JP2011045922A - Method and equipment for temper-rolling steel strip - Google Patents

Method and equipment for temper-rolling steel strip Download PDF

Info

Publication number
JP2011045922A
JP2011045922A JP2009198609A JP2009198609A JP2011045922A JP 2011045922 A JP2011045922 A JP 2011045922A JP 2009198609 A JP2009198609 A JP 2009198609A JP 2009198609 A JP2009198609 A JP 2009198609A JP 2011045922 A JP2011045922 A JP 2011045922A
Authority
JP
Japan
Prior art keywords
rolling
steel strip
temper
steel
work roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009198609A
Other languages
Japanese (ja)
Other versions
JP5568927B2 (en
Inventor
Hideo Kijima
秀夫 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009198609A priority Critical patent/JP5568927B2/en
Publication of JP2011045922A publication Critical patent/JP2011045922A/en
Application granted granted Critical
Publication of JP5568927B2 publication Critical patent/JP5568927B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for temper-rolling a steel strip, by which a prescribed elongation percentage is secured and shape straightening is made possible within the range of rolling load which is coped with a conventional rolling mill even about high-tension steel which is ≥1,470 MPa in the tensile strength. <P>SOLUTION: By performing the temper-rolling of a steel strip 4 by using a work roll 1, which is ≤300 mm in the diameter and 3.0-10.0 μm in the surface arithmetic mean roughness, the shape of the steel strip is straightened without requiring large-scale equipment and complex control even when it is high tension steel of ≥1,470 MPa in the tensile strength. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高張力冷延鋼板(ハイテン)の調質圧延方法に関し、特に超ハイテンと呼ばれる引張強度が1470MPaクラス以上の、非常に引張強度の大きな高張力鋼板の調質圧延方法に関する。本発明における鋼帯とは、コイル状に巻き取られた鋼板、切板状の鋼単板のいずれの場合も含むものである。   The present invention relates to a temper rolling method for high-tensile cold-rolled steel sheets (high tensile steel), and more particularly to a temper rolling method for high-tensile steel sheets having a very high tensile strength, called a super high tensile strength, having a tensile strength of 1470 MPa or higher. The steel strip in the present invention includes both the case of a steel plate wound in a coil shape and a cut plate-like steel single plate.

自動車のボディや家電などに使われる鋼板は、ほとんどが冷延鋼板やそれにめっきなどの表面処理を施した鋼板である。この種の鋼板は、鋼片を鋳造し、鋼片を熱間圧延し、その後、さらに冷間圧延して薄くすることにより製造される。   Most steel sheets used for automobile bodies and home appliances are cold-rolled steel sheets and steel sheets with surface treatments such as plating. This type of steel sheet is manufactured by casting a steel slab, hot rolling the steel slab, and then further cold-rolling to make it thinner.

調質圧延は、冷間圧延後に調質圧延機によって例えば圧下率1%以下の軽圧下を鋼帯に施すことにより行われる。この調質圧延を施すことによって鋼帯は一様に伸ばされ、その形状が矯正され、所定の平坦度が得られるとともに、降伏点伸び、引張り強さ、伸び等の機械的性質および鋼帯の表面粗度などの性状も改善される。   The temper rolling is performed by, for example, subjecting the steel strip to a light reduction with a reduction rate of 1% or less by a temper rolling mill after the cold rolling. By applying this temper rolling, the steel strip is uniformly stretched, the shape thereof is corrected, a predetermined flatness is obtained, mechanical properties such as yield point elongation, tensile strength, elongation, and the steel strip Properties such as surface roughness are also improved.

近年、主に自動車車体の軽量化を目的とした鋼帯の高付加価値化に伴って、高張力鋼(ハイテン)の需要が増加しており、特にその引張強度が980MPaクラス、1180MPaクラスを超え1470MPaクラス、あるいはそれ以上の超高張力鋼(超ハイテン)と呼ばれる範囲の鋼板が求められるようになっている。このような高張力鋼からなる鋼帯を調質圧延機によって調質圧延を施す場合、鋼帯が硬質なので、必要な伸び率を鋼帯に付与するためには高い圧延荷重が必要となる。特に、自動車用鋼板としてよく用いられる板厚0.6〜2.0mm程度の高張力鋼に対して必要な伸び率を付与するのは困難になってきている。   In recent years, the demand for high-tensile steel (high-tensile steel) has increased with the increase in added value of steel strips, mainly for the purpose of reducing the weight of automobile bodies. In particular, its tensile strength exceeds 980 MPa class and 1180 MPa class. There is a demand for a steel plate having a range of 1470 MPa class or higher called super high strength steel (ultra high tensile steel). When a steel strip made of such high-strength steel is temper-rolled by a temper rolling mill, the steel strip is hard, and therefore a high rolling load is required to impart the necessary elongation to the steel strip. In particular, it has become difficult to give the necessary elongation to high-tensile steel having a thickness of about 0.6 to 2.0 mm, which is often used as a steel plate for automobiles.

特に、高張力鋼の中でも焼入れ・焼戻し処理を伴う連続焼鈍により製造された鋼板は、焼入れ処理の際の熱応力や鋼板組織の相変態により鋼板が変形し、形状不良が発生し易く、例えば幅方向に波形状に変形する。このような鋼板の形状不良は、焼鈍する前に冷間圧延により鋼板表面を平坦化しても解消することは困難である。そのため、焼鈍後の鋼板を調質圧延により形状矯正する必要があるが、引張強度が980MPa以上の高張力鋼板の場合、形状矯正に必要な伸び率を付与するには変形抵抗が高いことから、非常に高い圧延荷重が必要となる。   In particular, steel sheets manufactured by continuous annealing accompanied by quenching and tempering among high-strength steels are prone to deformation due to thermal stress during the quenching process and phase transformation of the steel sheet structure, and form defects are likely to occur. Deforms into a wave shape in the direction. Such a defective shape of the steel sheet is difficult to eliminate even if the steel sheet surface is flattened by cold rolling before annealing. Therefore, it is necessary to correct the shape of the annealed steel sheet by temper rolling, but in the case of a high-tensile steel sheet having a tensile strength of 980 MPa or more, since the deformation resistance is high to give the elongation necessary for shape correction, A very high rolling load is required.

形状矯正が必要な高張力鋼ほど、圧延負荷は増大して既設の調質圧延機では対処が困難となる場合がある。そのため、次工程以降で形状矯正することにより、対応しているのが実情である。しかし、この場合には、工程の追加に伴う製造コストの増大や納期の長期化という問題が発生する。   The higher the strength steel that requires shape correction, the greater the rolling load, and it may be difficult to cope with existing temper rolling mills. Therefore, it is the actual situation to cope by correcting the shape in the subsequent steps. However, in this case, problems such as an increase in manufacturing cost and an increase in delivery time due to the addition of processes occur.

このような状況の中、既存の設備仕様を上回る高張力鋼板についても、既設の調質圧延機で対応するための方法が検討されてきた。例えば、対策の一案として、特許文献1,2では、ワークロール表面粗さを大きなものとすることにより、従来の調質圧延機の範囲を外れた対策を取らずとも、所定の伸び率を付与できることが開示されている。   Under such circumstances, methods for dealing with high-strength steel sheets exceeding existing equipment specifications with existing temper rolling mills have been studied. For example, in Patent Documents 1 and 2, as a measure of countermeasures, by increasing the work roll surface roughness, a predetermined elongation rate can be obtained without taking measures out of the range of the conventional temper rolling mill. It is disclosed that it can be granted.

圧下率が1%程度以下である調質圧延では、表面粗さの大きいロールを用いて圧延を行うと、ロールの凹凸が鋼帯の表面に転写されることにより排除された部分が伸びとして現れる現象(伸長効果)が顕著となり、圧延荷重を低減できる。特許文献1及び2に記載の発明によれば、ワークロール表面粗さを大きなものとすることによって圧延荷重を低減できるので、大掛かりな設備を必要とすることなく、軟質材と同程度の圧延負荷で所定の伸び率を鋼帯に付与し得る。   In temper rolling with a rolling reduction of about 1% or less, when rolling is performed using a roll having a large surface roughness, the portion excluded by transferring the unevenness of the roll to the surface of the steel strip appears as elongation. The phenomenon (elongation effect) becomes remarkable, and the rolling load can be reduced. According to the inventions described in Patent Documents 1 and 2, since the rolling load can be reduced by increasing the surface roughness of the work roll, a rolling load comparable to that of a soft material can be achieved without requiring large-scale equipment. A predetermined elongation can be imparted to the steel strip.

特開2008−173684号公報JP 2008-173684 A 特開2008−302393号公報JP 2008-302393 A

特許文献1,2で開示されている範囲の調質圧延方法では、980MPaクラス以上の高張力鋼板について、伸び率を確保して形状矯正することを可能にしている。しかし、近年徐々に製造されるようになってきた1470MPa以上のクラスの高張力鋼板については対応できない、という問題があった。すなわち、表面粗さの大きいロールを用いて圧延を行っても形状矯正後の波高さを許容値以下に抑えることができなかった。   In the temper rolling method in the range disclosed in Patent Documents 1 and 2, it is possible to correct the shape of the high-tensile steel plate of 980 MPa class or higher while ensuring the elongation. However, there has been a problem that it is not possible to cope with high-strength steel sheets having a class of 1470 MPa or more, which have been gradually manufactured in recent years. That is, even if rolling was performed using a roll having a large surface roughness, the wave height after shape correction could not be suppressed to an allowable value or less.

本発明は,上記課題を解決するために為されたもので、引張強度が1470MPa以上の高張力鋼についても、従来圧延機で対応可能な圧延負荷の範囲内で、所定の伸び率を確保し形状矯正を可能とする鋼帯の調質圧延方法を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems. For high-tensile steel having a tensile strength of 1470 MPa or more, a predetermined elongation rate is ensured within the range of rolling load that can be handled by a conventional rolling mill. It aims at providing the temper rolling method of the steel strip which enables shape correction.

上記課題を解決するために、本発明者は鋭意研究した。従来、ワークロールの径を小さくすると、ワークロールの撓みが鋼帯形状に大きく影響し、形状矯正が困難になると考えられていた。このため、従来からワークロールの直径は500mm以上に設定されていた。しかし、さらに高張力となった鋼板についても矯正に必要な伸び率を得るには、ワークロールと鋼帯の表面間の接触状態を、圧延方向にマクロな滑りを起こさない完全固着の状態から入出側付近に相対滑り域の存在する状態に変化させることが必要であると考え、種々検討した結果、ロールと鋼帯表面の接触長を短くすることが重要であり、そのためにはワークロール径を小さくすることが有効であると考えた。   In order to solve the above problems, the present inventor has intensively studied. Conventionally, when the diameter of the work roll is reduced, it has been considered that the bending of the work roll greatly affects the shape of the steel strip and it becomes difficult to correct the shape. For this reason, the diameter of the work roll has conventionally been set to 500 mm or more. However, in order to obtain the elongation required for correction even for steel plates with higher tension, the contact state between the work roll and the surface of the steel strip must be entered and exited from a completely fixed state that does not cause macro slip in the rolling direction. As a result of various investigations, it is important to shorten the contact length between the roll and the steel strip surface. I thought it was effective to make it smaller.

すなわち、本発明の一態様は、直径が300mm以下で、かつ表面平均粗さRaが3.0〜10.0μmであるワークロールを用いて、鋼帯を調質圧延することを特徴とする鋼帯の調質圧延方法である。   That is, one aspect of the present invention is a steel characterized in that a steel strip is temper-rolled using a work roll having a diameter of 300 mm or less and a surface average roughness Ra of 3.0 to 10.0 μm. This is a temper rolling method for strips.

本発明の他の態様は、直径が300mm以下でかつ表面平均粗さRaが3.0〜10.0μmであり、鋼帯を調質圧延するワークロールと、前記ワークロールと前記鋼帯との間に潤滑油を供給する潤滑油供給手段と、を備える鋼帯の調質圧延設備である。   Another aspect of the present invention is a work roll having a diameter of 300 mm or less and a surface average roughness Ra of 3.0 to 10.0 μm, temper-rolling a steel strip, and the work roll and the steel strip. A steel strip temper rolling facility comprising a lubricating oil supply means for supplying lubricating oil therebetween.

ワークロールの直径を300mm以下にすると、引張強度1470MPa以上の高張力鋼でも、大がかりな設備や煩雑な管理を必要とすることなく、鋼帯の形状を矯正することが可能となる。   When the diameter of the work roll is set to 300 mm or less, it becomes possible to correct the shape of the steel strip without requiring extensive facilities or complicated management even with high-tensile steel having a tensile strength of 1470 MPa or more.

また、本発明のようにワークロールの表面粗さを大きくすると、鋼板表面にロール表面プロフィールの凸部が食い込んでくさびの役目を果たし、接触状態の変化を緩やかなものとする。このため、「ジャンピング現象」と呼ばれる圧延不安定現象を防止して安定した圧延を行うことができる。   Further, when the surface roughness of the work roll is increased as in the present invention, the convex portion of the roll surface profile bites into the steel plate surface to serve as a wedge, and the change in the contact state is moderated. For this reason, the rolling instability phenomenon called “jumping phenomenon” can be prevented and stable rolling can be performed.

本発明を実施するのに好適な調質圧延機の構成例を示した図である。It is the figure which showed the example of a structure of the temper rolling mill suitable for implementing this invention. 従来技術により,超高張力鋼板を調質圧延した結果を示す図である。It is a figure which shows the result of having temper-rolled ultra-high-strength steel plate by a prior art. 従来技術に潤滑を付加した場合の,超高張力鋼板を調質圧延した結果を示した図である。It is the figure which showed the result of the temper rolling of the super high strength steel plate when lubrication was added to the prior art. ロール径および潤滑の条件を変えた場合の,超高張力鋼板を調質圧延した結果を示した図である。It is the figure which showed the result of the temper rolling of the ultra high strength steel plate when the roll diameter and the lubrication conditions were changed. ジャンピング現象の影響を説明した図である。It is a figure explaining the influence of the jumping phenomenon. 圧延荷重におよぼすロール表面平均粗さRaの影響を模式的に説明した図である。It is the figure which demonstrated typically the influence of the roll surface average roughness Ra which exerts on a rolling load. 従来の4段式調質圧延機の構成例を示した図である。It is the figure which showed the structural example of the conventional 4-stage temper rolling mill.

以下、添付図面に基づいて本発明の一実施形態における鋼帯の調質圧延方法を説明する。本実施形態の鋼帯の調質圧延方法では、直径が300mm以下でかつ表面平均粗さRaが3.0〜10.0μmであるワークロールを用いて、伸び率が0.1%以上になるように鋼帯を調質圧延する。被圧延材としての鋼帯の降伏強度は1180MPa以上、引張強度は1470MPa以上である。   Hereinafter, a method for temper rolling a steel strip according to an embodiment of the present invention will be described with reference to the accompanying drawings. In the temper rolling method of the steel strip of this embodiment, the elongation is 0.1% or more by using a work roll having a diameter of 300 mm or less and a surface average roughness Ra of 3.0 to 10.0 μm. The steel strip is temper rolled. The yield strength of the steel strip as the material to be rolled is 1180 MPa or more, and the tensile strength is 1470 MPa or more.

まず、直径が300mm以下でかつ表面平均粗さRaが3.0〜10.0μmであるワークロールを用いた意義について説明する。発明者は、図7に示すように、従来知見である上記特許文献1及び2に実施例として記載されている4段式調質圧延機を用いて、板厚1.5mm、引張強度1470MPaの水焼き入れ処理および焼き戻し処理を施した超高張力鋼の、調質圧延による形状矯正を試みた。ここでは、従来知見同様、0.1%の伸び率を与えることを目標とした。0.1%以上の伸びを確保すれば、充分な形状矯正能力を得られるからである。このとき、ワークロール径は500mmであり、単位幅荷重を最大10.0kN/mmとした。ワークロール表面を、放電ダル加工方式により表面平均粗さRa=4.0μm、および10.0μmに加工した後、硬質クロムめっきを施した。   First, the significance of using a work roll having a diameter of 300 mm or less and a surface average roughness Ra of 3.0 to 10.0 μm will be described. As shown in FIG. 7, the inventor uses a four-stage temper rolling mill described as an example in the above-mentioned Patent Documents 1 and 2 as the conventional knowledge, and has a plate thickness of 1.5 mm and a tensile strength of 1470 MPa. Attempts were made to correct the shape of the ultra-high strength steel that had been subjected to water quenching and tempering by temper rolling. Here, as with conventional knowledge, the goal was to give an elongation of 0.1%. It is because sufficient shape correction ability can be obtained if the elongation of 0.1% or more is secured. At this time, the work roll diameter was 500 mm and the unit width load was set to 10.0 kN / mm at the maximum. The surface of the work roll was processed into a surface average roughness Ra = 4.0 μm and 10.0 μm by a discharge dull processing method, and then hard chrome plating was applied.

その結果を図2に示す。図中には比較として、引張強度1300MPaの結果(特許文献1,実施例3)を記載してある。同図の通り、引張強度1300MPaの鋼帯においては、調質圧延荷重を6kN/mm(表面平均粗さRa=4.0μmのとき)以上にするか、調質圧延荷重を4kN/mm(表面平均粗さRa=10.0μmのとき)以上にすることにより、形状矯正後の波高さを10mm以下にすることができた。   The result is shown in FIG. For comparison, the results of a tensile strength of 1300 MPa (Patent Document 1, Example 3) are shown in the figure. As shown in the figure, in a steel strip having a tensile strength of 1300 MPa, the temper rolling load is set to 6 kN / mm or more (when the surface average roughness Ra = 4.0 μm) or the temper rolling load is set to 4 kN / mm (surface By setting the average roughness Ra = 10.0 μm or more, the wave height after the shape correction could be reduced to 10 mm or less.

しかし、従来知見の範囲を上回る引張強度1470MPaの超高張力鋼においては、従来技術では形状矯正が困難であり、調質圧延荷重を大きくしても、形状矯正後の波高さを10mm以下にすることができないことが明らかになった。形状矯正後の波高さが要求範囲の10mmを越えると、次工程以降で通板不可能となったり、鋼帯から切り出した鋼板をプレス成型する際に金型の所定位置にセットできなくなるという不具合が発生するおそれがある。なお、波高さの測定は、鋼板を水平な定盤の上に置き、触針式の波高さ計の針を幅方向に走査することにより行った。   However, in ultra-high-tensile steel with a tensile strength of 1470 MPa that exceeds the range of conventional knowledge, it is difficult to correct the shape with the conventional technology, and even if the temper rolling load is increased, the wave height after shape correction is set to 10 mm or less. It became clear that it was not possible. If the wave height after shape correction exceeds the required range of 10 mm, it will not be possible to pass the plate in the next process or later, and it will not be possible to set it at the predetermined position of the mold when press-molding the steel sheet cut out from the steel strip. May occur. The wave height was measured by placing a steel plate on a horizontal surface plate and scanning the needle of a stylus wave height meter in the width direction.

発明者はこの方法に対し、更に潤滑を良くすることで形状矯正することが出来ないかと考えた。そこで、上記の条件において、一般的な調質圧延液(動粘度0.69mm/s)と、エマルション用冷間圧延油(動粘度50mm/s)を、それぞれ原液のままロールバイトに向けてスプレーノズルから噴霧しつつ、同様の圧延を行った。しかし、その結果、図3に示すとおり、ほとんど潤滑の影響が見られないことが分かった。同様に、Ra=0.2μmの円筒研磨ロール(図3中のブライトロール)でも調質圧延を行ったが、この場合には冷間圧延油を供給しても全く効果が得られなかった。 The inventor considered that this method could be straightened by further lubrication. Therefore, under the above conditions, a general tempered rolling fluid (kinematic viscosity 0.69 mm 2 / s) and a cold rolling oil for emulsion (kinematic viscosity 50 mm 2 / s) are each directed to the roll bite with the raw solution. The same rolling was performed while spraying from the spray nozzle. However, as a result, as shown in FIG. 3, it was found that the influence of lubrication was hardly observed. Similarly, temper rolling was performed with a cylindrical polishing roll (Rait roll in FIG. 3) of Ra = 0.2 μm, but in this case, no effect was obtained even if cold rolling oil was supplied.

発明者の検討によれば、上記のように超高張力鋼を調質圧延する場合、伸び率は0.1%程度とわずかであるため、ワークロールと被圧延材の表面間は、ロールバイト内全面でいわゆる固着域となり、圧延方向のマクロな相対滑りを起こさない。そのため、潤滑の効果を得ることが出来ないのである。これは、従来技術に示されているように、ワークロール表面に大きな粗さを付与することで矯正力を上げる方法では、1470MPaクラスのような超高張力鋼板には対応できないことを示している。   According to the inventor's study, when temper rolling is performed on ultra-high strength steel as described above, the elongation is as small as about 0.1%, so the surface between the work roll and the surface of the material to be rolled is a roll bite. It becomes a so-called fixing area on the entire inner surface and does not cause macro relative slip in the rolling direction. Therefore, the effect of lubrication cannot be obtained. This indicates that, as shown in the prior art, the method of increasing the correction force by imparting a large roughness to the surface of the work roll cannot cope with an ultra-high-tensile steel plate such as 1470 MPa class. .

発明者の調質圧延に関する検討によれば、さらに高張力となった鋼板についても矯正に必要な伸び率を得るには、ワークロールと被圧延材の表面間の接触状態を、上記のような完全固着の状態から入出側付近に相対滑り域の存在する状態に変化させることが必要であることがわかった。これは、接触長を短くすることで実現することが出来、ワークロール径を小さくすることが有効であることがわかった。   According to the inventor's study on temper rolling, the contact state between the surface of the work roll and the material to be rolled is obtained as described above in order to obtain the elongation necessary for correction even for the steel sheet having a higher tension. It was found that it was necessary to change from a completely fixed state to a state in which a relative slip zone exists near the entrance / exit side. This can be realized by shortening the contact length, and it has been found effective to reduce the work roll diameter.

そこで発明者は、ワークロール径の異なる種々の圧延機により、上記と同様の圧延を行い、矯正力を比較した。その結果、図4に示すとおり、ロール径300mm以下とすると引張強度1470MPaの超高張力鋼でも形状を矯正できることが明らかとなった。このときの圧延荷重は10kN/mmである。特に、冷間圧延油を供給するとより形状が良好となる。これは、潤滑油の供給により、ワークロールと被圧延材の表面間に滑りが導入されたためである。従来、潤滑条件を良くすると、「ジャンピング現象」と呼ばれる圧延不安定現象が発生することが知られている(Imai et al., Study on jumping phenomenon in wet temper rolling of annealed tin-plates with light reduction, Proc. Int. Nat. Conf. on Steel Rolling, Tokyo (1980), 1203-1214.)。   Then, the inventor performed the same rolling with the various rolling mills from which a work roll diameter differs, and compared the correction force. As a result, as shown in FIG. 4, it has been clarified that the shape can be corrected even with ultra high strength steel having a tensile strength of 1470 MPa when the roll diameter is 300 mm or less. The rolling load at this time is 10 kN / mm. In particular, when cold rolling oil is supplied, the shape becomes better. This is because slip was introduced between the surface of the work roll and the material to be rolled by the supply of the lubricating oil. Conventionally, it is known that rolling instability phenomenon called “jumping phenomenon” occurs when lubrication conditions are improved (Imai et al., Study on jumping phenomenon in wet temper rolling of annealed tin-plates with light reduction, Proc. Int. Nat. Conf. On Steel Rolling, Tokyo (1980), 1203-1214.).

本発明の対象となる超高張力鋼板においても、図5に示すように、ワークロール表面粗さが小さく潤滑の良い場合には、急激な伸び率変化が発生し、安定した操業が難しい。しかし、本発明で規定したロール粗さの範囲では潤滑油を供給しても伸び率は荷重に応じて安定して増加するため、操業が安定しやすい。発明者の検討によると、ジャンピング現象はロールバイト内でロール〜材料間の接触状態が急激に変化するために起こるもので、すなわち荷重が小さく伸び率も小さい場合に全面固着であったものが、滑り域の急速な拡大により伸び率が大きくなるものである。しかし、本発明のようにロール粗さを大きくすると、鋼板表面にロール表面プロフィールの凸部が食い込んでくさびの役目を果たし、接触状態の変化を緩やかなものとするので、ジャンピング現象を防止して安定した圧延を行うことができるのである。   Even in the ultra-high-strength steel sheet that is the object of the present invention, as shown in FIG. 5, when the work roll surface roughness is small and lubrication is good, a rapid change in elongation occurs, and stable operation is difficult. However, in the roll roughness range defined in the present invention, even if lubricating oil is supplied, the elongation rate stably increases according to the load, so that the operation tends to be stable. According to the inventor's study, the jumping phenomenon occurs because the contact state between the roll and the material changes suddenly in the roll bite, i.e., the entire surface is fixed when the load is small and the elongation is small. The rate of elongation increases due to the rapid expansion of the sliding area. However, when the roll roughness is increased as in the present invention, the convex portion of the roll surface profile bites into the steel sheet surface to act as a wedge, and the change of the contact state is moderated, so that the jumping phenomenon is prevented. Stable rolling can be performed.

図1は、本発明を適用する調質圧延機の例を示す概略図である。なお、例えばコイル状の鋼板を払い出し、および巻き取りするコイラーや、本発明が焼き入れ処理および焼き戻し処理工程を伴う連続焼鈍設備の出側に設置された調質圧延機であるとした場合の、これら熱処理を行う設備など付帯する設備は省略してある。本発明に係る鋼帯4の調質圧延方法は、図1の調質圧延機として、表面粗さRaが3.0μm〜10.0μmの範囲で、直径がφ300mm以下のワークロール1を供えた1以上の圧延スタンドからなる調質圧延設備を用いる。また、圧延機入側には、必要に応じてロールバイトに向かって圧延油を供給する設備5が具備されている。本方式が最も有効であるのは、1470MPaクラス以上の超高張力鋼板であるが、従来技術で矯正可能であった1300MPaクラス以下の高張力鋼板を処理することももちろん可能である。   FIG. 1 is a schematic view showing an example of a temper rolling machine to which the present invention is applied. For example, a coiler that pays out and winds a coiled steel sheet, and a temper rolling mill that is installed on the exit side of a continuous annealing facility that involves quenching and tempering processes. Ancillary equipment such as equipment for performing these heat treatments is omitted. The temper rolling method of the steel strip 4 according to the present invention provided the work roll 1 having a surface roughness Ra of 3.0 μm to 10.0 μm and a diameter of 300 mm or less as the temper rolling mill of FIG. A temper rolling facility consisting of one or more rolling stands is used. Moreover, the installation side 5 which supplies rolling oil toward a roll bite as needed is comprised at the rolling mill entrance side. This method is most effective for ultra-high-tensile steel sheets of 1470 MPa class or higher, but it is of course possible to process high-tensile steel sheets of 1300 MPa class or lower, which can be corrected by the prior art.

図1の例では、6段式の圧延機の例を示してある。ワークロール1は圧延荷重によって弾性変形する。ワークロール1の弾性変形は、中間ロール2及びバックアップロール3によって抑制される。本発明ではワークロール径をφ300mm以下としているため、6段式の圧延機を用いると形状などの点で安定した圧延を行いやすい。しかし、4段式、12段式、20段式でも、作用は同等である。   In the example of FIG. 1, an example of a six-stage rolling mill is shown. The work roll 1 is elastically deformed by a rolling load. Elastic deformation of the work roll 1 is suppressed by the intermediate roll 2 and the backup roll 3. In the present invention, since the diameter of the work roll is φ300 mm or less, when a 6-stage rolling mill is used, stable rolling is easy in terms of shape and the like. However, the operation is the same for the 4-stage, 12-stage, and 20-stage types.

ワークロール1の表面平均粗さRaを3.0〜10.0μmに設定した理由は以下のとおりである。図6に、同一の圧下率で圧延を行った場合のワークロール表面の平均粗さRaと圧延荷重の関係を示す。図6の点線で示すように、例えば圧下率5〜50%程度の通常の圧延では、ワークロール表面の平均粗さが高いほど同一圧下率に対する圧延荷重は高くなる。これはワークロール表面の平均粗さが高いほど鋼帯4とワークロール1のすべりが抑制されて摩擦係数が高くなり、圧延時の鋼帯4の変形が抑制されて荷重が増大してしまうためである。したがって、圧延荷重を低く抑えるためには、平均粗さの低いブライトロールを使用するというのが当業者の常識であった。   The reason why the surface average roughness Ra of the work roll 1 is set to 3.0 to 10.0 μm is as follows. FIG. 6 shows the relationship between the average roughness Ra of the work roll surface and the rolling load when rolling is performed at the same rolling reduction. As shown by the dotted line in FIG. 6, for example, in normal rolling with a rolling reduction of about 5 to 50%, the rolling load with respect to the same rolling reduction increases as the average roughness of the work roll surface increases. This is because as the average roughness of the work roll surface is higher, the sliding between the steel strip 4 and the work roll 1 is suppressed, the friction coefficient is increased, the deformation of the steel strip 4 during rolling is suppressed, and the load is increased. It is. Therefore, it was common knowledge of those skilled in the art to use a bright roll having a low average roughness in order to keep the rolling load low.

しかし、本発明者が鋭意検討を行った結果、圧下率が1%程度以下である調質圧延では、図6の実線に示すように、平均粗さの高いワークロール1を用いて圧延を行うと荷重は逆に低減することを新たに見出した。これは、ワークロール1の凹凸が鋼帯の表面に転写されることにより排除された部分が伸びとして現れる現象(以下、「伸長効果」と呼ぶ。)が顕著となるためと考えられる。   However, as a result of intensive studies by the present inventors, in temper rolling with a rolling reduction of about 1% or less, rolling is performed using a work roll 1 having a high average roughness as shown by the solid line in FIG. And newly found that the load decreases on the contrary. This is presumably because a phenomenon (hereinafter referred to as “elongation effect”) in which the portion removed by transferring the unevenness of the work roll 1 onto the surface of the steel strip appears as elongation becomes significant.

さらに検討を重ねた結果、表面の平均粗さRaが2μm程度までは、ワークロール1の凹凸が鋼帯4に突き刺さって塑性変形を生じる際に近接する凹凸が干渉してしまい、十分な伸長効果が得られないことがわかった。そのため、伸長効果を発揮させるためには、ワークロール表面の平均粗さRaを3.0μm以上とする必要があることがわかった。なお、0.2%程度の低い伸び率を付与するような調質圧延条件においては、ワークロール表面平均粗さRaを4.0μm超とすることにより、隣接する凸部の間隔が十分大きくなり塑性変形の干渉がほとんどなくなる。よって、効果的に伸長効果を発揮させて荷重低減するためには、ワークロール表面の平均粗さRaは4.0μm超とすることが望ましい。ただし、ワークロール1に対して平均粗さの高い加工を安定的に実施するのは工業上非常に困難であり、またロール寿命の観点からも望ましくない。そのため、ワークロール表面の平均粗さRaは、10.0μm以下とすべきである。   As a result of further studies, when the average roughness Ra of the surface is about 2 μm, the unevenness of the work roll 1 pierces the steel strip 4 and the adjacent unevenness interferes with it, so that a sufficient elongation effect is obtained. It was found that could not be obtained. Therefore, it was found that the average roughness Ra of the work roll surface needs to be 3.0 μm or more in order to exert the elongation effect. In a temper rolling condition that gives a low elongation of about 0.2%, by setting the work roll surface average roughness Ra to more than 4.0 μm, the interval between adjacent convex portions becomes sufficiently large. Almost no interference of plastic deformation. Therefore, in order to effectively exert the elongation effect and reduce the load, it is desirable that the average roughness Ra of the work roll surface is more than 4.0 μm. However, it is very difficult industrially to stably perform processing with a high average roughness on the work roll 1, and it is not desirable from the viewpoint of roll life. Therefore, the average roughness Ra of the work roll surface should be 10.0 μm or less.

また、上述のような表面平均粗さの高いワークロール1で調質圧延された鋼帯4は、パンピング効果、つまり、局所的な塑性変形により生じた圧痕部周辺の材料移動に伴い上下表面が同じように塑性的に安定した新しい応力の釣合い状態に移って平坦度が回復する現象により、表面形状が大幅に改善される。さらに、調質圧延前と調質圧延後との鋼帯表面の平均粗さの差、つまり、平均粗さの増加量が大きいほど、形状矯正の効果は顕著であることが分った。   Further, the steel strip 4 temper-rolled by the work roll 1 having a high surface average roughness as described above has an upper and lower surface due to the pumping effect, that is, the material movement around the indentation portion caused by local plastic deformation. Similarly, the surface shape is greatly improved by the phenomenon that the flatness is restored by shifting to a plastically stable new stress balance state. Furthermore, it has been found that the effect of shape correction becomes more prominent as the difference in average roughness of the steel strip surface before and after temper rolling, that is, the amount of increase in average roughness increases.

前記ワークロール表面への粗さの付与は,ワークロール表面にダル加工を施すことにより行うことができる。ここで、前記ダル加工の方法としては、ショットブラスト加工方式、放電ダル加工方式、レーザーダル加工方式、電子ビームダル加工方式などを用いることが出来る。さらに摩耗対策として、ダル加工後のロールにクロムめっき加工をすることもある。   The surface roughness of the work roll can be imparted by performing dull processing on the work roll surface. Here, as the method of the dull processing, a shot blast processing method, a discharge dull processing method, a laser dull processing method, an electron beam dull processing method, or the like can be used. Further, as a countermeasure against wear, a chrome plating may be applied to the roll after the dull processing.

ここで、前記平均粗さRaは、「JIS B 0601」に基づき、表面の粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜き取りの部分の平均線の方向にx軸を、縦倍率の方向にy軸を取り、粗さ曲線をy=f(x)で表したときに、次式(1)によって求められる値をマイクロメートルで表したものをいう。   Here, the average roughness Ra is based on “JIS B 0601”, and only the reference length is extracted from the surface roughness curve in the direction of the average line, and the x-axis is extracted in the direction of the average line of the extracted portion. When the y-axis is taken in the direction of the vertical magnification and the roughness curve is expressed by y = f (x), the value obtained by the following equation (1) is expressed in micrometers.

なお、本発明における前記ワークロール1の表面平均粗さRaの値としては,ワークロール表面の代表位置における上式(1)で求めたRaの値としてもよく、またワークロール表面の複数位置において測定したRaの値を平均した値としてもよい。複数位置の平均値を用いる場合には、例えばワークロール1の少なくとも鋼帯4と接触する部分において、周方向に90°間隔で4点,幅方向に中央及び両端部で3点の計12点の平均値を用いるようにしてもよい。本発明では、平均粗さRaが3.0μm以上の大きな粗さを扱うため、JIS規格より、基準長さ(カットオフ)2.5mm,測定長12.5mmとすると,安定した測定値を得ることが出来る。   In addition, as the value of the surface average roughness Ra of the work roll 1 in the present invention, the value of Ra obtained by the above formula (1) at the representative position on the work roll surface may be used, or at a plurality of positions on the work roll surface. It is good also as a value which averaged the value of measured Ra. When using an average value of a plurality of positions, for example, at least a portion of the work roll 1 in contact with the steel strip 4 has four points at 90 ° intervals in the circumferential direction and three points at the center and both ends in the width direction. You may make it use the average value of. In the present invention, since a large roughness with an average roughness Ra of 3.0 μm or more is handled, a stable measurement value is obtained when the reference length (cut-off) is 2.5 mm and the measurement length is 12.5 mm from the JIS standard. I can do it.

また、本発明ではドライ(潤滑油を供給しない加工状態)圧延でも矯正が可能であるが、調質圧延油、あるいは冷間圧延油などの潤滑油を供給するとなお良い。ロール粗さを大きくしたことで、ジャンピング現象を発生させることなく,安定した矯正が可能である。   Further, in the present invention, correction is possible even in dry (processed state without supplying lubricating oil) rolling, but it is more preferable to supply lubricating oil such as tempered rolling oil or cold rolling oil. By increasing the roll roughness, stable correction is possible without causing a jumping phenomenon.

引張試験により求めた引張強さが1520MPa(降伏強度1320MPa)の、焼き入れ、焼き戻しした、板厚1.6mm、板幅1200mmの高張力鋼板を調質圧延により矯正した。熱処理後の鋼板には、圧延方向に走る波状の形状不良があり、板幅方向に測定した波高さの最大値は25mmであった。   A high strength steel plate having a thickness of 1.6 mm and a width of 1200 mm, which was quenched and tempered and had a tensile strength determined by a tensile test of 1520 MPa (yield strength 1320 MPa), was corrected by temper rolling. The steel plate after the heat treatment had a wave-like shape defect running in the rolling direction, and the maximum value of the wave height measured in the plate width direction was 25 mm.

従来技術では,図7に示すロール径φ500mmの4段式調質圧延機を用い、ロール表面粗さを放電ダル加工により9.8μmRaに調整した。潤滑油は供給していない。   In the prior art, the roll surface roughness was adjusted to 9.8 μmRa by electric discharge dull processing using a four-stage temper rolling mill with a roll diameter of φ500 mm shown in FIG. Lubricating oil is not supplied.

本発明例では、図1に示すロール径φ200mmの6段式調質圧延機を用い、ロール表面粗さを放電ダル加工により3.2μmRaに調整した。また、合成エステル系エマルション用冷間圧延油(40℃における動粘度50mm/s)を2%に希釈し、エマルション温度を50〜60℃に調整して、圧延機入側から供給した。伸長率は1.2%であった。 In the example of the present invention, the roll surface roughness was adjusted to 3.2 μmRa by discharge dull processing using a 6-stage temper rolling mill having a roll diameter of 200 mm shown in FIG. Further, cold rolling oil for synthetic ester emulsion (kinematic viscosity at 40 ° C .: 50 mm 2 / s) was diluted to 2%, the emulsion temperature was adjusted to 50-60 ° C., and supplied from the rolling mill inlet side. The elongation percentage was 1.2%.

従来技術では、圧延機の荷重限界である16kN/mmまで荷重を負荷したが、波高さは15mmまでしか矯正されず、目標の10mm以下にならなかった。   In the prior art, the load was applied to the rolling mill load limit of 16 kN / mm, but the wave height was corrected only to 15 mm and did not reach the target of 10 mm or less.

一方、本発明例では、6.5kN/mmの荷重で、波高さが6mmまで減少し目標の形状を達成した。   On the other hand, in the example of the present invention, the wave height was reduced to 6 mm and the target shape was achieved with a load of 6.5 kN / mm.

更に、引っ張り試験により求めた引張強さが1150MPaの焼き入れ、焼き戻しした、板厚2.0mm、板幅1500mmの高張力鋼板を、上記同様の本発明の条件で調質圧延により矯正した。矯正前の鋼板には、圧延方向に走る波状の形状不良があり、板幅方向に測定した波高さの最大値は20mmであった。本発明の方法により、波高さは2mmまで減少し目標の形状を達成した。   Furthermore, a high-tensile steel plate having a plate thickness of 2.0 mm and a plate width of 1500 mm, which was quenched and tempered with a tensile strength obtained by a tensile test of 1150 MPa, was corrected by temper rolling under the same conditions as described above. The steel sheet before straightening had a wavy shape defect running in the rolling direction, and the maximum value of the wave height measured in the sheet width direction was 20 mm. With the method of the present invention, the wave height was reduced to 2 mm to achieve the target shape.

1…ワークロール
2…中間ロール
3…バックアップロール
4…被圧延材(鋼帯)
5…潤滑油スプレーノズル
DESCRIPTION OF SYMBOLS 1 ... Work roll 2 ... Intermediate roll 3 ... Backup roll 4 ... Rolled material (steel strip)
5. Lubricating oil spray nozzle

Claims (7)

直径が300mm以下で、かつ表面平均粗さRaが3.0〜10.0μmであるワークロールを用いて、鋼帯を調質圧延することを特徴とする鋼帯の調質圧延方法。   A method for temper rolling a steel strip, comprising temper rolling a steel strip using a work roll having a diameter of 300 mm or less and a surface average roughness Ra of 3.0 to 10.0 μm. 調質圧延時の鋼帯の伸び率が0.1%以上である請求項1に記載の鋼帯の調質圧延方法。   The method of temper rolling a steel strip according to claim 1, wherein the elongation percentage of the steel strip during temper rolling is 0.1% or more. 鋼帯の降伏強度が1180MPa以上であることを特徴とする請求項1または2に記載の鋼帯の調質圧延方法。   The steel strip temper rolling method according to claim 1 or 2, wherein the yield strength of the steel strip is 1180 MPa or more. ワークロールと鋼帯との間に潤滑油を供給しながら調質圧延することを特徴とする請求項1〜3のいずれかに記載の鋼帯の調質圧延方法。   The temper rolling method for steel strip according to any one of claims 1 to 3, wherein the temper rolling is performed while supplying lubricating oil between the work roll and the steel strip. 請求項1〜4のいずれかに記載の鋼帯の調質圧延方法により調質圧延することを特徴とする鋼帯の製造方法。   A method for producing a steel strip, comprising temper-rolling by the method for temper rolling a steel strip according to any one of claims 1 to 4. 請求項5に記載の鋼帯の製造方法により製造される、波高さが10mm以下の鋼帯。   A steel strip having a wave height of 10 mm or less, which is manufactured by the method for manufacturing a steel strip according to claim 5. 直径が300mm以下でかつ表面平均粗さRaが3.0〜10.0μmであり、鋼帯を調質圧延するワークロールと、
前記ワークロールと前記鋼帯との間に潤滑油を供給する潤滑油供給手段と、を備える鋼帯の調質圧延設備。
A work roll having a diameter of 300 mm or less and a surface average roughness Ra of 3.0 to 10.0 μm, and temper-rolling the steel strip;
A steel strip temper rolling facility comprising: a lubricant supply means for supplying a lubricant between the work roll and the steel strip.
JP2009198609A 2009-08-28 2009-08-28 Steel strip temper rolling method and temper rolling equipment. Active JP5568927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009198609A JP5568927B2 (en) 2009-08-28 2009-08-28 Steel strip temper rolling method and temper rolling equipment.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009198609A JP5568927B2 (en) 2009-08-28 2009-08-28 Steel strip temper rolling method and temper rolling equipment.

Publications (2)

Publication Number Publication Date
JP2011045922A true JP2011045922A (en) 2011-03-10
JP5568927B2 JP5568927B2 (en) 2014-08-13

Family

ID=43832768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009198609A Active JP5568927B2 (en) 2009-08-28 2009-08-28 Steel strip temper rolling method and temper rolling equipment.

Country Status (1)

Country Link
JP (1) JP5568927B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013176802A (en) * 2012-01-30 2013-09-09 Jfe Steel Corp Temper rolling method of steel plate, and superhigh-tensile steel plate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841601A (en) * 1981-09-08 1983-03-10 Nippon Steel Corp Skin pass rolling method with less degradation in quality of material by aging
JPS5973104A (en) * 1982-10-20 1984-04-25 Nippon Steel Corp Method for temper rolling cold-rolled steel-sheet for cold working
JPS61150705A (en) * 1984-12-25 1986-07-09 Mitsubishi Heavy Ind Ltd Temper rolling mill
JPH05131201A (en) * 1991-07-25 1993-05-28 Kawasaki Steel Corp Temper rolling method of strip metal
JPH08215708A (en) * 1995-02-13 1996-08-27 Sumitomo Metal Ind Ltd Skin-pass rolling method for strip metal
JPH11314103A (en) * 1998-04-30 1999-11-16 Nippon Steel Corp Production of cold-rolled steel sheet excellent in aging resistance at normal temperature and workability
JP2008173684A (en) * 2006-06-23 2008-07-31 Jfe Steel Kk Method of temper-rolling steel strip and method of manufacturing high-tension cold-rolled steel sheet
JP2008302393A (en) * 2007-06-08 2008-12-18 Jfe Steel Kk Method for rolling steel strip and method for manufacturing high tensile strength cold rolling steel strip
JP2009208125A (en) * 2008-03-05 2009-09-17 Nippon Steel Corp Temper mill

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841601A (en) * 1981-09-08 1983-03-10 Nippon Steel Corp Skin pass rolling method with less degradation in quality of material by aging
JPS5973104A (en) * 1982-10-20 1984-04-25 Nippon Steel Corp Method for temper rolling cold-rolled steel-sheet for cold working
JPS61150705A (en) * 1984-12-25 1986-07-09 Mitsubishi Heavy Ind Ltd Temper rolling mill
JPH05131201A (en) * 1991-07-25 1993-05-28 Kawasaki Steel Corp Temper rolling method of strip metal
JPH08215708A (en) * 1995-02-13 1996-08-27 Sumitomo Metal Ind Ltd Skin-pass rolling method for strip metal
JPH11314103A (en) * 1998-04-30 1999-11-16 Nippon Steel Corp Production of cold-rolled steel sheet excellent in aging resistance at normal temperature and workability
JP2008173684A (en) * 2006-06-23 2008-07-31 Jfe Steel Kk Method of temper-rolling steel strip and method of manufacturing high-tension cold-rolled steel sheet
JP2008302393A (en) * 2007-06-08 2008-12-18 Jfe Steel Kk Method for rolling steel strip and method for manufacturing high tensile strength cold rolling steel strip
JP2009208125A (en) * 2008-03-05 2009-09-17 Nippon Steel Corp Temper mill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013176802A (en) * 2012-01-30 2013-09-09 Jfe Steel Corp Temper rolling method of steel plate, and superhigh-tensile steel plate

Also Published As

Publication number Publication date
JP5568927B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
US8322178B2 (en) Method for performing temper rolling on steel strip and method for manufacturing high tensile-strength cold rolled steel sheet
CN110366456B (en) Method and apparatus for cooling steel sheet, and method for manufacturing steel sheet
WO2019065360A1 (en) Steel plate manufacturing equipment and steel plate manufacturing method
JP5045264B2 (en) Method for temper rolling of steel strip and method for producing high-tensile cold-rolled steel sheet
JP5568927B2 (en) Steel strip temper rolling method and temper rolling equipment.
US20220177989A1 (en) Method for manufacturing of stainless steel strips
KR100983762B1 (en) Method for continuously manufacturing cold-rolled steel
CN113020319A (en) Strip steel leveling process method and production line
JP5088002B2 (en) Steel strip rolling method and high-tensile cold-rolled steel strip manufacturing method
CN105779752A (en) Continuous annealing production method for thin cold-rolled lace-rolled hard steel plate
JP4289480B2 (en) Straightening method to obtain steel plate with good shape with little variation in residual stress
KR101246393B1 (en) Apparatus for fabricating tailored rolled blank and method for fabricating tailored rolled blank using the same
KR101063078B1 (en) Cold rolled steel sheet manufacturing method for reducing wave defects
JP4333321B2 (en) Steel plate production line and steel plate production method
JP6428731B2 (en) Temper rolling mill and temper rolling method
JP2009208100A (en) Manufacturing method for cold-rolled steel sheet
JP4221978B2 (en) Metal band manufacturing method for preventing waist breakage in metal band manufacturing equipment
WO2010123152A1 (en) Cold-rolled steel sheet production method and production facility
JP5949569B2 (en) Method for temper rolling of steel sheet and ultra high strength steel sheet
JP5761071B2 (en) Temper rolling method, temper rolling equipment and rolling line for high strength steel plate
JP7173377B2 (en) Steel plate manufacturing equipment and manufacturing method
WO2024042825A1 (en) Manufacturing equipment for metal band, acceptability determination method for metal band, and manufacturing method for metal band
JP2008213015A (en) Manufacturing method of cold-rolled steel strip, and continuous treatment line for steel strip
CN104630433A (en) Method and device of hot stretch of strip steel in continuous annealing furnace
SU998521A1 (en) Method for making strip of martensite ageing stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5568927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250