal to 0, or greater than 0 and the random variable using the Boltzmann distribution is greater than a uniform random number, select the spin system after inversion, otherwise select the spin system before inversion Selection means to
The difference calculating means, the selecting means and repeating means for repeating one Monte Carlo step;
The magnetic field analysis apparatus according to claim 3, further comprising:
前記磁性体の磁化と磁場の関係を用いて前記磁性体の磁化を求める磁化算出手段を有することを特徴とする請求項のいずれか一項に記載の磁場解析装置。 Magnetic field analysis apparatus according to any one of claims 2 to 4, characterized in that it has a magnetization calculation means for obtaining the magnetization of the magnetic body with the relationship between the magnetization and the magnetic field of the magnetic body. 前記磁場の運動方程式の変数は、前記磁性体を構成する粒子の磁場ベクトルであることを特徴とする請求項1〜のいずれか一項に記載の磁場解析装置。 Variable equations of motion of the magnetic field, magnetic field analysis apparatus according to any one of claims 1 to 5, characterized in that a magnetic field vector of the particles constituting the magnetic material. 前記磁場の運動方程式の係数は、
前記磁性体を構成する粒子の位置ベクトルと、
前記磁性体の磁化と磁場の関係と、
から演算されることを特徴とする請求項1〜のいずれか一項に記載の磁場解析装置。
The coefficient of the equation of motion of the magnetic field is
A position vector of particles constituting the magnetic body;
The relationship between the magnetization and magnetic field of the magnetic material,
Magnetic field analysis apparatus according to any one of claims 1 to 6, characterized in that calculated from.
前記磁場の運動方程式は、
磁場の項を含む粒子のラグランジアンを磁場ベクトルと磁場ベクトルの時間微分を正準変数としてラグランジュの運動方程式に代入することで求められたことを特徴とする請求項1〜のいずれかに記載の磁場解析装置。
The equation of motion of the magnetic field is
According to any one of claims 1 to 7, characterized in that obtained by substituting the equation of motion Lagrangian Lagrangian particle including a term of the magnetic field time derivative of the magnetic field vector and the magnetic field vector as the canonical variables Magnetic field analyzer.
前記空間には導体がさらに配置されており、
前記解析条件は導体の形状と電流を有することを特徴とする請求項1〜のいずれかに記載の磁場解析装置。
A conductor is further arranged in the space,
The analysis conditions are magnetic field analysis apparatus according to any one of claims 1-8, characterized in that it comprises a conductor shape and current.
コンピュータを請求項1からのいずれかに記載の磁場解析装置として機能させるためのプログラム。 The program for functioning a computer as a magnetic field analyzer in any one of Claim 1 to 9 . 磁性体が配置された空間における任意の点の磁場を情報処理装置を使って解析する磁場解析方法であって、
前記磁性体の形状と、スピン系で表現される前記磁性体の磁化と磁場の関係を有する解析条件と磁場の運動方程式を記憶する工程(a)と、
前記解析条件から、前記磁性体を構成する粒子の磁場の運動方程式の係数および変数の初期値および定数を演算して、磁場の運動方程式の解を演算し、
磁場の運動方程式の解に基づき、前記空間における任意の点の磁場を演算する工程(b)と、
を有することを特徴とする磁場解析方法。
A magnetic field analysis method for analyzing a magnetic field at an arbitrary point in a space where a magnetic material is arranged using an information processing device,
(A) storing the shape of the magnetic material, analysis conditions having a relationship between the magnetization of the magnetic material expressed by a spin system and a magnetic field, and an equation of motion of the magnetic field;
From the analysis conditions, calculate the initial value and constant of the equation of motion and the variable of the magnetic field of the particles constituting the magnetic body, calculate the solution of the motion equation of the magnetic field,
A step (b) of calculating a magnetic field at an arbitrary point in the space based on the solution of the equation of motion of the magnetic field;
A magnetic field analysis method characterized by comprising:
前記磁性体の磁化と磁場の関係は、
磁性体モデルのスピン系の平衡状態で表現される磁場とスピンの関係と、
スピン系の平衡状態におけるスピンの総和で表現されるスピンと磁化の関係と、
を有することを特徴とする請求項11記載の磁場解析方法。
The relationship between the magnetization and magnetic field of the magnetic material is
The relationship between the magnetic field and spin expressed in the equilibrium state of the spin system of the magnetic model,
The relationship between spin and magnetization expressed as the sum of spins in the equilibrium state of the spin system,
The magnetic field analysis method according to claim 11, further comprising :
前記解析条件は、
磁性体モデルのスピン系のエネルギー式にモンテカルロ法を適用することによりスピン系の平衡状態を求める平衡状態算出工程を有することを特徴とする請求項12記載の磁場解析方法。
The analysis conditions are:
13. The magnetic field analysis method according to claim 12 , further comprising an equilibrium state calculation step of obtaining an equilibrium state of the spin system by applying a Monte Carlo method to the energy equation of the spin system of the magnetic material model.
前記平衡状態算出工程は、
前記磁性体のスピン系を設定し、前記スピン系を構成するスピンの一部を無作為に反転させ、反転前後のエネルギーの差分を求める差分算出手工程と、
前記差分が0以下の場合、もしくは0より大きく、ボルツマン分布を用いた確率変数が一様乱数よりも大きい場合に反転後のスピン系を選択し、それ以外の場合は反転前のスピン系を選択する選択工程と、
前記差分算出工程、前記選択工程を1モンテカルロステップ繰り返す繰り返し工程と、
を有することを特徴とする請求項13記載の磁場解析方法。
The equilibrium state calculation step includes
A difference calculating step of setting a spin system of the magnetic material, randomly inverting a part of the spins constituting the spin system, and obtaining a difference in energy before and after the inversion;
If the difference is less than or equal to 0, or greater than 0 and the random variable using the Boltzmann distribution is greater than a uniform random number, select the spin system after inversion, otherwise select the spin system before inversion A selection process to
A step of repeating the difference calculating step and the selecting step by one Monte Carlo step;
The magnetic field analysis method according to claim 13, further comprising :
前記磁性体の磁化と磁場の関係を用いて前記磁性体の磁化を求める磁化算出工程を有することを特徴とする請求項1214のいずれか一項に記載の磁場解析方法。 The magnetic field analysis method according to any one of claims 12 to 14 , further comprising a magnetization calculation step of obtaining the magnetization of the magnetic body using a relationship between the magnetization of the magnetic body and the magnetic field. 前記磁場の運動方程式の変数は、前記磁性体を構成する粒子の磁場ベクトルであることを特徴とする請求項1115のいずれか一項に記載の磁場解析方法。 The magnetic field analysis method according to any one of claims 11 to 15 , wherein the variable of the equation of motion of the magnetic field is a magnetic field vector of particles constituting the magnetic body. 前記磁場の運動方程式の係数は、
前記磁性体を構成する粒子の位置ベクトルと、
前記磁性体の磁化と磁場の関係と、
から演算されることを特徴とする請求項1116のいずれか一項に記載の磁場解析方法。
The coefficient of the equation of motion of the magnetic field is
A position vector of particles constituting the magnetic body;
The relationship between the magnetization and magnetic field of the magnetic material,
Magnetic field analysis method according to any one of claims 11 to 16, characterized in that calculated from.
前記磁場の運動方程式は、
磁場の項を含む粒子のラグランジアンを磁場ベクトルと磁場ベクトルの時間微分を正準変数としてラグランジュの運動方程式に代入することで求められたことを特徴とする請求項1117のいずれかに記載の磁場解析方法。
The equation of motion of the magnetic field is
According to any one of claims 11 to 17, characterized in that obtained by substituting the equation of motion Lagrangian Lagrangian particle including a term of the magnetic field time derivative of the magnetic field vector and the magnetic field vector as the canonical variables Magnetic field analysis method.
前記空間には導体がさらに配置されており、
前記解析条件は導体の形状と電流を有することを特徴とする請求項1118のいずれかに記載の磁場解析方法。
A conductor is further arranged in the space,
The analysis conditions are magnetic field analysis method according to any one of claims 11 to 18, characterized in that it has a conductor shape and current.
JP2009196229A 2009-08-27 2009-08-27 Magnetic field analyzer and method of operating magnetic field analyzer Active JP5478154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009196229A JP5478154B2 (en) 2009-08-27 2009-08-27 Magnetic field analyzer and method of operating magnetic field analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009196229A JP5478154B2 (en) 2009-08-27 2009-08-27 Magnetic field analyzer and method of operating magnetic field analyzer

Publications (3)

Publication Number Publication Date
JP2011047785A JP2011047785A (en) 2011-03-10
JP2011047785A5 true JP2011047785A5 (en) 2012-01-12
JP5478154B2 JP5478154B2 (en) 2014-04-23

Family

ID=43834264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009196229A Active JP5478154B2 (en) 2009-08-27 2009-08-27 Magnetic field analyzer and method of operating magnetic field analyzer

Country Status (1)

Country Link
JP (1) JP5478154B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108145975B (en) * 2018-02-05 2019-08-30 吉林大学 A kind of magnetic field forward modeling system and method for three-dimensional motion object

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188042A (en) * 1996-12-27 1998-07-21 Canon Inc Analyzing method by infinite element method and device therefor

Similar Documents

Publication Publication Date Title
Shishvan et al. Distribution of dislocation source length and the size dependent yield strength in freestanding thin films
Gan et al. Comparison of efficient techniques for the simulation of dielectric objects in electrolytes
Levkova QCD at nonzero temperature and density
Berti et al. Comparison of three-dimensional Poisson solution methods for particle-based simulation and inhomogeneous dielectrics
JP6414929B2 (en) How to create an all-atom model
JP5589665B2 (en) Analysis device, analysis program, and analysis method
Thore et al. Magnetic exchange interactions and critical temperature of the nanolaminate M n 2 GaC from first-principles supercell methods
JP2011047785A5 (en)
Fahrenberger et al. Computing the Coulomb interaction in inhomogeneous dielectric media via a local electrostatics lattice algorithm
Zhang et al. Numerical methods to improve the computational efficiency of solidification simulation for the investment casting process
Zheng et al. Thermal hysteresis scaling for first-order phase transitions
Mihaela Study about the possibility to control the superparamagnetism–superferromagnetism transition in magnetic nanoparticle systems
Liu et al. Mutual verification of two new quantum simulation approaches for nanomagnets
Barnes et al. The rate of adsorption of nanoparticles on microelectrode surfaces
Heller ELLSTAT: shape modeling for solution small-angle scattering of proteins and protein complexes with automated statistical characterization
JP2010160781A5 (en)
Belim et al. Computer simulation of the critical behavior of magnetic systems with competition between the short-and long-range interactions
Yang et al. Magnetic behaviors of frustrated Ising spin-chain system: Wang–Landau simulation for three-dimensional lattice
Marreiro et al. Brownian dynamics simulation of charge transport in ion channels
Kim et al. Charge density coordination and dynamics in a rodlike polyelectrolyte
Di Blasi et al. Exploiting numerical behaviors in SPH
Sellier et al. The multi-dimensional transient challenge: The Wigner particle approach
JP2010160131A5 (en)
Di Blasi et al. On the consistency restoring in SPH
Afshari Coverage assessment criteria for approximate bisimulation theory and introduction of computer games in hybrid systems safety/reachability design