JP2011047343A - Hermetic compressor - Google Patents
Hermetic compressor Download PDFInfo
- Publication number
- JP2011047343A JP2011047343A JP2009197840A JP2009197840A JP2011047343A JP 2011047343 A JP2011047343 A JP 2011047343A JP 2009197840 A JP2009197840 A JP 2009197840A JP 2009197840 A JP2009197840 A JP 2009197840A JP 2011047343 A JP2011047343 A JP 2011047343A
- Authority
- JP
- Japan
- Prior art keywords
- compression mechanism
- oil
- passage
- stator
- hermetic compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compressor (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
本発明は、空調機、冷凍機等に使用される密閉型圧縮機のオイル吐出量低減に関するものである。 The present invention relates to an oil discharge amount reduction of a hermetic compressor used for an air conditioner, a refrigerator, or the like.
従来の密閉型圧縮機の冷媒ガスの流れとオイル分離の方式について図面を参照にしながら説明する。 The flow of refrigerant gas and the method of oil separation of a conventional hermetic compressor will be described with reference to the drawings.
図3は特許文献1に記載された従来の密閉型圧縮機の縦断面図を示すものである。密閉容器1内に圧縮機構2、この圧縮機構2の下方に設けた圧縮機構2を駆動するための電動機3と、この電動機3の回転力を圧縮機構2に伝達するためのクランク軸4とを備え、密閉容器1内の下部に設けたオイル溜め20のオイル6を、クランク軸4を通じてクランク軸4の軸受部66や圧縮機構2の摺動部に供給する給油機構7とを備えている。 FIG. 3 shows a longitudinal sectional view of a conventional hermetic compressor described in Patent Document 1. In FIG. A compression mechanism 2 in the hermetic container 1, an electric motor 3 for driving the compression mechanism 2 provided below the compression mechanism 2, and a crankshaft 4 for transmitting the rotational force of the electric motor 3 to the compression mechanism 2 And an oil supply mechanism 7 for supplying the oil 6 of the oil reservoir 20 provided at the lower part in the sealed container 1 to the bearing portion 66 of the crankshaft 4 and the sliding portion of the compression mechanism 2 through the crankshaft 4.
オイル6は給油機構7によって重力に逆らって軸受部66や圧縮機構2の摺動部に強制給油され、円滑な動作を確保しながら、圧縮機構2で圧縮した冷媒ガスを密閉容器1内の電動機3の部分を通して電動機3を冷却した後、密閉容器1外部に吐出するようにしている。 The oil 6 is forcedly supplied to the bearing 66 and the sliding portion of the compression mechanism 2 against the gravity by the oil supply mechanism 7, and the refrigerant gas compressed by the compression mechanism 2 is supplied to the electric motor in the sealed container 1 while ensuring a smooth operation. The electric motor 3 is cooled through the portion 3 and then discharged to the outside of the sealed container 1.
これにより、軸受部66や圧縮機構2の摺動部に供給した後のオイルが供給圧や重力によって下方に移動しオイル溜め20に自然回収されるようにすることが出来る。 As a result, the oil after being supplied to the bearing portion 66 and the sliding portion of the compression mechanism 2 can be moved downward by the supply pressure and gravity and can be naturally recovered in the oil reservoir 20.
しかし、冷媒ガスは常時オイルと接触してこれを随伴させ、密閉容器から冷凍サイクルに供給される際にオイルを持ち込んでしまい、冷凍サイクル中での配管圧力損失や凝縮器や蒸発器などの熱交換器での熱交換効率の低下をもたらす問題があった。 However, the refrigerant gas always comes in contact with oil and entrains it, bringing in oil when it is supplied from the sealed container to the refrigeration cycle, and pipe pressure loss in the refrigeration cycle and heat from condensers, evaporators, etc. There was a problem that caused a reduction in heat exchange efficiency in the exchanger.
この問題を解消するのに、圧縮機構から密閉容器内に吐出した冷媒ガスが電動機を通ってこの電動機を冷却しながら密閉容器外に吐出されるまでの冷媒ガスの通路を、オイルの衝突分離や遠心分離が繰り返し生じるように設計して、密閉容器外に吐出される冷媒ガスにオイルが随伴しないように工夫したものがあった。 To solve this problem, the refrigerant gas discharged from the compression mechanism into the sealed container passes through the electric motor and cools the electric motor until it is discharged outside the sealed container. Some have been designed so that the centrifugal separation is repeated, so that the oil does not accompany the refrigerant gas discharged out of the sealed container.
具体的には、圧縮機構2から吐出される冷媒ガスが、圧縮機構上部の容器内吐出室31から圧縮機構2の下部に連通させる圧縮機構連通路32、回転子上部室33まで続くように通路カバーで囲われた連通路34、回転子上部室33と回転子下部室35を順次経て電動機の下に至り、さらに固定子3aの下部と上部とを連通させるように固定子3aまたは固定子3aと密閉容器1との間に設けられた固定子通路37を通って連通路34外まわりの固定子上部室38に抜けた後、密閉容器1の固定子上部室38の位置以上の部分に設けられた外部吐出孔39を通って密閉容器1外に吐出されるようにする容器内冷媒ガス通路経路を設けるなどしている(例えば、特許文献1参照)。 Specifically, the passage is such that the refrigerant gas discharged from the compression mechanism 2 continues from the in-container discharge chamber 31 above the compression mechanism to the lower portion of the compression mechanism 2 to the compression mechanism communication passage 32 and the rotor upper chamber 33. The stator 3a or the stator 3a is arranged so as to reach the lower part of the motor through the communication path 34, the rotor upper chamber 33 and the rotor lower chamber 35, which are surrounded by a cover, and to communicate with the lower part and the upper part of the stator 3a. After passing through the stator passage 37 provided between the container 1 and the sealed container 1 and passing through the stator upper chamber 38 around the outside of the communication path 34, the sealed container 1 is provided at a portion above the position of the stator upper chamber 38. An in-container refrigerant gas passage is provided through the external discharge hole 39 to be discharged out of the sealed container 1 (see, for example, Patent Document 1).
従来の技術においては圧縮機構部からの連絡路、電動機の回転子および固定子を用いて
ガスを効果的に拘束してガスとオイルの気液分離を行う設計思想であった。
In the prior art, the design philosophy is to perform gas-liquid separation of gas and oil by effectively constraining gas using a communication path from a compression mechanism, a rotor and a stator of an electric motor.
しかしながら、電動機周りの寸法によってはガスの拘束が必ずしも十分に行なえないことがあった。 However, depending on the dimensions around the motor, there are cases where the gas is not always sufficiently restrained.
例えば、固定子上部のコイルエンドと冷媒ガスを回転子上部へ誘導するための連通路カバーの間隙が組立てバラツキ等で大きくなったりすると、その間隙からの冷媒ガスの短絡によって、回転子上部の冷媒ガスの拘束および誘導能力が低下することによって、気液分離効果が低下してしまう問題があった。 For example, if the gap between the coil end at the upper part of the stator and the communication path cover for guiding the refrigerant gas to the upper part of the rotor becomes large due to assembly variation or the like, the refrigerant gas from the gap causes a short circuit of the refrigerant gas. There has been a problem that the gas-liquid separation effect is reduced due to a decrease in gas restraint and induction ability.
また、固定子上部にインシュレータが装着される電動機においても、インシュレータと連通路カバーの間隙が組立てバラツキ等で大きくなったりすると、同様にその間隙からの冷媒ガスの短絡によって、回転子上部の冷媒ガスの拘束および誘導能力が低下することによって、気液分離効果が低下してしまう問題があった。 Also, in an electric motor in which an insulator is mounted on the upper part of the stator, if the gap between the insulator and the communication path cover becomes large due to assembly variation or the like, the refrigerant gas in the upper part of the rotor is similarly caused by a short circuit of the refrigerant gas from the gap. There is a problem in that the gas-liquid separation effect is reduced due to a decrease in the restraint and guidance ability.
このため、連通路カバーを延長するために隔壁シールフィルムを追加し連通路カバー先端の延長を行ったり、インシュレータとの径方向間隙を狭めることで、この問題を解決してきた。 For this reason, this problem has been solved by adding a partition wall sealing film to extend the communication path cover and extending the tip of the communication path cover, or by narrowing the radial gap with the insulator.
本発明はこのような従来の効果を向上させるものであり、隔壁シールフィルムの折返し部と電動機インシュレータを接触させることにより、冷媒の短絡を防ぎ、長期運転や熱による影響を抑えることが出来、気液分離効果を向上させ、圧縮機外へのオイル吐出量を抑制できる密閉型圧縮機を提供することを目的としている。 The present invention improves such a conventional effect. By bringing the folded portion of the partition wall seal film into contact with the electric motor insulator, the refrigerant can be prevented from being short-circuited, and the influence of long-term operation and heat can be suppressed. An object of the present invention is to provide a hermetic compressor capable of improving the liquid separation effect and suppressing the oil discharge amount to the outside of the compressor.
上記課題を解決するために本発明は、通路カバーに追加する隔壁シールフィルムの先端に内側への折返し部を設け、前記隔壁シールフィルム折返し部と電動機インシュレータとを接触させる。 In order to solve the above-mentioned problems, the present invention provides an inner folded portion at the tip of the partition seal film added to the passage cover, and brings the partition seal film folded portion into contact with the electric motor insulator.
上記構成にすることにより、隔壁シールフィルムと電動機インシュレータの間に発生する隙間が熱などにより大きくなることを抑制し、気液分離効果が向上することで、オイル吐出が減少する。 With the above configuration, the gap generated between the partition wall seal film and the electric motor insulator is prevented from becoming large due to heat or the like, and the gas-liquid separation effect is improved, thereby reducing oil discharge.
本発明の密閉型圧縮機は、隔壁シールフィルムと電動機インシュレータの間隙を無くすことで、オイルミストを多く含んだ冷媒ガスの短絡を抑制して気液分離効果が向上することで、圧縮機外へのオイル吐出を抑制できる。 The hermetic compressor of the present invention eliminates the gap between the partition wall seal film and the electric motor insulator, thereby suppressing the short circuit of the refrigerant gas containing a large amount of oil mist and improving the gas-liquid separation effect. Oil discharge can be suppressed.
第1の発明は、密閉容器内に圧縮機構と、この圧縮機構の下方に設けた圧縮機構を駆動するためのインシュレータ付電動機と、この電動機の回転力を圧縮機構部に伝達するためのクランク軸と、密閉容器内の下部に設けたオイル溜めのオイルを、クランク軸を通じてクランク軸の軸受部や圧縮機構部摺動部に供給する給油機構とを備え、圧縮機構から吐出される冷媒ガスが、圧縮機構上部の容器内吐出室、容器内吐出室と圧縮機構下部を連通さ
せる圧縮機構連通路、圧縮機構連通路から回転子上部室まで続く連通路カバーで囲われた連通路、電動機の上部と下部とを連通する通路、回転子下部室を順次経て電動機下に至り、さらに固定子の下部と上部とを連通させるように固定子または固定子と密閉容器との間に設けられた固定子通路を通って前記連通路外回りの固定子上部室、圧縮機構または圧縮機構と密閉容器との間に設けられた圧縮機構上昇通路を経て、密閉容器の固定子上部室の位置以上の部分に設けられた外部吐出孔を通って密閉容器外に吐出される密閉型圧縮機において、前記隔壁シールフィルムの先端が内側に折り返された形状で電動機インシュレータと接触する方法を用いたものである。
A first invention includes a compression mechanism in an airtight container, an electric motor with an insulator for driving the compression mechanism provided below the compression mechanism, and a crankshaft for transmitting the rotational force of the electric motor to the compression mechanism section And an oil supply mechanism that supplies oil in an oil reservoir provided at a lower portion in the sealed container to a bearing portion of the crankshaft and a sliding portion of the compression mechanism through the crankshaft, and the refrigerant gas discharged from the compression mechanism is A container discharge chamber in the upper part of the compression mechanism, a compression mechanism communication path for communicating the discharge chamber in the container and the lower part of the compression mechanism, a communication path surrounded by a communication path cover extending from the compression mechanism communication path to the rotor upper chamber, an upper part of the motor, Stator passage provided between the stator or the stator and the hermetic container so as to communicate with the lower part and the upper part of the stator and the lower part and the upper part of the stator. Through External discharge provided in a portion above the position of the stator upper chamber of the hermetic container through the stator upper chamber around the communication path, the compression mechanism or the compression mechanism ascending passage provided between the compression mechanism and the hermetic container. In the hermetic compressor which is discharged out of the hermetic container through the hole, a method is used in which the tip of the partition wall sealing film is brought into contact with the electric motor insulator in a shape folded back inside.
この様な構成にすることによって隔壁シールフィルムとインシュレータの間からオイルミストを多く含んだ冷媒ガスの短絡を抑制して、さらに折返し部に溜まったオイルが流出することを抑制することで、圧縮機外へのオイルの持ち出しを抑制できる。 By adopting such a configuration, a short circuit of the refrigerant gas containing a large amount of oil mist from between the partition wall seal film and the insulator is suppressed, and further, the oil accumulated in the folded portion is suppressed from flowing out. The oil can be prevented from being taken out.
第2の発明は、隔壁シールフィルムをPET材質のフィルムにすることによって、インシュレータと通路カバーの間隙からの冷媒ガスの短絡を抑制して、圧縮機外へのオイルの持ち出しを抑制できるとともに、隔壁シールフィルムを安価に構成できる。 According to a second aspect of the present invention, by making the partition wall seal film a film of PET material, it is possible to suppress a short circuit of the refrigerant gas from the gap between the insulator and the passage cover, and to prevent oil from being taken out of the compressor. The seal film can be configured at a low cost.
第3の発明は、特に、第1、2の発明の密閉型圧縮機において、圧縮されるガスが塩素を含まない代替冷媒(例えばHFC冷媒)の場合には、摺動部の表面に耐摩耗性の塩化鉄層を形成しないため、密閉容器内にオイルを確保しておく必要が特に高いが、本発明により密閉容器外へオイル吐出量を低減できるので、摺動部の信頼性を確保することができる。 In the third aspect of the invention, particularly in the hermetic compressors of the first and second aspects of the invention, when the gas to be compressed is an alternative refrigerant that does not contain chlorine (for example, HFC refrigerant), the surface of the sliding portion is subjected to wear resistance. It is particularly necessary to keep oil in the sealed container because it does not form a ferrous iron chloride layer. However, according to the present invention, the oil discharge amount can be reduced outside the sealed container, so that the reliability of the sliding portion is ensured. be able to.
第4の発明は、第1、2の発明の密閉型圧縮機において、圧縮されるガスが二酸化炭素のような自然冷媒の場合、圧縮機から吐出されるガスは高圧にする必要があり、摺動部の負荷耐力も大きなものが必要となるため、密閉容器内にオイルを確保しておく必要が特に高いが、本発明により密閉容器外へのオイル吐出量を低減できるので、摺動部の信頼性を確保することができる。 According to a fourth invention, in the hermetic compressors of the first and second inventions, when the gas to be compressed is a natural refrigerant such as carbon dioxide, the gas discharged from the compressor needs to be at a high pressure. Since the load bearing capacity of the moving part is required to be large, it is particularly necessary to secure oil in the sealed container.However, according to the present invention, the amount of oil discharged to the outside of the sealed container can be reduced. Reliability can be ensured.
第5の発明は、通常圧縮機には、使用する冷媒や圧縮機構部2に用いられる材質によって様々な種類のオイルが使用されている。当発明は、圧縮機で主に用いられているナフテン油、パラフィン油、アルキルベンゼン油などの天然物あるいは天然物由来のオイル、およびポリエーテル系油、ポリオールエステル系油などの合成オイル、または上記天然物あるいは天然物由来のオイルと合成オイルの混合オイルなどにも適用することが可能である。 According to the fifth aspect of the invention, various types of oil are used in the normal compressor depending on the refrigerant used and the material used for the compression mechanism section 2. The present invention relates to natural products or oils derived from natural products such as naphthenic oil, paraffin oil and alkylbenzene oil, which are mainly used in compressors, and synthetic oils such as polyether oils and polyol ester oils, or the above natural oils. It is also possible to apply to mixed oils of oils derived from products or natural products and synthetic oils.
第6の発明は、また、機械的特性を上げるために、上記オイルに種々の添加剤を加えることがある。当発明は、ベンゾトリアゾールなどの銅不活性化剤、硫黄系極圧添加剤、ハロゲン系極圧添加剤、りん系極圧添加剤、有機金属化合物系極圧添加剤、およびこれらの組み合わせからなる極圧添加剤などを有効量配合した圧縮機にも適用することも可能である。 In the sixth aspect of the invention, various additives may be added to the oil in order to improve mechanical properties. The present invention comprises a copper deactivator such as benzotriazole, a sulfur-based extreme pressure additive, a halogen-based extreme pressure additive, a phosphorus-based extreme pressure additive, an organometallic compound-based extreme pressure additive, and combinations thereof. It can also be applied to a compressor containing an effective amount of an extreme pressure additive or the like.
以下本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。また、各図において、それぞれ同じ構成要素については同じ符号を用い説明を省略する。 Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the embodiments. Moreover, in each figure, about the same component, the same code | symbol is used and description is abbreviate | omitted.
(実施の形態1)
図1は、本発明の実施の形態における密閉型圧縮機(スクロール式密閉圧縮機)の縦断面図、図2(a)は本発明の実施の形態における隔壁シール部材の斜め下方から見た斜視図、(b)は側面図、(c)は斜め上方から見た斜視図である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a hermetic compressor (scroll-type hermetic compressor) according to an embodiment of the present invention, and FIG. 2A is a perspective view of the partition wall sealing member according to the embodiment of the present invention as viewed obliquely from below. FIG. 2B is a side view, and FIG. 3C is a perspective view as viewed obliquely from above.
図1、2において密閉型圧縮機は密閉容器1内に圧縮機構2、この圧縮機構2の下方に設けた圧縮機構2を駆動するための電動機3と、この電動機3の回転力を圧縮機構2に伝達するためのクランク軸4とを備え、密閉容器1内の下部に設けたオイル溜め20のオイル6がクランク軸4を通じてクランク軸4の軸受部66や圧縮機構2の摺動部に供給される給油機構7とを備えている。 1 and 2, the hermetic compressor includes a compression mechanism 2 in a hermetic container 1, an electric motor 3 for driving the compression mechanism 2 provided below the compression mechanism 2, and the rotational force of the electric motor 3 as a compression mechanism 2. The oil 6 in the oil sump 20 provided at the lower part in the sealed container 1 is supplied to the bearing portion 66 of the crankshaft 4 and the sliding portion of the compression mechanism 2. The oil supply mechanism 7 is provided.
これによって、オイル6は給油機構7によって重力に逆らって軸受部66や圧縮機構2の摺動部に強制給油されて、円滑な動作を確保しながら、圧縮機構2で圧縮した冷媒ガスを密閉容器1内の電動機3の部分を通して電動機3を冷却した後、密閉容器1階に吐出するようにしており、軸受部66や圧縮機構2の摺動部に供給した後のオイルが供給圧や重力によって下方に移動しオイル溜め20に自然回収されるようにすることが出来る。 As a result, the oil 6 is forcibly supplied to the bearing 66 and the sliding portion of the compression mechanism 2 against the gravity by the oil supply mechanism 7, and the refrigerant gas compressed by the compression mechanism 2 is sealed in a sealed container while ensuring smooth operation. After the motor 3 is cooled through the portion of the motor 3 in 1, the oil is discharged to the first floor of the sealed container, and the oil after being supplied to the sliding portion of the bearing 66 and the compression mechanism 2 is caused by supply pressure and gravity. It can move downward and be naturally recovered in the oil sump 20.
しかしながら実際には、圧縮機構2から吐出される冷媒ガスには圧縮機構2内で接触したオイル6を随伴させていたり、主軸受部材11の下に滴下してくる供給後のオイル6を飛散させて随伴させたりしていて、従来これを十分に分離できず密閉容器1外に吐出する冷媒ガスとともにオイルも吐出されてしまう問題があり、それを防止するために以下のような構成をとっている。 However, actually, the refrigerant gas discharged from the compression mechanism 2 is accompanied by the oil 6 that has come into contact with the compression mechanism 2, or the supplied oil 6 dripping below the main bearing member 11 is scattered. In order to prevent this, there is a problem that the oil is discharged together with the refrigerant gas discharged to the outside of the hermetic container 1 and cannot be separated sufficiently. Yes.
圧縮機構2から吐出される冷媒ガスが、圧縮機構2の上部の容器内吐出室31、この容器内吐出室31と圧縮機構2の下部を連通させる圧縮機構連通路32、この圧縮機構連通路32から回転子上部室33に続く連絡路34、回転子上部室33と回転子下部室35を連通させるように回転子3bに設けた回転子通路36、固定子3aと回転子3bとの電動機ギャップ80、回転子下部室35、を順次経て電動機3の下に至り、さらに固定子3aの下部と上部とを連通させるように固定子3aまたは固定子3aと密閉容器1との間に設けられた固定子通路37を通って前記連絡路34の外まわりの固定子上部室38に抜けた後、密閉容器1の固定子上部室38の位置以上の部分に設けられた外部吐出口39を通って密閉容器1外に吐出されるようにする容器内ガス通路を設けてある。 Refrigerant gas discharged from the compression mechanism 2 communicates with the in-container discharge chamber 31 at the top of the compression mechanism 2, the compression mechanism communication path 32 that connects the in-container discharge chamber 31 and the bottom of the compression mechanism 2, and the compression mechanism communication path 32. To the rotor upper chamber 33, the rotor passage 36 provided in the rotor 3b so that the rotor upper chamber 33 and the rotor lower chamber 35 communicate with each other, and the motor gap between the stator 3a and the rotor 3b. 80, the rotor lower chamber 35, and the lower part of the stator 3a. The stator 3a or the stator 3a and the hermetic container 1 are provided so that the lower part and the upper part of the stator 3a communicate with each other. After passing through the stator passage 37 to the stator upper chamber 38 around the outside of the communication path 34, the sealed container 1 is sealed through an external discharge port 39 provided in a portion of the sealed container 1 beyond the position of the stator upper chamber 38. It is discharged out of the container 1 It is provided with a container inside the gas passage to.
このような容器内ガス通路の容器内吐出室31と、圧縮機構連通路32とは、圧縮機構2およびその軸受部66の外回りに位置して、圧縮機構2から吐出される冷媒ガスを一括して圧縮機構2の下部の連絡路34に吐出させる。続いて連絡路34は吐出されてきた冷媒ガスを回転子上部室33、固定子上部室38に導く。 The in-container discharge chamber 31 of the in-container gas passage and the compression mechanism communication passage 32 are located outside the compression mechanism 2 and its bearing portion 66, and collectively collect the refrigerant gas discharged from the compression mechanism 2. Then, it is discharged to the communication path 34 below the compression mechanism 2. Subsequently, the communication path 34 guides the discharged refrigerant gas to the rotor upper chamber 33 and the stator upper chamber 38.
上記の様に誘導された冷媒ガスの一部は、回転子3bの回転による影響で緩く旋回する状態で回転子通路36内に進入させて下方に通りぬけ、オイル6を分離する分離板61に強く衝突して、随伴しているオイル6を効果的に分離し、またオイル6のミストを液滴化しかつ成長させて、分離板61と回転子3bの下端との間の空間の円周上の少なくとも一部が側方へ開口していることにより遠心分離作用が働き、オイル6の分離効果を高めている。 A part of the refrigerant gas induced as described above enters the rotor passage 36 in a state of being swirled loosely due to the rotation of the rotor 3b, passes through it, and passes to the separation plate 61 that separates the oil 6. Colliding strongly and effectively separating the accompanying oil 6, and making the mist of the oil 6 into droplets and growing, on the circumference of the space between the separation plate 61 and the lower end of the rotor 3 b Since at least a part of the opening is laterally opened, the centrifugal separation action works and the oil 6 separation effect is enhanced.
また、残りの冷媒ガスは、冷媒ガスガイドカップ82外壁と通路カバー51内壁の狭い空間から電動機ギャップ80を経て回転子下部空間35に流れるものと、通路カバー51外壁に取り付けられた隔壁シールフィルム52と固定子3aのインシュレータ3c内壁の間隙を経て固定子上部室38へ流れるものに分かれる。 The remaining refrigerant gas flows from the narrow space between the outer wall of the refrigerant gas guide cup 82 and the inner wall of the passage cover 51 to the rotor lower space 35 through the motor gap 80, and the partition seal film 52 attached to the outer wall of the passage cover 51. And that which flows into the stator upper chamber 38 through the gap between the inner walls of the insulator 3c of the stator 3a.
隔壁シールフィルムの折返し部52aと電動機インシュレータ3cを接触させることによってオイルミストを多く含んだ状態のままの冷媒ガスが流れにくくなり、また隔壁シールフィルム折り返し部52aに溜まったオイルが隙間から再流出することを抑えることで、オイル6が十分に分離されて電動機下部空間に導かれた冷媒ガスは、固定子通路37を通って軸受部66まわりにある連絡路34のさらに外まわりの固定子上部室38に達して、圧縮機構2に設けられた圧縮機構上昇通路43を経て、密閉容器1の固定子上部室38の位置以上の部分にある外部吐出口39から密閉容器1外に吐出でき、圧縮機外へのオイルの持ち出しを抑制できることによって冷凍サイクル中での配管圧力損失や凝縮器、蒸発器などの熱交換器での熱交換効率の低下を防止することができる。 By bringing the partition wall sealing film folded portion 52a into contact with the electric motor insulator 3c, the refrigerant gas that contains a large amount of oil mist does not flow easily, and the oil accumulated in the partition wall sealing film folded portion 52a flows out again from the gap. By suppressing this, the refrigerant gas sufficiently separated from the oil 6 and introduced into the motor lower space passes through the stator passage 37 and further passes through the stator passage 37 around the bearing portion 66 and further around the stator upper chamber 38 on the outer periphery. Can be discharged to the outside of the sealed container 1 through the compression mechanism ascending passage 43 provided in the compression mechanism 2 from the external discharge port 39 in a portion of the sealed container 1 at a position higher than the position of the stator upper chamber 38. Suppressing oil take-out to the outside can reduce pipe pressure loss in the refrigeration cycle and heat exchange effects in heat exchangers such as condensers and evaporators It is possible to prevent a decrease in.
上記のように、本発明にかかる密閉型圧縮機は、隔壁シールフィルムをインシュレータと軸方向で接触させることにより、シール性を向上させオイルミストを多く含んだ冷媒ガスの短絡を抑制して、圧縮機外へのオイル吐出量を抑制できる密閉型圧縮機を実現することができ、HFC系冷媒、HCFC系冷媒および二酸化炭素などの自然冷媒を用いたエアコンディショナー用圧縮機やヒートポンプ式給湯機用圧縮機などの用途に適用できる。 As described above, the hermetic compressor according to the present invention improves the sealing performance by bringing the partition wall seal film into contact with the insulator in the axial direction and suppresses a short circuit of the refrigerant gas containing a large amount of oil mist. A hermetic compressor that can control the amount of oil discharged to the outside of the machine can be realized, and a compressor for an air conditioner and a heat pump type hot water heater using natural refrigerants such as HFC refrigerant, HCFC refrigerant, and carbon dioxide. It can be applied to machine applications.
1 密閉容器
2 圧縮機構
3 電動機
3a 固定子
3b 回転子
3c インシュレータ
4 クランク軸
6 オイル
7 給油機構
20 オイル溜め
31 容器内吐出室
32 圧縮機構連通路
33 回転子上部室
34 連絡路
35 回転子下部室
36 回転子通路
37 固定子通路
38 固定子上部室
39 外部吐出口
42 圧縮機構上部室
43 圧縮機構上昇通路
51 通路カバー
52 隔壁シールフィルム
52a 隔壁シールフィルム折返し部
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Compression mechanism 3 Electric motor 3a Stator 3b Rotor 3c Insulator 4 Crankshaft 6 Oil 7 Oil supply mechanism 20 Oil sump 31 Discharge chamber in container 32 Compression mechanism communication path 33 Rotor upper chamber 34 Connection path 35 Rotor lower chamber 36 Rotor passage 37 Stator passage 38 Stator upper chamber 39 External discharge port 42 Compression mechanism upper chamber 43 Compression mechanism ascending passage 51 Passage cover 52 Bulkhead seal film 52a Bulkhead seal film folding portion
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009197840A JP2011047343A (en) | 2009-08-28 | 2009-08-28 | Hermetic compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009197840A JP2011047343A (en) | 2009-08-28 | 2009-08-28 | Hermetic compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011047343A true JP2011047343A (en) | 2011-03-10 |
Family
ID=43833915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009197840A Pending JP2011047343A (en) | 2009-08-28 | 2009-08-28 | Hermetic compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011047343A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012127755A1 (en) * | 2011-03-24 | 2012-09-27 | 三洋電機株式会社 | Scroll compression device |
JP2012207541A (en) * | 2011-03-29 | 2012-10-25 | Sanyo Electric Co Ltd | Scroll compression device |
US9388808B2 (en) | 2011-03-24 | 2016-07-12 | Panasonic Intellectual Property Management Co., Ltd. | Scroll compression device |
US9581160B2 (en) | 2011-03-24 | 2017-02-28 | Panasonic Intellectual Property Management Co. Ltd. | Scroll compression device |
CN110741162A (en) * | 2017-04-12 | 2020-01-31 | Lg电子株式会社 | Scroll compressor having a plurality of scroll members |
-
2009
- 2009-08-28 JP JP2009197840A patent/JP2011047343A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012127755A1 (en) * | 2011-03-24 | 2012-09-27 | 三洋電機株式会社 | Scroll compression device |
US9388808B2 (en) | 2011-03-24 | 2016-07-12 | Panasonic Intellectual Property Management Co., Ltd. | Scroll compression device |
US9494155B2 (en) | 2011-03-24 | 2016-11-15 | Panasonic Intellectual Property Management Co., Ltd. | Scroll compression device |
US9581160B2 (en) | 2011-03-24 | 2017-02-28 | Panasonic Intellectual Property Management Co. Ltd. | Scroll compression device |
US10227982B2 (en) | 2011-03-24 | 2019-03-12 | Panasonic Intellectual Property Management Co., Ltd. | Scroll compression device |
JP2012207541A (en) * | 2011-03-29 | 2012-10-25 | Sanyo Electric Co Ltd | Scroll compression device |
CN110741162A (en) * | 2017-04-12 | 2020-01-31 | Lg电子株式会社 | Scroll compressor having a plurality of scroll members |
US11187230B2 (en) | 2017-04-12 | 2021-11-30 | Lg Electronics Inc. | Scroll compressor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5300727B2 (en) | Rotary compressor | |
JP4146693B2 (en) | Scroll compressor | |
JP5167201B2 (en) | Screw compressor | |
JP2011047343A (en) | Hermetic compressor | |
MXPA05002742A (en) | Transition critical refrigerating device. | |
WO2013175566A1 (en) | Refrigerant compressor and refrigeration cycle device | |
WO2004081384A1 (en) | Hermetic compressor | |
JP4550843B2 (en) | Compressor | |
JP2007113815A (en) | Refrigerating cycle device | |
JP2011064067A (en) | Hermetic compressor | |
JP5181532B2 (en) | Fluid machine and refrigeration cycle apparatus including the same | |
JP5827147B2 (en) | Screw compressor | |
JP4569406B2 (en) | Refrigeration cycle equipment | |
JP2011163221A (en) | Hermetic compressor | |
JP4929971B2 (en) | Oil separator | |
JP2010121501A (en) | Hermetic compressor | |
JP2010144681A (en) | Hermetic compressor | |
WO2020004220A1 (en) | Horizontal scroll compressor | |
JP5136498B2 (en) | Hermetic compressor | |
JP2012007474A (en) | Hermetic compressor | |
JP2009052497A (en) | Refrigerant compressor | |
JP2012112366A (en) | Hermetic compressor | |
JP2006189185A (en) | Refrigerating cycle device | |
JP2017089982A (en) | Freezer | |
JP2009257272A (en) | Hermetically-sealed compressor |