JP2011044729A5 - - Google Patents

Download PDF

Info

Publication number
JP2011044729A5
JP2011044729A5 JP2010238296A JP2010238296A JP2011044729A5 JP 2011044729 A5 JP2011044729 A5 JP 2011044729A5 JP 2010238296 A JP2010238296 A JP 2010238296A JP 2010238296 A JP2010238296 A JP 2010238296A JP 2011044729 A5 JP2011044729 A5 JP 2011044729A5
Authority
JP
Japan
Prior art keywords
wire
skin layer
bonding
core material
bonding wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010238296A
Other languages
Japanese (ja)
Other versions
JP5222340B2 (en
JP2011044729A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2010238296A priority Critical patent/JP5222340B2/en
Priority claimed from JP2010238296A external-priority patent/JP5222340B2/en
Publication of JP2011044729A publication Critical patent/JP2011044729A/en
Publication of JP2011044729A5 publication Critical patent/JP2011044729A5/ja
Application granted granted Critical
Publication of JP5222340B2 publication Critical patent/JP5222340B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

半導体装置用ボンディングワイヤBonding wires for semiconductor devices

本発明は、半導体素子上の電極と、外部端子との間を接続するために利用される半導体装置用ボンディングワイヤに関するものである。   The present invention relates to a bonding wire for a semiconductor device used for connecting between an electrode on a semiconductor element and an external terminal.

現在、半導体素子上の電極と、回路配線基板(リードフレーム、基板、テープ等)の配線である外部端子との間を接合するボンディングワイヤとして、線径20〜50μm程度の細線(ボンディングワイヤ)が主として使用されている。ボンディングワイヤの接合には超音波併用熱圧着方式が一般的であり、汎用ボンディング装置、ボンディングワイヤをその内部に通して接続に用いるキャピラリ冶具等が用いられる。ボンディングワイヤのワイヤ先端をアーク入熱で加熱溶融し、表面張力によりボールを形成させた後に、150〜300℃の範囲内で加熱した半導体素子の電極上に、このボール部を圧着接合せしめ、その後で、直接ボンディングワイヤを外部リード側に超音波圧着により接合させる。   Currently, thin wires (bonding wires) with a wire diameter of about 20 to 50 μm are used as bonding wires for bonding between electrodes on semiconductor elements and external terminals that are wiring of circuit wiring boards (lead frames, substrates, tapes, etc.). It is mainly used. Bonding wires are generally joined by ultrasonic thermocompression bonding, and a general-purpose bonding apparatus, a capillary jig used for connection through the bonding wire, or the like is used. After the wire tip of the bonding wire is heated and melted by arc heat input to form a ball by surface tension, this ball part is crimped and bonded onto the electrode of the semiconductor element heated within a range of 150 to 300 ° C. Then, the bonding wire is directly bonded to the external lead side by ultrasonic pressure bonding.

近年、半導体実装の構造・材料・接続技術等は急速に多様化しており、例えば、実装構造では、現行のリードフレームを使用したQFP(Quad Flat Packaging)に加え、基板、ポリイミドテープ等を使用するBGA(Ball Grid Array)、CSP(Chip Scale Packaging)等の新しい形態が実用化され、ループ性、接合性、量産使用性等をより向上したボンディングワイヤが求められている。   In recent years, the structure, materials, connection technology, etc. of semiconductor packaging have been diversified rapidly. For example, in addition to the QFP (Quad Flat Packaging) that uses the current lead frame, the packaging structure uses a substrate, polyimide tape, etc. New forms such as BGA (Ball Grid Array) and CSP (Chip Scale Packaging) have been put into practical use, and bonding wires with improved loop characteristics, bonding properties, mass production usability, etc. have been demanded.

隣接するボンディングワイヤの間隔が狭くなる狭ピッチ化が進行している。これに対応するボンディングワイヤへの要求として、細線化、高強度化、ループ制御、接合性の向上等が求められる。半導体実装の高密度化によりループ形状は複雑化している。ループ形状の分類として、ループ高さ、ボンディングワイヤのワイヤ長さ(スパン)が指標となる。最新の半導体では、一つのパッケージ内部に、高ループと低ループ、短いスパンと長いスパン等、相反するループ形成を混載させるケースが増えている。それを1種類のボンディングワイヤで実現するには、厳しいボンディングワイヤの材料設計が必要となる。   Narrow pitches are being made to reduce the spacing between adjacent bonding wires. As a request for a bonding wire corresponding to this, thinning, high strength, loop control, improvement in bonding property, etc. are required. The loop shape has become complicated due to the high density of semiconductor packaging. As the loop shape classification, the loop height and the wire length (span) of the bonding wire are used as indices. In the latest semiconductors, there are an increasing number of cases in which conflicting loop formations such as a high loop and a low loop, a short span and a long span are mixedly mounted in one package. To achieve this with a single type of bonding wire, strict material design of the bonding wire is required.

ボンディングワイヤの素材は、これまで高純度4N系(純度>99.99mass%)の金が主に用いられている。高強度化、高接合等の特性を向上するため、微量の合金元素を調整することが行われている。最近では、接合部の信頼性を向上する目的等で、添加元素濃度を1%以下まで増加させた純度2N(純度>99%)の金合金ワイヤも実用化されている。金に添加する合金元素の種類、濃度を調整することで、高強度化、信頼性の制御等可能である。一方で、合金化により、接合性が低下したり、電気抵抗が増加する等の弊害が生じる場合もあり、ボンディングワイヤに要求される多様な特性を総合的に満足することは難しい。   Conventionally, gold of high purity 4N type (purity> 99.99 mass%) has been mainly used as a material for the bonding wire. In order to improve characteristics such as high strength and high bonding, a small amount of alloy elements are adjusted. Recently, a gold alloy wire having a purity of 2N (purity> 99%) with an additive element concentration increased to 1% or less has been put into practical use for the purpose of improving the reliability of the joint. By adjusting the type and concentration of the alloy element added to gold, it is possible to increase the strength and control the reliability. On the other hand, the alloying may cause adverse effects such as a decrease in bondability and an increase in electrical resistance, and it is difficult to comprehensively satisfy various characteristics required for bonding wires.

また、金は高価であるため、材料費が安価である他種金属が所望されており、材料費が安価で、電気伝導性に優れた、銅を素材とするボンディングワイヤが開発されている。しかし、銅のボンディングワイヤでは、ワイヤ表面の酸化により接合強度が低下することや、樹脂封止されたときのワイヤ表面の腐食等が起こり易いことが問題となる。これらが銅のボンディングワイヤの実用化が進まない原因ともなっている。   Further, since gold is expensive, other types of metals having a low material cost are desired, and a bonding wire made of copper having a low material cost and excellent electrical conductivity has been developed. However, copper bonding wires have problems in that the bonding strength is reduced due to the oxidation of the wire surface, and that the wire surface is easily corroded when sealed with a resin. These are also the reasons why the practical application of copper bonding wires has not progressed.

これまでに実用化されたボンディングワイヤは全て単層構造であることを特徴とする。素材が金、銅等変わっても、内部に合金元素を均一に含有しており、ボンディングワイヤのワイヤ断面で見るとワイヤ単層構造であった。ボンディングワイヤのワイヤ表面に薄い自然酸化膜、表面保護のための有機膜等が形成されている場合もあるが、これらも最表面の極薄い領域(〜数原子層レベル)に限られる。   All the bonding wires put to practical use so far have a single-layer structure. Even if the material changed, such as gold or copper, the alloy element was uniformly contained inside, and the wire cross section of the bonding wire was a single-layer structure. In some cases, a thin natural oxide film, an organic film for surface protection, or the like is formed on the wire surface of the bonding wire, but these are also limited to the extremely thin region (up to several atomic layers level) on the outermost surface.

ボンディングワイヤに要求される多様なニーズに応えるため、ワイヤ表面に別の金属を被覆した多層構造のボンディングワイヤが提案されている。   In order to respond to various needs required for bonding wires, a bonding wire having a multilayer structure in which another metal is coated on the wire surface has been proposed.

銅ボンディングワイヤの表面酸化を防ぐ方法として、特許文献1には、金、銀、白金、パラジウム、ニッケル、コバルト、クロム、チタン等の貴金属や耐食性金属で銅を被覆したボンディングワイヤが提案されている。また、ボール形成性、メッキ液の劣化防止等の点から、特許文献2には、銅を主成分とする芯材、該芯材上に形成された銅以外の金属からなる異種金属層、及び該異種金属層の上に形成され、銅よりも高融点の耐酸化性金属からなる被覆層の構造をしたボンディングワイヤが提案されている。特許文献3には、銅を主成分とする芯材と、該芯材の上に芯材と成分又は組成の一方又は両方の異なる金属と銅を含有する外皮層を有し、その外皮層の厚さが0.001〜0.02μmの薄膜であるボンディングワイヤが提案されている。   As a method for preventing surface oxidation of a copper bonding wire, Patent Document 1 proposes a bonding wire in which copper is coated with a noble metal such as gold, silver, platinum, palladium, nickel, cobalt, chromium, titanium, or a corrosion-resistant metal. . In addition, from the viewpoints of ball formability, prevention of deterioration of the plating solution, and the like, Patent Document 2 describes a core material mainly composed of copper, a dissimilar metal layer made of a metal other than copper formed on the core material, and There has been proposed a bonding wire formed on the dissimilar metal layer and having a coating layer structure made of an oxidation-resistant metal having a melting point higher than that of copper. Patent Document 3 has a core material containing copper as a main component, and an outer skin layer containing copper and a metal different from one or both of the core material and its component or composition on the core material. A bonding wire that is a thin film having a thickness of 0.001 to 0.02 μm has been proposed.

また、金ボンディングワイヤでも、多層構造が多く提案されている。例えば、特許文献4には、高純度Au又はAu合金からなる芯線の外周面に高純度Pd又はPd合金からなる被覆材を被覆したボンディングワイヤが提案されている。特許文献5には、高純度Au又はAu合金からなる芯線の外周面に高純度Pt又はPt合金からなる被覆材を被覆したボンディングワイヤが提案されている。特許文献6には、高純度Au又はAu合金からなる芯線の外周面に高純度Ag又はAg合金からなる被覆材を被覆したボンディングワイヤが提案されている。   Also, many multi-layer structures have been proposed for gold bonding wires. For example, Patent Document 4 proposes a bonding wire in which the outer peripheral surface of a core wire made of high-purity Au or Au alloy is covered with a coating material made of high-purity Pd or Pd alloy. Patent Document 5 proposes a bonding wire in which the outer peripheral surface of a core wire made of high-purity Au or Au alloy is covered with a coating material made of high-purity Pt or Pt alloy. Patent Document 6 proposes a bonding wire in which the outer peripheral surface of a core wire made of high-purity Au or Au alloy is coated with a coating material made of high-purity Ag or Ag alloy.

量産で使用されるボンディングワイヤのワイヤ特性として、ボンディング工程におけるループ制御が安定しており、接合性も向上しており、樹脂封止工程でボンディングワイヤの変形を抑制すること、接続部の長期信頼性等の、総合的な特性を満足することで、最先端の狭ピッチ、3次元配線等の高密度実装に対応できることが望まれている。   As the wire characteristics of bonding wires used in mass production, the loop control in the bonding process is stable, the bondability is improved, the deformation of the bonding wire is suppressed in the resin sealing process, and the long-term reliability of the connection part It is desired that high-density mounting such as state-of-the-art narrow pitch and three-dimensional wiring can be achieved by satisfying comprehensive characteristics such as performance.

ボール接合に関連して、ボール形成時に真球性の良好なボールを形成し、そのボール部と電極との接合部で十分な接合強度を得ることが重要である。また、接合温度の低温化、ボンディングワイヤの細線化等に対応するためにも、回路配線基板上の配線部にボンディングワイヤをウェッジ接続した部位での接合強度、引張り強度等も必要である。   In connection with ball bonding, it is important to form a ball with good sphericity at the time of ball formation and to obtain sufficient bonding strength at the bonding portion between the ball portion and the electrode. Further, in order to cope with a decrease in the bonding temperature, a thinning of the bonding wire, and the like, a bonding strength, a tensile strength, and the like at a portion where the bonding wire is wedge-connected to the wiring portion on the circuit wiring board are also required.

ワイヤの表面性状は使用性能を左右する場合が多く、例えばキズ、削れの発生だけでも量産使用では問題となる。削れにより隣接するボンディングワイヤと電気的ショートする危険性があり、キズはボンディングワイヤの製造歩留まり、樹脂封止時のワイヤ変形等、ボンディングワイヤの品質、信頼性を損なう原因となる。また、ループ形状制御の安定性の追及、低温での接合性の向上等により、半導体製造工程の不良発生率をppmオーダで管理する厳しい要求に適応できなくては実用化に至らない。   The surface property of the wire often affects the use performance, and for example, the occurrence of scratches or scrapes becomes a problem in mass production use. There is a risk of electrical short-circuiting with an adjacent bonding wire due to scraping, and scratches cause damage to bonding wire quality and reliability, such as bonding wire manufacturing yield and wire deformation during resin sealing. In addition, by pursuing the stability of loop shape control and improving the bonding property at a low temperature, it is impossible to put it to practical use unless it is able to adapt to the strict requirement of managing the defect occurrence rate in the semiconductor manufacturing process on the order of ppm.

こうした半導体向けの多層構造のボンディングワイヤは、実用化の期待は大きいものの、これまで実用化されていなかった。多層構造による表面改質、高付加価値等が期待される一方で、ボンディングワイヤの生産性、品質、またボンディング工程での歩留まり、性能安定性、さらに半導体使用時の長期信頼性等が総合的に満足されなくてはならない。   Although such a bonding wire having a multilayer structure for semiconductors is expected to be put into practical use, it has not been put into practical use so far. While surface modification and high added value are expected due to the multi-layer structure, bonding wire productivity and quality, yield in the bonding process, performance stability, and long-term reliability when using semiconductors are comprehensive. It must be satisfied.

特開昭62-97360号公報JP-A 62-97360 特開2004-64033号公報JP 2004-64033 A 特開2007-12776号公報JP 2007-12776 特開平4-79236号公報Japanese Unexamined Patent Publication No. 4-79236 特開平4-79240号公報Japanese Patent Laid-Open No. 4-79240 特開平4-79242号公報JP-A-4-79242

従来の単層構造のボンディングワイヤ(以下、単層ワイヤと記す)では、引張り強度、接合部の強度、信頼性等を改善するのに、合金化元素の添加が有効であるが、特性向上には限界が懸念されている。多層構造をしたボンディングワイヤ(以下、複層ワイヤと記す)では、単層ワイヤよりもさらに特性を向上して付加価値を高めることが期待される。高機能化をもたらす複層ワイヤとして、例えば、銅ボンディングワイヤの表面酸化を防ぐために、ワイヤ表面に貴金属や耐酸化性の金属を被覆することが可能である。金ボンディングワイヤでも、ワイヤ表面に強度の高い金属又は合金を被覆することで、樹脂流れを低減する効果が期待される。   In conventional bonding wires with a single layer structure (hereinafter referred to as single layer wires), the addition of alloying elements is effective to improve the tensile strength, joint strength, reliability, etc. There are concerns about the limits. A bonding wire having a multilayer structure (hereinafter referred to as a multi-layer wire) is expected to further improve characteristics and increase added value as compared to a single-layer wire. For example, in order to prevent the surface of a copper bonding wire from being oxidized, it is possible to coat the surface of the wire with a noble metal or an oxidation-resistant metal as a multi-layered wire that provides high functionality. Even a gold bonding wire is expected to have an effect of reducing the resin flow by coating the wire surface with a high-strength metal or alloy.

しかし、半導体実装の高密度化、小型化、薄型化等のニーズを考慮して、本発明者らが評価したところ、複層ワイヤでは、後述するような実用上の問題が多く残されていることが判明した。   However, the present inventors have evaluated the semiconductor packaging in consideration of needs for higher density, smaller size, thinner thickness, etc., and as a result, there are many practical problems that will be described later in multilayer wires. It has been found.

複層ワイヤについては、ワイヤ製造工程での伸線加工及び、ワイヤボンディング工程での複雑なループ制御等により、ワイヤ最終製品又は半導体素子の接続に使用された状態において、ワイヤ表面にキズ、削れ等が発生し易いこと等が問題となる。例えば、ワイヤ表面のキズではサブミクロンの微小な溝が発生する場合があり、削れの不良例では、カンナ屑状の削れが複層ワイヤのワイヤ長手方向に発生し、その削れ長さが数百μmにまでなる場合もある。表面キズ、削れにより、ループ形状が不安定になったり、複層ワイヤに損傷を与えて強度が低下したり、さらに削れ屑が隣接する複層ワイヤに接触するとショート不良を起こし、実用上のトラブルの原因となる。   For multi-layer wires, scratches, scrapes, etc. on the wire surface in the state used to connect the final wire product or semiconductor element due to wire drawing in the wire manufacturing process and complicated loop control in the wire bonding process This is a problem. For example, a flaw on the surface of the wire may cause a sub-micron groove, and in the example of shaving failure, scraping of canna scraps occurs in the wire longitudinal direction of the multilayer wire, and the shaving length is several hundred. It may be up to μm. Due to surface scratches and scraping, the loop shape becomes unstable, the multi-layered wire is damaged and its strength is reduced, and when scraped scrapes come into contact with the adjacent multi-layered wire, a short circuit failure occurs, causing practical trouble. Cause.

こうした表面キズ、削れに関連する不良発生の頻度は、ワイヤ線径が細いほど上昇するため、狭ピッチ接続には不利であり、また、高いループと低いループとが混載させる等ループ制御が複雑になることでも上昇することで、3次元接続への適応が困難となる。低ループを形成するときに表面傷の発生頻度が増加する傾向にある。これらの不良が低減しなければ、複層ワイヤの実用範囲が限定されることが懸念される。   The frequency of defects related to surface scratches and scraping increases as the wire diameter decreases, which is disadvantageous for narrow-pitch connections. In addition, loop control is complicated because high loops and low loops are mixed. As it rises, it becomes difficult to adapt to 3D connections. The frequency of surface flaws tends to increase when forming a low loop. If these defects are not reduced, there is a concern that the practical range of the multilayer wire is limited.

こうした直接的な不良だけでなく、ワイヤ表面にキズ、削れの発生による間接的な不良、あるいは歩留まりの低下等も懸念される。例えば、複層ワイヤのワイヤ製造の途中工程で一旦発生したキズ、削れは、最終製品では検出できなくても、表皮層の厚さを不均一にしたり、内部クラックが残留することで、ループ形状を不安定にさせる場合もある。また、量産工程での光学顕微鏡によるループ外観検査では検出が難しい、ループの裏側でのキズ、削れ等が発生する場合もある。こうした不具合は、キズ、削れとの因果関係を直接は認識し難くても、製造歩留まりの低下等に悪影響を及ぼす。   In addition to such direct defects, there are concerns about indirect defects due to the occurrence of scratches and scraping on the wire surface, or a decrease in yield. For example, even if scratches and scrapes once generated in the process of manufacturing a multi-layer wire cannot be detected in the final product, the thickness of the skin layer becomes uneven or internal cracks remain, resulting in a loop shape. May be unstable. In addition, there are cases where scratches, scraping, etc. occur on the back side of the loop, which is difficult to detect by loop appearance inspection with an optical microscope in the mass production process. Even if it is difficult to directly recognize the causal relationship with scratches and shavings, these defects adversely affect the production yield.

表面キズ、削れの発生頻度、現象等は表皮層の素材により変化するが、これまで十分な対策はとられていない。複層ワイヤでの発生頻度は単層ワイヤより増加する場合が多く、これは複層ワイヤではループを形成する工程での表皮層に対する応力、歪等の負担が大きくなったり、ワイヤ製造工程のプロセス条件の違い等が関与していると考えられる。   Surface scratches, scraping frequency, and phenomena vary depending on the skin layer material, but no sufficient countermeasures have been taken so far. The frequency of occurrence of multi-layer wires is often higher than that of single-layer wires. This is because multi-layer wires impose stresses and strains on the skin layer in the process of forming loops, and the wire manufacturing process. Differences in conditions are considered to be involved.

複層ワイヤでループ形成したときには、ループの直線性が低下して、複層ワイヤの倒れ、垂れ、曲がり等の不具合が生じる場合がある。このループの直線性が低下することで、製造歩留まりを低下させることが問題となる。   When a loop is formed with a multi-layer wire, the linearity of the loop may be reduced, and problems such as a fall, sagging, or bending of the multi-layer wire may occur. As the linearity of the loop is lowered, there is a problem that the manufacturing yield is lowered.

複層ワイヤのボール接合部の不具合としては、花弁現象と芯ずれ現象とが代表的である
。花弁現象とは、ボール接合部の外周近傍が花弁状に凹凸変形を起こして、真円性からずれるものであり、小さい電極上に接合するときにボールがはみ出たり、接合強度の低下を誘発したりする不良の原因となる。芯ずれ現象とは、ワイヤ先端に形成したボール部が、ワイヤ軸に対し非対称に形成され、例えばゴルフクラブ状となる現象であり、狭ピッチ接続において芯ずれボールを接合したときに隣接するボールと接触するショート不良を起こすことが問題となる。これら複層ワイヤにおける花弁現象と芯ずれ現象との発生頻度は単層ワイヤより増える傾向であり、生産性の低下をもたらす一因であるため、ワイヤボンディング工程の管理基準を厳しくする必要がある。
Typical problems of the ball joint portion of the multilayer wire are a petal phenomenon and a misalignment phenomenon. The petal phenomenon is a phenomenon in which the vicinity of the outer periphery of the ball joint part is deformed in a petal shape and deviates from roundness, and when joining on a small electrode, the ball protrudes or the joint strength is reduced. Cause failure. The misalignment phenomenon is a phenomenon in which the ball portion formed at the tip of the wire is formed asymmetrically with respect to the wire axis and becomes, for example, a golf club shape. When the misalignment ball is joined in a narrow pitch connection, There is a problem of causing short circuit contact. The frequency of occurrence of the petal phenomenon and the misalignment phenomenon in these multi-layer wires tends to increase more than that of single-layer wires, and this is one factor that causes a reduction in productivity. Therefore, it is necessary to tighten the management standards of the wire bonding process.

複層銅ワイヤでは、単層銅ワイヤより酸化を遅らせる効果が期待できるが、その効果は
、表皮層又はワイヤ表面近傍における組成、構造、厚さ等により大きく異なる。複層銅ワイヤの構造の適正化が重要となる。金ワイヤと同等の作業性を確保するには、例えば、2ヶ月程度の大気保管の後でも、ウェッジ接合性、ループ形状等が劣化しないことが保障される必要がある。これは、単層銅ワイヤの保管寿命に比べれば数十倍の寿命向上が必要であり、銅を主体とする材料においては相当厳しい条件が求められることになる。
In the multilayer copper wire, the effect of delaying the oxidation can be expected as compared with the single layer copper wire, but the effect varies greatly depending on the composition, structure, thickness, etc. in the skin layer or near the wire surface. It is important to optimize the structure of the multilayer copper wire. In order to ensure workability equivalent to that of gold wire, it is necessary to ensure that, for example, wedge bondability, loop shape, and the like do not deteriorate even after storage in the atmosphere for about two months. This requires an improvement in the life of several tens of times compared with the shelf life of the single-layer copper wire, and considerably strict conditions are required for materials mainly composed of copper.

本発明では、上述するような従来技術の問題を解決して、従来の基本性能に加えて、ワイヤ表面の傷、削れの抑制、ループ形状の安定化、良好なボール形成等の性能向上を図った半導体装置用ボンディングワイヤを提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, and in addition to the conventional basic performance, it aims to improve the performance of the wire surface such as scratches and scrapes, stabilization of the loop shape, and good ball formation. Another object of the present invention is to provide a bonding wire for a semiconductor device.

本発明者らが、上記ワイヤの表面キズや削れ発生等の問題を解決するために複層構造のボンディングワイヤを検討した結果、特定の表皮層であって前記表皮層の組織を制御することが有効であることを見出した。   As a result of studying a bonding wire having a multi-layer structure in order to solve the problems such as surface scratches and scraping of the wire, the present inventors have been able to control the structure of the skin layer in a specific skin layer. I found it effective.

本発明は前記知見の基づいてなされたものであり、以下の構成の要旨とする。   This invention is made | formed based on the said knowledge, and makes it the summary of the following structures.

本発明の請求項1に係る半導体装置用ボンディングワイヤは、導電性金属からなる芯材と、前記芯材の上に該芯材とは異なる金属を主成分とする表皮層とを有する半導体装置用ボンディングワイヤであって、前記表皮層の金属が面心立方晶であって、該表皮層の厚さが0.005〜0.2μmの範囲であり、前記表皮層の表面の結晶面におけるワイヤ長手方向の結晶方位<hkl>の内、前記ワイヤ長手方向に対して角度差が15°以内までを含む<111>の方位比率が50%以上であり、前記表皮層と前記芯材との間に、前記表皮層及び前記芯材を構成する主成分とは異なる成分からなる中間金属層を有することを特徴とする。 A bonding wire for a semiconductor device according to claim 1 of the present invention is for a semiconductor device having a core material made of a conductive metal and a skin layer mainly composed of a metal different from the core material on the core material. A bonding wire, wherein the metal of the skin layer is a face-centered cubic crystal, the thickness of the skin layer is in the range of 0.005 to 0.2 μm, and the crystal in the wire longitudinal direction on the crystal plane of the surface of the skin layer of orientation <hkl>, the wire angle difference with respect to the longitudinal direction Ri der orientation ratio is more than 50% of the <111> containing up to within 15 °, between the core and the skin layer, the It has an intermediate metal layer made of a component different from the main component constituting the skin layer and the core material .

本発明の請求項に係る半導体装置用ボンディングワイヤは、請求項1において、前記芯材の断面の結晶面におけるワイヤ長手方向の結晶方位<hkl>の内、前記ワイヤ長手方向に対して角度差が15°以内までを含む<111>と<100>との方位比率の総計が30%以上であることを特徴とする。 A bonding wire for a semiconductor device according to a second aspect of the present invention is the bonding wire for a semiconductor device according to the first aspect, wherein an angle difference with respect to the longitudinal direction of the wire is included in the crystal orientation <hkl> in the longitudinal direction of the wire on the crystal plane of the cross section of the core material. The total of the orientation ratios of <111> and <100> including up to 15 ° is 30% or more.

本発明の請求項に係る半導体装置用ボンディングワイヤは、請求項1又は2において、前記表皮層の表面におけるワイヤ長手方向の結晶方位が前記<111>である結晶粒の面積が、ワイヤ表面の総面積に対する割合として30%以上であることを特徴とする。 The semiconductor device bonding wire according to claim 3 of the present invention, in claim 1 or 2, the crystal orientation of the wire longitudinal direction of the surface of the skin layer is the area of the crystal grains is <111>, the wire surface It is characterized by being 30% or more as a percentage of the total area.

本発明の請求項に係る半導体装置用ボンディングワイヤは、請求項1〜において、前記表皮層を構成する主成分がPd、Pt、Ru、Agのいずれか1種であることを特徴とする。 A bonding wire for a semiconductor device according to a fourth aspect of the present invention is characterized in that, in any one of the first to third aspects, the main component constituting the skin layer is any one of Pd, Pt, Ru, and Ag. .

本発明の請求項に係る半導体装置用ボンディングワイヤは、請求項1〜において、前記表皮層と芯材の間に、前記表皮層及び前記芯材の主成分の濃度勾配を有する拡散層を有することを特徴とする。 A bonding wire for a semiconductor device according to a fifth aspect of the present invention is the bonding wire for a semiconductor device according to the first to fourth aspects, wherein a diffusion layer having a concentration gradient of main components of the outer skin layer and the core material is provided between the outer skin layer and the core material. It is characterized by having.

本発明の請求項に係る半導体装置用ボンディングワイヤは、請求項4又は5において、前記芯材を構成する主成分がCuで、B、Pd、Bi、P、Zrの1種以上を総量5〜300ppmの範囲で含有することを特徴とする。 The bonding wire for a semiconductor device according to a sixth aspect of the present invention is the bonding wire for a semiconductor device according to the fourth or fifth aspect , wherein the main component constituting the core material is Cu and a total amount of one or more of B, Pd, Bi, P, and Zr is 5 It is characterized by containing in the range of ~ 300ppm.

本発明の請求項に係る半導体装置用ボンディングワイヤは、請求項4又は5において、前記芯材を構成する主成分がCuで、Pdを5〜10000ppmの範囲で含有し、前記表皮層を構成する主成分がPdまたはAgであることを特徴とする。 A bonding wire for a semiconductor device according to a seventh aspect of the present invention is the bonding wire for a semiconductor device according to the fourth or fifth aspect , wherein the main component constituting the core material is Cu and Pd is contained in a range of 5 to 10,000 ppm to constitute the skin layer. The main component is Pd or Ag.

本発明の請求項に係る半導体装置用ボンディングワイヤは、請求項4又は5において、前記芯材を構成する主成分がAuで、Be、Ca、Ni、Pd、Ptの1種以上を総量5〜8000ppmの範囲で含有することを特徴とする。 A bonding wire for a semiconductor device according to an eighth aspect of the present invention is the bonding wire for a semiconductor device according to the fourth or fifth aspect , wherein the main component constituting the core material is Au, and the total amount of at least one of Be, Ca, Ni, Pd, and Pt is 5 It is characterized by containing in the range of ~ 8000ppm.

本発明の半導体装置用ボンディングワイヤにより、ワイヤ表面のキズ、削れを抑制して表面性状を改善できる。また、ループの直線性、ループ高さの安定性を向上できる。また、半導体装置用ボンディングワイヤの接合形状の安定化を促進できる。その結果、細線化、狭ピッチ化、ロングスパン化、三次元実装等、最新の半導体実装技術にも適応する、高機能の半導体装置用ボンディングワイヤを提供することが可能となる。   With the bonding wire for a semiconductor device according to the present invention, the surface properties can be improved by suppressing scratches and scraping on the surface of the wire. In addition, the linearity of the loop and the stability of the loop height can be improved. Moreover, stabilization of the joining shape of the bonding wire for semiconductor devices can be promoted. As a result, it is possible to provide a high-performance bonding wire for a semiconductor device that can be applied to the latest semiconductor mounting technologies such as thinning, narrowing, long span, and three-dimensional mounting.

複層構造のボンディングワイヤ(線径25μm)のEBSP測定結果(ワイヤ長手方向に<111>方位に配向した領域を着色。結晶粒界を線表示)EBSP measurement result of multi-layered bonding wire (wire diameter 25μm) (colored region oriented in <111> direction in the longitudinal direction of wire. Crystal grain boundaries are shown as lines)

半導体装置用ボンディングワイヤ(以下、ボンディングワイヤという)について、導電性金属からなる芯材と、該芯材の上に芯材とは異なる面心立方晶の金属を主成分とする表皮層で構成されたものを検討した結果、ボンディングワイヤの表面近傍に導電性金属を含有させることにより、ウェッジ接合性の向上等期待できる反面、ワイヤ製造工程での伸線加工及び、ワイヤボンディング工程での複雑なループ制御等における、ワイヤ表面のキズ、削れ等の発生が問題となること、ループ形状の安定性等が十分でないこと等が判明した。   A bonding wire for a semiconductor device (hereinafter referred to as a bonding wire) is composed of a core material made of a conductive metal and a skin layer mainly composed of a face-centered cubic metal different from the core material on the core material. As a result of studying, the inclusion of a conductive metal in the vicinity of the surface of the bonding wire can be expected to improve wedge bondability, but on the other hand, wire drawing in the wire manufacturing process and complicated loops in the wire bonding process It has been found that the occurrence of scratches, scraping, etc. on the wire surface in control and the like becomes a problem and the stability of the loop shape is not sufficient.

そこで、狭ピッチ接続、3次元接続の厳しいループ制御等の新たなニーズへの対応、細線のワイヤ伸線加工における歩留まりの向上等にも対応できる複層構造のボンディングワイヤを検討した結果、特定の表皮層であって前記表皮層の組織を制御することが有効であることを見出した。特に、これまで殆ど知られていなかった複層ワイヤの表面の集合組織とワイヤボンディングの使用性能の関係に着目することで、特定の結晶方位を制御することにより、加工性、接合性、ループ制御性等の総合的な改善が可能であることを初めて確認した。更に効果的には、表皮層と芯材との組織の組合せ等の制御が有効であることを見出した。   Therefore, as a result of examining multi-layered bonding wires that can respond to new needs such as narrow pitch connection, strict loop control of 3D connection, improvement of yield in wire drawing processing of thin wires, etc. It has been found that it is effective to control the tissue of the epidermis layer. In particular, by controlling the specific crystal orientation by paying attention to the relationship between the surface texture of multi-layered wire and the performance of wire bonding, which has been hardly known until now, workability, bondability, and loop control are controlled. It was confirmed for the first time that comprehensive improvement of sex and so on was possible. Furthermore, it has been found that the control of the combination of the structure of the skin layer and the core material is effective.

即ち、導電性金属からなる芯材と、該芯材の上に芯材とは異なる、面心立方晶の金属を主成分とする表皮層とを有するボンディングワイヤであって、前記表皮層の表面の結晶面におけるワイヤ長手方向の結晶方位<hkl>の内、50%以上が<111>であることを特徴とするボンディングワイヤであることが必要である。該ボンディングワイヤであれば、ワイヤ製造工程での伸線加工及び、ワイヤボンディング工程での複雑なループ制御等における、ワイヤ表面のキズ、削れの発生を抑制する高い効果が得られる。 That is, a bonding wire having a core material made of a conductive metal and a skin layer having a face-centered cubic metal as a main component different from the core material on the core material, the surface of the skin layer It is necessary that the bonding wire be characterized in that 50% or more of the crystal orientation <hkl> in the wire longitudinal direction on the crystal plane is <111>. If it is this bonding wire, the high effect which suppresses the generation | occurrence | production of the flaw of a wire surface in the wire drawing process in a wire manufacturing process, the complicated loop control in a wire bonding process, etc. and a chip | tip will be acquired.

表皮層を構成する成分が面心立方晶の金属であれば、加工時の降伏降下もなく、加工性も良好であり、伸線加工、ループ制御等の複雑な加工、曲げ等に順応し易い。   If the component of the skin layer is a face-centered cubic metal, there is no yield drop during processing, good workability, and easy adaptation to complicated processing such as wire drawing and loop control, bending, etc. .

ボンディングワイヤのワイヤ長手方向の結晶方位<hkl>の内、50%以上が<111>であることにより、表皮層の表面硬度、加工性、曲げ耐性等、両立が困難とされていた特性群の総合的な改善が可能となり、結果として、ワイヤ表面のキズ、削れを抑制することができる。面心立方晶の金属の<111>方位は最稠密方向であり、この<111>方位が表皮層に集まるほど、表面の機械的特性は向上する傾向にあり、例えば硬度を高め、弾性変形に強く、塑性変形への耐性が強く、靭性も高められる。結晶方位の内<111>方位の占める割合が50%以上であれば、ワイヤ表面のキズ、削れを抑制する十分な効果が得られる。好ましくは、この<111>方位の割合が60%以上であれば削れを抑える効果が高められ、ワイヤ長が5mm以上のロングスパンでも削れ、キズを低減できる。より好ましくは、70%以上であればキズを抑制する効果がさらに高まり、例えば、ループ高さが65μm以下の低ループでも、キズ、削れを抑制して安定したループ形成が可能となる。 Among the crystal orientation <hkl> in the wire longitudinal direction of the bonding wire, 50% or more is <111>, which makes it difficult to achieve both the surface hardness, workability, bending resistance, etc. of the skin layer. Comprehensive improvement is possible, and as a result, scratches and scrapes on the wire surface can be suppressed. The <111> orientation of the face-centered cubic metal is the densest direction, and the more the <111> orientation gathers in the skin layer , the more the surface mechanical properties tend to improve.For example, the hardness increases and elastic deformation occurs. Strong, highly resistant to plastic deformation and toughness is enhanced. If the proportion of the <111> orientation in the crystal orientation is 50% or more, a sufficient effect of suppressing flaws and scraping on the wire surface can be obtained. Preferably, if the ratio of the <111> orientation is 60% or more, the effect of suppressing the cutting is enhanced, and even a long span having a wire length of 5 mm or more can be cut and scratches can be reduced. More preferably, if it is 70% or more, the effect of suppressing scratches is further enhanced. For example, even in a low loop with a loop height of 65 μm or less, scratches and scraping can be suppressed and stable loop formation becomes possible.

複層ワイヤでは表皮層と芯材とが異なる成分で構成されているため、ワイヤ表面を被覆している表皮層の組織を分離して制御することが比較的容易である。この表面組織の制御による特性改善効果も高い。こうした点では、従来の単層ワイヤの組織制御とは異なる。単層ワイヤでは、ワイヤ全体の集合組織及び結晶方位を管理することはできるが、表面近傍だけワイヤ内部と分離して組織制御することは難しい。因って、複層ワイヤの表皮層の組織制御には、複層ワイヤ独自の考え方が求められ、単層ワイヤのワイヤ断面における集合組織及び結晶方位の管理を当て嵌めることはできない。 In the multilayer wire, the skin layer and the core material are composed of different components. Therefore, it is relatively easy to separate and control the tissue of the skin layer covering the wire surface. The effect of improving the characteristics by controlling the surface texture is also high. In this respect, it differs from conventional single layer wire tissue control. A single-layer wire can manage the texture and crystal orientation of the entire wire, but it is difficult to control the structure separately from the inside of the wire only in the vicinity of the surface. Therefore, the structure control of the skin layer of the multilayer wire requires a unique concept of the multilayer wire, and the management of the texture and crystal orientation in the wire cross section of the single layer wire cannot be applied.

表皮層の表面の結晶面におけるワイヤ長手方向の結晶方位<hkl>の内、<111>と<100>との占める割合の総計が60%以上であれば、ループ高さのバラツキを低減し、高速動作でのループの安定制御が容易となる。通常のワイヤ接続工程では、キャピラリの穴を通るボンディングワイヤが繰り出されたり、引き戻されたりする等、複雑な動作をする。これは数十ミリ秒のオーダのかなり高速でボンディングワイヤが出入りする動作である。<111>と<100>それぞれの方位の具体的な効果、関わりは明確でないが、ボンディングワイヤとキャピラリとの摺動抵抗を下げることで、ループ高さが安定化していると考えられる。言い換えれば、こうした摺動性及びループ高さを安定化させるには、<111>と<100>以外の結晶方位を低く抑えることが有効である。表皮層における<111>と<100>との占める割合の総計が60%以上であれば、ワイヤ長が3mm以下の一般的なスパンで、ループ高さを安定化する高い効果が得られる。好ましくは、80%以上であれば、ワイヤ長が5mm以上のロングスパンでもループ高さを安定化させる高い効果が得られる。また、<111>と<100>との占める割合を高めることによる効果として、成膜後の加工、熱処理のプロセスにおける膜厚の不均一性を抑えることで、表皮層の厚さの均一化にも有利である。 If the total proportion of <111> and <100> in the crystal orientation <hkl> in the wire longitudinal direction in the crystal plane of the surface of the skin layer is 60% or more, the variation in loop height is reduced, The loop can be controlled stably at high speed. In a normal wire connection process, a complicated operation is performed such that a bonding wire passing through a hole in a capillary is drawn out or pulled back. This is an operation in which the bonding wire enters and exits at a considerably high speed on the order of several tens of milliseconds. Although the specific effects and relationships of the <111> and <100> orientations are not clear, it is thought that the loop height is stabilized by lowering the sliding resistance between the bonding wire and the capillary. In other words, to stabilize such slidability and loop height, it is effective to keep crystal orientations other than <111> and <100> low. If the total proportion of <111> and <100> in the skin layer is 60% or more, a high effect of stabilizing the loop height can be obtained with a general span with a wire length of 3 mm or less. Preferably, if it is 80% or more, a high effect of stabilizing the loop height can be obtained even with a long span having a wire length of 5 mm or more. In addition, as an effect of increasing the ratio of <111> and <100>, the thickness of the skin layer can be made uniform by suppressing the non-uniformity of the film thickness in the post-deposition processing and heat treatment processes. Is also advantageous.

芯材の断面におけるワイヤ長手方向の結晶方位<hkl>の内、<111>と<100>との占める割合の合計が15%以上であれば、ボール接合部が真円から大きくずれた異常変形が発生する不良を抑制できる。この異常変形は隣接する電極との電気的ショートの直接的原因となる等、ボール接合で最も懸念される不良形態の一つである。異常変形の判断基準の目安として、ボール接合部の長径サイズと短径サイズとの比率が1.3倍以上となる楕円状の形状を不良と判断する。例え低い発生率で突発的に発生するだけでも、ワイヤボンディングの生産性を阻害する。好ましくは、<111>と<100>との占める割合の合計が30%以上であれば、ボール接合部の外周近傍が凹凸変形する小さな花弁不良を低減することになり、ボール接合部を真円に近づけて安定化させることができる。真円性が良好であれば接合面積の縮小に有利となり、接合工程の製造管理が容易となったり、あるいは狭ピッチ接合の生産性を向上できる。ボール部の凝固組織は、芯材の組織も大きく反映され、芯材の結晶方位<hkl>の内、<111>と<100>との占める割合を高くすることが有効であることを確認した。こうした芯材の結晶方位の制御について、単層ワイヤでは効果が十分でないのに対して、複層ワイヤでは高い効果が得られることが確認された。この要因について完全には解明されていないが、複層ワイヤのボール溶融では先に表皮層、次に芯材と段階的に溶融されることで、芯材の組織がボール部の組織に及ぼす影響が大きいためと推察される。この作用効果は、通常のボールサイズの場合に、より高い効果が確認されている。例えば、初期ボール径/ワイヤ径の比率が1.9〜2.2の通常サイズのボールを接合する場合に、ボール接合部における異方性や花弁状等の形状不良を低減して、真円性を向上できる。圧縮変形、超音波印加によるボール部の変形挙動を調査した結果、ボール接合形状に関しては、表皮層の組織との相関は小さく、むしろ芯材の組織が支配的に作用することが確認された。ここで、芯材における<111>と<100>との占める割合の合計が15%未満であれば、ボール接合時の異常変形が発生する頻度が高くなり、また、30%未満であれば、ボールが接合時に花弁状、楕円状の変形を起こす頻度が高くなり、不良となる場合がある。ワイヤの組織がボール変形に及ぼす影響は、複層ワイヤの方が顕著であり、単層ワイヤの組織の影響とは異なる場合が多い。好ましくは、芯材における<111>と<100>との占める割合の合計が50%以上であれば、小径ボールの接合形状を安定化できる。例えば、初期ボール径/ワイヤ径の比率が1.5〜1.7の範囲である小径ボールを接合する場合に、ボール接合部の真円性を向上することで、電極間隔が40μm以下の狭ピッチ接合でも良好なボール接合形状が得られる。芯材における<111>と<100>との占める割合の合計の上限は特にはないが、85%以下であれば製造時の制御が比較的容易となる利点がある。   If the total ratio of <111> and <100> in the crystal orientation <hkl> in the wire longitudinal direction in the cross-section of the core material is 15% or more, abnormal deformation in which the ball joint is greatly deviated from the perfect circle The defect which generate | occur | produces can be suppressed. This abnormal deformation is one of the most problematic forms of ball bonding, such as causing a direct electrical short with adjacent electrodes. As a standard for determining the abnormal deformation, an elliptical shape in which the ratio of the major axis size to the minor axis size of the ball joint portion is 1.3 times or more is determined to be defective. Even if it occurs suddenly at a low rate, wire bonding productivity is hindered. Preferably, if the sum of the proportions of <111> and <100> is 30% or more, small petal failure in which the vicinity of the outer periphery of the ball joint is unevenly deformed is reduced, and the ball joint is perfectly round. It can be stabilized close to. If the roundness is good, it is advantageous for reduction of the bonding area, manufacturing management of the bonding process becomes easy, or productivity of narrow pitch bonding can be improved. The solidification structure of the ball part largely reflects the structure of the core material, and it was confirmed that it was effective to increase the proportion of <111> and <100> in the crystal orientation <hkl> of the core material. . Regarding the control of the crystal orientation of the core material, it was confirmed that a single layer wire is not effective enough, but a multi-layer wire can provide a high effect. Although this factor has not been fully elucidated, the effect of the structure of the core material on the structure of the ball part is due to the stepwise melting of the multilayer wire first with the skin layer and then with the core material. Is presumed to be large. This effect has been confirmed to be higher in the case of a normal ball size. For example, when joining normal size balls with a ratio of initial ball diameter / wire diameter of 1.9 to 2.2, it is possible to improve roundness by reducing shape defects such as anisotropy and petal shape at the ball joint. . As a result of investigating the deformation behavior of the ball portion by compressive deformation and application of ultrasonic waves, it was confirmed that the ball bond shape had a small correlation with the structure of the skin layer, but rather the structure of the core material was dominant. Here, if the total proportion of <111> and <100> in the core material is less than 15%, the frequency of occurrence of abnormal deformation at the time of ball bonding is high, and if less than 30%, When the balls are joined, the frequency of petal-like or elliptical deformation increases, which may be defective. The influence of the wire structure on the ball deformation is more noticeable in the multilayer wire and is often different from the influence of the structure of the single-layer wire. Preferably, if the total proportion of <111> and <100> in the core material is 50% or more, the bonded shape of the small-diameter ball can be stabilized. For example, when joining small diameter balls whose initial ball diameter / wire diameter ratio is in the range of 1.5 to 1.7, by improving the roundness of the ball joint, it is also good for narrow pitch joining with electrode spacing of 40 μm or less A ball-joint shape can be obtained. There is no particular upper limit to the total proportion of <111> and <100> in the core material, but if it is 85% or less, there is an advantage that control during production is relatively easy.

こうした芯材の組織と、前述した表皮層の組織とを組み合わせることにより相乗作用が期待でき、ループ形状の制御、ボール変形の安定化を同時に改善することが可能となる。即ち、表皮層の表面の結晶面におけるワイヤ長手方向の結晶方位<hkl>の内、50%以上が<111>であり、且つ、芯材の断面におけるワイヤ長手方向の結晶方位<hkl>の内、<111>と<100>との占める割合が40%以上である複層構造のボンディングワイヤであることが望ましい。これにより、三次元実装の代表例である、複数のチップを積層させた積層チップ接続、BGA、CSPで最近使用される、隣接するボンディングワイヤのループ高さが60〜500μmの範囲で大きく異なる多段接続(Multi-Tier Bonding)等において、ボンディングワイヤの総合特性を改善することができる。 A synergistic effect can be expected by combining the structure of the core material and the structure of the skin layer described above, and it becomes possible to simultaneously improve the control of the loop shape and the stabilization of the ball deformation. That is, 50% or more of the crystal orientation <hkl> in the wire longitudinal direction in the crystal plane of the surface of the skin layer is <111>, and the crystal orientation <hkl> in the wire longitudinal direction in the cross section of the core material It is desirable that the bonding wire has a multilayer structure in which the proportion of <111> and <100> is 40% or more. This is a typical example of three-dimensional mounting, which is a multilayer chip connection in which a plurality of chips are stacked, BGA, and CSP, which are recently used in multi-stages where the loop height of adjacent bonding wires is greatly different in the range of 60 to 500 μm. The overall characteristics of the bonding wire can be improved in connection (Multi-Tier Bonding) or the like.

これまでの説明では、測定できる結晶方位を基準として、特定の配向が占める割合が及ぼす作用、効果について説明している。今後狭ピッチ化に適応するため細線化が進めば、表面の影響度が増すことで、結晶方位の及ぼす効果をボンディングワイヤの表面を基準として整理した方が、実用の効果を正確に把握することが可能である。   In the description so far, the actions and effects exerted by the proportion of a specific orientation are described with reference to the measurable crystal orientation. If thinning progresses to adapt to narrow pitches in the future, the effect of the surface will increase, and the effect of crystal orientation will be more accurately understood based on the surface of the bonding wire. Is possible.

具体的には、表皮層の表面の結晶面におけるワイヤ長手方向の結晶方位<hkl>の内、50%以上が<111>である複層構造のボンディングワイヤであって、さらに表皮層の表面におけるワイヤ長手方向の結晶方位が<111>である結晶粒の面積が、ワイヤ表面の総面積に対する割合として30%以上であることが望ましい。これにより、ループ形状を安定化させる効果が高まり、中でも直径22μm以下に細線化されたボンディングワイヤでもループ特性が安定化し、キズ、削れの低減に有効である。線径が22μm以下の細いボンディングワイヤでは、伸線加工歪みの増大等により、測定が難しい結晶方位の領域が増加すること等で、測定できる結晶方位の内の<111>の配向の割合だけではループ特性を正確に把握できない領域が増える傾向にある。そこで、表皮層の表面における<111>結晶粒の面積が、ワイヤ表面の総面積に対する割合(面積比率)で適正な割合(適正な面積比率)とすれば、細線でも良好な特性が得られる。該面積比率が30%以上である理由は、結晶方位の内50%以上が<111>であっても面積比率が30%未満であれば、線径22μm以下のボンディングワイヤを用いて狭ピッチ接続するとキズ、削れ等を抑制しきれないことがある。好ましくは、該面積比率が40%以上であれば、直径18μm以下の細線を接続しても、ループ形成時のキズ、削れを低減できる。さらに好ましくは、該面積比率が50%以上であれば、直径18μm以下の細線でのキズ、削れを抑制する効果がさらに高められるため、40μmピッチ以下の狭ピッチ接続にも有利となる。 Specifically, it is a multi-layer bonding wire in which 50% or more of the crystal orientation <hkl> in the longitudinal direction of the wire on the surface of the skin layer is <111>, and further on the surface of the skin layer. It is desirable that the area of the crystal grains whose crystal orientation in the longitudinal direction of the wire is <111> is 30% or more as a ratio with respect to the total area of the wire surface. As a result, the effect of stabilizing the loop shape is enhanced, and in particular, even with the bonding wire thinned to a diameter of 22 μm or less, the loop characteristics are stabilized and effective in reducing scratches and scraping. For thin bonding wires with a wire diameter of 22 μm or less, the area of crystal orientation that is difficult to measure increases due to increased wire strain, etc. There is a tendency that the area where the loop characteristics cannot be accurately grasped increases. Therefore, if the area of the <111> crystal grains on the surface of the skin layer is set to an appropriate ratio (appropriate area ratio) with respect to the total area of the wire surface (area ratio), good characteristics can be obtained even with thin wires. The reason why the area ratio is 30% or more is that when the area ratio is less than 30% even if 50% or more of the crystal orientations are <111>, a narrow pitch connection using a bonding wire having a wire diameter of 22 μm or less Then, scratches, scrapes, etc. may not be suppressed. Preferably, when the area ratio is 40% or more, even when a thin wire having a diameter of 18 μm or less is connected, scratches and scraping during loop formation can be reduced. More preferably, if the area ratio is 50% or more, the effect of suppressing flaws and scraping with fine wires having a diameter of 18 μm or less is further enhanced, which is advantageous for narrow pitch connection with a pitch of 40 μm or less.

表皮層の表面の結晶面におけるワイヤ長手方向の結晶方位<hkl>の内、50%以上が<111>である複層構造のボンディングワイヤであって、さらに表皮層の表面における結晶粒の平均サイズについて、円周方向の平均サイズに対するワイヤ長手方向の平均サイズの比率(結晶粒径のアスペクト比)が3以上であることを特徴とする複層構造のボンディングワイヤであれば、ループ形成したボンディングワイヤの直線性を向上することができる。ボンディングワイヤは、キャピラリ先端の穴から出たり、戻ったりすることでループを形成する際に、キャピラリ内壁との摩擦等により、ボンディングワイヤが倒れたり、曲がりによるカール不良、垂れによるボンディング不良等が発生することで、歩留まりが低下する。こうした不良を抑制してループ直線性を向上するには、表皮層の表面における結晶粒径のアスペクト比を高めることが有効であることを見出した。アスペクト比が高めれば、ワイヤ長手方向に長い結晶粒が繊維状組織を形成することになり、ループ形成時のボンディングワイヤに残留する歪み、変形バラツキを低減することに有利となる。アスペクト比が3以上であれば、ループ直線性を向上する十分な効果が得られる。好ましくは、アスペクト比が5以上であれば、直径25μm以下でワイヤ長が5mm以上のロングスパンでも良好なループ直線性が得られる。さらに好ましくは、アスペクト比が10以上であれば、ワイヤ長が7mm以上の超ロングスパンでもループ直線性を向上する効果が高められる。 A bonding wire with a multi-layer structure in which 50% or more of the crystal orientation <hkl> in the longitudinal direction of the wire on the surface of the skin layer is <111>, and the average size of the crystal grains on the surface of the skin layer If the bonding wire has a multilayer structure, the ratio of the average size in the longitudinal direction of the wire to the average size in the circumferential direction (aspect ratio of the crystal grain size) is 3 or more, a loop-formed bonding wire The linearity of can be improved. When forming a loop by exiting or returning from the hole at the tip of the capillary, the bonding wire may fall down due to friction with the inner wall of the capillary, curl failure due to bending, bonding failure due to sagging, etc. As a result, the yield decreases. In order to suppress such defects and improve the loop linearity, it has been found effective to increase the aspect ratio of the crystal grain size on the surface of the skin layer. When the aspect ratio is increased, crystal grains long in the wire longitudinal direction form a fibrous structure, which is advantageous in reducing distortion and deformation variation remaining on the bonding wire during loop formation. If the aspect ratio is 3 or more, a sufficient effect of improving loop linearity can be obtained. Preferably, when the aspect ratio is 5 or more, good loop linearity can be obtained even with a long span having a diameter of 25 μm or less and a wire length of 5 mm or more. More preferably, if the aspect ratio is 10 or more, the effect of improving the loop linearity is enhanced even with an ultra-long span having a wire length of 7 mm or more.

表皮層の主成分となる面心立方晶の金属とは、芯材の主成分である導電性金属とは異なる金属であり、ボンディングワイヤの接合性の改善に効果があり、ボンディングワイヤの酸化防止にも有効である金属であることが望ましい。具体的には、Pd、Pt、Ru、Rh、Agが候補となり、さらに実用性、コストパフォーマンス等を重視すれば、Pd、Pt、Ru、Agのいずれか1種の金属であることがより望ましい。ここでの主成分とは濃度が50mol%以上を有する元素のことである。Pdは、封止樹脂との密着性、電極への接合性も十分であり、品質管理も容易である等の利点がある。Ptは、ボール形状を安定化させることが比較的容易である。Ruは硬質で緻密な膜を形成し易く、材料費も比較的安価である。Rhは耐酸化性等性能良好であるが、材料費が高価であるため、薄膜化等今後の検討が期待される。Agは軟質であるため、表皮層が形成されたワイヤの伸線加工によるキズ抑制などが比較的容易であり、材料費も安価であるため、コスト重視の半導体などに有用である。 The face-centered cubic metal that is the main component of the skin layer is a metal that is different from the conductive metal that is the main component of the core material. It is also desirable that the metal be effective. Specifically, Pd, Pt, Ru, Rh, Ag are candidates, and if more importance is attached to practicality, cost performance, etc., it is more desirable to be any one metal of Pd, Pt, Ru, Ag. . The main component here is an element having a concentration of 50 mol% or more. Pd has advantages such as sufficient adhesion to the sealing resin, sufficient bonding to the electrode, and easy quality control. Pt is relatively easy to stabilize the ball shape. Ru is easy to form a hard and dense film, and the material cost is relatively low. Rh is oxidation resistance such performance is good, because the material cost is expensive, considering the future thinning or the like is expected. Since Ag is soft, it is relatively easy to suppress flaws due to wire drawing of the wire on which the skin layer is formed, and the material cost is also low, so it is useful for cost-sensitive semiconductors.

即ち、表皮層はPd、Pt、Ruの導電性金属のいずれか1種を主成分とする純金属、又は該導電性金属を主成分とする合金であることが好ましい。純金属であれば耐酸化性、接合性の向上等が容易である利点があり、合金であれば引張強度、弾性率の上昇により樹脂封止時のワイヤ変形を抑制する利点がある。ここでの上記純金属とは、表皮層の一部に99mol%以上の濃度を有する層が含まれるか、あるいは拡散層を除く表皮層の平均濃度が80mol%以上であることに相当する。上記合金とは、Pd、Pt、Ruの少なくとも1種の金属を50mol%以上含有するものである。 That is, the skin layer is preferably a pure metal whose main component is any one of Pd, Pt, and Ru, or an alloy whose main component is the conductive metal. A pure metal has the advantage that oxidation resistance and bondability are easily improved, and an alloy has the advantage of suppressing wire deformation during resin sealing by increasing the tensile strength and elastic modulus. Here, the pure metal corresponds to a part of the skin layer including a layer having a concentration of 99 mol% or more, or an average concentration of the skin layer excluding the diffusion layer being 80 mol% or more. The alloy contains 50 mol% or more of at least one metal selected from Pd, Pt, and Ru.

芯材を構成する導電性金属は、Cu、Au、Agが候補となり、実用性を重視すれば、Cu、Auの内いずれか1種を主成分することが望ましい。Cuは、材料費が安く、電気伝導性が高く、ボール形成時にシールドガスを吹付ければ良好なボール形成も容易である等操作性も比較的良好である。Auは、耐酸化性が強く、ボール形成時にシールドガス等が不要であり、接合時の変形も良好であり、接合性を確保し易い等の利点がある。Agは、導電性が優れているが、伸線加工がやや難があり、製造技術を適正化することが必要である。一方、Cu、Auは単層ボンディングワイヤ用素材としての使用実績が多いことは利点でもある。 Conductive metal constituting the core material, Cu, Au, Ag is a candidate, if practicality, Cu, it is desirable to mainly containing any one of Au. Cu has low material cost, high electrical conductivity, and relatively good operability such as easy formation of a good ball by spraying a shielding gas during ball formation. Au has strong oxidation resistance, does not require a shielding gas or the like at the time of ball formation, has a good deformation at the time of bonding, and has an advantage that it is easy to ensure the bonding property. Ag is excellent in electrical conductivity, but it is somewhat difficult to draw, and it is necessary to optimize the manufacturing technique. On the other hand, Cu and Au are also advantageous in that they have been used as single-layer bonding wire materials.

芯材は導電性金属を主成分とする合金であれば、ワイヤ強度の増加による細線化、又は接合信頼性の向上等に有利な場合もある。Cu合金の場合には、B、Pd、Bi、P、Zrの1種以上を5〜300ppmの範囲で含有することで、ボンディングワイヤの引張り強度、弾性率の増加等により、スパン5mm程度までのロングスパンでの直線性を向上する効果が得られる。上記の添加作用を高めるには、Cuの単層ワイヤでは十分ではないのに対して、芯材の主成分がCuである複層ワイヤに適用する方が高い効果が得られることを確認した。即ち、芯材がB、Pd、Bi、P、Zrを5〜300ppmの範囲で含有するCu合金であり、表皮層がPd、Pt、Ruのいずれか1種を主成分として、前記表皮層の表面の結晶面におけるワイヤ長手方向の結晶方位<hkl>のうち、<111>の占める割合が50%以上であることにより、ロングスパンでの直線性を向上する効果が一層高められる。この理由として、結晶方位を制御した表皮層と合金元素を含有する芯材との相乗効果により、直線性が向上すると考えられる。 If the core material is an alloy containing a conductive metal as a main component, it may be advantageous for thinning the wire due to an increase in wire strength or improving the bonding reliability. In the case of Cu alloy, by containing one or more of B, Pd, Bi, P , and Zr in the range of 5 to 300 ppm, the span of up to about 5 mm can be achieved due to the increase in tensile strength and elastic modulus of the bonding wire. The effect of improving the linearity in the long span can be obtained. In order to enhance the additive action, it was confirmed that a Cu single layer wire is not sufficient, but a higher effect can be obtained by applying it to a multilayer wire whose main component is Cu. That is, the core material is a Cu alloy containing B, Pd, Bi, P , Zr in the range of 5 to 300 ppm, and the skin layer is composed mainly of any one of Pd, Pt, Ru, Of the crystal orientation <hkl> in the longitudinal direction of the wire in the surface crystal plane, the proportion of <111> is 50% or more, thereby further enhancing the effect of improving the long span linearity. This is presumably because the linearity is improved by the synergistic effect of the skin layer in which the crystal orientation is controlled and the core material containing the alloy element.

前記表皮層の表面の結晶面におけるワイヤ長手方向の結晶方位<hkl>のうち、<111>の占める割合が50%以上で、表皮層を構成する主成分がPdまたはAgであり、芯材を構成する主成分がCuで、芯材中にPdを5〜10000ppmの範囲で含有する複層構造のボンディングワイヤであれば、キズ・削れの抑制、ループの形状および高さの安定化または、ボール接合部の圧着形状の安定化などを総合的に満足することが容易となる。ワイヤ製造での熱処理工程において、芯材/表皮層の界面近傍で、芯材中のPdと表皮層中のPd、Agとがお互いに拡散するときにPd濃度の変化を均一化且つ緩やかにさせる相乗作用により、ループの上面近傍の剥離・削れを低減させる作用、またループの倒れ、曲がりなどの形状バラツキを低減させる高い作用が得られる。この濃度変化はワイヤ全体だけでなく、ボール溶融の熱影響を受けるネック部にも効果的であるため、ループ高さの安定化にも有効である。また、Cuの芯材とPdの表皮層との組み合わせでは、ボールが溶融するときにCuとPd、Agの混合が不均一となりボール形状の異形が発生する場合があるが、芯材にPdを含有させることで、ボール接合部の形状を真円化させる効果が高められる。ここで芯材に含まれるPd濃度に関しては、5ppm以上であれば上記効果が確認され、好ましくは200ppm以上であれば改善効果がより顕著である。該Pd濃度の上限に関しては、10000ppm以下であればボールの硬化によるチップ損傷を抑えることができ、好ましくは8000ppm以下であればチップ損傷を抑える効果がより高められ、狭ピッチ接続にも有利となる。 Of the crystal orientation <hkl> in the wire longitudinal direction in the crystal plane of the surface of the skin layer, the proportion of <111> is 50% or more, the main component constituting the skin layer is Pd or Ag, and the core material is If the main component is Cu and the bonding wire has a multi-layer structure containing Pd in the range of 5 to 10,000 ppm in the core material, it suppresses scratches and scraping, stabilizes the shape and height of the loop, or ball It becomes easy to comprehensively satisfy the stabilization of the crimping shape of the joint. In the heat treatment process in wire manufacturing, when the Pd in the core material and Pd and Ag in the skin layer diffuse to each other near the interface between the core material and the skin layer, the change in Pd concentration is made uniform and gentle. Due to the synergistic action, it is possible to obtain an action of reducing peeling / scraping near the upper surface of the loop and a high action of reducing variation in shape such as the fall of the loop and bending. This concentration change is effective not only for the entire wire but also for the neck portion that is affected by the heat of ball melting, and is therefore effective for stabilizing the loop height. Also, with the combination of Cu core material and Pd skin layer, when the ball melts, the mixing of Cu, Pd, and Ag may become uneven, resulting in ball shape irregularities. By containing, the effect of rounding the shape of the ball joint is enhanced. Here, regarding the Pd concentration contained in the core material, the above effect is confirmed if it is 5 ppm or more, and the improvement effect is more remarkable if it is preferably 200 ppm or more. With respect to the upper limit of the Pd concentration, chip damage due to ball hardening can be suppressed if it is 10000 ppm or less, and if it is 8000 ppm or less, the effect of suppressing chip damage is further enhanced, which is advantageous for narrow pitch connection. .

Au合金の場合には、Be、Ca、Ni、Pd、Ptの1種以上を5〜8000ppmの範囲で含有することであれば、同様の効果があり、良好な直線性を確保するのが容易となる。即ち、芯材がBe、Ca、Ni、Pd、Ptの1種以上を5〜8000ppmの範囲で含有するAu合金であり、表皮層がPd、Pt、Ruのいずれか1種を主成分として、前記表皮層の表面の結晶面におけるワイヤ長手方向の結晶方位<hkl>の内、<111>の占める割合が50%以上であることが望ましい。 In the case of an Au alloy, if one or more of Be, Ca, Ni, Pd, and Pt are contained in the range of 5 to 8000 ppm, the same effect is obtained, and it is easy to ensure good linearity. It becomes. That is, the core material is an Au alloy containing one or more of Be, Ca, Ni, Pd, and Pt in a range of 5 to 8000 ppm, and the skin layer is mainly composed of any one of Pd, Pt, and Ru, It is desirable that the proportion of <111> in the crystal orientation <hkl> in the longitudinal direction of the wire in the crystal plane on the surface of the skin layer is 50% or more.

複層構造のボンディングワイヤの構成では、表皮層と前記芯材との間に、前記表皮層及び前記芯材を構成する主成分とは異なる成分からなる中間金属層を有することで、前述した表皮層の結晶方位の配向を制御するのが、より有利となる。表皮層の形成では下地の結晶方位の影響を受けることがあり、芯材の結晶方位を制御するよりも、芯材の上に形成した中間金属層の結晶方位を制御する方が比較的容易であるためである。具体的には、表皮層の金属と同じ面心立方晶の金属が、中間金属層として好ましい。特に、表皮層の金属の格子定数と中間金属層の金属の格子定数とが近いものが、より好ましい。   In the structure of the bonding wire having a multilayer structure, the above-mentioned skin is provided by having an intermediate metal layer made of a component different from the main component constituting the skin layer and the core material between the skin layer and the core material. It is more advantageous to control the orientation of the crystal orientation of the layer. The formation of the skin layer may be affected by the crystal orientation of the base, and it is relatively easier to control the crystal orientation of the intermediate metal layer formed on the core material than to control the crystal orientation of the core material. Because there is. Specifically, the same face-centered cubic metal as that of the skin layer is preferable as the intermediate metal layer. In particular, it is more preferable that the lattice constant of the metal of the skin layer is close to the lattice constant of the metal of the intermediate metal layer.

即ち、前記表皮層と前記芯材との間に、前記表皮層及び前記芯材を構成する主成分とは異なる成分からなる中間金属層を有することを特徴とする複層構造のボンディングワイヤが望ましい。中間金属層を加える効果として、表皮層と芯材との密着性の向上等により、ウェッジ接合部の接合強度の指標の一つであるピール強度を高めることができる。ここで、ピール強度の測定には、ウェッジ接合近傍でのプル強度を測定する簡便な方法で代用できる。従って、中間金属の挿入によりピール強度が増加できる。ここで、中間金属層の成分は、表皮層及び芯材の成分との組み合わせで選定されるべきものであり、上述のような金属成分とするのが好ましく、特に、Au、Pd、Ptがより好ましい。更に好ましくは、表皮層/芯材の主成分の組合せがPd/Cuである場合、中間金属層の主成分がAuであれば、表皮層の結晶方位の制御に有利であり、さらに表皮層/中間金属層/芯材のそれぞれの界面での密着性も比較的良好である。また、表皮層/芯材の主成分の組合せがPd/Auである場合、中間金属層の主成分がPtであれば、結晶方位の制御と表皮層の組成、膜厚の均一性に有利である。   That is, a multi-layered bonding wire characterized by having an intermediate metal layer made of a component different from the main component constituting the skin layer and the core material between the skin layer and the core material is desirable. . As an effect of adding the intermediate metal layer, the peel strength, which is one of the indicators of the joint strength of the wedge joint, can be increased by improving the adhesion between the skin layer and the core material. Here, the peel strength can be measured by a simple method of measuring the pull strength in the vicinity of the wedge joint. Accordingly, the peel strength can be increased by inserting the intermediate metal. Here, the component of the intermediate metal layer should be selected in combination with the component of the skin layer and the core material, and is preferably a metal component as described above, in particular, Au, Pd, Pt is more preferable. More preferably, when the combination of the main component of the skin layer / core material is Pd / Cu, if the main component of the intermediate metal layer is Au, it is advantageous for controlling the crystal orientation of the skin layer, and the skin layer / Adhesion at each interface of the intermediate metal layer / core material is also relatively good. In addition, when the combination of the main component of the skin layer / core material is Pd / Au, if the main component of the intermediate metal layer is Pt, it is advantageous for the control of crystal orientation, the composition of the skin layer, and the uniformity of the film thickness. is there.

表皮層の厚さが0.005〜0.2μmの範囲であれば、前述した表皮層の結晶方位の制御にも有利であり、接合性、ループ制御等の要求特性も総合的に満足することが容易となる。厚さが0.005μm以上であれば、結晶方位を制御した表皮層の十分な効果が得られるためであり、0.2μmを超えると、ボール部の合金化による硬化が顕著となり、接合時にチップにクラック等の損傷を与えることが問題となる場合がある。   If the thickness of the skin layer is in the range of 0.005 to 0.2 μm, it is advantageous for the control of the crystal orientation of the skin layer as described above, and it is easy to satisfy the required characteristics such as bondability and loop control comprehensively. Become. If the thickness is 0.005 μm or more, a sufficient effect of the skin layer with controlled crystal orientation can be obtained. If the thickness exceeds 0.2 μm, hardening due to alloying of the ball part becomes significant and cracks occur in the chip during bonding. Etc. may cause problems.

好ましくは、表皮層の厚さが0.01〜0.15μmの範囲であれば、複雑なループ制御でも速度を落とすことなく、所望するループ形状を安定して形成することができる。より好ましくは、0.020〜0.1μmの範囲であれば、ボンディングワイヤの使用性能を維持しつつ、膜形成工程の処理効率を高められる等、安定した膜質を得ることが容易である。   Preferably, when the thickness of the skin layer is in the range of 0.01 to 0.15 μm, a desired loop shape can be stably formed without reducing the speed even with complicated loop control. More preferably, if it is in the range of 0.020 to 0.1 μm, it is easy to obtain a stable film quality, such as improving the processing efficiency of the film forming process while maintaining the use performance of the bonding wire.

中間金属層の厚さが0.005〜0.2μmの範囲であれば、表皮層の結晶方位を制御するのが容易となり、また芯材との界面の密着性を向上し、複雑なループ制御にも対応できる。好ましくは、0.01〜0.1μmの範囲であれば、膜厚の均一性、再現性を確保することが容易となる。   If the thickness of the intermediate metal layer is in the range of 0.005 to 0.2 μm, it becomes easy to control the crystal orientation of the skin layer, improve the adhesion at the interface with the core material, and support complex loop control. it can. Preferably, when the thickness is in the range of 0.01 to 0.1 μm, it becomes easy to ensure uniformity of film thickness and reproducibility.

ここで、表皮層と芯材との境界は、表皮層を構成する導電性金属の検出濃度の総計が50mol%の部位とする。よって、本発明でいう表皮層とは、表皮層を構成する導電性金属の検出濃度の総計が50mol%の部位から表面であり、即ち、表皮層を構成する導電性金属の検出濃度の総計が50mol%以上の部位である。   Here, the boundary between the skin layer and the core material is a portion where the total detected concentration of the conductive metal constituting the skin layer is 50 mol%. Therefore, the skin layer referred to in the present invention is the surface from the site where the total detected concentration of the conductive metal constituting the skin layer is 50 mol%, that is, the total detected concentration of the conductive metal constituting the skin layer is It is a site of 50 mol% or more.

本発明における結晶方位は、ボンディングワイヤのワイヤ長手方向に対する結晶方位の角度差が15°以内のものを含むことが好ましい。通常、ある方向の結晶方位に着目しても、個々の結晶はある程度の角度差を有しており、また、サンプル準備、結晶方位の測定法等の実験法によっても若干の角度差が生じる。ここで、角度差の範囲が15°以内であれば、それぞれの結晶方位の特性を有しており、ボンディングワイヤの諸特性に及ぼす影響度も有効に活用できるためである。 Crystal orientation in the present invention, it is preferable that the angle difference in the crystal orientation with respect to the wire longitudinal direction of the bonding wire can contain more than 15 °. Normally, even if attention is paid to a crystal orientation in a certain direction, individual crystals have a certain degree of angle difference, and a slight angle difference is also caused by an experimental method such as sample preparation or a crystal orientation measurement method. Here, if the range of the angle difference is within 15 °, it has the characteristics of each crystal orientation, and the degree of influence on the various characteristics of the bonding wire can be effectively utilized.

25μm径程度の微細線の表面の集合組織に関して、これまであまり知られておらず、特に、微細線の複層ワイヤの最表面の集合組織に関する報告例も少ない。ボンディングワイヤのように、比較的軟質で線径の細い金属線における集合組織を精度良く測定するには、高度な測定技術が必要となる。   Regarding the texture of the surface of a fine line having a diameter of about 25 μm, little is known so far, and there are few reports on the texture of the outermost surface of a multilayer wire of fine lines. In order to accurately measure a texture in a metal wire having a relatively soft and thin wire diameter such as a bonding wire, an advanced measurement technique is required.

集合組織の測定法には、測定領域を微小に絞ったり、最表面だけの情報を得るのに有利であることから、最近開発された後方電子散乱図形(Electron Back Scattering Pattern、以降EBSPという)法を用いることができる。EBSP法による集合組織の測定により、ボンディングワイヤのような細線でも、その表面又は断面の集合組織を精度良く、しかも十分な再現性をもって測定できる。本測定方法により、ボンディングワイヤの微細組織に関して、サブミクロンの微細結晶粒の結晶方位、ワイヤ表面の結晶方位の分布等を、高精度に再現良く測定できる。   The texture measurement method is advantageous for narrowing down the measurement area or obtaining information only on the outermost surface, so the recently developed Electron Back Scattering Pattern (hereinafter referred to as EBSP) method. Can be used. By measuring the texture by the EBSP method, the texture of the surface or the cross section can be measured with high accuracy and sufficient reproducibility even with a fine wire such as a bonding wire. With this measurement method, the crystal orientation of submicron fine crystal grains, the distribution of crystal orientation on the wire surface, and the like can be measured with high accuracy and good reproducibility regarding the microstructure of the bonding wire.

EBSP法では、通常、試料の凹凸、曲面が大きい場合は、結晶方位を高精度測定するのが難しい。しかしながら、測定条件を適正化すれば高精度の測定、解析が可能である。具体的には、ボンディングワイヤを平面に直線状に固定し、そのボンディングワイヤの中心近傍の平坦部をEBSP法で測定する。測定領域について、円周方向のサイズはワイヤ長手方向の中心を軸として線径の50%以下であり、ワイヤ長手方向のサイズは100μm以下であれば、精度に加えて測定効率を高められる。好ましくは、円周方向のサイズは線径の40%以下、ワイヤ長手方向のサイズは40μm以下であれば、測定時間の短縮により測定効率をさらに高められる。 In the EBSP method, it is usually difficult to measure the crystal orientation with high accuracy when the unevenness and curved surface of the sample are large. However, if measurement conditions are optimized, highly accurate measurement and analysis are possible. Specifically, the bonding wire is fixed linearly on a plane, and a flat portion near the center of the bonding wire is measured by the EBSP method. With respect to the measurement region, if the size in the circumferential direction is 50% or less of the wire diameter with the center in the longitudinal direction of the wire as the axis, and the size in the longitudinal direction of the wire is 100 μm or less, measurement efficiency can be improved in addition to accuracy. Preferably, if the size in the circumferential direction is 40% or less of the wire diameter and the size in the longitudinal direction of the wire is 40 μm or less, the measurement efficiency can be further improved by shortening the measurement time.

EBSP法で高精度の測定を行うには、1回で測定できる領域は限られるため、3箇所以上の測定を行い、ばらつきを考慮した平均情報を得ることが望ましい。測定場所は近接しないよう、円周方向に異なる領域を観察できるように、測定場所を選定することが好ましい。   In order to perform high-accuracy measurement using the EBSP method, the area that can be measured at one time is limited. Therefore, it is desirable to perform measurement at three or more locations and obtain average information in consideration of variations. It is preferable to select the measurement location so that different regions can be observed in the circumferential direction so that the measurement locations are not close to each other.

例えば、線径25μmのボンディングワイヤの測定では、平板上にワイヤ向きをなるべく変えるように固定したボンディングワイヤを用い、そのワイヤ軸を中心に円周方向に8μm、ワイヤ長手方向には30μmのサイズを一回の測定エリアとし、1mm以上離して3箇所の測定を行うことで、ワイヤ表面の結晶方位の平均的情報を入手することが可能である。但し測定の領域、場所の選定はこの限りでなく、測定装置、ワイヤ状態等を考慮して適正化することが望ましい。 For example, in the measurement of a bonding wire with a wire diameter of 25 μm, a bonding wire fixed on a flat plate so as to change the wire direction as much as possible is used, and the size is 8 μm in the circumferential direction around the wire axis and 30 μm in the wire longitudinal direction. It is possible to obtain average information on the crystal orientation of the wire surface by measuring three locations at a distance of 1 mm or more in a single measurement area. However, the selection of the measurement region and location is not limited to this, and it is desirable to optimize the measurement device and the wire state.

また、芯材の結晶方位を測定する場合は、ワイヤ長手方向の垂直断面又は、ワイヤ長手方向と並行でワイヤ中心近傍の平行断面のどちらの測定も可能である。好ましくは、垂直断面の方が求める研磨面を容易に得られる。機械的研磨により断面を作製したときは、研磨面の残留歪みを軽減するためにエッチングにより表皮層を除去することが望ましい。 Also, when measuring the crystal orientation of the core material, wire longitudinal vertical section or, both measurements parallel cross section of the wire near the center in parallel to the wire longitudinal direction is also possible. Preferably, the polishing surface required by the vertical cross section can be obtained more easily. When the cross section is produced by mechanical polishing, it is desirable to remove the skin layer by etching in order to reduce residual distortion of the polished surface.

EBSP法による測定結果の解析では、装置に装備されている解析ソフトを利用することで、上述したワイヤ表面の測定面積に対する各方位の結晶粒の面積が占める面積比、又は、測定エリアの中で結晶方位が識別できる結晶粒又は領域の総面積を母集団として各結晶方位が占める比率等を算出できる。ここで結晶方位の面積を算出する最小単位は、結晶粒又は、結晶粒内の一部の微小領域でも構わない。結晶粒のサイズに関してもワイヤ長手方向と円周方向とでの平均サイズ等を計算できる。 In the analysis of measurement results by the EBSP method, by using the analysis software installed in the device, the area ratio occupied by the crystal grain area in each orientation relative to the measurement area of the wire surface described above, or within the measurement area The ratio of each crystal orientation can be calculated by using the total area of the crystal grains or regions that can identify the crystal orientation as a population. Here, the minimum unit for calculating the area of the crystal orientation may be a crystal grain or a part of a minute region in the crystal grain. Regarding the size of the crystal grains, the average size in the wire longitudinal direction and the circumferential direction can be calculated.

本発明のボンディングワイヤを製造するに当り、芯材の表面に表皮層を形成する工程と、表皮層、拡散層、芯材等の構造を制御する加工・熱処理工程とが必要となる。   In manufacturing the bonding wire of the present invention, a process for forming a skin layer on the surface of the core material and a processing / heat treatment process for controlling the structure of the skin layer, the diffusion layer, the core material and the like are required.

表皮層を芯材の表面に形成する方法には、メッキ法、蒸着法、溶融法等がある。メッキ法では、電解メッキ、無電解メッキ法は使い分けることが可能である。電解メッキでは、メッキ速度が速く、下地との密着性も良好である。電解メッキは1回のメッキ処理でも構わないが、フラッシュメッキと呼ばれる薄付けメッキと、その後に膜を成長させる本メッキとに区分でき、これら複数の工程に分けて行うことで、より膜質の安定化に有利である。無電解メッキに使用する溶液は、置換型と還元型とに分類され、膜が薄い場合には置換型メッキのみでも十分であるが、厚い膜を形成する場合には置換型メッキの後に還元型メッキを段階的に施すことが有効である。無電解法は装置等が簡便であり、容易であるが、電解法よりも時間を要する。   Methods for forming the skin layer on the surface of the core include plating, vapor deposition, and melting. In the plating method, electrolytic plating and electroless plating can be used properly. In electrolytic plating, the plating rate is fast and the adhesion to the substrate is good. Electrolytic plating may be performed once, but it can be divided into thin plating called flash plating and main plating that grows the film after that, and the film quality is more stable by performing these steps separately. It is advantageous to make. Solutions used for electroless plating are classified into substitutional type and reduction type. If the film is thin, substitutional plating alone is sufficient, but when forming a thick film, the reduction type is used after substitutional plating. It is effective to apply plating step by step. The electroless method is simple and easy to use, but requires more time than the electrolysis method.

蒸着法では、スパッタ法、イオンプレーティング法、真空蒸着等の物理吸着と、プラズマCVD等の化学吸着を利用することができる。いずれも乾式であり、膜形成後の洗浄が不要であり、洗浄時の表面汚染等の心配がない。   In the vapor deposition method, physical adsorption such as sputtering, ion plating, and vacuum deposition, and chemical adsorption such as plasma CVD can be used. All of them are dry-type, and cleaning after film formation is unnecessary, and there is no concern about surface contamination during cleaning.

メッキ又は蒸着を施す段階について、狙いの線径で導電性金属の膜を形成する手法と、太径の芯材に膜形成してから、狙いの線径まで複数回伸線する手法とのどちらも有効である。前者の最終径での膜形成では、製造、品質管理等が簡便であり、後者の膜形成と伸線との組み合わせでは、膜と芯材との密着性を向上するのに有利である。それぞれの形成法の具体例として、狙いの線径の細線に、電解メッキ溶液の中にワイヤを連続的に掃引しながら膜形成する手法、あるいは、電解又は無電解のメッキ浴中に太線を浸漬して膜を形成した後に、ワイヤを伸線して最終径に到達する手法等が可能である。   Regarding the stage of plating or vapor deposition, either the method of forming a conductive metal film with a target wire diameter or the method of forming a film on a thick core material and then drawing multiple times to the target wire diameter Is also effective. In the former film formation with the final diameter, manufacturing, quality control and the like are simple, and the combination of the latter film formation and wire drawing is advantageous in improving the adhesion between the film and the core material. As a specific example of each forming method, a method of forming a film while continuously sweeping a wire in an electrolytic plating solution on a thin wire having a target wire diameter, or immersing a thick wire in an electrolytic or electroless plating bath Then, after the film is formed, a method of drawing the wire to reach the final diameter is possible.

ここで、前述した最終線径で表皮層を形成する最終メッキ法では、成膜後には熱処理工程だけである。また、太径の芯材に膜形成する太径メッキ法では、狙いの線径までの加工工程と熱処理工程とを組み合わせることが必要となる。   Here, in the final plating method in which the skin layer is formed with the final wire diameter described above, only the heat treatment step is performed after the film formation. Moreover, in the large-diameter plating method for forming a film on a large-diameter core material, it is necessary to combine a processing step up to a target wire diameter and a heat treatment step.

表皮層を形成した後の加工工程では、ロール圧延、スエージング、ダイス伸線等を目的により選択、使い分ける。加工速度、圧加率又はダイス減面率等により、加工組織、転位、結晶粒界の欠陥等を制御することは、表皮層の組織、密着性等にも影響を及ぼす。   In the processing step after forming the skin layer, roll rolling, swaging, die drawing and the like are selected and used properly. Controlling the processing structure, dislocations, defects at the grain boundaries, etc. by the processing speed, pressing rate or die area reduction rate, etc. also affects the structure of the skin layer, adhesion, and the like.

単純にワイヤを成膜、加工及び加熱しただけでは、表皮層の表面及び内部での集合組織の結晶方位を制御できない。通常のワイヤ製造で用いられる最終線径での加工歪取り焼鈍をそのまま適用しても、表皮層と芯材との密着性の低下によりループ制御が不安定になったり、ワイヤ長手方向の表皮層の均質性、ワイヤ断面での表皮層、拡散層等の分布をコントロールすることは困難である。そこで、表皮層の成膜条件、伸線工程における減面率、速度等の加工条件、熱処理工程のタイミング、温度、速度、時間等の適正化等を総合的に組合せることで、表皮層の集合組織を安定して制御することが可能となる。   The crystallographic orientation of the texture on the surface and inside of the skin layer cannot be controlled simply by forming, processing and heating the wire. Even if the processing strain relief annealing at the final wire diameter used in normal wire manufacturing is applied as it is, loop control becomes unstable due to a decrease in adhesion between the skin layer and the core material, or the skin layer in the longitudinal direction of the wire It is difficult to control the homogeneity, the distribution of the skin layer, the diffusion layer, etc. in the wire cross section. Therefore, by comprehensively combining the conditions for forming the skin layer, processing conditions such as the area reduction rate in the wire drawing process, speed, the timing of the heat treatment process, optimization of the temperature, speed, time, etc. It becomes possible to control the texture stably.

ワイヤの圧延、伸線の工程では加工集合組織が形成され、熱処理工程では回復、再結晶が進行して再結晶集合組織が形成され、これらの集合組織が相互に関連して、最終的に表皮層の集合組織及び結晶方位が決定する。表皮層の結晶方位を<111>に配向させるには、加工集合組織を利用することがより有効である。成膜後に伸線加工の処理条件を適正化することで、<111>への配向率を高めることができる。前記伸線加工による<111>への配向率は、加工前の組成等ワイヤ条件によって異なるが、前述した表皮層の<111>配向率を50%以上にするためには、例えば、加工率を80%以上まで上昇させることが有効である。好ましくは、加工率を95%以上とすることでボンディングワイヤ全体に<111>配向率を上昇させる効果を高められる。 In the wire rolling and wire drawing process, a processed texture is formed, and in the heat treatment process, recovery and recrystallization proceed to form a recrystallized texture, and these textures are interrelated and finally the skin. The texture and crystal orientation of the layer are determined. In order to orient the crystal orientation of the skin layer to <111>, it is more effective to use a processed texture. The orientation ratio to <111> can be increased by optimizing the processing conditions of the wire drawing after the film formation. Although the orientation rate to <111> by the wire drawing process varies depending on the wire conditions such as the composition before processing, in order to make the <111> orientation rate of the above-described skin layer 50% or more, for example, the processing rate is set to It is effective to raise it to 80% or more. Preferably, the effect of increasing the <111> orientation ratio in the entire bonding wire can be enhanced by setting the processing rate to 95% or more.

熱処理工程では、熱処理を1回又は複数回実施することが有効である。熱処理工程は、膜形成直後の焼鈍と、加工途中での焼鈍と、最終径での仕上げ焼鈍とに分類され、これらを選択、使い分けることが重要となる。どの加工段階で熱処理を行うかにより、最終の表皮層、表皮層と芯材との界面での拡散挙動等が変化する。一例では、メッキ処理後の加工途中に中間焼鈍を施し、さらにワイヤを伸線し、最終径で仕上げ焼鈍を施す工程で作製することで、中間焼鈍を施さない工程と比較して、表皮層/芯材の界面に拡散層を形成して密着性を向上するのに有利である。   In the heat treatment step, it is effective to perform the heat treatment once or a plurality of times. The heat treatment process is classified into annealing immediately after film formation, annealing in the middle of processing, and finish annealing at the final diameter, and it is important to select and use them properly. The final skin layer, the diffusion behavior at the interface between the skin layer and the core material, and the like vary depending on the processing stage at which the heat treatment is performed. In one example, intermediate annealing is performed during the processing after plating treatment, and further, the wire is drawn, and the final annealing is performed at the final diameter, so that the surface layer / It is advantageous to improve adhesion by forming a diffusion layer at the interface of the core material.

熱処理法として、ワイヤを連続的に掃引しながら熱処理を行い、しかも、一般的な熱処理である炉内温度を一定とするのでなく、炉内で温度傾斜をつけることで、本発明の特徴とする表皮層及び芯材を有するボンディングワイヤを量産することが容易となる。具体的な事例では、局所的に温度傾斜を導入する方法や、温度を炉内で変化させる方法等がある。ボンディングワイヤの表面酸化を抑制する場合には、N2やAr等の不活性ガスを炉内に流しながら加熱することも有効である。 As a heat treatment method, heat treatment is performed while continuously sweeping the wire, and the temperature in the furnace, which is a general heat treatment, is not constant, but a temperature gradient is provided in the furnace, which is a feature of the present invention. It becomes easy to mass-produce bonding wires having a skin layer and a core material. Specific examples include a method of introducing a temperature gradient locally and a method of changing the temperature in the furnace. In order to suppress the surface oxidation of the bonding wire, it is also effective to heat while flowing an inert gas such as N 2 or Ar into the furnace.

溶融法では、表皮層又は芯材のいずれかを溶融させて鋳込む手法であり、10〜100mm程度の太径で表皮層と芯材を接続した後に伸線することで生産性に優れているという利点や、メッキ、蒸着法に比べて表皮層の合金成分設計が容易であり、強度、接合性等の特性改善も容易である等の利点がある。具体的な工程では、予め作製した芯線の周囲に、溶融した導電性金属を鋳込んで表皮層を形成する方法と、予め作製した導電性金属の中空円柱を用い、その中央部に溶融金属を鋳込むことで芯線を形成する方法とに分けられる。好ましくは、後者の中空円柱の内部に芯材を鋳込む方が、表皮層中に芯材の主成分の濃度勾配等を安定形成することが容易である。ここで、予め作製した表皮層中に銅を少量含有させておけば、表皮層の表面での銅濃度の制御が容易となる。また、溶融法では、表皮層にCuを拡散させるための熱処理作業を省略することも可能であるが、表皮層内のCuの分布を調整するために熱処理を施すことで更なる特性改善も見込める。   In the melting method, either the skin layer or the core material is melted and cast, and it is excellent in productivity by drawing after connecting the skin layer and the core material with a large diameter of about 10 to 100 mm. Compared to plating and vapor deposition methods, the alloy component design of the skin layer is easy, and there are advantages such as easy improvement of properties such as strength and bondability. In a specific process, a melted conductive metal is cast around a core wire prepared in advance to form a skin layer, and a hollow cylinder of a conductive metal prepared in advance is used. It is divided into a method of forming a core wire by casting. Preferably, it is easier to stably form a concentration gradient or the like of the main component of the core material in the skin layer by casting the core material inside the latter hollow cylinder. Here, if a small amount of copper is contained in the skin layer prepared in advance, the copper concentration on the surface of the skin layer can be easily controlled. Also, in the melting method, it is possible to omit the heat treatment work for diffusing Cu into the skin layer, but further improvement in characteristics can be expected by applying heat treatment to adjust the Cu distribution in the skin layer. .

さらに、こうした溶融金属を利用する場合、芯線及び表皮層の内、少なくとも一方を連続鋳造で製造することも可能である。この連続鋳造法により、上記の鋳込む方法と比して、工程が簡略化され、しかも線径を細くして生産性を向上させることも可能となる。   Further, when such a molten metal is used, at least one of the core wire and the skin layer can be manufactured by continuous casting. By this continuous casting method, the process is simplified as compared with the above casting method, and the wire diameter can be reduced to improve the productivity.

芯材の主成分が銅である複層銅ワイヤを用いてボンディングするときは、ボールを形成するときのシールドガスが必要であり、1〜10%の範囲でH2を含有するN2混合ガス、又は純N2ガスを用いる。従来の単層の銅ワイヤでは、5%H2+N2に代表される混合ガスが推奨されていた。一方、複層銅ワイヤでは、安価な純N2ガスを使用しても良好な接合性が得られるため、標準ガスである5%H2+N2ガスよりも、ランニングコストを低減できる。N2ガスの純度は99.95%以上であることが望ましい。即ち、純度が99.95%以上のN2ガスをワイヤ先端又はその周囲に吹付けながらアーク放電を生じさせてボール部を形成し、該ボール部を接合するボンディング方法であることが望ましい。 When bonding using a multilayer copper wire whose main component is copper, a shielding gas is required when forming the ball, and an N 2 mixed gas containing H 2 in the range of 1 to 10% Or pure N 2 gas. For conventional single-layer copper wires, a mixed gas typified by 5% H 2 + N 2 has been recommended. On the other hand, with a multilayer copper wire, good bondability can be obtained even if inexpensive pure N 2 gas is used, so that the running cost can be reduced as compared with the standard gas of 5% H 2 + N 2 gas. The purity of N 2 gas is desirably 99.95% or more. That is, it is desirable to use a bonding method in which an arc discharge is generated while spraying N 2 gas having a purity of 99.95% or more on or around the wire tip to form a ball portion, and the ball portion is joined.

また、表皮層と芯材との間に拡散層を形成することで密着性を向上することができる。拡散層とは、芯材と表皮層の主成分が相互拡散することで形成された領域であり、該主成分の濃度勾配を有する。拡散層を形成することで芯材と表皮層の密着性を向上させてループ制御や接合時の表皮層の剥離を抑制することができ、さらに濃度勾配を有することで、導電性金属は表皮層全体に均一濃度である場合より、複雑な塑性変形を受けるループ時の制御におけるワイヤ変形を安定化できる。また前述した、表皮層の表面の<111>方位を50%以上に高めることでキズ・削れを抑制する効果に対しても、濃度勾配を有する拡散層があればその効果が一層向上することが確認された。拡散層内の濃度勾配は、深さ方向への濃度変化の程度が1μm当り10mol%以上であることが望ましい。好ましくは、0.1μm当り5mol%以上であれば、表皮層と芯材の異なる物性を損なうことなく、相互に利用する高い効果が期待できる。拡散層の厚さは0.002〜0.2μmの範囲であることが好ましい。これは、拡散層の厚さが0.002μm未満であれば効果が小さく、分析で識別することも難しいためであり、0.2μmを超えると、表皮層の組織に影響を及ぼすため、前述した結晶方位を安定して形成することが難しいためである。この拡散層を制御するため、熱処理を利用することが有効である。先述したように、熱処理と加工を組み合わせて拡散の進行度を制御することにより、ワイヤの円周方向又はワイヤ長手方向に所望する拡散層を均一に形成することが可能となる。 Moreover, adhesiveness can be improved by forming a diffusion layer between the skin layer and the core material. The diffusion layer is a region formed by mutual diffusion of the main components of the core material and the skin layer, and has a concentration gradient of the main components. By forming a diffusion layer, the adhesion between the core material and the skin layer can be improved to suppress the peeling of the skin layer during loop control and bonding, and by having a concentration gradient, the conductive metal can be used as the skin layer. The wire deformation in the control at the time of the loop subjected to the complicated plastic deformation can be stabilized as compared with the case where the concentration is uniform throughout. In addition to the effect of suppressing scratches and scraping by increasing the <111> orientation of the surface of the skin layer to 50% or more, the effect can be further improved if there is a diffusion layer having a concentration gradient. confirmed. The concentration gradient in the diffusion layer is desirably such that the degree of concentration change in the depth direction is 10 mol% or more per 1 μm. Preferably, if it is 5 mol% or more per 0.1 μm, a high effect of mutual use can be expected without impairing the different physical properties of the skin layer and the core material. The thickness of the diffusion layer is preferably in the range of 0.002 to 0.2 μm. This is because the effect is small if the thickness of the diffusion layer is less than 0.002 μm, and it is difficult to identify by analysis, and if it exceeds 0.2 μm, the structure of the skin layer is affected. This is because it is difficult to form the film stably. In order to control this diffusion layer, it is effective to use heat treatment. As described above, by controlling the degree of diffusion by combining heat treatment and processing, a desired diffusion layer can be uniformly formed in the circumferential direction of the wire or in the longitudinal direction of the wire .

表皮層、芯材等の濃度分析について、ボンディングワイヤの表面からスパッタ等により深さ方向に掘り下げて行きながら分析する手法、あるいはワイヤ断面でのライン分析又は点分析する方法等が有効である。前者は、表皮層が薄い場合に有効であるが、厚くなると測定時間がかかり過ぎる。後者の断面での分析は、表皮層が厚い場合に有効であり、また、断面全体での濃度分布や、数ヶ所での再現性の確認等が比較的容易であることが利点であるが、表皮層が薄い場合には精度が低下する。ボンディングワイヤを斜め研磨して、拡散層の厚さを拡大させて測定することも可能である。断面では、ライン分析が比較的簡便であるが、分析の精度を向上したいときには、ライン分析の分析間隔を狭くしたり、界面近傍の観察したい領域に絞っての点分析を行うことも有効である。これらの濃度分析に用いる解析装置では、電子線マイクロ分析法(EPMA)、エネルギー分散型X線分析法(EDX)、オージェ分光分析法(AES)、透過型電子顕微鏡(TEM)等を利用することができる。特にAES法は、空間分解能が高いことから、最表面の薄い領域の濃度分析に有効である。また、平均的な組成の調査等には、表面部から段階的に酸等に溶解していき、その溶液中に含まれる濃度から溶解部位の組成を求めること等も可能である。本発明では、前記全ての分析手法で得られる濃度値が本発明の規定範囲を満足する必要はなく、1つの分析手法で得られる濃度値が本発明の規定範囲を満足すればその効果が得られるものである。   For concentration analysis of the skin layer, the core material, etc., a method of analyzing the surface of the bonding wire while digging in the depth direction by sputtering or the like, or a method of performing line analysis or point analysis on the wire cross section is effective. The former is effective when the skin layer is thin, but if it is thick, it takes too much measurement time. Analysis of the latter cross section is effective when the skin layer is thick, and it is advantageous that the concentration distribution over the entire cross section, reproducibility confirmation in several places, etc. are relatively easy. When the skin layer is thin, the accuracy decreases. It is also possible to measure by increasing the thickness of the diffusion layer by obliquely polishing the bonding wire. In the cross section, line analysis is relatively simple. However, if you want to improve the accuracy of the analysis, it is also effective to narrow the analysis interval of the line analysis or perform point analysis focusing on the area to be observed near the interface. . The analyzers used for concentration analysis should use electron microanalysis (EPMA), energy dispersive X-ray analysis (EDX), Auger spectroscopic analysis (AES), transmission electron microscope (TEM), etc. Can do. In particular, the AES method is effective for concentration analysis of the thinnest region because of its high spatial resolution. Further, for the investigation of the average composition, etc., it is possible to dissolve in acid or the like stepwise from the surface portion, and obtain the composition of the dissolution site from the concentration contained in the solution. In the present invention, it is not necessary that the concentration values obtained by all the analysis methods satisfy the specified range of the present invention, and if the concentration value obtained by one analysis method satisfies the specified range of the present invention, the effect can be obtained. It is

以下、実施例について説明する。   Examples will be described below.

ボンディングワイヤの原材料として、芯材に用いるCu、Au、Agは純度が約99.99質量%以上の高純度の素材を用い、表皮層又は中間金属層に用いられるAu、Pt、Pd、Ru、Rhの素材には純度99.9質量%以上の原料を用意した。   Cu, Au, Ag used as the core material of the bonding wire is a high purity material with a purity of about 99.99% by mass or more, and it is made of Au, Pt, Pd, Ru, Rh used for the skin layer or intermediate metal layer. Raw materials with a purity of 99.9% by mass or more were prepared.

ある線径まで細くしたワイヤを芯材とし、そのワイヤ表面に異なる金属の層を形成するには、電解メッキ法、無電解メッキ法、蒸着法、溶融法等を行い、熱処理を施した。最終の線径で表皮層を形成する方法と、ある線径で表皮層を形成した後、さらに伸線加工により最終線径まで細くする方法とを利用した。電解メッキ液、無電解メッキ液は、半導体用途で市販されているメッキ液を使用し、蒸着はスパッタ法を用いた。直径が約15〜1500μmのワイヤを予め準備し、そのワイヤ表面に蒸着、メッキ等により被覆し、最終径の15〜50μmまで伸線して、最後に加工歪みを取り除き伸び値が5〜15%の範囲になるよう熱処理を施した。必要に応じて、線径25〜200μmまでダイス伸線した後に、拡散熱処理を施してから、さらに伸線加工を施した。伸線用ダイスの減面率は、1個のダイス当たり5〜15%の範囲で準備し、それらダイスの組み合わせにより、ワイヤ表面の加工歪みの導入等を調整した。伸線速度は20〜500m/minの間で適正化した。   In order to use a wire thinned to a certain wire diameter as a core material and form a different metal layer on the surface of the wire, an electrolytic plating method, an electroless plating method, a vapor deposition method, a melting method, or the like was performed and heat treatment was performed. A method of forming the skin layer with the final wire diameter and a method of forming the skin layer with a certain wire diameter and then further thinning to the final wire diameter by wire drawing were utilized. As the electrolytic plating solution and the electroless plating solution, a plating solution commercially available for semiconductor applications was used, and the sputtering method was used for vapor deposition. Prepare a wire with a diameter of about 15 to 1500 μm in advance, coat the wire surface by vapor deposition, plating, etc., draw it to 15 to 50 μm of the final diameter, finally remove the processing strain and elongate value 5 to 15% The heat treatment was applied so as to be in the range. If necessary, after wire drawing to a wire diameter of 25 to 200 μm, diffusion heat treatment was performed, and then wire drawing was further performed. The area reduction rate of the wire drawing dies was prepared in the range of 5 to 15% per die, and the introduction of processing strain on the wire surface was adjusted by the combination of these dies. The drawing speed was optimized between 20 and 500 m / min.

溶融法を利用する場合には、予め作製した芯線の周囲に、溶融した金属を鋳込む方法と、予め作製した中空円柱の中央部に溶融した金属を鋳込む方法とを採用した。その後、鍛造、ロール圧延、ダイス伸線等の加工と、熱処理とを行い、ワイヤを製造した。   When using the melting method, a method of casting a molten metal around a core wire prepared in advance and a method of casting a molten metal in the central portion of a hollow cylinder prepared in advance were employed. Thereafter, forging, roll rolling, die drawing, and the like, and heat treatment were performed to produce a wire.

本発明例のワイヤの熱処理について、ワイヤを連続的に掃引しながら加熱した。局所的に温度傾斜を導入する方式、温度を炉内で変化させる方式等を利用した。例えば、炉内温度を3分割して制御できるよう改造した熱処理炉を利用した。温度分布の一例では、ワイヤの挿入口から出口に向かって、高温→中温→低温、又は中温→高温→低温の分布を得て、それぞれの加熱長さも管理した。温度分布と合わせて、ワイヤ掃引速度等も適正化した。熱処理の雰囲気では、酸化を抑制する目的でN2、Ar等の不活性ガスも利用した。ガス流量は、0.0002〜0.004m3/minの範囲で調整し、炉内の温度制御にも利用した。熱処理を行うタイミングとして、伸線後のワイヤに熱処理を施してから表皮層を形成する場合と、熱処理を加工前、加工途中、又は表皮層を形成した直後等の内1回又は2回以上行う等の場合とを使い分けた。 Regarding the heat treatment of the wire of the example of the present invention, the wire was heated while continuously sweeping. A method of introducing a temperature gradient locally, a method of changing the temperature in the furnace, and the like were used. For example, a heat treatment furnace modified so that the furnace temperature can be controlled by dividing into three parts was used. In an example of the temperature distribution, the distribution of high temperature → intermediate temperature → low temperature or intermediate temperature → high temperature → low temperature was obtained from the wire insertion port toward the outlet, and the heating length was also controlled. Along with the temperature distribution, the wire sweep speed was also optimized. In the atmosphere of heat treatment, an inert gas such as N 2 or Ar was also used for the purpose of suppressing oxidation. The gas flow rate was adjusted in the range of 0.0002 to 0.004 m 3 / min and used for temperature control in the furnace. As the timing of heat treatment, when the skin layer is formed after heat treatment is performed on the wire after wire drawing, the heat treatment is performed once or twice or more before, during or immediately after the skin layer is formed. And so on.

表皮層を形成した後の圧延、伸線による加工レベルについて、成膜時のワイヤと最終線径との面積比率で算出する累積の加工率で整理できる。この加工率(%)が30%未満の場合にはR1、30%以上70%未満ではR2、70%以上95%未満ではR3、95%以上ではR4で表記した。   The processing level by rolling and wire drawing after the skin layer is formed can be organized by the cumulative processing rate calculated by the area ratio between the wire at the time of film formation and the final wire diameter. When the processing rate (%) is less than 30%, it is expressed as R1, R2 when 30% or more and less than 70%, R3 when 70% or more and less than 95%, and R4 when 95% or more.

表皮層の表面組織を制御するには、材質、組成、厚さ等の材料因子と、膜形成条件、加工・熱処理条件等プロセス因子を適正化することが必要である。実施例において、表皮層の表面におけるワイヤ長手方向の<111>比率を増加させる方策として、加工率を高めること、初期の膜厚を薄くすること、熱処理を低温化すること等が有効である。一例として、上記加工率がR2〜R4であれば、<111>比率を増加させることが比較的容易となる。一方の比較例では、<111>割合を低減させるために、加工率を低減したり、熱処理を高温又は長時間で実施することが有効であった。 In order to control the surface texture of the skin layer, it is necessary to optimize material factors such as material, composition, and thickness, and process factors such as film formation conditions and processing / heat treatment conditions. In the embodiment, as a measure for increasing the <111> ratio in the longitudinal direction of the wire on the surface of the skin layer, it is effective to increase the processing rate, reduce the initial film thickness, lower the heat treatment, and the like. As an example, if the processing rate is R2 to R4, it is relatively easy to increase the <111> ratio. In one comparative example, in order to reduce the <111> ratio, it was effective to reduce the processing rate or to perform the heat treatment at a high temperature or for a long time.

ワイヤ表面の組織観察について、ボンディングワイヤの表皮層における表面のある領域において、EBSP法により結晶方位を測定した。測定試料の準備では、3〜5本のボンディングワイヤを平板上に互いにワイヤ向きをなるべく変えるように固定した。観察領域はワイヤ軸を含む四角形の領域として、サイズは円周方向に5〜10μm、ワイヤ長手方向に10〜50μmを一回の測定エリアとした。測定箇所は、3〜10箇所とし、お互いに0.5mm以上離して選定した。測定ポイントの間隔は0.01〜0.2μmの間隔で実施した。 Regarding the observation of the structure of the wire surface, the crystal orientation was measured by the EBSP method in a certain region of the surface in the skin layer of the bonding wire. In the preparation of the measurement sample, 3 to 5 bonding wires were fixed on the flat plate so as to change the wire direction as much as possible. The observation area was a square area including the wire axis, and the size was 5-10 μm in the circumferential direction and 10-50 μm in the wire longitudinal direction as one measurement area. The measurement locations were 3 to 10 locations, which were selected at a distance of 0.5 mm or more. The measurement point interval was 0.01 to 0.2 μm.

芯材の組織観察では、ボンディングワイヤの断面を研磨し、化学エッチングにより表面の加工歪みを低減した試料を用いて、EBSP法により結晶方位を測定した。断面は、ワイヤ長手方向に垂直の断面を主として測定したが、試料状態、再現性等を検討しながら必要に応じて、ワイヤ長手方向に平行で中心軸を通る断面でも測定を実施した。   In observing the structure of the core material, the crystal orientation was measured by the EBSP method using a sample obtained by polishing the cross section of the bonding wire and reducing the surface processing strain by chemical etching. The cross section was measured mainly with a cross section perpendicular to the longitudinal direction of the wire, but measurement was also performed on a cross section parallel to the longitudinal direction of the wire and passing through the central axis as necessary while examining the sample state, reproducibility, and the like.

EBSP測定データの解析には専用ソフト(TSL製 OIM analysis等)を利用した。測定エリアでの結晶方位を解析し、その内<111>、<100>方位等の結晶粒の割合を求めた。ボンディングワイヤのワイヤ長手方向を基準に方位を決定し、それぞれの結晶方位の角度差が15°以内のものまで含めた。その結晶粒の割合の算出法について、測定エリアの全体面積を母集団として算出する各方位の割合(以下、面積比率と呼ぶ)と、測定エリア内である信頼度を基準に同定できた結晶方位だけの面積を母集団として算出する各方位の割合(以下、方位比率と呼ぶ)との2種類を求めた。後者の方位比率を求める過程では、結晶方位が測定できない部位、あるいは測定できても方位解析の信頼度が低い部位等は除外して計算した。ここで、信頼度とは、解析ソフトにパラメータが用意されている場合があり、例えばConfidential Index(CI値)、Image Quality(IQ値)等数種のパラメータを利用して、試料状態、解析目的等に応じて判定基準を選定することが望ましい。 Dedicated software (such as OSL analysis manufactured by TSL) was used for analysis of EBSP measurement data. The crystal orientation in the measurement area was analyzed, and the ratio of crystal grains such as <111> and <100> orientation was obtained. The orientation was determined with reference to the wire longitudinal direction of the bonding wire, and included up to 15 ° angle difference of each crystal orientation. Regarding the calculation method of the ratio of crystal grains, the ratio of each orientation that calculates the total area of the measurement area as a population (hereinafter referred to as area ratio) and the crystal orientation that can be identified based on the reliability within the measurement area Two kinds of ratios (hereinafter referred to as azimuth ratios) for calculating only the area as a population were obtained. In the latter process of obtaining the orientation ratio, the calculation was performed by excluding the part where the crystal orientation could not be measured, or the part where the reliability of orientation analysis was low even though the crystal orientation could be measured. Here, the reliability may include parameters prepared in the analysis software.For example, using several parameters such as Confidential Index (CI value) and Image Quality (IQ value), the sample state, analysis purpose, etc. It is desirable to select judgment criteria according to the above.

ワイヤ表面の膜厚測定にはAESによる深さ分析を用い、結晶粒界の濃化等元素分布の観察にはAES、EPMA等による面分析、線分析を行った。AESによる深さ分析では、Arイオンでスパッタしながら深さ方向に測定して、深さの単位にはSiO2換算で表示した。ボンディングワイヤ中の導電性金属濃度は、ICP分析、ICP質量分析等により測定した。 Depth analysis by AES was used to measure the film thickness on the wire surface, and surface analysis and line analysis by AES, EPMA, etc. were performed to observe element distribution such as concentration of grain boundaries. In depth analysis by AES, measurement was performed in the depth direction while sputtering with Ar ions, and the unit of depth was displayed in terms of SiO 2 . The conductive metal concentration in the bonding wire was measured by ICP analysis, ICP mass spectrometry or the like.

ボンディングワイヤの接続には、市販の自動ワイヤボンダーを使用して、ボール/ウェッジ接合を行った。アーク放電によりワイヤ先端にボールを作製し、それをシリコン基板上の電極膜に接合し、ワイヤ他端をリード端子上にウェッジ接合した。ボール形成時の酸化を抑制するために用いるシールドガスは、主に純N2ガスを用いた。ガス流量は、0.001〜0.01m3/minの範囲で調整した。 For connecting the bonding wires, a commercially available automatic wire bonder was used to perform ball / wedge bonding. A ball was produced at the tip of the wire by arc discharge, it was joined to the electrode film on the silicon substrate, and the other end of the wire was wedge joined to the lead terminal. The shielding gas used to suppress oxidation during ball formation was mainly pure N 2 gas. The gas flow rate was adjusted in the range of 0.001 to 0.01 m 3 / min.

接合相手は、シリコン基板上の電極膜の材料である、厚さ1μmのAl合金膜(Al-1%Si-0.5%Cu膜、Al-0.5%Cu膜)を使用した。一方、ウェッジ接合の相手には、表面にAgメッキ(厚さ:2〜4μm)したリードフレームを用いた。尚、BGA基板上のAu/Ni/Cuの電極への接合性についても、一部のワイヤ試料を用いて、前記リードフレームと同様の効果が得られることを確認している。   As a bonding partner, an Al alloy film (Al-1% Si-0.5% Cu film, Al-0.5% Cu film) having a thickness of 1 μm, which is a material of an electrode film on a silicon substrate, was used. On the other hand, a lead frame whose surface was Ag-plated (thickness: 2 to 4 μm) was used as a partner for wedge bonding. It has been confirmed that the same effect as that of the lead frame can be obtained with respect to the bonding property to the Au / Ni / Cu electrode on the BGA substrate by using some wire samples.

ワイヤ表面のキズ、削れ等の評価では、ボンディングされたループの外観観察により調査した。ワイヤ製造工程で発生したキズ、削れ等ループ形成前の影響も含めて評価できる。線径は25μmとする。ワイヤ長は2mmの汎用スパンと5mmのロングスパンの2種類で、高さの狙い値が100〜250μmとなる台形ループを形成し、それぞれ1000本のボンディングワイヤを投影機により観察した。キズ観察はループの外側を中心に、削れ観察は発生頻度の多いボール接合部近傍のネック部を中心に観察し、サイズが10μm以上のキズをカウントした。また、低ループ評価として、ループ高さの狙い値が約65μmとなる低いループを形成し、同様にキズ、削れの発生を観察した。一般的には、ワイヤ長が長いほど、あるいはループ高さが低いほど、ワイヤ表面がこすれる度合いが増えるため、より厳しい評価となる。削れが4本以上でキズも顕著な場合には問題有りと判断して×印で表し、削れが1〜3本の範囲だが、キズ発生が多く、キャピラリ詰まり等への影響が懸念される場合は、改善が必要と判断して△印で表し、削れが1〜3本の範囲で、問題視する大きなキズ発生がない場合には、ワイヤ表面は比較的良好であるため○印で示し、削れが発生しておらず、キズも目立たない場合には安定して良好であると判断し◎印で表した。キズ、削れの判定には、観察者の個人的判断によって多少影響を受けることが懸念されるため、2人以上の観察者で評価して、平均情報でランク付けを行った。   In the evaluation of scratches, scrapes, etc. on the wire surface, the appearance of the bonded loop was examined. It can be evaluated including effects before loop formation, such as scratches and scrapes generated in the wire manufacturing process. The wire diameter is 25 μm. There were two types of wire lengths: a general span of 2 mm and a long span of 5 mm. A trapezoidal loop with a target height of 100 to 250 μm was formed, and 1000 bonding wires were observed with a projector. Scratch observation was centered on the outside of the loop, and scraping observation was centered on the neck near the ball joint, which was frequently generated, and scratches with a size of 10 μm or more were counted. In addition, as a low loop evaluation, a low loop having a target height of about 65 μm was formed, and the occurrence of scratches and scraping was observed in the same manner. In general, the longer the wire length or the lower the loop height, the higher the degree of rubbing of the wire surface, so that the evaluation becomes more severe. If there are more than 4 scraps and scratches are noticeable, it is judged that there is a problem and is indicated by a cross, and the range is 1 to 3 scrapes, but there are many scratches and there is a concern about the impact on capillary clogging etc. Is marked with △ because it is judged that improvement is necessary, and when there are no major scratches in the range of 1 to 3 shavings, the wire surface is relatively good, When no shaving occurred and scratches were not conspicuous, it was judged to be stable and good and represented by ◎. Scratches and shavings were judged to be affected somewhat by the observer's personal judgment, so two or more observers were evaluated and ranked according to average information.

細線におけるワイヤ表面のキズ、削れの評価では、線径が22μmと18μmの2種を用いた。ワイヤ長は2mmで、高さの狙い値が70〜200μmとなる台形ループを形成し、それぞれ1000本のボンディングワイヤを投影機により観察した。キズ、削れ等の判定基準は前述と同じものを採用した。   Two types of wire diameters of 22 μm and 18 μm were used in the evaluation of scratches and scrapes on the wire surface of fine wires. A trapezoidal loop with a wire length of 2 mm and a target height of 70-200 μm was formed, and 1000 bonding wires were observed with a projector. The same criteria for scratches and scrapes as described above were adopted.

ボンディングされたループの直線性を評価するため、ワイヤ間隔(スパン)が2mmの通常スパン、5mmのロングスパン、7mmの超ロングスパンの3種でボンディングを行った。線径は25μmとする。30本のボンディングワイヤを投影機により上方から観察して、ボール側とウェッジ側との接合部を結ぶ直線に対し、ボンディングワイヤが最も離れている部位のずれを曲がり量として測定した。その曲がり量の平均が、線径の1本分未満であれば良好であると判断し◎印で表示し、2本分以上であれば不良であるため△印、その中間であれば、通常は問題とならないため○印で表示した。   In order to evaluate the linearity of the bonded loop, bonding was performed with three types of wire span (span): normal span of 2 mm, long span of 5 mm, and ultra-long span of 7 mm. The wire diameter is 25 μm. Thirty bonding wires were observed from above with a projector, and the deviation of the part where the bonding wires were farthest from the straight line connecting the joints between the ball side and the wedge side was measured as the amount of bending. If the average amount of bending is less than one wire diameter, it is judged to be good. Is not marked as a problem.

ボンディング工程でのループ形状安定性については、ワイヤ長が5mmのロングスパンで
、ループ高さが200〜250μmとなるように台形ループを30本接続し、高さの標準偏差より評価した。線径は25μmとする。高さ測定には光学顕微鏡を使用し、位置はループの最頂点の近傍と、ループの中央部の2箇所で測定した。ループ高さの標準偏差がワイヤ径の1/2以上であれば、バラツキが大きいと判断し、1/2未満であればバラツキは小さく良好であると判断した。その基準を基に判断し、3箇所ともバラツキが小さい場合には、ループ形状が安定していると判断し、◎印で表示し、バラツキが大きい個所が1箇所である場合には、比較的良好であるため○印、2箇所の場合には△印、3箇所ともバラツキが大きい場合には×印で表示した。
Regarding the loop shape stability in the bonding process, 30 trapezoidal loops were connected with a long span of 5 mm and a loop height of 200 to 250 μm, and evaluated from the standard deviation of the height. The wire diameter is 25 μm. An optical microscope was used for height measurement, and the position was measured at two locations near the top of the loop and at the center of the loop. If the standard deviation of the loop height was 1/2 or more of the wire diameter, it was judged that the variation was large, and if it was less than 1/2, it was judged that the variation was small and good. Judgment based on that standard, if the variation is small at all three locations, the loop shape is judged to be stable, indicated by ◎, and if there is only one location with large variation, Since it was good, it was indicated by a mark ◯, in the case of two places, a △ mark, and in the case of large variations in all three places, a mark X.

圧着ボール部の接合形状の判定では、接合されたボールを200本観察して、形状の真円性、異常変形不良、寸法精度等を評価した。線径は20μmとする。初期ボール径/ワイヤ径の比率が1.9〜2.2の通常サイズのボールを形成する場合と、比率が1.5〜1.7の範囲である小径ボールを形成する場合の、2種類でそれぞれ評価した。真円からずれた異方性や花弁状等の不良ボール形状が5本以上であれば不良と判定し×印、真円からずれた不良ボール形状が2〜4本ある場合は二つに分類して、異常変形が1本以上発生していれば量産での改善が望ましいから▲印、異常変形が発生していなければ使用可能であることから△印、不良ボール形状が1本以下であれば良好であるため○印で表記した。   In determining the bonded shape of the press-bonded ball portion, 200 bonded balls were observed, and the roundness of the shape, abnormal deformation failure, dimensional accuracy, etc. were evaluated. The wire diameter is 20 μm. Two types were evaluated: a case of forming a normal size ball having an initial ball diameter / wire diameter ratio of 1.9 to 2.2 and a case of forming a small diameter ball having a ratio of 1.5 to 1.7. If there are 5 or more defective ball shapes such as anisotropy and petals that deviate from a perfect circle, it is judged as defective, and if there are 2 to 4 defective ball shapes that deviate from a perfect circle, they are classified into two. If one or more abnormal deformations have occurred, improvement in mass production is desirable. If no abnormal deformation has occurred, it can be used. Since it is good, it is indicated by a circle.

ピール接合強度の評価には、ウェッジ接合部のプル試験を用いた。線径は25μm、スパンは2mmとする。これは、ワイヤ長の3/4よりもウェッジ接合部に近い位置で、ループに引っ掛けたフックを上方に移動させ、ボンディングワイヤの破断強度を測定した。プル強度はボンディングワイヤの線径、ループ形状、接合条件等にも左右されるため、絶対値ではなく、プル強度/ワイヤ引張強度の相対比率(Rp)を利用した。Rpが20%以上であればウェッジ接合性は良好であるため◎印、15%以上20%未満であれば問題ないと判断し○印、10%以上15%未満であれば不具合が発生する場合があると判断して△印、10%以上であれば量産工程で問題があるため×印で表示した。   For the evaluation of peel joint strength, a pull test of a wedge joint was used. The wire diameter is 25 μm and the span is 2 mm. In this method, the hook hooked on the loop was moved upward at a position closer to the wedge joint than 3/4 of the wire length, and the breaking strength of the bonding wire was measured. Since the pull strength depends on the wire diameter, loop shape, bonding conditions, etc. of the bonding wire, the relative ratio (Rp) of pull strength / wire tensile strength was used instead of the absolute value. If the Rp is 20% or more, the wedge bondability is good, and it is judged that there is no problem if it is marked ◎, 15% or more and less than 20%. △ mark, and if it is 10% or more, there is a problem in the mass production process.

ループ形成における外皮層と芯材の密着性を評価するため、上方からループを光学顕微鏡で観察して外皮層の剥離の発生を調べた。線径は25μm、スパンは3mmの通常のループを用いて、ループ数は400本観察した。剥離数で比較して、ゼロであれば良好であると判断して○印、1〜4本であれば通常の使用では問題ないが改善が求められる場合があるため△印、5本以上であれば量産工程で問題があるため×印で表示した。   In order to evaluate the adhesion between the outer skin layer and the core material in the loop formation, the loop was observed from above with an optical microscope to examine the occurrence of peeling of the outer skin layer. A normal loop having a wire diameter of 25 μm and a span of 3 mm was used, and 400 loops were observed. Compared with the number of peels, if it is zero, it is judged to be good, and if it is 1 to 4, there is no problem in normal use but improvement may be required, so Δ mark, 5 or more If there is a problem in the mass production process, it is indicated by a cross.

AES分光分析の深さ分析において、表皮層と芯材の間に濃度勾配を有する拡散層が確認され、その拡散層の厚さが0.002〜0.2μmの範囲である場合には、表1中の「拡散層」の欄に○印で表記した。   In the depth analysis of AES spectroscopic analysis, when a diffusion layer having a concentration gradient between the skin layer and the core material is confirmed, and the thickness of the diffusion layer is in the range of 0.002 to 0.2 μm, The “Diffusion layer” column is indicated by a circle.

チップへの損傷の評価では、ボール部を電極膜上に接合した後、電極膜をエッチング除去して、絶縁膜又はシリコンチップへの損傷をSEMで観察した。電極数は400箇所を観察した。損傷が認められない場合は○印、クラックが2個以下の場合は問題ないレベルと判断して△印、クラックが3個以上の場合は懸念されるレベルと判断して×印で記載する。   In the evaluation of the damage to the chip, the ball part was bonded onto the electrode film, and then the electrode film was removed by etching, and the damage to the insulating film or the silicon chip was observed by SEM. 400 electrodes were observed. If no damage is found, mark it as “◯”, if there are 2 or less cracks, it is judged as a satisfactory level, and if there are 3 or more cracks, it is judged as a level of concern and marked as “X”.

表1及び表2には、本発明に係わるボンディングワイヤの実施例と比較例を示す。   Tables 1 and 2 show examples of bonding wires according to the present invention and comparative examples.

Figure 2011044729
Figure 2011044729

Figure 2011044729
Figure 2011044729

第1請求項に係わるボンディングワイヤは実施例25〜30であり、第2請求項に係わるボンディングワイヤは実施例25〜30、第3請求項に係わるボンディングワイヤは実施例25〜30、第4請求項に係わるボンディングワイヤは実施例25〜30、第5請求項に係わるボンディングワイヤは実施例25〜30、第6請求項に係わるボンディングワイヤは実施例27、請求項に係わるボンディングワイヤは実施例30に相当する。比較例1〜6では、第1請求項を満足しない場合の結果を示す。 The bonding wire according to the first aspect are examples 25-30, the bonding wire according to the second aspect embodiment 25 to 30, the bonding wire according to the third aspect Examples 25-30, 4th billing Bonding wires according to the fifth embodiment are examples 25 to 30 , bonding wires according to the fifth claim are embodiments 25 to 30 , bonding wires according to the sixth claim are embodiments 27, and bonding wires according to the eighth claim are performed. This corresponds to Example 30 . Comparative Examples 1 to 6 show results when the first claim is not satisfied.

図1には、参考例4のボンディングワイヤの表面において、EBSP測定結果の一例を示す。ワイヤ長手方向の結晶方位が<111>方位から角度差15°以内の領域を着色し、角度差が15°以上の結晶粒界を線表示した。図1における<111>面積比率は88%であった。 FIG. 1 shows an example of the EBSP measurement result on the surface of the bonding wire of Reference Example 4. The region where the crystal orientation in the longitudinal direction of the wire is within an angle difference of 15 ° from the <111> orientation was colored, and the crystal grain boundary where the angle difference was 15 ° or more was displayed as a line. The <111> area ratio in FIG. 1 was 88%.

それぞれの請求項の代表例について、評価結果の一部を説明する。   A part of the evaluation results will be described for representative examples of each claim.

実施例25〜30の複層構造のボンディングワイヤは、本発明に係わる、表皮層の表面におけるワイヤ長手方向の結晶方位の内<111>の占める割合(<111>方位比率)が50%以上であることにより、ワイヤ表面のキズ、削れが低減していることが確認された。一方、表皮層の表面における<111>方位比率が50%未満である複層構造のボンディングワイヤに関する比較例6では、通常のループ形成でも削れ、キズが多数確認された。好ましい事例として、表皮層の<111>方位比率が60%以上である実施例26、27、29では、ロングスパンでもキズ、削れを低減することができ、さらに表皮層の<111>方位比率が70%以上である実施例26、29では、低ループの厳しい条件でもキズ、削れの不良が抑えられていることを確認した。 The bonding wires having a multilayer structure of Examples 25 to 30 have a ratio (<111> orientation ratio) of <111> in the crystal orientation in the longitudinal direction of the wire on the surface of the skin layer according to the present invention is 50% or more. As a result, it was confirmed that scratches and scrapes on the wire surface were reduced. On the other hand, in Comparative Example 6 relating to the bonding wire having a multilayer structure in which the <111> orientation ratio on the surface of the skin layer is less than 50%, a number of scratches were confirmed even in the case of normal loop formation. As a preferable example, in Examples 26 , 27 and 29 in which the <111> orientation ratio of the skin layer is 60% or more, scratches and scraping can be reduced even in a long span, and the <111> orientation ratio of the skin layer is further reduced. In Examples 26 and 29 , which are 70% or more, it was confirmed that scratches and chipping defects were suppressed even under severe conditions of low loop.

実施例25〜30の複層構造のボンディングワイヤは、本発明に係わる、表皮層の表面における<111>と<100>とを合計した方位比率が60%以上であることにより、スパン3mmでの通常のループ条件でのループ高さのバラツキが抑えられ安定していることが確認された。好ましくは、該方位比率が80%以上である実施例26、29、30では、スパン5mmのロングスパンでもループ高さを安定化させることができる。 The bonding wires of the multilayer structure of Examples 25 to 30 have a azimuth ratio of 60% or more of the total of <111> and <100> on the surface of the skin layer according to the present invention. It was confirmed that the variation in loop height under normal loop conditions was suppressed and stable. Preferably, in Examples 26 , 29 , and 30 in which the orientation ratio is 80% or more, the loop height can be stabilized even with a long span of 5 mm span.

実施例25〜30の複層構造のボンディングワイヤは、本発明に係わる、芯材の断面における<111>と<100>とを合計した方位比率が30%以上であることにより、通常のボール寸法で、ボール接合部の花弁不良を低減して、形状を安定化できることを確認した。好ましくは、該方位比率が50%以上である実施例26、29、30では、厳しい接合条件である小径ボールでも、ボール接合部の真円性が向上することを確認した。 The bonding wires having a multilayer structure of Examples 25 to 30 have a normal ball size because the total orientation ratio of <111> and <100> in the cross section of the core material according to the present invention is 30% or more. It was confirmed that the shape of the ball joint could be reduced and the shape could be stabilized. Preferably, in Examples 26 , 29 , and 30 in which the azimuth ratio is 50% or more, it was confirmed that the roundness of the ball joint portion was improved even with a small-diameter ball having severe bonding conditions.

実施例26〜30の複層構造のボンディングワイヤは、本発明に係わる、表皮層の表面における結晶粒の平均サイズの、ワイヤ長手方向/円周方向のアスペクト比が3以上であることにより、通常条件の3mmスパンにおいて、ループの直線性が良好であることを確認した。好ましくは、該アスペクト比が5以上である実施例26、27、29、30では、厳しい接合条件である5mmのロングスパンでも、直線性を向上できることを確認した。より好ましくは、該アスペクト比が10以上である実施例26、29では、厳しいループ条件である7mmの超ロングスパンでも、直線性を向上できることを確認した。 The bonding wires having a multilayer structure of Examples 26 to 30 are usually provided with an aspect ratio of 3 or more in the wire longitudinal direction / circumferential direction of the average size of crystal grains on the surface of the skin layer according to the present invention. It was confirmed that the linearity of the loop was good in the condition of 3 mm span. Preferably, in Examples 26 , 27 , 29 , and 30 in which the aspect ratio is 5 or more, it was confirmed that linearity can be improved even with a long span of 5 mm, which is a severe joining condition. More preferably, in Examples 26 and 29 in which the aspect ratio is 10 or more, it was confirmed that the linearity can be improved even with an extremely long span of 7 mm, which is a severe loop condition.

実施例25〜30の複層構造のボンディングワイヤは、本発明に係わる、表皮層の表面におけるワイヤ長手方向の結晶方位が<111>である結晶粒の面積がワイヤ表面に対する割合(<111>面積比率)が30%以上であることにより、線径が22μmの細線で、ワイヤ表面のキズ、削れが低減していることが確認された。好ましくは、<111>面積比率が40%以上である実施例26、29、30がさらに細い18μmの極細線でも、キズ、削れを抑制できることを確認した。より好ましくは、<111>面積比率が50%以上である実施例29では、18μmの極細線でキズ、削れを抑制する効果がさらに高められることを確認した。 The bonding wires having a multilayer structure of Examples 25 to 30 are based on the present invention, in which the area of crystal grains having a crystal orientation of <111> in the longitudinal direction of the wire on the surface of the skin layer is a ratio (<111> area) to the wire surface. When the ratio was 30% or more, it was confirmed that the wire surface was a fine wire having a diameter of 22 μm, and the flaws and scraping of the wire surface were reduced. Preferably, it was confirmed that Examples 26, 29 , and 30 having a <111> area ratio of 40% or more can suppress scratches and scrapes even with a fine 18 μm extra fine wire. More preferably, in Example 29 in which the <111> area ratio is 50% or more, it was confirmed that the effect of suppressing scratches and scraping was further enhanced by an 18 μm fine wire.

実施例25〜30の複層構造のボンディングワイヤは、本発明に係わる、前述した<111>方位比率が50%以上であり、且つ、表皮層と芯材との間に中間金属層を有することにより、ウエッジ接合部でのピール強度を高められることを確認した。 The bonding wires having a multilayer structure of Examples 25 to 30 have the above-mentioned <111> orientation ratio of 50% or more according to the present invention, and have an intermediate metal layer between the skin layer and the core material. Thus, it was confirmed that the peel strength at the wedge joint can be increased.

実施例25〜30の複層構造のボンディングワイヤは、本発明に係わる、芯材の断面における<111>と<100>とを合計した方位比率が15%以上であることにより、通常のボール寸法で、ボール接合部の異常変形を低減して、形状を安定化できることを確認した。 The bonding wires having a multilayer structure of Examples 25 to 30 have an orientation ratio of 15% or more of the total orientation of <111> and <100> in the cross section of the core material according to the present invention. Thus, it was confirmed that the abnormal deformation of the ball joint portion can be reduced and the shape can be stabilized.

実施例25〜30の複層構造のボンディングワイヤは、本発明に係わる、外皮層の厚さが0.005〜0.2μmの範囲であることにより、チップ損傷を低減し良好であった。 The bonding wires having the multilayer structure of Examples 25 to 30 were excellent in reducing chip damage because the thickness of the outer skin layer according to the present invention was in the range of 0.005 to 0.2 μm.

実施例25〜30の複層構造のボンディングワイヤは、本発明に係わる、表皮層と芯材の間に濃度勾配を有する拡散層を有するため、ループ上方で剥離がなく表皮層の密着性が良好であることが確認された。 The bonding wires having a multilayer structure of Examples 25 to 30 have a diffusion layer having a concentration gradient between the skin layer and the core material according to the present invention, so that there is no peeling above the loop and the adhesion of the skin layer is good. It was confirmed that.

実施例27の複層構造のボンディングワイヤは、本発明に係わる、芯材を構成する主成分がCuで、B、Pd、P、Zrの1種以上(この場合、P)を5〜300ppmの範囲で含有することにより、スパン5mm程度のループの直線性が向上することが確認された。同様に、実施例30は、本発明に係わる、芯材を構成する主成分がAuで、Be、Ca、Ni、Pdの1種以上(この場合、Ca)を5〜8000ppmの範囲で含有することにより、直線性が向上することが確認された。ここでスパン5mm程度のループの直線性を改善する作用については、前述した、ワイヤ長手方向/円周方向のアスペクト比が5以上であることも有効であり、上記の合金成分の添加による効果と識別するのが難しい場合もある。一方で、表1から、アスペクト比が5未満であるものの、上記の合金成分を含有することで、スパン5mm程度の直線性を改善できることが確認された。 The bonding wire having a multilayer structure of Example 27 is Cu, the main component constituting the core material according to the present invention, and one or more of B, Pd, P, and Zr (in this case, P) is 5 to 300 ppm. It was confirmed that the linearity of the loop having a span of about 5 mm was improved by inclusion in the range. Similarly, in Example 30 , the main component constituting the core material according to the present invention is Au, and contains one or more of Be, Ca, Ni, and Pd (in this case, Ca) in the range of 5 to 8000 ppm. As a result, it was confirmed that the linearity was improved. Here, with respect to the action of improving the linearity of the loop having a span of about 5 mm, it is also effective that the aspect ratio in the wire longitudinal direction / circumferential direction is 5 or more, and the effect by addition of the above alloy components It can be difficult to identify. On the other hand, it was confirmed from Table 1 that although the aspect ratio is less than 5, the linearity of about 5 mm span can be improved by containing the above alloy components.

表1の複層構造のボンディングワイヤは、本発明に係わる、前記芯材を構成する主成分がCuで、Pdを5〜10000ppmの範囲で含有し、前記表皮層を構成する主成分がPdまたはAgであることにより、ループの上面近傍の剥離・削れを低減させる高い効果が得られることが確認された。好ましくは、半導体装置用ボンディングワイヤでは、Pd濃度が200ppm以上であるため、上記効果がより顕著であった。また、半導体装置用ボンディングワイヤではPd含有量が5〜8000ppmの範囲であるため、チップ損傷を抑制されていることが確認された。 The bonding wire having a multilayer structure shown in Table 1 is Cu, the main component constituting the core material according to the present invention, containing Pd in a range of 5 to 10,000 ppm, and the main component constituting the skin layer is Pd or It was confirmed that a high effect of reducing peeling / scraping near the upper surface of the loop can be obtained by using Ag. Preferably, in the bonding wire for a semiconductor device , since the Pd concentration is 200 ppm or more, the above effect is more remarkable. Moreover, since the Pd content in the bonding wire for semiconductor devices is in the range of 5 to 8000 ppm, it was confirmed that chip damage was suppressed.

Claims (8)

導電性金属からなる芯材と、前記芯材の上に該芯材とは異なる金属を主成分とする表皮層とを有する半導体装置用ボンディングワイヤであって、
前記表皮層の金属が面心立方晶であって、該表皮層の厚さが0.005〜0.2μmの範囲であ
り、
前記表皮層の表面の結晶面におけるワイヤ長手方向の結晶方位<hkl>の内、前記ワイヤ長手方向に対して角度差が15°以内までを含む<111>の方位比率が50%以上であり、
前記表皮層と前記芯材との間に、前記表皮層及び前記芯材を構成する主成分とは異なる成分からなる中間金属層を有する
ことを特徴とする半導体装置用ボンディングワイヤ。
A bonding wire for a semiconductor device having a core material made of a conductive metal and a skin layer mainly composed of a metal different from the core material on the core material,
The metal of the skin layer is face-centered cubic, and the thickness of the skin layer is in the range of 0.005 to 0.2 μm,
Of the crystal orientation <hkl> in the wire longitudinal direction in the crystal plane of the surface of the skin layer, the orientation ratio of <111> including an angle difference of up to 15 ° with respect to the wire longitudinal direction is 50% or more,
A bonding wire for a semiconductor device, comprising an intermediate metal layer made of a component different from a main component constituting the skin layer and the core material between the skin layer and the core material.
前記芯材の断面の結晶面におけるワイヤ長手方向の結晶方位<hkl>の内、前記ワイヤ長手方向に対して角度差が15°以内までを含む<111>と<100>との方位比率の総計が30%以上であることを特徴とする請求項1記載の半導体装置用ボンディングワイヤ。 Of the crystal orientation <hkl> in the wire longitudinal direction on the crystal plane of the cross-section of the core material, the sum of the orientation ratios of <111> and <100> including an angle difference up to 15 ° with respect to the wire longitudinal direction The bonding wire for a semiconductor device according to claim 1, wherein the bonding wire is 30% or more. 前記表皮層の表面におけるワイヤ長手方向の結晶方位が前記<111>である結晶粒の面積が、ワイヤ表面の総面積に対する割合として30%以上であることを特徴とする請求項1又は2記載の半導体装置用ボンディングワイヤ。 Area of crystal grains the crystal orientation of the wire longitudinal direction is the <111> in the surface of the skin layer, as claimed in claim 1 or 2, wherein the as a percentage of the total area of the wire surface is 30% or more Bonding wire for semiconductor devices. 前記表皮層を構成する主成分がPd、Pt、Ru、Agの内いずれか1種であることを特徴とする請求項1〜3のいずれか1項に記載の半導体装置用ボンディングワイヤ。 4. The bonding wire for a semiconductor device according to claim 1, wherein a main component constituting the skin layer is any one of Pd, Pt, Ru, and Ag. 5. 前記表皮層と前記芯材の間に、前記表皮層及び前記芯材の主成分の濃度勾配を有する拡散層を有することを特徴とする請求項1〜4のいずれか1項に記載の半導体装置用ボンディングワイヤ。 Between the core and the skin layer, the semiconductor device according to claim 1, characterized in that it comprises a diffusion layer having a concentration gradient of the main component of the skin layer and the core material Bonding wire. 前記芯材を構成する主成分がCuで、B、Pd、Bi、P、Zrの1種以上を総量5〜300ppmの範囲で含有することを特徴とする請求項4又は5のいずれか1項に記載の半導体装置用ボンディングワイヤ。 The main component constituting the core material is Cu and contains one or more of B, Pd, Bi, P, and Zr in a total amount range of 5 to 300 ppm. The bonding wire for semiconductor devices as described in 2. 前記芯材を構成する主成分がCuで、Pdを5〜10000ppmの範囲で含有し、前記表皮層を構成する主成分がPdまたはAgであることを特徴とする請求項4又は5のいずれか1項に記載の半導体装置用ボンディングワイヤ。 6. The main component constituting the core material is Cu, containing Pd in a range of 5 to 10,000 ppm, and the main component constituting the skin layer is Pd or Ag. 2. A bonding wire for a semiconductor device according to item 1. 前記芯材を構成する主成分がAuで、Be、Ca、Ni、Pd、Ptの1種以上を総量5〜8000ppmの範囲で含有することを特徴とする請求項4又は5のいずれか1項に記載の半導体装置用ボンディングワイヤ。
The main component constituting the core material is Au, and contains one or more of Be, Ca, Ni, Pd, and Pt in a total amount of 5 to 8000 ppm. The bonding wire for semiconductor devices as described in 2.
JP2010238296A 2007-12-03 2010-10-25 Bonding wires for semiconductor devices Active JP5222340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010238296A JP5222340B2 (en) 2007-12-03 2010-10-25 Bonding wires for semiconductor devices

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007312238 2007-12-03
JP2007312238 2007-12-03
JP2010238296A JP5222340B2 (en) 2007-12-03 2010-10-25 Bonding wires for semiconductor devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008295178A Division JP4617375B2 (en) 2007-12-03 2008-11-19 Bonding wires for semiconductor devices

Publications (3)

Publication Number Publication Date
JP2011044729A JP2011044729A (en) 2011-03-03
JP2011044729A5 true JP2011044729A5 (en) 2011-06-23
JP5222340B2 JP5222340B2 (en) 2013-06-26

Family

ID=40962560

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2010238295A Active JP5222339B2 (en) 2007-12-03 2010-10-25 Bonding wires for semiconductor devices
JP2010238297A Active JP4772916B2 (en) 2007-12-03 2010-10-25 Bonding wires for semiconductor devices
JP2010238296A Active JP5222340B2 (en) 2007-12-03 2010-10-25 Bonding wires for semiconductor devices

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2010238295A Active JP5222339B2 (en) 2007-12-03 2010-10-25 Bonding wires for semiconductor devices
JP2010238297A Active JP4772916B2 (en) 2007-12-03 2010-10-25 Bonding wires for semiconductor devices

Country Status (1)

Country Link
JP (3) JP5222339B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110284866A1 (en) * 2005-01-11 2011-11-24 Tran Chuong A Light-emitting diode (led) structure having a wavelength-converting layer and method of producing
EP3136427B1 (en) 2014-04-21 2023-12-06 NIPPON STEEL Chemical & Material Co., Ltd. Bonding wire for semiconductor device
EP3157046B1 (en) * 2015-08-12 2022-10-26 Nippon Micrometal Corporation Semiconductor device bonding wire
JP6354744B2 (en) 2015-12-21 2018-07-11 トヨタ自動車株式会社 Copper wire joining method
US10985130B2 (en) 2018-09-21 2021-04-20 Nippon Steel Chemical & Material Co., Ltd. Cu alloy bonding wire for semiconductor device
EP4109498A4 (en) 2020-02-18 2023-11-08 NIPPON STEEL Chemical & Material Co., Ltd. Cu alloy bonding wire for semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4141854B2 (en) * 2002-04-05 2008-08-27 新日鉄マテリアルズ株式会社 Gold bonding wire for semiconductor device and manufacturing method thereof
JP3697227B2 (en) * 2002-06-24 2005-09-21 新日本製鐵株式会社 Gold bonding wire for semiconductor device and manufacturing method thereof
JP2004014884A (en) * 2002-06-07 2004-01-15 Sumitomo Electric Wintec Inc Bonding wire
JP4617375B2 (en) * 2007-12-03 2011-01-26 新日鉄マテリアルズ株式会社 Bonding wires for semiconductor devices

Similar Documents

Publication Publication Date Title
JP4617375B2 (en) Bonding wires for semiconductor devices
JP5073759B2 (en) Bonding wires for semiconductor devices
JP4554724B2 (en) Bonding wires for semiconductor devices
JP4885117B2 (en) Bonding wires for semiconductor devices
JP4886899B2 (en) Bonding wire for semiconductor
US9773748B2 (en) Bonding wire for semiconductor device
JP5627263B2 (en) Bonding wires for semiconductor devices
US20120118610A1 (en) Bonding wire for semiconductor
JP5222340B2 (en) Bonding wires for semiconductor devices
TWI657154B (en) Bonding wire for semiconductor device
JP2011044729A5 (en)
JP2011061221A5 (en)
JP5393614B2 (en) Bonding wires for semiconductor devices