JP2011046064A - Method for preventing malfunction of light quantity control apparatus of image forming apparatus - Google Patents

Method for preventing malfunction of light quantity control apparatus of image forming apparatus Download PDF

Info

Publication number
JP2011046064A
JP2011046064A JP2009195680A JP2009195680A JP2011046064A JP 2011046064 A JP2011046064 A JP 2011046064A JP 2009195680 A JP2009195680 A JP 2009195680A JP 2009195680 A JP2009195680 A JP 2009195680A JP 2011046064 A JP2011046064 A JP 2011046064A
Authority
JP
Japan
Prior art keywords
light
amount
current
image forming
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009195680A
Other languages
Japanese (ja)
Inventor
Shunsaku Kondo
俊作 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009195680A priority Critical patent/JP2011046064A/en
Publication of JP2011046064A publication Critical patent/JP2011046064A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that in adjusting and controlling light quantity of a surface emitting laser, when the maximum light quantity of the light quantity of the laser does not reach a target light quantity, a light quantity control apparatus increases a driving electric current, and it sticks that the electric current reaches the maximum electric current as it does, and adjustment of the light quantity cannot be properly performed. <P>SOLUTION: In the light quantity control apparatus of an image forming apparatus, which when the driving current a light quantity adjusting and controlling means feeds to a laser element reaches a predetermined upper limit, the driving electric current is got out of a condition that the driving electric current sticks the maximum value as it does by lowering the driving electric current once, and an appropriate light quantity adjustment control is performed again by starting again the light quantity adjustment and control thereafter. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、レーザビームで感光体上を走査して画像を形成する画像形成装置に関する。   The present invention relates to an image forming apparatus that scans a photoreceptor with a laser beam to form an image.

従来、プリンタ等画像形成装置の光源として端面発光レーザが用いられている。図3は端面発光レーザの電流−光量特性(以下I−L特性と記す)を示している。電流量を0から上昇させ、発振しきい値に達するとレーザ発光が開始される。それから上昇させるにつれて光量はほぼリニアに増加していく。さらに増加させると、破壊モードとなり素子が破壊される。   Conventionally, an edge emitting laser is used as a light source of an image forming apparatus such as a printer. FIG. 3 shows the current-light quantity characteristics (hereinafter referred to as IL characteristics) of the edge emitting laser. When the amount of current is increased from 0 and the oscillation threshold is reached, laser light emission is started. Then, the light quantity increases almost linearly as it is raised. When further increased, the device enters a destruction mode and the device is destroyed.

光量制御は周知のように、半導体レーザへ注入する電流を決定するオートパワーコントロール(APC)が知られている。このAPC回路を備えて光量制御を行うことで、半導体レーザの光量調整を容易に行うことができる。このAPC回路による電流確定は、発光されたレーザ光の光量が基準光量になるまで注入電流を上昇させるフィードバック回路である。   As is well known, auto power control (APC) for determining the current to be injected into the semiconductor laser is known as the light amount control. By adjusting the light amount with this APC circuit, the light amount of the semiconductor laser can be easily adjusted. The current determination by the APC circuit is a feedback circuit that increases the injection current until the light amount of the emitted laser light becomes the reference light amount.

図4に示すように、レーザ光源100から出力されたビームは光検出部101で受光され、光検出部101では受光した光量に応じた光電流が出力される。この光電流は、電流−電圧変換部102で電圧に変換されて、モニタ電圧として比較部103に入力され、不図示の制御部から出力される基準電圧Vrefと比較される。比較部103は、この比較結果に基づいて、レーザ光源100の出力光量を増減させるためのサンプルホールド回路104を制御し、定電流源105にフィードバックさせる。モニタ電圧が基準電圧Vrefと等しくなるまで上記シーケンスを繰り返し、駆動電流量を調整することで、所望の光量を得るようになっている。このように、負帰還増幅動作を行っている。   As shown in FIG. 4, the beam output from the laser light source 100 is received by the light detection unit 101, and the light detection unit 101 outputs a photocurrent corresponding to the received light amount. This photocurrent is converted into a voltage by the current-voltage conversion unit 102, input as a monitor voltage to the comparison unit 103, and compared with a reference voltage Vref output from a control unit (not shown). Based on the comparison result, the comparison unit 103 controls the sample hold circuit 104 for increasing or decreasing the output light amount of the laser light source 100 and feeds it back to the constant current source 105. The above sequence is repeated until the monitor voltage becomes equal to the reference voltage Vref, and the amount of drive current is adjusted to obtain a desired amount of light. Thus, the negative feedback amplification operation is performed.

近年、プリンタに対する高速・高解像度化の要求に応えるために、面発光レーザをプリンタに光源として使用することが提案されている(特許文献1参照)。   In recent years, it has been proposed to use a surface emitting laser as a light source in a printer in order to meet the demand for high speed and high resolution for a printer (see Patent Document 1).

図5は面発光レーザのI−L特性を示している。電流量を0から増加させ、発振しきい値を超えると発光を開始する。電流量の上昇に伴い光量が上昇するが、電流量Ipmax最大光量Pmaxに達し、そこから電流量をさらに上昇させても光量は逆に減衰する。Ipmaxを越えても素子は破壊に至らない。   FIG. 5 shows the IL characteristic of the surface emitting laser. When the amount of current is increased from 0 and the oscillation threshold is exceeded, light emission starts. The amount of light increases as the amount of current increases, but reaches the amount of current Ipmax maximum amount of light Pmax, and the amount of light attenuates conversely even if the amount of current is further increased therefrom. Even if Ipmax is exceeded, the device will not be destroyed.

このようなI−L特性を持つ面発光半導体レーザに従来の光量制御を用いた場合の状況を、図6を用いて説明する。状態(1)にあるとき、目標光量Pを発生する電流量Ipで制御されている。面発光半導体レーザが温度変化等の影響によって瞬間的に状態(1)から状態(2)に変化したとき、APC回路は目標光量にするべく電流量をIpから上昇させるが、目標光量になることなくレーザ電流点(Ip)を越してしまう。状態(2)から状態(1)に戻っても、さらにレーザ電流を増加させる正帰還増幅動作領域で制御され、結果的にレーザ光量を目標値に制御できなくなる可能性があった。   The situation when the conventional light quantity control is used for the surface emitting semiconductor laser having such IL characteristics will be described with reference to FIG. When in the state (1), it is controlled by the current amount Ip that generates the target light amount P. When the surface emitting semiconductor laser instantaneously changes from state (1) to state (2) due to the influence of temperature change, the APC circuit increases the current amount from Ip to obtain the target light amount. Without exceeding the laser current point (Ip). Even when the state (2) returns to the state (1), the control is performed in the positive feedback amplification operation region in which the laser current is further increased. As a result, there is a possibility that the laser light quantity cannot be controlled to the target value.

このため、最大光量を越えて光量調整が行われないように、最大光量を出力する電流量を検知動作によって取得・記憶し、電流量の上限値として光量制御する方法が提案されている(特許文献2参照)。   For this reason, a method has been proposed in which the amount of current that outputs the maximum amount of light is acquired and stored by detection operation so that the amount of light is not adjusted beyond the maximum amount of light, and the amount of current is controlled as the upper limit of the amount of current (patent) Reference 2).

特開平5−294005号公報JP-A-5-294005 特開2001−308449号公報JP 2001-308449 A

しかしながら、従来の技術では、駆動電流の上限値以下で光量制御させることについては言及されているものの、画像形成中の瞬間的なI−L特性の変化や制御回路へのノイズ混入により電流が上限値に達した場合は異常状態として処理されており、画像形成を再開するには光源の交換を行う必要があった。   However, in the conventional technology, although it is mentioned that the light amount is controlled below the upper limit value of the drive current, the upper limit of the current is due to an instantaneous change in IL characteristics during image formation or noise in the control circuit. When the value is reached, it is processed as an abnormal state, and it is necessary to replace the light source to resume image formation.

本発明は、上記問題点を解消するためになされたもので、光量制御の誤動作防止と、簡単な構成で適切な光量制御を行うことが目的である。   The present invention has been made to solve the above-described problems, and it is an object of the present invention to prevent malfunction of light quantity control and to perform appropriate light quantity control with a simple configuration.

上記目的を達成するために、請求項1に記載の発明は、複数の光源から射出された複数本の光ビームを被走査体上で各々走査させることで、前記被走査体上に画像を形成させる画像形成装置であって、前記複数本の光ビームの光量を検出する光量検出手段と、前記光量検出手段による検出値が所定値となるように光源駆動電流を負帰還制御によって変化させることで、光ビームの光量を制御する光量制御手段と、前記光量制御手段が発生する光源駆動電流量をモニタする電流モニタ手段を持ち、前記電流モニタ手段が所定の電流量に到達したと判断した場合に前記光源駆動電流を一旦下げることを特徴としている。   In order to achieve the above object, according to the first aspect of the present invention, an image is formed on the scanned object by scanning the scanned light with a plurality of light beams emitted from a plurality of light sources. An image forming apparatus configured to detect a light amount of the plurality of light beams, and change a light source driving current by negative feedback control so that a detection value by the light amount detection unit becomes a predetermined value. A light amount control means for controlling the light amount of the light beam and a current monitor means for monitoring a light source driving current amount generated by the light amount control means, and when it is determined that the current monitor means has reached a predetermined current amount The light source driving current is temporarily lowered.

また、請求項2に記載の発明は、複数の光源から射出された複数本の光ビームを被走査体上で各々走査させることで、前記被走査体上に画像を形成させる画像形成装置であって、前記複数本の光ビームの光量を検出する光量検出手段と、前記光量検出手段による検出値が所定値となるように光源駆動電流を負帰還制御によって変化させることで、光ビームの光量を制御する光量制御手段と、前記光量制御手段が発生する光源駆動電流量を監視する電流監視手段を持ち、前記電流監視手段が所定の電流量に到達したと判断した場合に前記光源駆動電流を一旦0にすることを特徴とする画像形成装置。   According to a second aspect of the present invention, there is provided an image forming apparatus for forming an image on the scanned object by scanning the scanned light with a plurality of light beams emitted from a plurality of light sources. The light quantity detection means for detecting the light quantity of the plurality of light beams, and the light source drive current is changed by negative feedback control so that the detection value by the light quantity detection means becomes a predetermined value, thereby reducing the light quantity of the light beam. A light amount control means for controlling, and a current monitoring means for monitoring a light source driving current amount generated by the light amount control means, and when the current monitoring means determines that the predetermined current amount has been reached, the light source driving current is temporarily An image forming apparatus characterized by setting to zero.

また、請求項3に記載の発明は、請求項1に記載の画像形成装置において、前記光源駆動電流を一旦下げるタイミングは、走査中の非画像域であることを特徴としている。   According to a third aspect of the present invention, in the image forming apparatus according to the first aspect, the timing for once decreasing the light source driving current is a non-image area during scanning.

また、請求項4に記載の発明は、請求項2に記載の画像形成装置において、前記光源駆動電流を一旦0にするタイミングは、走査中の非画像域であることを特徴としている。   According to a fourth aspect of the present invention, in the image forming apparatus according to the second aspect, the timing at which the light source driving current is once set to 0 is a non-image area during scanning.

また、請求項5に記載の発明は、請求項1または2に記載の画像形成装置において、前記所定の電流量とは、前記光量制御手段が供給できる駆動電流の上限であることを特徴としている。   According to a fifth aspect of the present invention, in the image forming apparatus according to the first or second aspect, the predetermined current amount is an upper limit of a driving current that can be supplied by the light amount control unit. .

また、請求項6に記載の発明は、請求項1または2に記載の画像形成装置において、前記所定の電流量とは、光源駆動電流量を上昇させたとき、前記複数の光源の光量が減少する電流量であることを特徴としている。   According to a sixth aspect of the present invention, in the image forming apparatus according to the first or second aspect, when the light source driving current amount is increased, the predetermined current amount decreases the light amount of the plurality of light sources. It is characterized by the amount of current to be generated.

請求項7に記載の発明は、請求項1または2に記載の前記光源とは面発光半導体レーザであることを特徴としている。   The invention described in claim 7 is characterized in that the light source described in claim 1 or 2 is a surface emitting semiconductor laser.

本発明によれば、面発光レーザ半導体の光量調整制御の誤動作を防ぐことができる。また、光量調整制御を簡単な構成で適切に行うことが可能となる。また、画像形成装置のダウンタイムを低減することが可能となる。   According to the present invention, it is possible to prevent malfunction of light amount adjustment control of a surface emitting laser semiconductor. Further, the light amount adjustment control can be appropriately performed with a simple configuration. In addition, the downtime of the image forming apparatus can be reduced.

本発明に係るレーザ光量制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the laser light quantity control apparatus which concerns on this invention. 面発光レーザ素子のI−L特性を説明する図である。It is a figure explaining the IL characteristic of a surface emitting laser element. 面発光レーザ素子のI−L特性と本発明の制御動作を説明する図である。It is a figure explaining the IL characteristic of a surface emitting laser element, and the control action of this invention. 本発明の制御動作を説明するフローチャートである。It is a flowchart explaining the control action of this invention. 従来の端面発光レーザのI−L特性を示す図である。It is a figure which shows the IL characteristic of the conventional end surface emitting laser. 従来のレーザ制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the conventional laser control apparatus. 面発光レーザ素子のI−L特性を示す図である。It is a figure which shows the IL characteristic of a surface emitting laser element. 面発光レーザ素子に従来のレーザ素子の光量制御方法を用いたときの図である。It is a figure when the light quantity control method of the conventional laser element is used for the surface emitting laser element.

以下、図面に基づき本実施形態の画像形成装置について説明する。以下、本発明を具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
[第1の実施形態]
[画像形成装置]
図1は本発明に係る画像形成装置のレーザ光量制御回路の構成を示すブロック図である。図1において、200は面発光レーザで、出力されたビームは光検出部201で受光される。光検出部201では受光した光量に応じた光電流が出力される。この光電流は、電流−電圧変換部202で電圧に変換されて、モニタ電圧として比較部203に入力され、不図示の基準電圧源から供給される基準電圧Vrefと比較される。比較部203は、この比較結果に基づいて、面発光レーザユニット200の出力光量を増減させるためのサンプルホールド回路204を制御し、定電流源205にフィードバックさせる。モニタ電圧が基準電圧Vrefと等しくなるまで上記回路動作を繰り返す負帰還動作を行うことで、所望の光量を得る。
The image forming apparatus according to the present embodiment will be described below with reference to the drawings. The present invention will be specifically described below, but the present invention is not limited to these examples.
[First Embodiment]
[Image forming apparatus]
FIG. 1 is a block diagram showing a configuration of a laser light quantity control circuit of an image forming apparatus according to the present invention. In FIG. 1, reference numeral 200 denotes a surface emitting laser, and an output beam is received by a light detection unit 201. The light detection unit 201 outputs a photocurrent corresponding to the amount of light received. This photocurrent is converted into a voltage by the current-voltage conversion unit 202, input as a monitor voltage to the comparison unit 203, and compared with a reference voltage Vref supplied from a reference voltage source (not shown). Based on the comparison result, the comparison unit 203 controls the sample hold circuit 204 for increasing / decreasing the output light amount of the surface emitting laser unit 200 and feeds it back to the constant current source 205. By performing a negative feedback operation that repeats the above circuit operation until the monitor voltage becomes equal to the reference voltage Vref, a desired light amount is obtained.

面発光レーザ200のI−L特性を図2に示す。ここでは3つのレーザを例に説明する。図2示すように、I−L特性はビームによって差がある。画像形成に必要な光量Paは、全ビームのピーク光量を下回る光量に設定される。そして、光量Paを発生する駆動電流は、LD1,LD2,LD3それぞれIa1、Ia2、Ia3となる。上述したように、図1で示すレーザ光量制御回路の動作によれば、LD1、LD2、LD3の駆動電流はそれぞれIa1、Ia2、Ia3に設定され、必要な光量Paで画像形成を行う。   The IL characteristics of the surface emitting laser 200 are shown in FIG. Here, three lasers will be described as an example. As shown in FIG. 2, the IL characteristic varies depending on the beam. The light amount Pa required for image formation is set to a light amount lower than the peak light amount of all the beams. The drive currents that generate the light amount Pa are Ia1, Ia2, and Ia3, respectively. As described above, according to the operation of the laser light quantity control circuit shown in FIG. 1, the drive currents of LD1, LD2, and LD3 are set to Ia1, Ia2, and Ia3, respectively, and image formation is performed with a necessary light quantity Pa.

半導体レーザは一般的に電気/光変換効率が温度に敏感である。面発光レーザ200の温度が3段階に変化した場合のI−L特性を図3に示す。ここでは図2のLD3を例に説明する。   Semiconductor lasers are generally sensitive to temperature in electrical / optical conversion efficiency. FIG. 3 shows IL characteristics when the temperature of the surface emitting laser 200 is changed in three stages. Here, the LD 3 in FIG. 2 will be described as an example.

LD3の温度は、LD3−(1)、LD3−(2)、LD3−(3)の順に高い。つまり、素子の温度が高くなるほど、電気/光変換効率が低下する。例えばLD3−(1)の状態で画像形成を開始したとする。このときの駆動電流はIa3−(1)となる。画像形成を継続し、LD3の自己昇温によりLD3−(2)の状態に変化したとするとPaを下回ってしまうが、レーザ光量制御回路は光量をPaに上げるべく駆動電流をIa3−(2)に上昇させ、問題なく画像形成を継続する。そして、連続的に高濃度画像を形成した場合や、LD3周囲のレーザの熱干渉等により、瞬間的にLD3−(3)の状態に変化した場合、レーザ光量制御回路は、光量をPaに上げるべく駆動電流を上昇させるが、ピーク光量のIP3−(3)に達してもPaに到達することはできず、さらに駆動電流を上昇させ、ILimitに張り付き、正帰還動作で固定してしまう。このような状態になると、LD3が状態LD3−(2)、LD3−(1)に戻ったとしても、負帰還動作に戻ることはできない。   The temperature of LD3 is higher in the order of LD3- (1), LD3- (2), and LD3- (3). That is, the higher the temperature of the element, the lower the electrical / optical conversion efficiency. For example, assume that image formation is started in the state of LD3- (1). The drive current at this time is Ia3- (1). If image formation is continued and the state of LD3- (2) is changed to the state of LD3- (2) due to self-temperature rise of LD3, it will be lower than Pa, but the laser light quantity control circuit sets the drive current to Ia3- (2) to increase the light quantity to Pa The image formation is continued without any problem. When a high-density image is continuously formed or when the laser light is instantaneously changed to the state of LD3- (3) due to laser thermal interference around the LD3, the laser light quantity control circuit increases the light quantity to Pa. Although the drive current is increased as much as possible, Pa cannot be reached even when the peak light quantity of IP3- (3) is reached, and the drive current is further increased, stuck to ILimit, and fixed by positive feedback operation. In such a state, even if LD3 returns to the states LD3- (2) and LD3- (1), it cannot return to the negative feedback operation.

また、LD3−(3)の状態にならなかったとしても、光量制御回路に何らかの電気的ノイズが混入してしまったとき、例えば比較部203へ入力される基準電圧Vrefやモニタ電圧が揺れてしまうなどした場合、一時的に光量不足と誤検知し、同様に正帰還動作に張り付いてしまう可能性がある。   Even if the state of LD3- (3) does not occur, when some electrical noise is mixed in the light amount control circuit, for example, the reference voltage Vref and the monitor voltage input to the comparison unit 203 are fluctuated. In such a case, it may be erroneously detected that the amount of light is temporarily insufficient, and similarly, it may stick to the positive feedback operation.

本発明の特徴である、正帰還動作から負帰還動作へ自動的に戻す制御について説明する。レーザ光量制御回路の定電流源205には、供給する電流を監視し、予め設定した電流上限値ILimitに達したときに電流上限値到達信号としてCPU207に通報する電流監視機構206を内蔵している。   The control for automatically returning from the positive feedback operation to the negative feedback operation, which is a feature of the present invention, will be described. The constant current source 205 of the laser light quantity control circuit has a built-in current monitoring mechanism 206 that monitors the supplied current and notifies the CPU 207 as a current upper limit value arrival signal when the current upper limit value ILimit is reached. .

図4を用いて、制御フローを説明する。画像形成状態にあるものとする。まず、電流監視機構206からCPU207に対して電流上限値到達信号が通知されたか否か判定する(ステップS01)。電流上限値到達信号通知された場合(ステップS01判定YES)、CPU207は画像形成の非画像区間まで待機し(ステップS02判定NO)、非画像区間となったら(ステップS02判定YES)定電流源205に対して電流低減信号を発報する(S03)。定電流源205はILimitで張り付いている電流値を一旦0もしくは0付近まで下げる。そうすることで、光量制御回路は図3の負帰還動作領域に戻ることができる。   The control flow will be described with reference to FIG. Assume that the image is in an image forming state. First, it is determined whether or not a current upper limit reaching signal is notified from the current monitoring mechanism 206 to the CPU 207 (step S01). When the current upper limit value arrival signal is notified (step S01 determination YES), the CPU 207 waits until the non-image section for image formation (step S02 determination NO), and when the non-image section is reached (step S02 determination YES), the constant current source 205. A current reduction signal is issued (S03). The constant current source 205 temporarily reduces the current value stuck at ILimit to 0 or near 0. By doing so, the light quantity control circuit can return to the negative feedback operation region of FIG.

なお、電流上限値は、定電流源が供給できる駆動電流の上限としてもよい。   The current upper limit value may be the upper limit of the drive current that can be supplied by the constant current source.

また、電流上限値は、面発光レーザ200の全てのLDの電流を上昇すると光量が減少する正帰還動作領域の電流値としてもよい。   Further, the current upper limit value may be a current value in a positive feedback operation region in which the amount of light decreases when the current of all LDs of the surface emitting laser 200 is increased.

以上説明したように、レーザ光量制御回路でLDの駆動電流を監視し、所定の上限電流値に到達したときに駆動電流を一旦0もしくは0付近に下げる構成にすることで、正帰還動作している光量制御回路を負帰還領域に戻すことができ、簡単な構成で適切な光量調整制御を行うことが可能になる。   As described above, the laser light amount control circuit monitors the LD drive current, and when it reaches a predetermined upper limit current value, the drive current is temporarily reduced to 0 or near 0, thereby performing positive feedback operation. The light quantity control circuit can be returned to the negative feedback region, and appropriate light quantity adjustment control can be performed with a simple configuration.

205 定電流源
206 上限電流値検出機構
205 Constant current source 206 Upper limit current value detection mechanism

Claims (7)

複数の光源から射出された複数本の光ビームを被走査体上で各々走査させることで、前記被走査体上に画像を形成させる画像形成装置であって、前記複数本の光ビームの光量を検出する光量検出手段と、前記光量検出手段による検出値が所定値となるように光源駆動電流を負帰還制御によって変化させることで、光ビームの光量を制御する光量制御手段と、前記光量制御手段が発生する光源駆動電流量を監視する電流監視手段を持ち、前記電流監視手段が所定の電流量に到達したと判断した場合に前記光源駆動電流を一旦下げることを特徴とする画像形成装置。   An image forming apparatus for forming an image on a scanned object by scanning a plurality of light beams emitted from a plurality of light sources on the scanned object, wherein the amount of light of the plurality of light beams is changed. A light amount detection unit for detecting, a light amount control unit for controlling a light amount of a light beam by changing a light source driving current by negative feedback control so that a detection value by the light amount detection unit becomes a predetermined value, and the light amount control unit An image forming apparatus having current monitoring means for monitoring the amount of light source driving current generated by the light source, and once reducing the light source driving current when it is determined that the current monitoring means has reached a predetermined current amount. 複数の光源から射出された複数本の光ビームを被走査体上で各々走査させることで、前記被走査体上に画像を形成させる画像形成装置であって、前記複数本の光ビームの光量を検出する光量検出手段と、前記光量検出手段による検出値が所定値となるように光源駆動電流を負帰還制御によって変化させることで、光ビームの光量を制御する光量制御手段と、前記光量制御手段が発生する光源駆動電流量を監視する電流監視手段を持ち、前記電流監視手段が所定の電流量に到達したと判断した場合に前記光源駆動電流を一旦0にすることを特徴とする画像形成装置。   An image forming apparatus for forming an image on a scanned object by scanning a plurality of light beams emitted from a plurality of light sources on the scanned object, wherein the amount of light of the plurality of light beams is changed. A light amount detection unit for detecting, a light amount control unit for controlling a light amount of a light beam by changing a light source driving current by negative feedback control so that a detection value by the light amount detection unit becomes a predetermined value, and the light amount control unit An image forming apparatus comprising: a current monitoring unit that monitors a light source driving current amount generated by the light source; and, when the current monitoring unit determines that a predetermined current amount has been reached, the light source driving current is once set to zero. . 請求項1に記載の画像形成装置において、前記光源駆動電流を一旦下げるタイミングは、走査中の非画像域であることを特徴とする画像形成装置。   The image forming apparatus according to claim 1, wherein the timing at which the light source driving current is once lowered is a non-image area during scanning. 請求項2に記載の画像形成装置において、前記光源駆動電流を一旦0にするタイミングは、走査中の非画像域であることを特徴とする画像形成装置。   3. The image forming apparatus according to claim 2, wherein the timing at which the light source driving current is once set to 0 is a non-image area during scanning. 請求項1乃至2に記載の画像形成装置において、前記所定の電流量とは、前記光量制御手段が供給できる駆動電流の上限であることを特徴とする画像形成装置。   3. The image forming apparatus according to claim 1, wherein the predetermined amount of current is an upper limit of a drive current that can be supplied by the light amount control unit. 請求項1乃至2に記載の画像形成装置において、前記所定の電流量とは、光源駆動電流量を上昇させたとき、前記複数の光源の光量が減少する電流量であることを特徴とする画像形成装置。   3. The image forming apparatus according to claim 1, wherein the predetermined amount of current is an amount of current that decreases a light amount of the plurality of light sources when the amount of light source driving current is increased. 4. Forming equipment. 請求項1乃至2記載の画像形成装置において、前記光源とは面発光半導体レーザであることを特徴とする画像形成装置。   3. The image forming apparatus according to claim 1, wherein the light source is a surface emitting semiconductor laser.
JP2009195680A 2009-08-26 2009-08-26 Method for preventing malfunction of light quantity control apparatus of image forming apparatus Pending JP2011046064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009195680A JP2011046064A (en) 2009-08-26 2009-08-26 Method for preventing malfunction of light quantity control apparatus of image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009195680A JP2011046064A (en) 2009-08-26 2009-08-26 Method for preventing malfunction of light quantity control apparatus of image forming apparatus

Publications (1)

Publication Number Publication Date
JP2011046064A true JP2011046064A (en) 2011-03-10

Family

ID=43832885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009195680A Pending JP2011046064A (en) 2009-08-26 2009-08-26 Method for preventing malfunction of light quantity control apparatus of image forming apparatus

Country Status (1)

Country Link
JP (1) JP2011046064A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130093825A1 (en) * 2011-10-17 2013-04-18 Canon Kabushiki Kaisha Light source control apparatus used in image forming apparatus using electrophotography process, control method therefor, storage medium storing control program therefor, and image forming apparatus
JP2017124491A (en) * 2016-01-12 2017-07-20 株式会社リコー Light beam scanner and light beam scanning method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130093825A1 (en) * 2011-10-17 2013-04-18 Canon Kabushiki Kaisha Light source control apparatus used in image forming apparatus using electrophotography process, control method therefor, storage medium storing control program therefor, and image forming apparatus
US8659633B2 (en) * 2011-10-17 2014-02-25 Canon Kabushiki Kaisha Light source control apparatus used in image forming apparatus using electrophotography process, control method therefor, storage medium storing control program therefor, and image forming apparatus
JP2017124491A (en) * 2016-01-12 2017-07-20 株式会社リコー Light beam scanner and light beam scanning method

Similar Documents

Publication Publication Date Title
US8670473B2 (en) Circuit and method for limiting current to prevent roll-over in laser diodes
US20100066270A1 (en) Control method for maintaining the luminous intensity of a light-emitting diode light source
JP2009200242A (en) Optical transmitter, and control method
US8345721B2 (en) Method for driving optical transmitter
KR101645081B1 (en) Semiconductor laser driving device and image forming apparatus
US7822083B2 (en) Laser light intensity control device, laser light intensity control method, and image forming apparatus
US7653102B2 (en) Method and apparatus for controlling output power levels of a laser used for optical data transmission based on data rate-speed optical feedback
JP2011046064A (en) Method for preventing malfunction of light quantity control apparatus of image forming apparatus
US20060164712A1 (en) Optical transmitter capable of prompt shutting down and recovering optical output thereof
JP4715198B2 (en) Laser drive device
JP2009043784A (en) Laser diode driving circuit and laser diode driving method
CN110091081B (en) Laser control device
JP5473451B2 (en) Optical transmitter, stabilized light source, and laser diode control method
JP4056927B2 (en) Optical transmitter and method for determining its fixed bias current
KR20030078687A (en) Light emitting device drive and image forming apparatus
US9083146B1 (en) Solid state laser device
JP3810393B2 (en) Laser diode driving apparatus and laser diode driving method
JP2005340278A (en) Light emitting element driving circuit
JP2010016257A (en) Laser driving apparatus
JP6278886B2 (en) Laser diode temperature control circuit, optical transmitter, and laser diode temperature control method
JP2005197984A (en) Optical transmitter
JP2009021287A (en) Optical output control unit for laser diode
JP5408223B2 (en) Image forming apparatus
JP4733944B2 (en) Optical transmitter
JP5186762B2 (en) Image forming apparatus