JP2011046857A - Use of s-(2-aminoethyl) thiosulfuric acid or its metal salt for improving viscoelasticity property of vulcanized rubber - Google Patents

Use of s-(2-aminoethyl) thiosulfuric acid or its metal salt for improving viscoelasticity property of vulcanized rubber Download PDF

Info

Publication number
JP2011046857A
JP2011046857A JP2009197862A JP2009197862A JP2011046857A JP 2011046857 A JP2011046857 A JP 2011046857A JP 2009197862 A JP2009197862 A JP 2009197862A JP 2009197862 A JP2009197862 A JP 2009197862A JP 2011046857 A JP2011046857 A JP 2011046857A
Authority
JP
Japan
Prior art keywords
ion
aminoethyl
thiosulfuric acid
rubber
vulcanized rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009197862A
Other languages
Japanese (ja)
Other versions
JP5310390B2 (en
Inventor
Orhan Ozturk
オルハン オズトゥルク
Yasuo Kamikita
泰生 上北
Kenichi Takeuchi
謙一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2009197862A priority Critical patent/JP5310390B2/en
Publication of JP2011046857A publication Critical patent/JP2011046857A/en
Application granted granted Critical
Publication of JP5310390B2 publication Critical patent/JP5310390B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve viscoelasticity property of vulcanized rubbers used in manufacturing of tires. <P>SOLUTION: An S-(2-aminoethyl) thiosulfuric acid or its metal salt is used to improve the viscoelasticity property of vulcanized rubbers. A preferable metal ion for the metal salt of the S-(2-aminoethyl) thiosulfuric acid is a lithium ion, a sodium ion, a potassium ion, a cesium ion, a cobalt ion, a copper ion or a zinc ion. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、加硫ゴムが有する粘弾性特性を改善させるためのS−(2−アミノエチル)チオ硫酸またはその金属塩の使用に関する。   The present invention relates to the use of S- (2-aminoethyl) thiosulfuric acid or a metal salt thereof for improving the viscoelastic properties of vulcanized rubber.

近年、環境保護の要請から、自動車の燃費向上(すなわち、低燃費化)が求められている。そして、自動車用タイヤの分野において、粘弾性特性を改善させることにより、自動車の燃費が向上することが知られている(非特許文献1参照)。   In recent years, there has been a demand for improvement in fuel consumption (that is, reduction in fuel consumption) of automobiles due to a demand for environmental protection. In the field of automobile tires, it is known that the fuel efficiency of automobiles is improved by improving viscoelastic characteristics (see Non-Patent Document 1).

日本ゴム協会編「ゴム技術入門」丸善株式会社、124頁Edited by Japan Rubber Association “Introduction to Rubber Technology” Maruzen Co., Ltd., p. 124

タイヤの分野において、タイヤ製造に用いられる加硫ゴムの粘弾性特性を改善させる方法が求められていた。   In the field of tires, a method for improving the viscoelastic properties of vulcanized rubber used for tire manufacture has been demanded.

本発明者は、このような状況下、鋭意検討を重ねた結果、本発明に至った。   As a result of intensive studies under such circumstances, the present inventor has reached the present invention.

すなわち、本発明は、
1.加硫ゴムが有する粘弾性特性を改善させるためのS−(2−アミノエチル)チオ硫酸またはその金属塩の使用;および
2.S−(2−アミノエチル)チオ硫酸の金属塩における金属イオンが、リチウムイオン、ナトリウムイオン、カリウムイオン、セシウムイオン、コバルトイオン、銅イオンまたは亜鉛イオンである前項1に記載される使用;
等を提供するものである。
That is, the present invention
1. 1. use of S- (2-aminoethyl) thiosulfuric acid or a metal salt thereof to improve the viscoelastic properties of vulcanized rubber; The use according to item 1 above, wherein the metal ion in the metal salt of S- (2-aminoethyl) thiosulfuric acid is lithium ion, sodium ion, potassium ion, cesium ion, cobalt ion, copper ion or zinc ion;
Etc. are provided.

本発明により、タイヤの製造に用いられる加硫ゴムの粘弾性特性を改善させる方法が提供可能となる。   The present invention can provide a method for improving the viscoelastic properties of a vulcanized rubber used for manufacturing a tire.

以下、本発明について詳細に説明する。
本発明において「粘弾性特性を改善させる」としては、例えば、後述のような加硫ゴムの損失係数(tanδ)を改変させること等をあげることができる。
Hereinafter, the present invention will be described in detail.
In the present invention, “improving viscoelastic properties” can include, for example, modifying a loss factor (tan δ) of a vulcanized rubber as described below.

本発明に用いるS−(2−アミノエチル)チオ硫酸の金属塩は、下記式
(HN−(CH−SSO ・Mn+
(式中、Mn+は金属イオンを表し、nはその価数を表す。)
で示される化合物である。
The metal salt of S- (2-aminoethyl) thiosulfuric acid used in the present invention is represented by the following formula (H 2 N— (CH 2 ) 2 —SSO 3 ) n · M n +
(In the formula, M n + represents a metal ion, and n represents its valence.)
It is a compound shown by these.

S−(2−アミノエチル)チオ硫酸の金属塩は、例えば、2−ハロエチルアミンとチオ硫酸ナトリウムとを反応させる方法;フタルイミドカリウム塩と1,2−ジハロエタンとを反応させ、得られた化合物とチオ硫酸ナトリウムとを反応させ、次いで、得られた化合物を加水分解する方法;市販のS−(2−アミノエチル)チオ硫酸と金属水酸化物とを反応させる方法;等の任意の公知の方法により製造することができる。   The metal salt of S- (2-aminoethyl) thiosulfuric acid is, for example, a method of reacting 2-haloethylamine and sodium thiosulfate; reacting phthalimide potassium salt with 1,2-dihaloethane, Any known method such as a method of reacting sodium thiosulfate and then hydrolyzing the obtained compound; a method of reacting commercially available S- (2-aminoethyl) thiosulfuric acid with metal hydroxide; Can be manufactured.

n+で示される金属イオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン、セシウムイオン、コバルトイオン、銅イオンおよび亜鉛イオンが好ましく、リチウムイオン、ナトリウムイオンおよびカリウムイオンがより好ましい。nは金属イオンの価数を表し、当該金属において可能な範囲であれば、特に限定されない。例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、セシウムイオンのようなアルカリ金属イオンの場合、nは通常1であり、コバルトイオンの場合、nは通常2または3であり、銅イオンの場合、nは通常1〜3の整数であり、亜鉛イオンの場合、nは通常2である。上記の製法によれば、通常、ナトリウム塩が得られるが、必要に応じてカチオン交換すればよい。 As the metal ion represented by M n + , lithium ion, sodium ion, potassium ion, cesium ion, cobalt ion, copper ion and zinc ion are preferable, and lithium ion, sodium ion and potassium ion are more preferable. n represents the valence of the metal ion, and is not particularly limited as long as it is a possible range for the metal. For example, in the case of an alkali metal ion such as lithium ion, sodium ion, potassium ion or cesium ion, n is usually 1, n is usually 2 or 3 in the case of cobalt ion, and n is in the case of copper ion. Usually, it is an integer of 1 to 3, and in the case of zinc ion, n is usually 2. According to said manufacturing method, although a sodium salt is obtained normally, what is necessary is just to exchange cation as needed.

S−(2−アミノエチル)チオ硫酸またはその金属塩の平均粒径は、好ましくは0.05〜100μm、より好ましくは0.05〜50μm、さらに好ましくは0.05〜30μmの範囲である。かかる平均粒径は、レーザー回析法にて測定することができる。   The average particle diameter of S- (2-aminoethyl) thiosulfuric acid or a metal salt thereof is preferably 0.05 to 100 μm, more preferably 0.05 to 50 μm, and still more preferably 0.05 to 30 μm. Such an average particle diameter can be measured by a laser diffraction method.

本発明は、該S−(2−アミノエチル)チオ硫酸またはその金属塩を加硫ゴムの製造時に配合することにより実施される。   This invention is implemented by mix | blending this S- (2-aminoethyl) thiosulfuric acid or its metal salt at the time of manufacture of vulcanized rubber.

加硫ゴムは、通常、ゴム成分、充填剤、酸化亜鉛、硫黄成分および加硫促進剤を含む。   The vulcanized rubber usually contains a rubber component, a filler, zinc oxide, a sulfur component and a vulcanization accelerator.

ゴム成分としては、天然ゴムのほか、ポリイソプレンゴム(IR)、スチレン・ブタジエン共重合ゴム(SBR)、ポリブタジエンゴム(BR)、アクリロニトリル・ブタジエン共重合ゴム(NBR)、イソプレン・イソブチレン共重合ゴム(IIR)、エチレン・プロピレン−ジエン共重合ゴム(EPDM)、ハロゲン化ブチルゴム(HR)等の各種の合成ゴムが例示されるが、天然ゴム、スチレン・ブタジエン共重合ゴム、ポリブタジエンゴム等の高不飽和性ゴムが好ましく用いられる。特に好ましくは天然ゴムである。また、天然ゴムとスチレン・ブタジエン共重合ゴムの併用、天然ゴムとポリブタジエンゴムの併用等、数種のゴム成分を組み合わせることも有効である。   Rubber components include natural rubber, polyisoprene rubber (IR), styrene / butadiene copolymer rubber (SBR), polybutadiene rubber (BR), acrylonitrile / butadiene copolymer rubber (NBR), isoprene / isobutylene copolymer rubber ( IIR), various synthetic rubbers such as ethylene / propylene-diene copolymer rubber (EPDM) and halogenated butyl rubber (HR), but highly unsaturated such as natural rubber, styrene / butadiene copolymer rubber and polybutadiene rubber. Is preferably used. Particularly preferred is natural rubber. It is also effective to combine several rubber components such as a combination of natural rubber and styrene / butadiene copolymer rubber, a combination of natural rubber and polybutadiene rubber.

充填剤としては、ゴム分野で通常使用されているカーボンブラック、シリカ、タルク、クレイ等が例示されるが、カーボンブラックが特に好ましく使用される。カーボンブラックとしては、例えば、日本ゴム協会編「ゴム工業便覧<第四版>」の494頁に記載されるものが挙げられ、HAF(High Abrasion Furnace)、SAF(Super Abrasion Furnace)、ISAF(Intermediate SAF)、FEF(Fast Extrusion Furnace)等のカーボンブラックが好ましい。また、カーボンブラックとシリカの併用等、数種の充填剤を組み合わせることも有効である。かかる充填剤の使用量は特に限定されるものではないが、ゴム成分100重量部あたり10〜100重量部の範囲が好ましい。特に好ましくは30〜70重量部である。   Examples of the filler include carbon black, silica, talc, and clay that are usually used in the rubber field, and carbon black is particularly preferably used. Examples of the carbon black include those described on page 494 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. HAF (High Abrasion Furnace), SAF (Super Abrasion Furnace), ISAF (Intermediate). Carbon black such as SAF) and FEF (Fast Extrusion Furnace) is preferable. It is also effective to combine several kinds of fillers such as a combination of carbon black and silica. The amount of the filler used is not particularly limited, but is preferably in the range of 10 to 100 parts by weight per 100 parts by weight of the rubber component. Particularly preferred is 30 to 70 parts by weight.

硫黄成分としては、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、及び高分散性硫黄等が挙げられる。粉末硫黄および不溶性硫黄が好ましい。加硫促進剤の例としては、ゴム工業便覧<第四版>(平成6年1月20日社団法人 日本ゴム協会発行)の412〜413ページに記載されているチアゾール系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が挙げられる。   Examples of the sulfur component include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur. Powdered sulfur and insoluble sulfur are preferred. Examples of vulcanization accelerators include thiazole-based vulcanization accelerators and sulfur compounds described on pages 412 to 413 of Rubber Industry Handbook <Fourth Edition> (issued by the Japan Rubber Association on January 20, 1994). Examples thereof include phenamide vulcanization accelerators and guanidine vulcanization accelerators.

一般に、加硫ゴムを製造する場合、その製造は基本的に3つの工程で行われる。すなわち、ゴム成分、充填剤や酸化亜鉛等を比較的高温で配合する第1の工程、硫黄成分や加硫促進剤等を比較的低温で配合する第2の工程、最後に比較的高温で加硫処理を行う第3の工程により加硫ゴムを得る。   Generally, when producing a vulcanized rubber, the production is basically performed in three steps. That is, the first step of blending rubber components, fillers, zinc oxide, etc. at a relatively high temperature, the second step of blending sulfur components, vulcanization accelerators, etc. at a relatively low temperature, and finally adding at a relatively high temperature. A vulcanized rubber is obtained by the third step of vulcanization.

S−(2−アミノエチル)チオ硫酸またはその金属塩を配合する工程は、特に限定されるものではないが、充填剤や酸化亜鉛とともに、第1の工程で配合することが好ましい。S−(2−アミノエチル)チオ硫酸またはその金属塩の使用量は特に限定されるものではない。例えば、ゴム成分100重量部あたり0.1〜10重量部の範囲が好ましい。より好ましくは0.5〜3重量部の範囲である。   Although the process of mix | blending S- (2-aminoethyl) thiosulfuric acid or its metal salt is not specifically limited, It is preferable to mix | blend with a filler and zinc oxide at a 1st process. The amount of S- (2-aminoethyl) thiosulfuric acid or a metal salt thereof used is not particularly limited. For example, the range of 0.1 to 10 parts by weight per 100 parts by weight of the rubber component is preferable. More preferably, it is the range of 0.5-3 weight part.

従来より用いられているプロセスオイルやステアリン酸等の脂肪酸類を配合することも可能である。これらを配合する工程は特に限定されるものではないが、第1の工程で配合することが好ましい。   Conventionally used process oils and fatty acids such as stearic acid can also be blended. Although the process of mix | blending these is not specifically limited, It is preferable to mix | blend at a 1st process.

従来より用いられている老化防止剤やモルフォリンジスルフィド等の加硫剤を配合することも可能である。これらを配合する工程は特に限定されるものではないが、第2の工程で配合することが好ましい。   Conventional vulcanizing agents such as anti-aging agents and morpholine disulfide can also be blended. Although the process of mix | blending these is not specifically limited, It is preferable to mix | blend at a 2nd process.

第1の工程の配合温度は、200℃以下が好ましい。より好ましくは120〜180℃である。第2の工程の配合温度は、60〜120℃が好ましい。第3の工程の加硫処理温度は、120〜170℃が好ましい。   The compounding temperature in the first step is preferably 200 ° C. or lower. More preferably, it is 120-180 degreeC. The compounding temperature in the second step is preferably 60 to 120 ° C. The vulcanization temperature in the third step is preferably 120 to 170 ° C.

また、S−(2−アミノエチル)チオ硫酸またはその金属塩と充填剤とを配合すると、トルクの上昇が見られるが、これを改良する目的で、しゃく解剤やリターダ−を併用してもよく、さらには、一般の各種ゴム薬品や軟化剤等を必要に応じて併用してもよい。   Further, when S- (2-aminoethyl) thiosulfuric acid or a metal salt thereof and a filler are blended, an increase in torque is observed. For the purpose of improving this, a peptizer or a retarder may be used in combination. Moreover, various general rubber chemicals and softeners may be used in combination as necessary.

かくして得られる加硫ゴムを用いて、通常の方法によって空気入りタイヤが製造される。すなわち、上記加硫処理前の段階のゴム組成物をトレッド用部材に押出し加工し、タイヤ成形機上で通常の方法により貼り付け成形し、生タイヤが成形され、この生タイヤを加硫機中で加熱加圧することにより、タイヤが得られる。   Using the vulcanized rubber thus obtained, a pneumatic tire is produced by a usual method. That is, the rubber composition before the vulcanization treatment is extruded into a tread member and pasted on a tire molding machine by a usual method to form a green tire. A tire can be obtained by heating and pressurizing.

このようにして得られるタイヤが装着された自動車の燃費は向上し、低燃費化が達成できる。   The fuel efficiency of the automobile equipped with the tire thus obtained is improved, and a reduction in fuel consumption can be achieved.

以下、実施例、試験例及び製造例等を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example, a test example, a manufacture example, etc. are given and this invention is demonstrated concretely, this invention is not limited to these.

製造例1:S−(2−アミノエチル)チオ硫酸のナトリウム塩
反応容器を窒素置換し、そこに、S−(2−アミノエチル)チオ硫酸(和光純薬工業製、製品名「S−(2−アミノエチル)チオスルホン酸」)5.0g(33mmol)および水20mlを仕込み、5℃まで冷却した。水2mlに水酸化ナトリウム1.27g(33mmol)を加えた溶液を、5℃まで冷却し、先に調整した溶液に室温で2時間かけて滴下、攪拌した。反応液のpHが9−10であることを確認し、溶液を減圧下、濃縮した。エタノールを用いて再結晶を行い、S−(2−アミノエチル)チオ硫酸のナトリウム塩を得た。(収率96%)
H−NMR(270.05MHz,DO)δppm:2.9(2H,t,J=6.6Hz),2.6(2H,t,J=6.6Hz),1.9−2.0(2H,m)
Production Example 1: Sodium salt of S- (2-aminoethyl) thiosulfuric acid The reaction vessel was purged with nitrogen, and S- (2-aminoethyl) thiosulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd., product name “S- ( 2-aminoethyl) thiosulfonic acid ") 5.0 g (33 mmol) and 20 ml of water were charged and cooled to 5 ° C. A solution obtained by adding 1.27 g (33 mmol) of sodium hydroxide to 2 ml of water was cooled to 5 ° C. and added dropwise to the previously prepared solution at room temperature over 2 hours and stirred. After confirming that the pH of the reaction solution was 9-10, the solution was concentrated under reduced pressure. Recrystallization was performed using ethanol to obtain a sodium salt of S- (2-aminoethyl) thiosulfuric acid. (Yield 96%)
1 H-NMR (270.05 MHz, D 2 O) δ ppm : 2.9 (2H, t, J = 6.6 Hz), 2.6 (2H, t, J = 6.6 Hz), 1.9- 2.0 (2H, m)

実施例1
<第1の工程>
バンバリーミキサー(東洋精機製600mlラボプラストミル)を用いて、天然ゴム(RSS#1)100重量部、HAF(旭カーボン社製、商品名「旭#70」)45重量部、ステアリン酸3重量部、酸化亜鉛5重量部および上記製造例1で得たS−(2−アミノエチル)チオ硫酸のナトリウム塩1重量部を混練配合し、ゴム組成物を得た。該工程は、各種薬品及び充填剤投入後5分間、50rpmのミキサーの回転数で混練することにより実施し、その時のゴム温度は160〜175℃であった。
<第2の工程>
オープンロール機で60〜80℃の温度にて、第1の工程により得られたゴム組成物と、加硫促進剤(N−シクロへキシル−2−ベンゾチアゾールスルフェンアミド)1重量部、硫黄2重量部および老化防止剤(N−フェニル−N’−1,3−ジメチルブチル−p−フェニレンジアミン:商品名「アンチゲン(登録商標)6C」住友化学株式会社製)1重量部とを混練配合し、ゴム組成物を得た。
<第3の工程>
第2の工程で得たゴム組成物を145℃で加硫処理を行い、加硫ゴムを得た。
Example 1
<First step>
Using a Banbury mixer (600 ml Labo Plast Mill manufactured by Toyo Seiki Co., Ltd.), 100 parts by weight of natural rubber (RSS # 1), 45 parts by weight of HAF (Asahi Carbon Co., Ltd., trade name “Asahi # 70”), 3 parts by weight of stearic acid Then, 5 parts by weight of zinc oxide and 1 part by weight of sodium salt of S- (2-aminoethyl) thiosulfuric acid obtained in Production Example 1 were kneaded and mixed to obtain a rubber composition. The process was carried out by kneading at a rotational speed of a mixer of 50 rpm for 5 minutes after charging various chemicals and fillers, and the rubber temperature at that time was 160 to 175 ° C.
<Second step>
The rubber composition obtained in the first step, 1 part by weight of sulfur accelerator (N-cyclohexyl-2-benzothiazolesulfenamide), sulfur at a temperature of 60 to 80 ° C. in an open roll machine 2 parts by weight and an antioxidant (N-phenyl-N′-1,3-dimethylbutyl-p-phenylenediamine: trade name “Antigen (registered trademark) 6C” manufactured by Sumitomo Chemical Co., Ltd.) 1 part by weight Thus, a rubber composition was obtained.
<Third step>
The rubber composition obtained in the second step was vulcanized at 145 ° C. to obtain a vulcanized rubber.

参考例1
実施例1において、S−(2−アミノエチル)チオ硫酸のナトリウム塩を用いない以外は、実施例1と同様にして加硫ゴムを得た。
Reference example 1
In Example 1, a vulcanized rubber was obtained in the same manner as in Example 1 except that the sodium salt of S- (2-aminoethyl) thiosulfuric acid was not used.

試験例1
以下のとおり、引張特性および粘弾性特性を測定した。
(1)引張特性
JIS−K6251に準拠し、測定を行った。
引張応力(M200)は、ダンベル3号形を用いて測定した。
レジリエンスは、リュプケタイプの試験機を用いて測定した。
(2)粘弾性特性
株式会社上島製作所製の粘弾性アナライザを用いて測定した。
条件:温度−5℃〜80℃(昇温速度:2℃/分)
初期歪10%、動的歪2.5%、周波数10Hz
Test example 1
Tensile properties and viscoelastic properties were measured as follows.
(1) Tensile properties Measurement was performed according to JIS-K6251.
The tensile stress (M 200 ) was measured using a dumbbell No. 3 type.
Resilience was measured using a Lupke type testing machine.
(2) Viscoelastic property It measured using the viscoelasticity analyzer made by Ueshima Seisakusho.
Condition: Temperature -5 ° C to 80 ° C (Temperature increase rate: 2 ° C / min)
Initial strain 10%, dynamic strain 2.5%, frequency 10Hz

参考例1で得た加硫ゴムを対照とした場合、実施例1で得た加硫ゴムは、レジリエンスが6%向上し、引張応力(M200)が12%向上し、粘弾性特性(tanδ)が9%低下し、いずれの試験においても各種物性の改善が確認された。 When the vulcanized rubber obtained in Reference Example 1 is used as a control, the vulcanized rubber obtained in Example 1 has a 6% improvement in resilience, a 12% improvement in tensile stress (M 200 ), and a viscoelastic property (tan δ). ) Decreased by 9%, and improvements in various physical properties were confirmed in all tests.

製造例2:S−(2−アミノエチル)チオ硫酸のカリウム塩
反応容器を窒素置換し、そこに、S−(2−アミノエチル)チオ硫酸(和光純薬工業製、製品名「S−(2−アミノエチル)チオスルホン酸」)6.0g(38mmol)および水20mlを仕込み、5℃まで冷却した。水2mlに水酸化カリウム2.14g(38mmol)を加えた溶液を、5℃まで冷却し、先に調整した溶液に室温で2時間かけて滴下、攪拌した。反応液のpHが9−10であることを確認し、溶液を減圧下、濃縮した。エタノールを用いて再結晶を行い、S−(2−アミノエチル)チオ硫酸のカリウム塩を得た。(収率99%)
H−NMR(270.05MHz,DO)δppm:3.1(2H,t,J=6.3Hz),2.9(2H,t,J=6.3Hz)
Production Example 2: Potassium salt of S- (2-aminoethyl) thiosulfuric acid The reaction vessel was purged with nitrogen, and S- (2-aminoethyl) thiosulfuric acid (manufactured by Wako Pure Chemical Industries, product name “S- ( 2-Aminoethyl) thiosulfonic acid ") 6.0 g (38 mmol) and 20 ml of water were charged and cooled to 5 ° C. A solution obtained by adding 2.14 g (38 mmol) of potassium hydroxide to 2 ml of water was cooled to 5 ° C. and added dropwise to the previously prepared solution at room temperature over 2 hours and stirred. After confirming that the pH of the reaction solution was 9-10, the solution was concentrated under reduced pressure. Recrystallization was performed using ethanol to obtain a potassium salt of S- (2-aminoethyl) thiosulfuric acid. (Yield 99%)
1 H-NMR (270.05 MHz, D 2 O) δ ppm : 3.1 (2H, t, J = 6.3 Hz), 2.9 (2H, t, J = 6.3 Hz)

実施例2
実施例1の第1の工程において、上記製造例1で得たS−(2−アミノエチル)チオ硫酸のナトリウム塩に代えて、上記製造例2で得たS−(2−アミノエチル)チオ硫酸のカリウム塩を用いる以外は、実施例1と同様にして加硫ゴムを得た。
Example 2
In the first step of Example 1, instead of the sodium salt of S- (2-aminoethyl) thiosulfuric acid obtained in Production Example 1, S- (2-aminoethyl) thio obtained in Production Example 2 was used. A vulcanized rubber was obtained in the same manner as in Example 1 except that the potassium salt of sulfuric acid was used.

試験例2
試験例1と同様に引張特性および粘弾性特性を測定したところ、参考例1で得た加硫ゴムを対照とした場合、実施例2で得た加硫ゴムは、レジリエンスが3%向上し、引張応力(M200)が9%向上し、粘弾性特性(tanδ)が5%低下し、いずれの試験においても各種物性の改善が確認された。
Test example 2
When the tensile properties and viscoelastic properties were measured in the same manner as in Test Example 1, when the vulcanized rubber obtained in Reference Example 1 was used as a control, the vulcanized rubber obtained in Example 2 improved in resilience by 3%. Tensile stress (M 200 ) was improved by 9%, viscoelastic property (tan δ) was reduced by 5%, and improvements in various physical properties were confirmed in all tests.

製造例3:S−(2−アミノエチル)チオ硫酸のリチウム塩
反応容器を窒素置換し、そこに、S−(2−アミノエチル)チオ硫酸(和光純薬工業製、製品名「S−(2−アミノエチル)チオスルホン酸」)6.0g(38mmol)および水20mlを仕込み、5℃まで冷却した。水2mlに水酸化リチウム0.91g(38mmol)を加えた溶液を、5℃まで冷却し、先に調整した溶液に室温で2時間かけて滴下、攪拌した。反応液のpHが9−10であることを確認し、溶液を減圧下、濃縮した。エタノールを用いて再結晶を行い、S−(2−アミノエチル)チオ硫酸のリチウム塩を得た。(収率96%)
H−NMR(270.05MHz,DO)δppm:3.1(2H,t,J=6.6Hz),2.8(2H,t,J=6.6Hz)
Production Example 3: Lithium salt of S- (2-aminoethyl) thiosulfuric acid The reaction vessel was purged with nitrogen, and S- (2-aminoethyl) thiosulfuric acid (manufactured by Wako Pure Chemical Industries, product name “S- ( 2-Aminoethyl) thiosulfonic acid ") 6.0 g (38 mmol) and 20 ml of water were charged and cooled to 5 ° C. A solution obtained by adding 0.91 g (38 mmol) of lithium hydroxide to 2 ml of water was cooled to 5 ° C., and was dropped into the previously prepared solution at room temperature over 2 hours and stirred. After confirming that the pH of the reaction solution was 9-10, the solution was concentrated under reduced pressure. Recrystallization was performed using ethanol to obtain a lithium salt of S- (2-aminoethyl) thiosulfuric acid. (Yield 96%)
1 H-NMR (270.05 MHz, D 2 O) δ ppm : 3.1 (2H, t, J = 6.6 Hz), 2.8 (2H, t, J = 6.6 Hz)

実施例3
実施例1の第1の工程において、上記製造例1で得たS−(2−アミノエチル)チオ硫酸のナトリウム塩に代えて、上記製造例3で得たS−(2−アミノエチル)チオ硫酸のリチウム塩を用いる以外は、実施例1と同様にして加硫ゴムを得た。
Example 3
In the first step of Example 1, instead of the sodium salt of S- (2-aminoethyl) thiosulfuric acid obtained in Production Example 1, S- (2-aminoethyl) thio obtained in Production Example 3 was used. A vulcanized rubber was obtained in the same manner as in Example 1 except that a lithium salt of sulfuric acid was used.

試験例3
試験例1と同様に引張特性および粘弾性特性を測定したところ、参考例1で得た加硫ゴムを対照とした場合、実施例3で得た加硫ゴムは、レジリエンスが5%向上し、引張応力(M200)が4%向上し、粘弾性特性(tanδ)が7%低下し、いずれの試験においても各種物性の改善が確認された。
Test example 3
When tensile properties and viscoelastic properties were measured in the same manner as in Test Example 1, when the vulcanized rubber obtained in Reference Example 1 was used as a control, the vulcanized rubber obtained in Example 3 was improved in resilience by 5%. Tensile stress (M 200 ) was improved by 4%, viscoelastic properties (tan δ) were reduced by 7%, and improvements in various physical properties were confirmed in all tests.

実施例4
実施例1の第1の工程において、上記製造例1で得たS−(2−アミノエチル)チオ硫酸のナトリウム塩に代えて、S−(2−アミノエチル)チオ硫酸(和光純薬工業製、製品名「S−(2−アミノエチル)チオスルホン酸」)を用いる以外は、実施例1と同様にして加硫ゴムを得た。
Example 4
In the first step of Example 1, instead of the sodium salt of S- (2-aminoethyl) thiosulfuric acid obtained in Production Example 1, S- (2-aminoethyl) thiosulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) A vulcanized rubber was obtained in the same manner as in Example 1 except that the product name “S- (2-aminoethyl) thiosulfonic acid”) was used.

試験例4
試験例1と同様に引張特性および粘弾性特性を測定したところ、参考例1で得た加硫ゴムを対照とした場合、実施例4で得た加硫ゴムは、レジリエンスが9%向上し、引張応力(M200)が12%向上し、粘弾性特性(tanδ)が19%低下し、いずれの試験においても各種物性の改善が確認された。
Test example 4
When the tensile properties and viscoelastic properties were measured in the same manner as in Test Example 1, when the vulcanized rubber obtained in Reference Example 1 was used as a control, the vulcanized rubber obtained in Example 4 was improved in resilience by 9%. Tensile stress (M 200 ) was improved by 12%, viscoelastic property (tan δ) was reduced by 19%, and improvements in various physical properties were confirmed in all tests.

本発明により、タイヤの製造に用いられる加硫ゴムの粘弾性特性を改善させる方法が提供可能となる。   The present invention can provide a method for improving the viscoelastic properties of a vulcanized rubber used for manufacturing a tire.

Claims (2)

加硫ゴムが有する粘弾性特性を改善させるためのS−(2−アミノエチル)チオ硫酸またはその金属塩の使用。 Use of S- (2-aminoethyl) thiosulfuric acid or a metal salt thereof for improving viscoelastic properties of vulcanized rubber. S−(2−アミノエチル)チオ硫酸の金属塩における金属イオンが、リチウムイオン、ナトリウムイオン、カリウムイオン、セシウムイオン、コバルトイオン、銅イオンまたは亜鉛イオンである請求項1に記載される使用。 The use according to claim 1, wherein the metal ion in the metal salt of S- (2-aminoethyl) thiosulfuric acid is a lithium ion, sodium ion, potassium ion, cesium ion, cobalt ion, copper ion or zinc ion.
JP2009197862A 2009-08-28 2009-08-28 Use of S- (2-aminoethyl) thiosulfuric acid or a metal salt thereof for improving viscoelastic properties of vulcanized rubber Expired - Fee Related JP5310390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009197862A JP5310390B2 (en) 2009-08-28 2009-08-28 Use of S- (2-aminoethyl) thiosulfuric acid or a metal salt thereof for improving viscoelastic properties of vulcanized rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009197862A JP5310390B2 (en) 2009-08-28 2009-08-28 Use of S- (2-aminoethyl) thiosulfuric acid or a metal salt thereof for improving viscoelastic properties of vulcanized rubber

Publications (2)

Publication Number Publication Date
JP2011046857A true JP2011046857A (en) 2011-03-10
JP5310390B2 JP5310390B2 (en) 2013-10-09

Family

ID=43833519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009197862A Expired - Fee Related JP5310390B2 (en) 2009-08-28 2009-08-28 Use of S- (2-aminoethyl) thiosulfuric acid or a metal salt thereof for improving viscoelastic properties of vulcanized rubber

Country Status (1)

Country Link
JP (1) JP5310390B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153672A1 (en) * 2011-05-12 2012-11-15 住友化学株式会社 Method for manufacturing particles
JP2012250976A (en) * 2011-05-12 2012-12-20 Sumitomo Chemical Co Ltd Method for producing particle
JP2012251134A (en) * 2011-05-12 2012-12-20 Sumitomo Chemical Co Ltd Composition
JP2013043928A (en) * 2011-08-23 2013-03-04 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2013241480A (en) * 2012-05-17 2013-12-05 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2013241483A (en) * 2012-05-17 2013-12-05 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2013241481A (en) * 2012-05-17 2013-12-05 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2013241482A (en) * 2012-05-17 2013-12-05 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
US8809449B2 (en) 2010-08-10 2014-08-19 Sumitomo Chemical Company, Limited Modified conjugated diene-based polymer, polymer composition, and process for producing modified conjugated diene-based polymer
EP2740756A4 (en) * 2011-08-01 2015-03-11 Sumitomo Chemical Co Method for lowering dynamic-to-static modulus ratio of vulcanized rubber
JP7396948B2 (en) 2020-03-30 2023-12-12 住友化学株式会社 Sulfanyl sulfonic acid compound, viscoelasticity modifier, rubber composition, and method for producing vulcanized rubber

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767555A (en) * 1980-10-16 1982-04-24 Mitsui Toatsu Chem Inc Production of s-(aminoalkyl)thiosulfate salt
JPS60199643A (en) * 1984-01-20 1985-10-09 モンサント・ヨ−ロツプ・ソシエテ・アノニム Application as rubber/metal adhesion accelerator of metallicsalt of thiosulfuric acid s-ester
JPH09151279A (en) * 1995-11-28 1997-06-10 Ohtsu Tire & Rubber Co Ltd :The Tread rubber composition
JP2002013084A (en) * 2000-06-29 2002-01-18 Bridgestone Corp Rubber-steel cord composite
JP2002362107A (en) * 2001-04-02 2002-12-18 Bridgestone Corp Radial tire for heavy-duty vehicle
JP2003146828A (en) * 2001-11-15 2003-05-21 Sogo Pharmaceutical Co Ltd Antioxidant
JP2004323662A (en) * 2003-04-24 2004-11-18 Bridgestone Corp Coating rubber composition for steel cord and heavy duty tire
JP2009046578A (en) * 2007-08-20 2009-03-05 Sumitomo Rubber Ind Ltd Rubber composition for tire
JP5051274B2 (en) * 2009-06-04 2012-10-17 住友化学株式会社 Use of S- (3-aminopropyl) thiosulfuric acid and / or a metal salt thereof for improving viscoelastic properties of vulcanized rubber

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767555A (en) * 1980-10-16 1982-04-24 Mitsui Toatsu Chem Inc Production of s-(aminoalkyl)thiosulfate salt
JPS60199643A (en) * 1984-01-20 1985-10-09 モンサント・ヨ−ロツプ・ソシエテ・アノニム Application as rubber/metal adhesion accelerator of metallicsalt of thiosulfuric acid s-ester
JPH09151279A (en) * 1995-11-28 1997-06-10 Ohtsu Tire & Rubber Co Ltd :The Tread rubber composition
JP2002013084A (en) * 2000-06-29 2002-01-18 Bridgestone Corp Rubber-steel cord composite
JP2002362107A (en) * 2001-04-02 2002-12-18 Bridgestone Corp Radial tire for heavy-duty vehicle
JP2003146828A (en) * 2001-11-15 2003-05-21 Sogo Pharmaceutical Co Ltd Antioxidant
JP2004323662A (en) * 2003-04-24 2004-11-18 Bridgestone Corp Coating rubber composition for steel cord and heavy duty tire
JP2009046578A (en) * 2007-08-20 2009-03-05 Sumitomo Rubber Ind Ltd Rubber composition for tire
JP5051274B2 (en) * 2009-06-04 2012-10-17 住友化学株式会社 Use of S- (3-aminopropyl) thiosulfuric acid and / or a metal salt thereof for improving viscoelastic properties of vulcanized rubber

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045622B2 (en) 2010-08-10 2015-06-02 Sumitomo Chemical Company, Limited Modified conjugated diene-based polymer, polymer composition, and process for producing modified conjugated diene-based polymer
US8809449B2 (en) 2010-08-10 2014-08-19 Sumitomo Chemical Company, Limited Modified conjugated diene-based polymer, polymer composition, and process for producing modified conjugated diene-based polymer
CN103534236A (en) * 2011-05-12 2014-01-22 住友化学株式会社 Method for manufacturing particles
JP2012250976A (en) * 2011-05-12 2012-12-20 Sumitomo Chemical Co Ltd Method for producing particle
JP2012251134A (en) * 2011-05-12 2012-12-20 Sumitomo Chemical Co Ltd Composition
WO2012153672A1 (en) * 2011-05-12 2012-11-15 住友化学株式会社 Method for manufacturing particles
US9796831B2 (en) 2011-05-12 2017-10-24 Sumitomo Chemical Company, Limited Process for producing particles
EP2740756A4 (en) * 2011-08-01 2015-03-11 Sumitomo Chemical Co Method for lowering dynamic-to-static modulus ratio of vulcanized rubber
JP2013043928A (en) * 2011-08-23 2013-03-04 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2013241482A (en) * 2012-05-17 2013-12-05 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2013241481A (en) * 2012-05-17 2013-12-05 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2013241483A (en) * 2012-05-17 2013-12-05 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2013241480A (en) * 2012-05-17 2013-12-05 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP7396948B2 (en) 2020-03-30 2023-12-12 住友化学株式会社 Sulfanyl sulfonic acid compound, viscoelasticity modifier, rubber composition, and method for producing vulcanized rubber

Also Published As

Publication number Publication date
JP5310390B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5310390B2 (en) Use of S- (2-aminoethyl) thiosulfuric acid or a metal salt thereof for improving viscoelastic properties of vulcanized rubber
JP5310275B2 (en) Use of 6-aminohexyl thiosulfate to improve the viscoelastic properties of vulcanized rubber
JP5639121B2 (en) Rubber composition for tire and pneumatic tire
JP2011046858A (en) Vulcanized rubber and method of manufacturing the same
JP2012144598A (en) Rubber composition for tire and pneumatic tire
JP2014024913A (en) Rubber composition for high-performance tire, and high-performance tire
JP5977079B2 (en) Rubber composition for tire and pneumatic tire
JP2011012096A (en) Vulcanized rubber and production method of the same
JP2012121993A (en) Rubber composition for under tread and wing, and tire for passenger car
JP2013159769A (en) Rubber composition for tire and pneumatic tire
JP2013060549A (en) Rubber composition for tire, and pneumatic tire
JP2013107991A (en) Rubber composition for tire and pneumatic tire
JP2013007009A (en) Rubber composition for tire and pneumatic tire
JP2013119614A (en) Rubber composition for tire and pneumatic tire
JP5845102B2 (en) Method for producing rubber composition
JP5912345B2 (en) Rubber composition for tire and pneumatic tire
JP2013155305A (en) Rubber composition for tire, production method thereof, and pneumatic tire
JP5731321B2 (en) Rubber composition for tire and pneumatic tire
JP5712175B2 (en) Rubber composition for tire and pneumatic tire
JP6767258B2 (en) New hydrazone compounds, rubber additives, rubber compositions and pneumatic tires using them
JP2016003236A (en) Coupling agent for rubber and carbon black and rubber composition
JP2013173843A (en) Rubber composition for tire and pneumatic tire
JP2014118526A (en) Coupling agent for rubber and carbon black and rubber composition
JP2012251088A (en) Rubber composition for clinch apex or chafer
JP5869376B2 (en) Rubber composition for tire and pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

LAPS Cancellation because of no payment of annual fees