JP2011043457A - Inspection method of glass substrate end - Google Patents

Inspection method of glass substrate end Download PDF

Info

Publication number
JP2011043457A
JP2011043457A JP2009192973A JP2009192973A JP2011043457A JP 2011043457 A JP2011043457 A JP 2011043457A JP 2009192973 A JP2009192973 A JP 2009192973A JP 2009192973 A JP2009192973 A JP 2009192973A JP 2011043457 A JP2011043457 A JP 2011043457A
Authority
JP
Japan
Prior art keywords
glass substrate
light
inspection method
incident
substrate end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009192973A
Other languages
Japanese (ja)
Inventor
Shoichi Tanida
正一 谷田
Toru Maeda
透 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2009192973A priority Critical patent/JP2011043457A/en
Publication of JP2011043457A publication Critical patent/JP2011043457A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To overcome the problem that it is difficult for an inspection method for irradiating a glass substrate end with light and observing the light scattered from a defect to detect a microcrack within a glass substrate, and the problem that a view field to be observed is narrow, and the inspection efficiency is low in a method for observing the light reflected at the glass substrate end through a refractive body and researching the defect at the glass substrate end. <P>SOLUTION: The glass substrate end is irradiated with the light obliquely entering into the glass substrate, totally reflected within the glass substrate and traveling through the glass substrate, and observed from the outside of the glass substrate end. The light 12 enters into the glass substrate 11 through the refractive body 16 placed in the vicinity of the glass substrate end 13 and having a refractive index larger than the glass substrate 11. The light 12 is totally reflected within the glass substrate 11, travels through the glass substrate 11, and reaches the glass substrate end 13. Since an incident position 17 of the light 12 can be installed near the glass substrate end 13, the light 12 reaches the glass substrate end 13 almost without attenuation. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はガラス基板端部の検査方法、特にガラス基板端部の表面近くの浅い部分に生じるマイクロクラックの検査方法に関する。   The present invention relates to a method for inspecting a glass substrate end, and more particularly to a method for inspecting a microcrack generated in a shallow portion near the surface of a glass substrate end.

フラットパネルディスプレイに用いられるガラス基板は、フロート法、オーバーフローダウンドロー法などにより製造された帯状のガラス板から、矩形に切り出されたガラス板の端部、エッジ、あるいはコーナー部を研磨して得られる。   A glass substrate used for a flat panel display is obtained by polishing an end, an edge, or a corner of a glass plate cut into a rectangle from a strip-shaped glass plate manufactured by a float method, an overflow downdraw method, or the like. .

これらのガラス基板は、研磨加工や搬送などの際、位置決め治具や搬送治具との接触、あるいは、研磨条件の変動などにより、エッジ、コーナー部、端面などの基板端部に、微細な欠陥が発生することがある。   These glass substrates have fine defects at the edge of the substrate such as edges, corners, and end faces due to contact with positioning jigs or conveyance jigs or fluctuations in polishing conditions during polishing or conveyance. May occur.

一方、ガラス基板は、フラットパネルディスプレイの製造工程で、種々の熱処理を受けることから、前記の微細な欠陥がガラス基板端部に存在すると、熱処理工程や搬送工程において、ガラス基板が破損する原因となる。   On the other hand, since the glass substrate is subjected to various heat treatments in the manufacturing process of the flat panel display, if the fine defects exist at the edge of the glass substrate, the glass substrate may be damaged in the heat treatment step or the transport step. Become.

そのため、端部の研磨加工が完了したガラス基板について、ガラス基板端部の微細な欠陥の検査が、光学的に行なわれる。このような微細な欠陥の光学的検査は、一般には、ガラス基板端部に光を照射し、欠陥からの散乱光を、目視観察あるいは光学的に画像処理をして行なわれる。   Therefore, a fine defect at the edge of the glass substrate is optically inspected for the glass substrate that has been polished at the edge. Such an optical inspection of a fine defect is generally performed by irradiating light on the edge of the glass substrate and visually observing or optically processing the scattered light from the defect.

また、ガラス基板より屈折率の高い屈折体(プリズム)を、浸液を介してガラス基板表面に載せ、当該屈折体を通して光をガラス基板内部に導入し、ガラス基板内部で光を全反射させて、ガラス基板端部まで導き、ガラス基板端部で反射した光を同じ屈折体を通して観察することにより、ガラス基板端部の欠陥を検査する方法が提案されている(特許文献1)。この方法は、ガラス基板端部を直接観察できない場合に有効である。   Further, a refractor (prism) having a higher refractive index than that of the glass substrate is placed on the surface of the glass substrate through the immersion liquid, light is introduced into the glass substrate through the refractor, and the light is totally reflected inside the glass substrate. There has been proposed a method for inspecting defects at the glass substrate end by guiding the light to the end of the glass substrate and observing the light reflected at the end of the glass substrate through the same refractor (Patent Document 1). This method is effective when the edge of the glass substrate cannot be observed directly.

また、ガラス基板より屈折率の高い屈折体(プリズム)を、浸液を介してガラス基板表面に載せ、当該屈折体を通して光をガラス基板内部に導入し、ガラス基板内部で光を全反射させて導き、ガラス基板内部の欠陥による散乱光を観察することにより、ガラス基板を検査する方法が提案されている(特許文献2)。   Further, a refractor (prism) having a higher refractive index than that of the glass substrate is placed on the surface of the glass substrate through the immersion liquid, light is introduced into the glass substrate through the refractor, and the light is totally reflected inside the glass substrate. A method for inspecting a glass substrate by guiding and observing scattered light due to defects inside the glass substrate has been proposed (Patent Document 2).

特開2003−172712号公報JP 2003-172712 A 特開2003−329602号公報JP 2003-329602 A

ガラス基板端部に発生する欠陥は、端部表面に発生することが多いが、中にはマイクロクラックとして、ガラス内部に進展するものがある。このようなマイクロクラックは微細であるが、僅かな熱的あるいは機械的な応力により、ガラス基板が破損する原因となるため、このようなマイクロクラックを検出することは重要である。   Defects generated at the edge of the glass substrate often occur on the surface of the edge, but some of them develop into the glass as microcracks. Although such microcracks are fine, they can cause damage to the glass substrate due to slight thermal or mechanical stress. Therefore, it is important to detect such microcracks.

しかし、ガラス基板端部に観察者側から光を照射し、欠陥からの散乱光を、目視あるいは光学的画像処理により観察する一般的な検査方法では、光がガラス基板端部の表面で反射して内部に到達しにくいという問題がある。また、ガラス基板端部の表面で光が反射して観察を妨げるため、ガラス基板内部のマイクロクラックを検出することは困難である。   However, in a general inspection method in which light is irradiated to the edge of the glass substrate from the observer side and the scattered light from the defect is observed visually or by optical image processing, the light is reflected on the surface of the edge of the glass substrate. There is a problem that it is difficult to reach the inside. Moreover, since light reflects on the surface of the glass substrate edge part and obstructs observation, it is difficult to detect the micro crack inside a glass substrate.

さらに、ガラス基板端部の表面が研削もしくは研磨加工された面であると、すりガラス状の面を呈することとなり、それらにより光の乱反射を生じるため、ガラス基板内部のマイクロクラックを検出することは、さらに困難になる。   Furthermore, if the surface of the glass substrate end is a ground or polished surface, it will exhibit a ground glass-like surface, causing irregular reflection of light, thereby detecting microcracks inside the glass substrate, It becomes even more difficult.

特許文献1に記載された検査方法では、屈折体を通してガラス基板に入射させた光を、ガラス基板端部で反射させ、戻った光を同じ屈折体を通して観察することにより、ガラス基板端部の欠陥を検査しているため、観察できる視野が狭く、検査の効率が低いという問題がある。   In the inspection method described in Patent Document 1, the light incident on the glass substrate through the refractor is reflected at the glass substrate end, and the returned light is observed through the same refractor to thereby detect defects at the glass substrate end. Therefore, there is a problem that the observable field of view is narrow and the inspection efficiency is low.

特許文献2に記載された検査方法では、ガラス基板内部の欠陥の観察を目的として、ガラス基板の主面(表面あるいは裏面)から内部を観察する方法であり、ガラス基板の表裏面は鏡面であるから、ガラス基板内部の観察は容易であるが、R面取りやC面取り加工されたガラス基板端部については、当該端部の形状に起因する陰が生じ、端部表面直下のガラス基板内部の観察が困難となる。   The inspection method described in Patent Document 2 is a method of observing the inside from the main surface (front surface or back surface) of the glass substrate for the purpose of observing defects inside the glass substrate, and the front and back surfaces of the glass substrate are mirror surfaces. Therefore, although the inside of the glass substrate is easy to observe, the shadow caused by the shape of the end of the glass substrate end subjected to R chamfering or C chamfering occurs, and the inside of the glass substrate directly under the end surface is observed. It becomes difficult.

また、従来、観察者と反対側のガラス基板端部に光を照射し、ガラス基板内部を通過した光を観察者側の端部から観察することにより、ガラス基板端部の欠陥を検査する方法がある。この方法は、小型のガラス基板には有効であるが、近年のフラットパネルディスプレイ用ガラス基板のように、面積が大きい割にその厚さが薄いガラス基板においては、光が一辺から他辺へ進行する間に大きく減衰してしまい、入射と反対側の端部の観察に支障を来す。   Conventionally, a method of inspecting a glass substrate end defect by irradiating the glass substrate end opposite to the observer with light and observing the light passing through the inside of the glass substrate from the observer end. There is. This method is effective for small glass substrates, but light travels from one side to the other on a glass substrate with a large area but a small thickness, such as a glass substrate for a flat panel display in recent years. In the meantime, it is greatly attenuated, which hinders observation of the end opposite to the incident.

このように、従来の検査方法では、ガラス基板端部の表面直下に存在するマイクロクラックをより確実に検出することは難しい。   Thus, with the conventional inspection method, it is difficult to more reliably detect microcracks that exist directly under the surface of the glass substrate end.

本発明の要旨は以下のとおりである。
(1)本発明のガラス基板端部の検査方法は、ガラス基板の主面に斜めに入射し、ガラス基板内を全反射して進行する光により照射されたガラス基板端部を、ガラス基板端部の外側から観察することを特徴とする。
(2)本発明のガラス基板端部の検査方法は、ガラス基板の主面に垂直な方向から見たとき、ガラス基板に入射する光が、ガラス基板端部と斜交することを特徴とする。
(3)本発明のガラス基板端部の検査方法は、ガラス基板の主面に垂直な方向から見たとき、ガラス基板に入射する光の、ガラス基板端部と交わる交角αが、5°〜80°であることを特徴とする。
(4)本発明のガラス基板端部の検査方法は、ガラス基板に入射する光の、ガラス基板端部と交わる交角αを変化させることを特徴とする。
(5)本発明のガラス基板端部の検査方法は、ガラス基板に入射する光の交角αの変化する範囲が、交角αの変化が最小のとき、−5°〜+5°であり、変化が最大のとき、−80°〜+80°であることを特徴とする。
(6)本発明のガラス基板端部の検査方法は、ガラス基板の主面に平行、かつ、光の進行方向に垂直な方向から見たとき、ガラス基板の主面への光の入射角βが、入射光がガラス基板内部で全反射を起こさせる範囲内であることを特徴とする。
(7)本発明のガラス基板端部の検査方法は、ガラス基板端部の近傍に載置した、屈折率がガラス基板の屈折率に近い屈折体を通して、ガラス基板に光を入射させることを特徴とする。
(8)本発明のガラス基板端部の検査方法は、ガラス基板の屈折率をn、屈折体の屈折率をnとしたとき、nとnの差が0.1以下であることを特徴とする。
(9)本発明のガラス基板端部の検査方法は、屈折体とガラス基板との間隙に浸液を満たすことを特徴とする。
(10)本発明のガラス基板端部の検査方法は、ガラス基板に入射する光および観察装置を、ガラス基板端部と平行に相対的に移動させながら、ガラス基板端部を検査することを特徴とする。
(11)本発明のガラス基板端部の検査方法は、ガラス基板が、板厚が0.5mm〜5mmのガラス基板であることを特徴とする。
The gist of the present invention is as follows.
(1) The method for inspecting the glass substrate end of the present invention is such that the glass substrate end irradiated with light that is obliquely incident on the main surface of the glass substrate and is totally reflected inside the glass substrate and then travels is obtained. It is characterized by observing from the outside of the part.
(2) The glass substrate end inspection method of the present invention is characterized in that light incident on the glass substrate obliquely intersects with the glass substrate end when viewed from a direction perpendicular to the main surface of the glass substrate. .
(3) When the glass substrate end inspection method of the present invention is viewed from the direction perpendicular to the main surface of the glass substrate, the angle of intersection α of the light incident on the glass substrate intersecting with the glass substrate end is 5 ° to 5 °. It is characterized by being 80 °.
(4) The glass substrate end inspection method of the present invention is characterized in that the angle of intersection α of light incident on the glass substrate intersecting the glass substrate end is changed.
(5) The glass substrate end inspection method of the present invention is such that the range of change of the crossing angle α of light incident on the glass substrate is −5 ° to + 5 ° when the change of the crossing angle α is minimal, and the change is It is characterized in that it is −80 ° to + 80 ° at the maximum.
(6) The method for inspecting the edge of the glass substrate according to the present invention has an incident angle β of light to the main surface of the glass substrate when viewed from a direction parallel to the main surface of the glass substrate and perpendicular to the light traveling direction. However, the present invention is characterized in that the incident light is in a range in which total reflection occurs inside the glass substrate.
(7) The glass substrate edge inspection method of the present invention is characterized in that light is incident on the glass substrate through a refractor placed near the glass substrate edge and having a refractive index close to that of the glass substrate. And
(8) In the glass substrate edge inspection method of the present invention, when the refractive index of the glass substrate is ng and the refractive index of the refractor is nr , the difference between nr and ng is 0.1 or less. It is characterized by that.
(9) The glass substrate edge inspection method of the present invention is characterized in that the immersion liquid is filled in the gap between the refractive body and the glass substrate.
(10) The glass substrate end inspection method of the present invention is characterized by inspecting the glass substrate end while moving the light incident on the glass substrate and the observation device relatively in parallel with the glass substrate end. And
(11) The glass substrate end inspection method of the present invention is characterized in that the glass substrate is a glass substrate having a thickness of 0.5 mm to 5 mm.

本発明のガラス基板端部の検査方法により、従来の検査方法では困難であった、ディスプレイ用ガラス基板の端部表面直下の欠陥、特にマイクロクラックを光学的に検出することができる。   The glass substrate edge inspection method of the present invention can optically detect defects directly below the edge surface of the display glass substrate, particularly microcracks, which were difficult with conventional inspection methods.

(a)本発明のガラス基板端部の検査方法の説明図(ガラス基板の主面に垂直な方向から見た図)、(b)本発明のガラス基板端部の検査方法の説明図(ガラス基板の主面に平行、かつ光の進行方向に垂直な方向から見た図)(A) Explanatory drawing of the inspection method of the glass substrate edge part of this invention (figure seen from the direction perpendicular | vertical to the main surface of a glass substrate), (b) Explanatory drawing (glass) of the inspection method of the glass substrate edge part of this invention (Viewed from the direction parallel to the main surface of the substrate and perpendicular to the light traveling direction)

本発明の検査方法では、ガラス基板端部の検査を行なうに際し、光をガラス基板の主面に斜めに入射させ、ガラス基板内を全反射により進行させて、ガラス基板端部を照射させる。そして、ガラス基板端部を、その外側から観察する。   In the inspection method of the present invention, when inspecting the edge of the glass substrate, light is incident obliquely on the main surface of the glass substrate, and the interior of the glass substrate is advanced by total reflection to irradiate the edge of the glass substrate. And the glass substrate edge part is observed from the outer side.

図1(a)は本発明のガラス基板端部の検査方法の説明図であって、ガラス基板11の主面11aに垂直な方向から見た図である。図1(b)は本発明のガラス基板端部の検査方法の説明図であって、ガラス基板11の主面11aに平行、かつ、光12の進行方向に垂直な方向から見た図である。   FIG. 1A is an explanatory view of the glass substrate end inspection method according to the present invention, as viewed from a direction perpendicular to the main surface 11 a of the glass substrate 11. FIG. 1B is an explanatory view of the glass substrate end inspection method of the present invention, as viewed from a direction parallel to the main surface 11 a of the glass substrate 11 and perpendicular to the traveling direction of the light 12. .

本発明の検査方法では、図1(a)に示すように、ガラス基板11の主面11aに対して垂直方向から見たとき、ガラス基板11への入射光(以下、単に光ともいう)12が、ガラス基板端部13に対して斜交する(直交しない)ことが好ましい。入射光12とガラス基板端部13との交わる角度を交角αとすると、入射光12がガラス基板端部13と直交する場合には交角αは0°である。   In the inspection method of the present invention, as shown in FIG. 1A, when viewed from a direction perpendicular to the main surface 11a of the glass substrate 11, incident light (hereinafter also simply referred to as light) 12 to the glass substrate 11 is obtained. However, it is preferable to cross with respect to the glass substrate end portion 13 (not orthogonal). Assuming that the angle at which the incident light 12 and the glass substrate end portion 13 intersect is an intersection angle α, the intersection angle α is 0 ° when the incident light 12 is orthogonal to the glass substrate end portion 13.

ガラス基板11への入射光12がガラス基板端部13と直交する場合(交角α=0°)には、散乱しない直進光12が、直接、観察装置14に入射するため、マイクロクラック15による弱い散乱光の観察が困難になる。   When the incident light 12 on the glass substrate 11 is orthogonal to the glass substrate end portion 13 (intersection angle α = 0 °), the straight traveling light 12 that is not scattered is directly incident on the observation device 14, and therefore weak due to the microcrack 15. Observation of scattered light becomes difficult.

これに対して、入射光12をガラス基板端部13と斜交させると(交角α≠0°)、散乱しないで直進する強い光12が、直接、観察装置14に入射しないため、マイクロクラック15による弱い散乱光の観察が容易になる。   On the other hand, when the incident light 12 is obliquely intersected with the glass substrate end portion 13 (intersection angle α ≠ 0 °), the strong light 12 that travels straight without being scattered does not directly enter the observation device 14, and therefore the microcrack 15 This makes it easy to observe weak scattered light.

入射光12がガラス基板端部13と交わる交角αは、5°〜80°が好ましい。交角αが5°より小さいと、入射光12がガラス基板端部13と直交する場合と同じように、散乱しないで直進する強い光12が観察装置14に入射しやすくなるため、マイクロクラック15による弱い散乱光の観察が困難になりやすい。   The intersection angle α at which the incident light 12 intersects the glass substrate end 13 is preferably 5 ° to 80 °. When the crossing angle α is smaller than 5 °, the strong light 12 that travels straight without scattering is easily incident on the observation device 14 as in the case where the incident light 12 is orthogonal to the glass substrate end portion 13. Observation of weak scattered light tends to be difficult.

一方、交角αが80°より大きいと、マイクロクラック15の散乱光の観察装置14へ向かう光量が減ってしまい、検出感度が低くなる。   On the other hand, if the intersection angle α is larger than 80 °, the amount of light scattered by the microcracks 15 directed to the observation device 14 is reduced, and the detection sensitivity is lowered.

本発明の検査方法では、好ましくは、入射光12とガラス基板端部13の交わる交角αを変化させながら、ガラス基板端部13を観察し、マイクロクラック15を検査する。入射光12の方向とマイクロクラック15の方向が特定の関係になったとき、マイクロクラック15が特に明るく視認でき、検出しやすくなる。マイクロクラック15が明るく視認できるための入射光12の方向は、個々のマイクロクラック15によって異なるため、入射光12の交角αを変化させることが好ましい。それにより、さまざまな方向を向いたマイクロクラック15が、確実に検出できる。   In the inspection method of the present invention, preferably, the glass substrate end 13 is observed and the microcrack 15 is inspected while changing the intersection angle α between the incident light 12 and the glass substrate end 13. When the direction of the incident light 12 and the direction of the microcracks 15 are in a specific relationship, the microcracks 15 are particularly bright and can be easily detected. Since the direction of the incident light 12 that allows the microcracks 15 to be viewed brightly differs depending on the individual microcracks 15, it is preferable to change the intersection angle α of the incident light 12. Thereby, the microcracks 15 facing various directions can be reliably detected.

ガラス基板端部13と直交する方向を中心として(そのときの交角αは0°である)、入射光12の方向変化を交角αで表わすと、交角αの変化範囲が最小のとき、−5°〜+5°、交角αの変化範囲が最大のとき、−80°〜+80°が適当である。   Centering on the direction orthogonal to the glass substrate end 13 (the intersecting angle α at that time is 0 °), the change in the direction of the incident light 12 is represented by the intersecting angle α. When the change range of the angle of intersection is α is −80 ° to + 80 ° is appropriate.

本発明の検査方法では、好ましくは、図1(a)、(b)に示すように、ガラス基板11のガラス基板端部13の検査を行なうに際し、ガラス基板端部13近傍に載置した、屈折率がガラス基板11の屈折率に近い屈折体(プリズム)16を通して、ガラス基板11に光12を入射させる。ガラス基板11への入射光12は、ガラス基板11内を全反射して進み、ガラス基板端部13に達する。このようにすると、光12の入射位置17を、ガラス基板端部13のより近傍に設置できることから、光12はほとんど減衰しないでガラス基板端部13まで届く。そのため、ガラス基板端部13のマイクロクラック15による散乱光が明るく観察できる。   In the inspection method of the present invention, preferably, as shown in FIGS. 1A and 1B, when the glass substrate end portion 13 of the glass substrate 11 is inspected, the glass substrate end portion 13 is placed in the vicinity. Light 12 is incident on the glass substrate 11 through a refractor (prism) 16 having a refractive index close to that of the glass substrate 11. Incident light 12 on the glass substrate 11 travels with total reflection in the glass substrate 11 and reaches the glass substrate end 13. In this way, since the incident position 17 of the light 12 can be set closer to the glass substrate end 13, the light 12 reaches the glass substrate end 13 with almost no attenuation. Therefore, the scattered light from the microcracks 15 at the glass substrate end 13 can be observed brightly.

ガラス基板11の屈折率をn、屈折体16の屈折率をnとしたとき、好ましくは、nとnの差が0.1以下である。 When the refractive index of the glass substrate 11 n g, the refractive index of the refractive member 16 and the n r, preferably, the difference of n r and n g is 0.1 or less.

ガラス基板端部13にマイクロクラック15があるときは、マイクロクラック15で光12が散乱する。このため、光12の進路が乱れ、マイクロクラック15を光学的に検知できる。   When the microcrack 15 is present at the glass substrate end portion 13, the light 12 is scattered by the microcrack 15. For this reason, the path of the light 12 is disturbed, and the microcracks 15 can be detected optically.

本発明では、ガラス基板端部13の外側から光12を観察するため、観察装置14の設置位置に、ほとんど制約が無い。また、ガラス基板端部13の広い範囲が一度に観察できるため、検査の効率が良い。   In the present invention, since the light 12 is observed from the outside of the end portion 13 of the glass substrate, there are almost no restrictions on the installation position of the observation device 14. Moreover, since the wide range of the glass substrate edge part 13 can be observed at once, the inspection efficiency is good.

ガラス基板11の主面11aに平行で、かつ、光12の進行方向に垂直な方向から見たとき、ガラス基板11への入射光12は、ある入射角β(図1(b))をもつものとする。入射角βは入射光12がガラス基板内部で全反射を起こす範囲に限定され、その上限及び下限は、屈折体16の屈折率n、ガラス基板11の屈折率nおよび浸液18の屈折率nを用いた光学的計算により決定される。屈折体16を通過した光は入射角βで浸液18に入射し、屈折角γで浸液18に進入し、更に屈折角δでガラス基板11内に進入する。それぞれの関係は、式(1)、(2)で表される。
γ=Sin−1(sinβ×(n/n))・・・(1)
δ=Sin−1(sinγ×(n/n))・・・(2)
δが下記の式(3)で示すように、ガラス基板11中の臨界角θより大きい条件であれば、光がガラス基板11内で全反射することになるが、この条件を満たす範囲内でβの上限と下限が決定される。
δ>θ=Sin−1(n/n)・・・(3)
ここでnはガラス基板11が浸液18と接している面の反対側の面に接している物質の屈折率を表す。ガラス基板11への入射角βが上記の下限より小さいと、装置上の制約から、光12をガラス基板11に入射させることが難しい。ガラス基板11への入射角βが上記の上限を超えると、ガラス基板11への入射光12が全反射せず、ガラス基板11を透過してしまうため、光12がガラス基板端部13まで届かず、ガラス基板端部13の検査ができない。
When viewed from a direction parallel to the main surface 11a of the glass substrate 11 and perpendicular to the traveling direction of the light 12, the incident light 12 on the glass substrate 11 has a certain incident angle β (FIG. 1B). Shall. The incident angle β is limited to the range in which the incident light 12 causes total reflection inside the glass substrate. The upper and lower limits thereof are the refractive index n r of the refractor 16, the refractive index ng of the glass substrate 11, and the refraction of the immersion liquid 18. Determined by optical calculation using the rate n l . The light that has passed through the refracting body 16 enters the immersion liquid 18 at an incident angle β, enters the immersion liquid 18 at a refractive angle γ, and further enters the glass substrate 11 at a refractive angle δ. Each relationship is represented by the formulas (1) and (2).
γ = Sin −1 (sin β × (n r / n l )) (1)
δ = Sin −1 (sin γ × (n 1 / n g )) (2)
If δ is a condition larger than the critical angle θ m in the glass substrate 11 as shown by the following formula (3), the light is totally reflected in the glass substrate 11, but within the range satisfying this condition. Determines the upper and lower limits of β.
δ> θ m = Sin −1 (n a / n g ) (3)
Wherein n a is the refractive index of the material in contact with the surface opposite to the surface on which the glass substrate 11 is in contact with the immersion liquid 18. If the incident angle β to the glass substrate 11 is smaller than the lower limit, it is difficult to make the light 12 incident on the glass substrate 11 due to restrictions on the apparatus. If the incident angle β to the glass substrate 11 exceeds the above upper limit, the incident light 12 to the glass substrate 11 is not totally reflected and passes through the glass substrate 11, so that the light 12 reaches the glass substrate end 13. Therefore, the glass substrate end 13 cannot be inspected.

本発明の検査方法では、屈折体16とガラス基板11との間隙に、浸液18を満たすことが好ましい。屈折体16とガラス基板11の接触部の平面度が良いときは、屈折体16を直接ガラス基板11に載置して光12を入射させることができるが、平面度が悪いと屈折体16がガラス基板11に密着しないため、光12を入射させることができない。そのようなとき、屈折体16とガラス基板11との間隙に浸液18が満たされていれば、屈折体16がガラス基板11に密着したのと同様の状態となり、光12を効率良く入射させることができる。   In the inspection method of the present invention, the immersion liquid 18 is preferably filled in the gap between the refractive body 16 and the glass substrate 11. When the flatness of the contact portion between the refracting body 16 and the glass substrate 11 is good, the refracting body 16 can be directly placed on the glass substrate 11 and the light 12 can be incident. Since it does not adhere to the glass substrate 11, the light 12 cannot enter. In such a case, if the immersion liquid 18 is filled in the gap between the refracting body 16 and the glass substrate 11, the refracting body 16 is brought into the same state as being in close contact with the glass substrate 11, and the light 12 is efficiently incident. be able to.

浸液18の屈折率は、屈折体16の屈折率とガラス基板11の屈折率の間の値であることが好ましい。このようにすると、入射光12の入射角βの範囲が広くなり、また、屈折体16とガラス基板11との界面での光12の損失が少なくなるため、ガラス基板端部13が明るく観察できる。   The refractive index of the immersion liquid 18 is preferably a value between the refractive index of the refractor 16 and the refractive index of the glass substrate 11. In this way, the range of the incident angle β of the incident light 12 is widened, and the loss of the light 12 at the interface between the refractor 16 and the glass substrate 11 is reduced, so that the glass substrate end 13 can be observed brightly. .

本発明では、好ましくは、ガラス基板11への入射光12および観察装置14と、ガラス基板11とを、ガラス基板端部13と平行に、相対的に移動させながら、ガラス基板端部13を検査する。このようにすれば、長大なガラス基板11に対してもガラス基板端部13を連続的に効率よく検査することができる。   In the present invention, preferably, the glass substrate end 13 is inspected while the incident light 12 and the observation device 14 on the glass substrate 11 and the glass substrate 11 are relatively moved in parallel with the glass substrate end 13. To do. In this way, the glass substrate end 13 can be inspected continuously and efficiently even for a long glass substrate 11.

本発明は、板厚が0.5mm〜5mmの、フラットパネルディスプレイ用ガラス基板のガラス基板端部の検査に好適である。フラットパネルディスプレイ用ガラス基板は、面積に比べて板厚が非常に薄い。そのため、搬送時や熱処理時に、たわみや変形が起きやすく、微細な欠陥によっても破損しやすい。そのため本発明のガラス基板端部の検査方法が、特に有効に用いられる。   The present invention is suitable for inspection of the glass substrate end portion of a glass substrate for flat panel display having a plate thickness of 0.5 mm to 5 mm. The glass substrate for flat panel displays has a very thin plate thickness compared to the area. For this reason, deflection and deformation are likely to occur during conveyance and heat treatment, and damage is easily caused by minute defects. Therefore, the glass substrate end inspection method of the present invention is particularly effectively used.

板厚が1.8mmのフラットパネルディスプレイ用のガラス基板11の、ガラス基板端部13から15mm離れた位置に、屈折体(ガラスプリズム)13を載せた。ガラス基板11の屈折率は1.55、屈折体16の屈折率は1.52であった。ガラス基板11と屈折体16の間隙に、浸液18(屈折率1.33)を満たした。   A refractor (glass prism) 13 was placed on a glass substrate 11 for a flat panel display having a plate thickness of 1.8 mm at a position 15 mm away from the glass substrate end 13. The refractive index of the glass substrate 11 was 1.55, and the refractive index of the refractor 16 was 1.52. An immersion liquid 18 (refractive index 1.33) was filled in the gap between the glass substrate 11 and the refractor 16.

屈折体16に検査用の光12(照度50,000Lux)を入射させ、ガラス基板11内部を全反射させて、ガラス基板端部13に達するようにした。入射光12の入射角βは48°であった。入射光12と屈折体16の位置関係を保持しながら、入射光12の方向を変化させ、入射光12とガラス基板端部13の交角αが、±30°の範囲で変化するようにした。   The inspection light 12 (illuminance 50,000 Lux) was incident on the refracting body 16 to totally reflect the inside of the glass substrate 11 so as to reach the glass substrate end 13. The incident angle β of the incident light 12 was 48 °. While maintaining the positional relationship between the incident light 12 and the refracting body 16, the direction of the incident light 12 is changed so that the crossing angle α between the incident light 12 and the glass substrate end 13 changes within a range of ± 30 °.

ガラス基板端部13を観察装置14(マイクロスコープ)で撮像し、ディスプレイに画像(約80倍)を映して目視観察すると同時に、画像処理装置を用いて、主として、ガラス基板端部13の表面直下に発生したマイクロクラック15を検査した。   The glass substrate end portion 13 is imaged with an observation device 14 (microscope), and an image (approximately 80 times) is displayed on the display for visual observation. At the same time, using an image processing device, mainly directly under the surface of the glass substrate end portion 13 The microcracks 15 generated in the test were inspected.

上記のガラス基板端部13の検査は、光12、屈折体16、浸液18、観察装置14を、ガラス基板端部13と相対的に平行移動させながら行なった。   The inspection of the glass substrate end 13 was performed while the light 12, the refracting body 16, the immersion liquid 18, and the observation device 14 were moved in parallel relative to the glass substrate end 13.

本発明の検査方法により、従来の検査方法では検出が困難であったガラス基板端部13表面直下のマイクロクラック15が、高感度で効率良く検出できるようになった。   According to the inspection method of the present invention, the microcracks 15 immediately below the surface of the glass substrate end portion 13 which are difficult to detect by the conventional inspection method can be detected with high sensitivity and efficiency.

本発明のガラス基板端部の検査方法は、面積が大きく、厚さの薄いディスプレイ用ガラス基板の、端部表面直下の欠陥、特にマイクロクラックを光学的に検査するのに適している。   The method for inspecting the edge of the glass substrate of the present invention is suitable for optically inspecting defects, particularly microcracks, directly under the edge surface of a glass substrate for display having a large area and a small thickness.

11 ガラス基板
11a ガラス基板の主面
12 入射光、光
13 ガラス基板端部
14 観察装置
15 マイクロクラック
16 屈折体
17 光の入射位置
18 浸液
DESCRIPTION OF SYMBOLS 11 Glass substrate 11a Main surface 12 of glass substrate Incident light, light 13 Glass substrate edge part 14 Observation apparatus 15 Microcrack 16 Refraction body 17 Light incident position 18 Immersion liquid

Claims (11)

ガラス基板の主面に斜めに入射し、前記ガラス基板内を全反射して進行する光により照射されたガラス基板端部を、前記ガラス基板端部の外側から観察することを特徴とするガラス基板端部の検査方法。   A glass substrate characterized by observing, from the outside of the glass substrate end portion, an end portion of the glass substrate that is obliquely incident on the main surface of the glass substrate and is irradiated with light that travels by being totally reflected inside the glass substrate. Edge inspection method. 前記ガラス基板の主面に垂直な方向から見たとき、前記ガラス基板に入射する前記光が、前記ガラス基板端部と斜交することを特徴とする請求項1に記載のガラス基板端部の検査方法。   2. The glass substrate end portion according to claim 1, wherein when viewed from a direction perpendicular to the main surface of the glass substrate, the light incident on the glass substrate obliquely intersects with the glass substrate end portion. Inspection method. 前記ガラス基板の主面に垂直な方向から見たとき、前記ガラス基板に入射する前記光の、前記ガラス基板端部と交わる交角αが、5°〜80°であることを特徴とする請求項2に記載のガラス基板端部の検査方法。   The crossing angle α at which the light incident on the glass substrate intersects the edge of the glass substrate when viewed from a direction perpendicular to the main surface of the glass substrate is 5 ° to 80 °. 2. The inspection method of the edge part of the glass substrate of 2. 前記ガラス基板に入射する前記光の、前記ガラス基板端部と交わる交角αを変化させることを特徴とする請求項2または3に記載のガラス基板端部の検査方法。   The inspection method of the glass substrate edge part of Claim 2 or 3 which changes the crossing angle (alpha) which crosses the said glass substrate edge part of the said light which injects into the said glass substrate. 前記ガラス基板に入射する前記光の交角αの変化する範囲が、交角αの変化が最小のとき、−5°〜+5°であり、変化が最大のとき、−80°〜+80°であることを特徴とする請求項4に記載のガラス基板端部の検査方法。   The range of change of the intersection angle α of the light incident on the glass substrate is −5 ° to + 5 ° when the change of the intersection angle α is minimum, and −80 ° to + 80 ° when the change is maximum. The inspection method of the glass substrate edge part of Claim 4 characterized by these. 前記ガラス基板の主面に平行、かつ、前記光の進行方向に垂直な方向から見たとき、前記ガラス基板の主面への前記光が、入射角βで入射し、その入射角βは前記光がガラス基板内部で全反射を起こさせる範囲内であることを特徴とする請求項1から5のいずれかに記載のガラス基板端部の検査方法。   When viewed from a direction parallel to the main surface of the glass substrate and perpendicular to the traveling direction of the light, the light entering the main surface of the glass substrate is incident at an incident angle β, and the incident angle β is 6. The method for inspecting an end portion of a glass substrate according to claim 1, wherein the light is within a range that causes total reflection inside the glass substrate. 前記ガラス基板端部の近傍に載置した、屈折率が前記ガラス基板の屈折率とほぼ等しい屈折体を通して、前記ガラス基板に前記光を入射させることを特徴とする、請求項1から6のいずれかに記載のガラス基板端部の検査方法。   The light is incident on the glass substrate through a refractor placed near the edge of the glass substrate and having a refractive index substantially equal to the refractive index of the glass substrate. The inspection method of the glass substrate edge part of crab. 前記ガラス基板の屈折率をn、前記屈折体の屈折率をnとしたとき、nとnの差が0.1以下であることを特徴とする、請求項7に記載のガラス基板端部の検査方法。 The refractive index n g of the glass substrate, and the refractive index of the refractive member has a n r, the difference between n r and n g is equal to or more than 0.1, the glass according to claim 7 Inspection method for substrate edge. 前記屈折体と前記ガラス基板との間隙に浸液を満たすことを特徴とする、請求項7または8に記載のガラス基板端部の検査方法。   The inspection method for an end portion of a glass substrate according to claim 7 or 8, wherein an immersion liquid is filled in a gap between the refractive body and the glass substrate. 前記ガラス基板に入射する前記光および前記観察装置を、前記ガラス基板端部と平行に相対的に移動させながら、前記ガラス基板端部を検査することを特徴とする、請求項1から9のいずれかに記載のガラス基板端部の検査方法。   The said glass substrate edge part is test | inspected, moving the said light which injects into the said glass substrate, and the said observation apparatus relatively in parallel with the said glass substrate edge part, The any one of Claim 1 to 9 characterized by the above-mentioned. The inspection method of the glass substrate edge part of crab. 前記ガラス基板が、板厚が0.5mm〜5mmのガラス基板であることを特徴とする、請求項1から10のいずれかに記載のガラス基板端部の検査方法。   The glass substrate end inspection method according to any one of claims 1 to 10, wherein the glass substrate is a glass substrate having a thickness of 0.5 mm to 5 mm.
JP2009192973A 2009-08-24 2009-08-24 Inspection method of glass substrate end Withdrawn JP2011043457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009192973A JP2011043457A (en) 2009-08-24 2009-08-24 Inspection method of glass substrate end

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009192973A JP2011043457A (en) 2009-08-24 2009-08-24 Inspection method of glass substrate end

Publications (1)

Publication Number Publication Date
JP2011043457A true JP2011043457A (en) 2011-03-03

Family

ID=43830984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009192973A Withdrawn JP2011043457A (en) 2009-08-24 2009-08-24 Inspection method of glass substrate end

Country Status (1)

Country Link
JP (1) JP2011043457A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101942260B1 (en) 2014-07-03 2019-01-28 (주)엘지하우시스 Method of detecting corrosion of glass substrate
JP2019074352A (en) * 2017-10-13 2019-05-16 日本電気硝子株式会社 Method and device for inspecting glass plate and method of manufacturing glass plate
CN110082361A (en) * 2019-05-27 2019-08-02 成都领益科技有限公司 A kind of object appearance and crack detection device and detection method
CN110082361B (en) * 2019-05-27 2024-04-30 成都领益科技有限公司 Object appearance and crack detection device and detection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101942260B1 (en) 2014-07-03 2019-01-28 (주)엘지하우시스 Method of detecting corrosion of glass substrate
JP2019074352A (en) * 2017-10-13 2019-05-16 日本電気硝子株式会社 Method and device for inspecting glass plate and method of manufacturing glass plate
CN110082361A (en) * 2019-05-27 2019-08-02 成都领益科技有限公司 A kind of object appearance and crack detection device and detection method
CN110082361B (en) * 2019-05-27 2024-04-30 成都领益科技有限公司 Object appearance and crack detection device and detection method

Similar Documents

Publication Publication Date Title
US7420671B2 (en) Defect inspection method and apparatus for transparent plate-like members
TWI528027B (en) Object defect detection method and device
JP5931553B2 (en) Liquid crystal display
JP2006105976A (en) Foreign object detecting method in display panel manufacturing process
TW201120436A (en) A apparatus and method for inspecting inner defect of substrate
WO2005122116A1 (en) Method for sorting plate glass for flat panel display, plate glass for flat panel display and method for manufacturing the same
EP3149457A1 (en) Method for particle detection on flexible substrates
JPH11242001A (en) Method and device for inspecting an unevenness of light-transmission material, and method for selecting light-transmission substrate
KR101678169B1 (en) Upper Surface Foreign Matter Detection Device of Ultra-Thin Transparent Substrate
JP2004170495A (en) Method and device for inspecting substrate for display
JP2015105930A (en) Minute defect inspection method for translucent substrate and minute defect inspection device for translucent substrate
KR20090113886A (en) Method and apparatus for illuminating film for automated inspection
JP4921597B1 (en) Liquid crystal display panel continuous manufacturing system, liquid crystal display panel continuous manufacturing method, inspection apparatus and inspection method
JP2006071284A (en) Inside and outside discrimination method of flaw of glass substrate
JP2011043457A (en) Inspection method of glass substrate end
US10006872B2 (en) Optical inspection system
Liu et al. Design of a submillimeter crack-detection tool for Si photovoltaic wafers using vicinal illumination and dark-field scattering
CN104458758A (en) Detection device for synthetic sapphire wafer
JP2011220810A (en) Method for detecting metal defect and defect detection device
CN206339496U (en) A kind of details in a play not acted out on stage, but told through dialogues microscopic imaging device for detecting transparent material surface and internal flaw
JP4855193B2 (en) Thin plate inspection equipment
KR20180012359A (en) Detecting System for micro crack of glass substrate
TW202043760A (en) Method for manufacturing glass plate and apparatus for manufacturing glass plate
JP2011141119A (en) Surface inspection system
KR20080019395A (en) A defect detecting apparatus for flat panel display

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121106