JP2011047575A - Generator by refrigerant - Google Patents

Generator by refrigerant Download PDF

Info

Publication number
JP2011047575A
JP2011047575A JP2009196412A JP2009196412A JP2011047575A JP 2011047575 A JP2011047575 A JP 2011047575A JP 2009196412 A JP2009196412 A JP 2009196412A JP 2009196412 A JP2009196412 A JP 2009196412A JP 2011047575 A JP2011047575 A JP 2011047575A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
volume
generator
expander
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009196412A
Other languages
Japanese (ja)
Inventor
Hajime Narasaki
元 楢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009196412A priority Critical patent/JP2011047575A/en
Publication of JP2011047575A publication Critical patent/JP2011047575A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system capable of converting volume change caused by the temperature of a refrigerant into mechanical energy and generating electric power by using the mechanical energy. <P>SOLUTION: An ammonia refrigerant in the liquid state is made to enter from a compressor 3 to a condenser 1 and is cooled by the condenser 1 by approximately 5°C, and gas moisture separation is performed in a liquid receiver 5. The ammonia refrigerant is decompressed by an expansion valve 4, and by rotating a rotor of an expanding device 6 by the expanded pressure, a shaft is also rotated. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷媒の温度による体積変化を機械的エネルギーに変換するための工夫である。             The present invention is a device for converting the volume change due to the temperature of the refrigerant into mechanical energy.

従来の技術では、電動機によって冷凍機械を駆動し、ヒートポンプによる熱の移動を発生することにより、熱を吸収する側を冷凍機もしくは冷蔵庫として利用することが一般的である。             In the prior art, it is common to use the side that absorbs heat as a refrigerator or a refrigerator by driving a refrigeration machine with an electric motor and generating heat transfer by a heat pump.

従来の技術で関連あるものから説明しますと、アンモニア冷凍機の場合、縦型のピストン式で単気筒の種類と、これの気筒数を増やしてピストン行程を短くした高回転型の種類が一般的である。
In the case of ammonia refrigerators, it is common to use a single-cylinder type with a vertical piston type, and a high-rotation type type that increases the number of cylinders and shortens the piston stroke. Is.

特開2009−103025 特開2008−286150 特開昭07−139813JP 2009-103025 JP 2008-286150 JP 07-139813

第三種冷凍機械責任者試験(弘文社)冷凍の理論(大隈和男 著)Type 3 Refrigeration Machine Responsibility Examination (Kobunsha) Refrigeration Theory (written by Kazuo Otsuki)

冷凍機として使用する際、電動機入力と冷凍機出力の間にはどうしてもエネルギー損失が存在し、その単位はジュール(J)で表現される。
まず、冷凍機効率を三種類の成績係数のうち、
実際成績係数では
電動機出力に相当する熱量=冷凍能力(kW)/電動機消費電力(kW)
冷凍能力(kJ/h)=冷媒循環量(kg/h)×低圧時のエンタルピ


When used as a refrigerator, there is inevitably energy loss between the motor input and the refrigerator output, and the unit is expressed in joules (J).
First, out of three types of coefficient of performance, refrigerator efficiency,
Actual coefficient of performance
Heat equivalent to motor output = refrigeration capacity (kW) / motor power consumption (kW)
Refrigeration capacity (kJ / h) = refrigerant circulation rate (kg / h) x enthalpy at low pressure


体積効率はトップクリアランスに起因するもので、一般に冷媒吸い込み体積の方が冷媒吐き出し体積よりも大きい。
また、トップクリアランスはシリンダヘッドの形状が皿型よりも半球型の方が大きくなる。
体積効率=実際に吸入した体積/ピストン行程体積
圧縮に要する仕事 W=p( V−V’)(J)
膨張に要する仕事〜資料なし。
The volumetric efficiency is due to the top clearance, and generally the refrigerant suction volume is larger than the refrigerant discharge volume.
Further, the top clearance is larger when the cylinder head is hemispherical than the dish.
Volumetric efficiency = actually sucked volume / piston stroke volume Work required for compression W = p (V−V ′) (J)
Work required for expansion-no data available.

これに関連する公式を以下に表示する。
冷凍能力(ここでは一日当たりのトン数)R=V/C
Vはピストン押しのけ量()
Cは冷媒の種類によって数値が違う。アンモニアでは7.9〜8.4
冷媒の高温、低温共通の公式〜P×(Vのk乗)=一定
ここではkは比熱比を表し、アンモニアでは1.29〜1.31
The relevant formula is shown below.
Refrigeration capacity (here tonnage per day) R = V / C
V is the piston displacement ()
The value of C varies depending on the type of refrigerant. 7.9-8.4 for ammonia
Formulas common to high and low temperatures of refrigerants-P x (V to the power of k) = constant
Here, k represents the specific heat ratio, and for ammonia, 1.29 to 1.31

図3においては、アンモニア冷媒の場合であり、ae点のスーパヒートはゼロであるが
図4においては、フロン系の冷媒の場合であり、ae点のスーパヒートが存在する。
図5についてはp-v線図で、圧縮機の吸い込み体積と吐き出し体積をカルノーサイクルで表現したものである。図5に於いてB-Cは吐き出し体積、A-Dは吸い込み体積を表す。
図6の膨張機側で発生するエネルギーは、この体積差分のエネルギーと圧縮に要するエネルギー、電動機を発電機として駆動するエネルギーの和よりも大きくなければならない。
In FIG. 3, it is the case of ammonia refrigerant, and the superheat of the ae point is zero. However, in FIG. 4, it is the case of chlorofluorocarbon refrigerant, and there is a superheat of the ae point.
FIG. 5 is a pv diagram, in which the suction volume and discharge volume of the compressor are expressed in a Carnot cycle. In FIG. 5, BC represents the discharge volume, and AD represents the suction volume.
The energy generated on the expander side in FIG. 6 must be larger than the sum of the energy of the volume difference, the energy required for compression, and the energy for driving the motor as a generator.

図6においては、駆動用の電動機12については、6の膨張機に密着させ、電動機を、モールド内に固定し、モールド内に6の出口からの冷媒をなるべく短距離で通過させ、モールド出口より2の蒸発器へ送る構造とする。
図2においては、図1の冷媒回路を工夫し、膨張弁出口の膨張機により機械的エネルギーを取り出し、発電機も冷却してから蒸発器へ循環させる冷媒回路である。
本発明は従来の構成を冷凍機として使用するのみでなく、冷媒の状態変化を機械的エネルギーへ変換し、冷凍と発電の仕事を少ない消費電力で行うことを実現することを目的とする。

In FIG. 6, the driving motor 12 is brought into close contact with the expander 6, the motor is fixed in the mold, and the refrigerant from the outlet 6 is passed through the mold at a short distance as far as possible from the mold outlet. 2 to the evaporator.
In FIG. 2, the refrigerant circuit of FIG. 1 is devised, mechanical energy is taken out by an expander at the outlet of the expansion valve, the generator is cooled, and then the refrigerant circuit is circulated to the evaporator.
An object of the present invention is not only to use the conventional configuration as a refrigerator, but also to convert the state change of the refrigerant into mechanical energy and realize the work of refrigeration and power generation with low power consumption.

電動機の低消費電力化が可能。
始動時以外は電動機を発電機として利用可能。
冷却することにより、電動機、発電機の高効率化が可能。
ただし、その他の用途としての原動機の利用はトルク不足。
Low power consumption of the motor is possible.
The motor can be used as a generator except during startup.
Cooling can increase the efficiency of electric motors and generators.
However, the use of the prime mover for other purposes is insufficient in torque.

一般的な冷媒回路General refrigerant circuit 改良後の冷媒回路Improved refrigerant circuit アンモニア冷媒の場合のカルノー線図Carnot diagram for ammonia refrigerant フロン系冷媒の場合のカルノー線図Carnot diagram for fluorocarbon refrigerants 冷媒のp-v線図Refrigerant p-v diagram 回転式圧縮機に回転式膨張機を連動させた機械のイメージ図Image of a machine in which a rotary expander is linked to a rotary compressor 単板回転式膨張機と単板回転式圧縮機Single plate rotary expander and single plate rotary compressor

以下、本発明の実施の形態を図1から図7に基づいて説明する。     Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は一般的な冷媒回路であり、1は凝縮器、2は蒸発器、3は往復式の圧縮機、4は膨張弁、5は受液器であり、冷媒はアンモニアを使用する。3の圧縮機で圧縮されたアンモニア冷媒は液体の状態で1の凝縮器に入ると、凝縮器で5℃程冷却されると、気体と液体が混ざった状態になり5の受液器で気水分離されると、4の膨張弁に入り、アンモニア冷媒は減圧され体積が大きくなる。その膨張した冷媒を蒸発器に通すことで気化熱として、13の冷凍室内の熱を吸収し、3の圧縮機へ戻る。           FIG. 1 shows a general refrigerant circuit. 1 is a condenser, 2 is an evaporator, 3 is a reciprocating compressor, 4 is an expansion valve, 5 is a receiver, and ammonia is used as the refrigerant. When the ammonia refrigerant compressed by the compressor No. 3 enters the condenser 1 in the liquid state, it is cooled to about 5 ° C. by the condenser. When the water is separated, it enters the expansion valve 4 and the ammonia refrigerant is depressurized to increase its volume. By passing the expanded refrigerant through the evaporator, the heat in the freezer compartment 13 is absorbed as the heat of vaporization, and the refrigerant returns to the compressor 3.

図2は図1の冷媒回路に、回転式の膨張機6と圧縮機3を組み合わせたものであり、それら6と3はシャフト10でつながっている。
図2を簡単に説明しますと、3の圧縮機から、アンモニア冷媒が液体の状態で1の凝縮器に入り1で5℃程冷却されると、気体と液体が混ざった状態になり5の受液器で気水分離され、アンモニア冷媒は4の膨張弁で減圧され体積が大きくなる。その膨張した冷媒を回転式の膨張機6に通すと膨張した圧力で膨張機6の回転子11を回転させることでシャフト10も回転する。シャフト10の回転が圧縮機3の回転子11も回転させることで圧縮機3でアンモニア冷媒は同時に圧縮される。
ただし、膨張機6からのアンモニア冷媒は蒸発器2を通過してから3の圧縮機に入る。

FIG. 2 is a combination of the refrigerant circuit of FIG. 1 and a rotary expander 6 and a compressor 3, which are connected by a shaft 10.
Referring briefly to FIG. 2, when the ammonia refrigerant enters the condenser 1 in the liquid state from the compressor 3 and is cooled by about 5 ° C. at 1, the gas and liquid are mixed and The gas and water are separated by the liquid receiver, and the ammonia refrigerant is decompressed by the expansion valve 4 to increase the volume. When the expanded refrigerant is passed through the rotary expander 6, the shaft 10 is also rotated by rotating the rotor 11 of the expander 6 with the expanded pressure. The rotation of the shaft 10 also rotates the rotor 11 of the compressor 3 so that the ammonia refrigerant is simultaneously compressed by the compressor 3.
However, the ammonia refrigerant from the expander 6 passes through the evaporator 2 and then enters the compressor 3.

図3はアンモニア冷媒のカルノー線図を表し、縦軸は圧力、横軸はエンタルピーを表す。この図ではスーパヒートはゼロである。
図4はフロン系冷媒のカルノー線図を表し、縦軸は圧力、横軸はエンタルピーを表す。この図ではスーパヒートaeが存在する。
FIG. 3 shows a Carnot diagram of the ammonia refrigerant, where the vertical axis represents pressure and the horizontal axis represents enthalpy. In this figure, the superheat is zero.
FIG. 4 shows a Carnot diagram of a chlorofluorocarbon refrigerant, where the vertical axis represents pressure and the horizontal axis represents enthalpy. In this figure, superheat ae exists.

図5は冷媒のp-v線図を表し、縦軸は圧力、横軸は体積であり、Lはピストン行程の体積、Voは吐き出し体積、Viは吸い込み体積であり、それらは圧縮機だけのp-v線図である。           Fig. 5 shows the pv diagram of the refrigerant, where the vertical axis is pressure, the horizontal axis is volume, L is the volume of the piston stroke, Vo is the discharge volume, Vi is the suction volume, and these are the pv lines of the compressor only FIG.

図6は図2、図7に基づいて組み立てた機械のイメージ図である。ここでは簡単に描かせてもらいました。
図7は単板式回転圧縮機を基に、6の膨張機と3の圧縮機を簡単に描いたもので、6の膨張機は7の吐出し弁を外した構造であり9の吸い込み口の内径と8の吐き出し口の内径は同一とした。
3は一般的な単板式回転圧縮機である。
FIG. 6 is an image diagram of the machine assembled based on FIGS. 2 and 7. I made it easy to draw here.
FIG. 7 is a simple depiction of 6 expanders and 3 compressors based on a single-plate rotary compressor. The expander 6 has a structure in which the discharge valve 7 is removed, and the suction port 9 The inner diameter and the inner diameter of the 8 outlets were the same.
Reference numeral 3 denotes a general single plate rotary compressor.

1 凝縮器
2 蒸発器
3 圧縮機
4 膨張弁
5 受液器
6 膨張機
7 吐き出し弁
8 吐き出し口
9 吸い込み口
10 シャフト
11 回転子
12 電動機兼発電機(外箱)
13 冷凍室
P 圧力
h エンタルピー
Vo 吐き出し体積
Vi 吸い込み体積
L ピストン行程





1 Condenser
2 Evaporator 3 Compressor 4 Expansion Valve 5 Receiver 6 Expander 7 Exhaust Valve
8 Exhaust port 9 Suction port 10 Shaft 11 Rotor 12 Motor / generator (outer box)
13 Freezer room
P pressure
h Enthalpy
Vo discharge volume
Vi suction volume
L Piston stroke





Claims (2)

膨張機の運動エネルギーがシャフト(10)で圧縮機(3)に伝達され、圧縮に要するエネルギーと発電機を駆動するエネルギーとして消費され、圧縮と膨張を繰り返すことにより回転し続ける、冷媒による発電機。







The kinetic energy of the expander is transmitted to the compressor (3) by the shaft (10), consumed as energy required for compression and energy for driving the generator, and continues to rotate by repeating compression and expansion, and the generator by the refrigerant .







改良後の冷媒回路とイメージ図において、膨張弁出口に膨張機(6)を組み合わせることにより、蒸発器入り口(2)までの区間で、冷媒の体積の変化を運動エネルギーとして回収する冷媒による発電機。



In the refrigerant circuit after improvement and the image diagram, the generator by the refrigerant collects the change in the volume of the refrigerant as kinetic energy in the section up to the evaporator inlet (2) by combining the expander (6) with the expansion valve outlet.



JP2009196412A 2009-08-27 2009-08-27 Generator by refrigerant Pending JP2011047575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009196412A JP2011047575A (en) 2009-08-27 2009-08-27 Generator by refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009196412A JP2011047575A (en) 2009-08-27 2009-08-27 Generator by refrigerant

Publications (1)

Publication Number Publication Date
JP2011047575A true JP2011047575A (en) 2011-03-10

Family

ID=43834095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009196412A Pending JP2011047575A (en) 2009-08-27 2009-08-27 Generator by refrigerant

Country Status (1)

Country Link
JP (1) JP2011047575A (en)

Similar Documents

Publication Publication Date Title
Wang et al. Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling
CN111183272B (en) Refrigerating apparatus and refrigerating method
JP2009539007A (en) Improved compressor device
JP2009270745A (en) Refrigerating system
KR20150131255A (en) Apparatus, systems, and methods for low grade waste heat management
CN101473174A (en) System and method for reducing windage losses in compressor motors
JP2007178072A (en) Air conditioner for vehicle
US8297064B2 (en) Energy efficient air conditioning system
US6385995B1 (en) Apparatus having a refrigeration circuit
JP6495053B2 (en) Refrigeration system, refrigeration system operation method, and refrigeration system design method
CN102367747A (en) Novel air energy isothermal engine
CN104315750B (en) The system and method for cooling gas compressor inlet gas
KR102148716B1 (en) The freezing apparatus and compressor
JP2011047575A (en) Generator by refrigerant
KR20200071500A (en) Liquid-air energy storage system using stirling device
KR102479057B1 (en) System for generation able to stirling engine
CN209925039U (en) Carbon dioxide transcritical circulation combined cooling and power generation system
JP2006200821A (en) Cold and heat utilizing device equipped with photovoltaic power generator
CN202360158U (en) Novel air energy isothermal engine
JP5173477B2 (en) Hybrid refrigerator
JP5628118B2 (en) Vane rotary type heating and cooling equipment
JP4997462B2 (en) Stirling regenerative external combustion system and refrigerator system using the same
KR200378705Y1 (en) Air conditioner with regenerative power generation system utilizing refrigerant vaporized physical energy.
JP2007046026A (en) Mixed refrigerant of acetone with water and rankine cycle and freezing air-conditioning system using the same mixed refrigerant
CN204268753U (en) The system of refrigerating gas compressor or compound compressor inlet gas