JP2011043366A - Fluid flow measuring apparatus - Google Patents

Fluid flow measuring apparatus Download PDF

Info

Publication number
JP2011043366A
JP2011043366A JP2009190631A JP2009190631A JP2011043366A JP 2011043366 A JP2011043366 A JP 2011043366A JP 2009190631 A JP2009190631 A JP 2009190631A JP 2009190631 A JP2009190631 A JP 2009190631A JP 2011043366 A JP2011043366 A JP 2011043366A
Authority
JP
Japan
Prior art keywords
pressure
ultrasonic
fluid
sealed container
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009190631A
Other languages
Japanese (ja)
Other versions
JP5240121B2 (en
Inventor
Shin Nakano
慎 中野
Masato Sato
真人 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009190631A priority Critical patent/JP5240121B2/en
Publication of JP2011043366A publication Critical patent/JP2011043366A/en
Application granted granted Critical
Publication of JP5240121B2 publication Critical patent/JP5240121B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic fluid flow measuring apparatus which allows stable measurement even for a high-pressure fluid and a fluid with pressure fluctuations. <P>SOLUTION: The fluid flow measuring apparatus includes: a pair of ultrasonic vibrators 3, 4 which are placed on the upstream and downstream side of a measuring part 2 through which a fluid under measurement flows; a measuring circuit 18 for measuring ultrasonic wave propagation time between the ultrasonic vibrators 3, 4; and an arithmetic means 19 for calculating a flow rate and/or flow on the basis of a signal from the measuring circuit 18. The internal pressure of a sealed container 8 having a piezoelectric body 9 of the ultrasonic vibrators 3, 4 therewithin is set to be within the fluctuation range of the pressure P1 of the measuring part 2, thereby surely preventing deformation of the sealed container 8, destruction of the piezoelectric body, and destruction of the connecting part between the piezoelectric body and the sealed container, and allowing stable measurement even for a high-pressure fluid and a fluid with pressure fluctuations. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、超音波を用いて気体や液体の流速および/または流量を計測するようにした流体の流れ計測装置に関するものである。   The present invention relates to a fluid flow measurement device that measures the flow velocity and / or flow rate of a gas or liquid using ultrasonic waves.

従来、この種、流体の流れ計測装置に用いられる超音波振動子101は、図8に示すように、導電性の有天筒状ケース102の頂壁内面に圧電体103を接着固定し、頂壁外面には音響整合層104を接着固定した構成を採っていた。   Conventionally, as shown in FIG. 8, an ultrasonic transducer 101 used in this type of fluid flow measuring device has a piezoelectric body 103 bonded and fixed to the inner surface of the top wall of a conductive celestial cylindrical case 102. The acoustic matching layer 104 is bonded and fixed to the outer wall surface.

前記圧電体103の上面、下面には電極105,106が形成されており、この上方の電極105が有天筒状ケース102に電気的に接続されている。   Electrodes 105 and 106 are formed on the upper and lower surfaces of the piezoelectric body 103, and the upper electrode 105 is electrically connected to the celestial tubular case 102.

前記有天筒状ケース105の下方開口部から外方向へフランジ107が一体に形成してあって、導電性の端子板108の外周上面がその下面に溶接され、これによりその内部は密閉空間109に設定されている。   A flange 107 is integrally formed outward from the lower opening of the celestial tubular case 105, and the outer peripheral upper surface of the conductive terminal plate 108 is welded to the lower surface thereof. Is set to

通常、上記密閉空間109には窒素ガスなどの不活性ガスが充填され、10〜50kpa程度の内圧に維持されるようにしている。   Normally, the sealed space 109 is filled with an inert gas such as nitrogen gas so that the internal pressure is maintained at about 10 to 50 kpa.

圧電体103の下方の電極106には導電性の弾性材110が弾接されており、前記端子板108をハーメチックシールなどの電気絶縁部111を介して貫通した一方の端子112がこの弾性材110に電気接続されている。   A conductive elastic material 110 is elastically contacted with the electrode 106 below the piezoelectric body 103, and one terminal 112 penetrating the terminal plate 108 through an electrical insulating portion 111 such as a hermetic seal is the elastic material 110. Is electrically connected.

一方、前記端子板108には他方の端子113が直接取着してある(例えば、特許文献1参照)。   On the other hand, the other terminal 113 is directly attached to the terminal board 108 (see, for example, Patent Document 1).

特開2003−270013号公報JP 2003-270013 A

しかしながら、前記従来の超音波送振動子では、1〜5kpa程度の低圧力流体を計測する場合には、密閉容器109内の圧力をそれほど考慮しなくても計測に支障をきたすことないが、1MP程度の高圧流体を計測する場合に、超音波振動子内の圧力と計測流体のとの間に圧力差が生じると、超音波振動子における密閉容器が変形し、それに内包されている圧電体が破壊、或いは、圧電体と密閉容器との接合部分が、ひいては、超音波振動子が破壊し、計測そのものができなくなる課題を有していた。   However, in the conventional ultrasonic transducer, when measuring a low-pressure fluid of about 1 to 5 kpa, the measurement is not hindered even if the pressure in the sealed container 109 is not considered so much. When measuring a high-pressure fluid of a certain level, if a pressure difference occurs between the pressure in the ultrasonic vibrator and the measurement fluid, the sealed container in the ultrasonic vibrator is deformed, and the piezoelectric body contained in the container is There has been a problem that the measurement or the measurement itself cannot be performed due to the destruction or the joining portion between the piezoelectric body and the sealed container, which eventually breaks the ultrasonic vibrator.

本発明は上記従来の課題を解決するもので、高圧流体および、圧力変動のある流体でも安定して計測することができる超音波しきの流れ計測装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide an ultrasonic threshold flow measuring device capable of stably measuring even a high-pressure fluid and a fluid with pressure fluctuation.

本発明は上記目的を達成するために、被測定流体が流れる計測部の上下流側に配設され、超音波信号を送受信する一対の超音波振動子と、前記超音波振動子間の超音波伝搬時間を計測する計測回路と、前記計測回路からの信号に基づいて流速および/または流量を算出する演算手段とを備え、前記超音波振動子の圧電体を内設した密閉容器の内圧は、前記
計測部の圧力P1の変動範囲内に設定したものである。
In order to achieve the above object, the present invention provides a pair of ultrasonic transducers disposed on the upstream and downstream sides of a measurement unit through which a fluid to be measured flows and transmits and receives ultrasonic signals, and an ultrasonic wave between the ultrasonic transducers. An internal pressure of a sealed container provided with a measurement circuit for measuring a propagation time and a calculation means for calculating a flow velocity and / or a flow rate based on a signal from the measurement circuit, in which a piezoelectric body of the ultrasonic transducer is provided, It is set within the fluctuation range of the pressure P1 of the measuring unit.

これによって、計測部の圧力と、超音波振動子内の圧力との圧力差が小さくなり、超音波振動子における密閉容器の変形を小さく抑えることができ、内包されている圧電体の破壊、或いは圧電体と密閉容器との接合部分の破壊を抑制でき、その結果、高圧流体および、圧力変動のある流体でも安定した計測が行えるものである。   As a result, the pressure difference between the pressure in the measurement unit and the pressure in the ultrasonic transducer is reduced, and deformation of the sealed container in the ultrasonic transducer can be suppressed to a small level. Breakage of the joint between the piezoelectric body and the hermetic container can be suppressed, and as a result, stable measurement can be performed even for high-pressure fluid and fluid with pressure fluctuation.

本発明の流体の流れ計測装置は、高圧流体、および圧力変動のある流体でも安定して計測することができるとともに、超音波振動子の損傷も抑制し得るものである。   The fluid flow measuring device of the present invention can stably measure even a high-pressure fluid and a fluid with pressure fluctuation, and can also suppress damage to an ultrasonic transducer.

本発明の実施の形態1における流れ計測装置のブロック図The block diagram of the flow measurement apparatus in Embodiment 1 of this invention 同流れ計測装置の要部拡大断面図Main part enlarged sectional view of the same flow measuring device 高圧流体計測時の計測部圧力変動の時間変化図Time variation diagram of pressure fluctuations at the measurement part during high-pressure fluid measurement 同超音波振動子の製造工程図Manufacturing process diagram of the ultrasonic transducer 本発明の実施の形態2における流れ計測装置のブロック図The block diagram of the flow measuring device in Embodiment 2 of this invention 本発明の実施の形態3における流れ計測装置のブロック図The block diagram of the flow measuring device in Embodiment 3 of this invention 本発明の実施の形態4における流れ計測装置のブロック図The block diagram of the flow measurement apparatus in Embodiment 4 of this invention 従来の超音波振動子の断面図Cross-sectional view of a conventional ultrasonic transducer

第1の発明は、被測定流体が流れる計測部の上下流側に配設され、超音波信号を送受信する一対の超音波振動子と、前記超音波振動子間の超音波伝搬時間を計測する計測回路と、前記計測回路からの信号に基づいて流速および/または流量を算出する演算手段とを備え、前記超音波振動子の圧電体を内設した密閉容器の内圧は、前記計測部の圧力P1の変動範囲内に設定したもので、計測部の圧力と超音波振動子内の圧力との圧力差が小さくなり、超音波振動子における密閉容器の変形を抑制でき、内包されている圧電体の破壊、或いは圧電体と密閉容器との接合部分の破壊も防ぐことが可能で、その結果、高圧流体および、圧力変動のある流体でも安定した計測が行えるものである。   1st invention measures the ultrasonic propagation time between a pair of ultrasonic transducers which are disposed on the upstream and downstream sides of the measurement unit through which the fluid to be measured flows and transmits and receives ultrasonic signals. An internal pressure of a sealed container provided with a measurement circuit and a calculation means for calculating a flow velocity and / or a flow rate based on a signal from the measurement circuit, wherein the piezoelectric body of the ultrasonic transducer is provided is a pressure of the measurement unit It is set within the fluctuation range of P1, the pressure difference between the pressure of the measurement unit and the pressure in the ultrasonic transducer is reduced, the deformation of the sealed container in the ultrasonic transducer can be suppressed, and the contained piezoelectric body Or destruction of the joint between the piezoelectric body and the hermetic container can be prevented, and as a result, stable measurement can be performed even for high-pressure fluid and fluid with pressure fluctuation.

第2の発明は、前記第1の発明において、密閉容器の内圧P2は、計測部における圧力P1の略平均値としたことにより、高圧流体、および圧力変動のある流体の計測においても、計測圧力と密閉容器内の圧力との圧力差が小さくなり、密閉容器の変形をより小さく抑えることができる。   According to a second aspect of the present invention, in the first aspect of the invention, the internal pressure P2 of the sealed container is set to a substantially average value of the pressure P1 in the measurement unit, so that the measurement pressure can be measured even in the measurement of a high-pressure fluid and a fluid with pressure fluctuation The pressure difference between the pressure in the airtight container and the pressure in the airtight container is reduced, and the deformation of the airtight container can be further suppressed.

第3の発明は、被測定流体が流れる計測部の上下流側に配設され、超音波信号を送受信する一対の超音波振動子と、前記超音波振動子間の超音波伝搬時間を計測する計測回路と、前記計測回路からの信号に基づいて流速および/または流量を算出する演算手段と、前記計測部の圧力を検知する圧力検知手段とを備え、前記超音波振動子の圧電体を内設した密閉容器の内圧P2と前記圧力検知手段によって検知した計測部圧力P1を比較して、圧力異常判定を行なうことにより、超音波振動子に想定した圧力以上に高圧が付加された場合、異常を表示して、その保護が図れる。   According to a third aspect of the present invention, a pair of ultrasonic transducers that are disposed on the upstream and downstream sides of a measurement unit through which a fluid to be measured flows and transmits and receives ultrasonic signals, and an ultrasonic propagation time between the ultrasonic transducers are measured. A measurement circuit; a calculation unit that calculates a flow velocity and / or a flow rate based on a signal from the measurement circuit; and a pressure detection unit that detects the pressure of the measurement unit. If the internal pressure P2 of the closed container installed is compared with the measurement part pressure P1 detected by the pressure detection means and the pressure abnormality determination is performed, an abnormality is detected when a pressure higher than the pressure assumed for the ultrasonic transducer is applied. Can be displayed to protect it.

第4の発明は、被測定流体が流れる計測部の上下流側に配設され、超音波信号を送受信する一対の超音波振動子と、前記超音波振動子間の超音波伝搬時間を計測する計測回路と、前記計測回路からの信号に基づいて流速および/または流量を算出する演算手段と、前記計測部の圧力を超音波振動子の特性変化によって推定する圧力推定手段とを備え、前記超音波振動子の圧電体を内設した密閉容器の内圧P2と前記圧力推定手段によって推定した計測部圧力P1を比較して、圧力異常判定を行なうことにより、超音波振動子に想定し
た圧力以上に高圧が付加された場合、その異常を表示し、超音波振動子の保護が図れる。
4th invention is arrange | positioned in the upstream and downstream of the measurement part through which the fluid to be measured flows, and measures the ultrasonic propagation time between the ultrasonic transducer and a pair of ultrasonic transducers that transmit and receive ultrasonic signals. A measurement circuit; a calculation unit that calculates a flow velocity and / or a flow rate based on a signal from the measurement circuit; and a pressure estimation unit that estimates a pressure of the measurement unit based on a characteristic change of an ultrasonic transducer. By comparing the internal pressure P2 of the sealed container in which the piezoelectric body of the ultrasonic vibrator is installed and the measurement part pressure P1 estimated by the pressure estimating means, and performing pressure abnormality determination, the pressure exceeds the pressure assumed for the ultrasonic vibrator. When high pressure is applied, the abnormality is displayed and the ultrasonic transducer can be protected.

第5の発明は、特に、前記第1〜4いずれか一つの発明において、超音波振動子は、有底筒状で開放部が端子板で閉じられた導電性の密閉容器と、前記密閉容器に収容され、一方の電極側がその頂壁内面に接着された圧電体と、前記端子板を電気絶縁性を保って貫通し、前記圧電体の他方の電極側に接続された一方の端子、および同端子板に直接固定された他方の端子とからなる構成としたことにより、可燃性流体の計測でも安全に計測でき、密閉容器内に内包する圧電体の電極の化学変化を抑制することもでき、信頼性の高い計測が行える。   In a fifth aspect of the invention, in particular, in any one of the first to fourth aspects of the invention, the ultrasonic transducer includes a conductive sealed container having a bottomed cylindrical shape and an open portion closed by a terminal plate, and the sealed container. A piezoelectric body having one electrode side bonded to the inner surface of the top wall, one terminal penetrating the terminal plate while maintaining electrical insulation and connected to the other electrode side of the piezoelectric body, and With the configuration consisting of the other terminal directly fixed to the same terminal plate, it can be measured safely even when measuring flammable fluid, and the chemical change of the piezoelectric electrode contained in the sealed container can be suppressed. Highly reliable measurement.

第6の発明は、特に、前記第1〜5いずれか一つの発明において、密閉容器のヤング率を150GPa以上に設定したことにより、有天筒状ケースの圧力による変形を軽減することができ、密閉容器内に内包されている圧電体の破壊、或いは圧電体と密閉容器との接合部分が破壊することを抑制することができる。   In a sixth aspect of the invention, in particular, in any one of the first to fifth aspects of the invention, by setting the Young's modulus of the sealed container to 150 GPa or more, deformation due to the pressure of the celestial cylindrical case can be reduced, It is possible to suppress the destruction of the piezoelectric body contained in the sealed container, or the breakage of the joined portion between the piezoelectric body and the sealed container.

第7の発明は、特に、前記第1〜6いずれか一つの発明において、密閉容器の頂壁の厚みを側壁部の厚みよりも厚く設定したことにより、圧力によって頂壁に比べ側壁部が大きく変形して内包されている圧電体の破壊、或いは圧電体と密閉容器との接合部分が破壊することを抑制することができる。   In the seventh invention, in particular, in any one of the first to sixth inventions, the thickness of the top wall of the sealed container is set larger than the thickness of the side wall, so that the side wall is larger than the top wall due to pressure. It is possible to suppress the deformation of the piezoelectric body that is deformed and contained, or the breakage of the joint portion between the piezoelectric body and the sealed container.

第8の発明は、特に、前記第5の発明において、密閉容器の頂壁の厚みtは、音響整合体に用いた波長をλとしたとき、λ/30<t<λ/10の範囲内としたことにより、密閉容器内に内包されている圧電体の破壊、或いは圧電体と密閉容器との接合部分が破壊することを抑制することができる。   In the eighth invention, in particular, in the fifth invention, the thickness t of the top wall of the sealed container is in the range of λ / 30 <t <λ / 10, where λ is the wavelength used for the acoustic matching body. By doing so, it is possible to suppress the destruction of the piezoelectric body contained in the sealed container, or the breakage of the joined portion between the piezoelectric body and the sealed container.

第9の発明は、特に、前記第5の発明において、超音波振動子における密閉容器の内圧P2の設定は、密閉容器を端子板によって封鎖するときに行なうようにしたことにより、より簡便に高圧流体の計測を可能とした超音波振動子とすることができる。   In the ninth aspect of the invention, in particular, in the fifth aspect of the invention, the setting of the internal pressure P2 of the sealed container in the ultrasonic vibrator is performed when the sealed container is sealed with the terminal plate, so that the high pressure can be more easily achieved. An ultrasonic transducer capable of measuring fluid can be obtained.

以下、本発明実施の形態について、図面を参照しながら説明する。なお、実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1,2において、本実施の形態の流れ計測装置1は、被計測流体が流れる計測部2の上下流側に一対の超音波振動子3,4を対設して、前記計測部2を流れる流体を斜めに横切るように超音波が伝搬される構成を採用している。
(Embodiment 1)
1 and 2, the flow measuring device 1 according to the present embodiment includes a pair of ultrasonic transducers 3 and 4 on the upstream and downstream sides of the measuring unit 2 through which the fluid to be measured flows, and the measuring unit 2 A configuration is adopted in which ultrasonic waves propagate so as to cross the flowing fluid diagonally.

超音波振動子4は、絶縁性弾性体5を介して計測部2の開口部6に挿入され、押え7などで固定されており、一方の超音波振動子3も同様に固定されている。   The ultrasonic transducer 4 is inserted into the opening 6 of the measurement unit 2 through the insulating elastic body 5 and fixed with a presser 7 or the like, and one ultrasonic transducer 3 is similarly fixed.

超音波振動子3,4の構成は同じであるので、具体的な説明は超音波振動子4で行うこととする。   Since the configurations of the ultrasonic transducers 3 and 4 are the same, a specific description will be given using the ultrasonic transducer 4.

導電性の有天筒状の密閉容器8の頂壁内面に圧電体9が接着固定され、頂壁外面には音響整合層10が接着固定してある。   A piezoelectric body 9 is bonded and fixed to the inner surface of the top wall of the conductive celestial cylindrical sealed container 8, and an acoustic matching layer 10 is bonded and fixed to the outer surface of the top wall.

前記圧電体9の上面、下面には電極が形成されており、この上方電極が密閉容器8に電気的に接続されている。   Electrodes are formed on the upper and lower surfaces of the piezoelectric body 9, and the upper electrodes are electrically connected to the sealed container 8.

前記密閉容器8の下方開口部から外方向へフランジが一体に形成してあって、導電性の
端子板11の外周上面がその下面に溶接され、これによりその内部は密閉空間12に設定されている。
A flange is integrally formed outwardly from the lower opening of the sealed container 8, and the outer peripheral upper surface of the conductive terminal plate 11 is welded to the lower surface thereof, whereby the interior is set as a sealed space 12. Yes.

通常、上記密閉空間12には窒素ガスなどの不活性ガスが充填される。   Normally, the sealed space 12 is filled with an inert gas such as nitrogen gas.

圧電体9の下方の電極には導電性の弾性材が弾接されており、前記端子板11をハーメチックシールなどの電気絶縁部を介して貫通した一方の端子13がこの弾性材に電気接続されている。一方、前記端子板11には他方の端子14が直接取着してある。   A conductive elastic material is elastically contacted with an electrode below the piezoelectric body 9, and one terminal 13 penetrating the terminal plate 11 through an electrical insulating portion such as a hermetic seal is electrically connected to the elastic material. ing. On the other hand, the other terminal 14 is directly attached to the terminal plate 11.

前記密閉空間12の圧力と計測部2の圧力との圧力差が大きい場合、密閉容器8が大きく変形するため、圧電体9との接合部分が破壊してしまう。   When the pressure difference between the pressure in the sealed space 12 and the pressure in the measurement unit 2 is large, the sealed container 8 is greatly deformed, and the joint portion with the piezoelectric body 9 is destroyed.

そのため、密閉空間12と計測部2との圧力差を小さくする必要がある。   Therefore, it is necessary to reduce the pressure difference between the sealed space 12 and the measurement unit 2.

図3は、高圧流体計測時における計測部2の圧力変動の時間変化を示している。   FIG. 3 shows the change over time of the pressure fluctuation of the measuring unit 2 during high-pressure fluid measurement.

すなわち、計測開始時においては、圧力が急激に変化する立ち上がり部Aがあり、時間経過とともに圧力変化が小さくなる圧力安定部Bとなる。   That is, at the start of measurement, there is a rising portion A in which the pressure changes abruptly, and the pressure stabilizing portion B becomes smaller in pressure change with time.

前記圧力安定部Bの圧力がPaであり、立ち上がり部Aの圧力上昇分がPbで、超音波振動子の密閉空間12における圧力としては、好ましくは、Paの範囲内にすることが好ましい。より好ましくは、計測流体の圧力安定部Bにおけるおおよその圧力平均値の範囲内にすることにより、計測部2の圧力差を小さくでき、密閉容器8の変形をより小さく抑えることができる。   The pressure of the pressure stabilizing part B is Pa, the pressure increase of the rising part A is Pb, and the pressure in the sealed space 12 of the ultrasonic transducer is preferably within the range of Pa. More preferably, by making the pressure within the range of the approximate pressure average value in the pressure stabilization part B of the measurement fluid, the pressure difference of the measurement part 2 can be reduced, and the deformation of the sealed container 8 can be further suppressed.

以上に記載した超音波振動子の製造方法に関して図4を参照して説明しておく。   The manufacturing method of the ultrasonic transducer described above will be described with reference to FIG.

図4の(a)は、所定の厚みに調整した音響整合体10を示している。その製造方法は、例えば、空隙形成材として用いたガラスバルーンを一定容器内で加振充填し、その後熱硬化性樹脂として用いるエポキシ樹脂を含浸させ、エポキシ樹脂を熱などで硬化後,スライスした状態を示している。   FIG. 4A shows the acoustic matching body 10 adjusted to a predetermined thickness. The manufacturing method is, for example, a state in which a glass balloon used as a void forming material is vibrated and filled in a fixed container, and then impregnated with an epoxy resin used as a thermosetting resin, and the epoxy resin is cured by heat and then sliced. Is shown.

スライス加工は、ダイシング加工、或いはラッピングなどで行い、所定の周波数で圧電体と共振するよう厚み調整を行なう。   Slicing is performed by dicing or lapping, and the thickness is adjusted to resonate with the piezoelectric body at a predetermined frequency.

同(b)は、圧電体9に接合手段として用いる熱硬化性接着剤などからなる接合手段15を塗布形成し、密閉容器8の頂上面にも同様に接合手段16を塗布形成する。   In (b), a joining means 15 made of a thermosetting adhesive or the like used as a joining means is applied to the piezoelectric body 9, and the joining means 16 is similarly applied to the top surface of the sealed container 8.

ここで、前記密閉容器8は、ヤング率150GPa以上が好ましい。   Here, the closed container 8 preferably has a Young's modulus of 150 GPa or more.

表1に密閉容器8の材料厚み200μmにおける超音波振動子としたときの圧力試験結果を示している。表1に示すように、密閉容器8が鉄系の金属、およびニッケルにおいて、耐圧製における良好な結果が得られた。   Table 1 shows the pressure test results when an ultrasonic vibrator with a material thickness of 200 μm of the sealed container 8 is used. As shown in Table 1, when the sealed container 8 was an iron-based metal and nickel, good results in pressure-proofing were obtained.

より好ましくは、ヤング率200GPa以上の金属材料を使用するのが望ましい。   More preferably, it is desirable to use a metal material having a Young's modulus of 200 GPa or more.

接合手段として用いた熱硬化性接着剤は、エポキシ樹脂、フェノール樹脂、ポリエステル樹脂、メラミン樹脂など熱硬化性樹脂であれば特に限定されない。場合によっては、熱可塑性樹脂であっても、ガラス点移転が高温使用温である70℃以下であれば接着剤として使用できる。   The thermosetting adhesive used as the joining means is not particularly limited as long as it is a thermosetting resin such as an epoxy resin, a phenol resin, a polyester resin, or a melamine resin. Depending on the case, even if it is a thermoplastic resin, if it is 70 degrees C or less whose glass point transfer is high temperature use temperature, it can be used as an adhesive agent.

図4(c)において、圧電体9と密閉容器8、音響整合体10を積層するように、位置決めを行なって貼り合わせる。このとき、圧電体9、密閉容器8、音響整合体10に約1から10kg/cm2の加圧を加えた状態で固定し、接合手段15,16として用いた熱硬化性接着剤を硬化させる。   In FIG. 4C, the piezoelectric body 9, the sealed container 8, and the acoustic matching body 10 are positioned and bonded together so as to be laminated. At this time, the piezoelectric body 9, the sealed container 8, and the acoustic matching body 10 are fixed in a state where a pressure of about 1 to 10 kg / cm 2 is applied, and the thermosetting adhesive used as the joining means 15 and 16 is cured.

接合手段15,16の硬化は、一般的な加熱槽で実施する。以上の工程によって接合手段15,16が硬化して接合され、一体となった半完成品17の密閉容器8に、端子13,14を固定した端子板11を溶接して完成させる。   Curing of the joining means 15 and 16 is performed in a general heating tank. The joining means 15 and 16 are cured and joined by the above-described process, and the terminal plate 11 to which the terminals 13 and 14 are fixed is welded to the sealed container 8 of the semi-finished product 17 that is integrated.

図4(d)は、以上の工程によって作製した超音波振動子4の完成状態を示している。ここで、この溶接時に、密閉空間12に不活性ガスであるアルゴンガス、窒素ガス、ヘリウムガスなどを封入し、圧電体9の電極の劣化、圧電体9と密閉容器8との接合部分の劣化を軽減することが望ましい。   FIG. 4D shows a completed state of the ultrasonic transducer 4 manufactured through the above steps. Here, at the time of welding, argon gas, nitrogen gas, helium gas or the like, which is an inert gas, is sealed in the sealed space 12 to deteriorate the electrode of the piezoelectric body 9 and the bonded portion of the piezoelectric body 9 and the sealed container 8. It is desirable to reduce

密閉容器8の頂壁は側壁部よりも厚みを大としておけば、圧力によって側壁部が大きく変形することとなり、内包されている圧電体9の破壊、或いは、圧電体9と密閉容器8との接合部分が破壊することを抑制することができ、その結果、高圧流体、および圧力変動のある流体でも安定して流速および/または流量を計測することができる。   If the top wall of the sealed container 8 is made thicker than the side wall part, the side wall part is greatly deformed by pressure, and the piezoelectric body 9 contained therein is broken or the piezoelectric body 9 and the sealed container 8 are It is possible to suppress the joint portion from being broken, and as a result, the flow velocity and / or flow rate can be stably measured even with a high-pressure fluid and a fluid with pressure fluctuation.

密閉容器8は、筒状の側壁部を形成した後、円形状の頂壁部で蓋をするように接合し、周囲をレーザー溶接などで一体化することで作製できる。   The airtight container 8 can be manufactured by forming a cylindrical side wall part, joining it so as to cover the circular top wall part, and integrating the periphery by laser welding or the like.

また、密閉容器8における頂壁の厚みをt、音響整合層10に用いた波長をλとすると、λ/30<t<λ/10の範囲内に設定することにより、密閉容器8内に内包されている圧電体9の破壊、或いは、圧電体9と密閉容器8との接合部分が破壊することを抑制することができ、その結果、高圧流体、および圧力変動のある流体でも安定して流速および/または流量を計測することができる。   Further, if the thickness of the top wall of the sealed container 8 is t and the wavelength used for the acoustic matching layer 10 is λ, the envelope is contained in the sealed container 8 by setting within the range of λ / 30 <t <λ / 10. It is possible to suppress the destruction of the piezoelectric body 9 or the joined portion between the piezoelectric body 9 and the sealed container 8, and as a result, the flow velocity can be stably stabilized even in a high-pressure fluid and a fluid with pressure fluctuation. And / or the flow rate can be measured.

耐圧を向上させるために密閉容器8の厚みを大きくすると、音響マッチングのバランスが崩れて、計測流体への超音波の伝搬効率が低下してしまう。   If the thickness of the sealed container 8 is increased in order to improve the pressure resistance, the balance of acoustic matching is lost, and the propagation efficiency of ultrasonic waves to the measurement fluid is reduced.

そのため、耐圧が確保できるλ/30から、超音波伝搬効率の低下が許容範囲内であるλ/10とすることで、耐圧と高感度とを両立できる。   Therefore, from λ / 30 at which the withstand voltage can be ensured to λ / 10 in which the decrease in the ultrasonic wave propagation efficiency is within an allowable range, both withstand voltage and high sensitivity can be achieved.

圧電体9の両電極に電気信号を与えると、同圧電体9が振動し、この振動に共振するように調整された音響整合層10が共振し,この振動が計測流体に伝えられる。   When an electrical signal is applied to both electrodes of the piezoelectric body 9, the piezoelectric body 9 vibrates, the acoustic matching layer 10 adjusted so as to resonate with this vibration resonates, and this vibration is transmitted to the measurement fluid.

これが、超音波を送信するときの動作であるが、受信の場合は、この逆の作用で、計測流体より伝搬してきた超音波が圧電体10で電気信号に変換され、その信号の到達した時間を計測に用いている。   This is the operation when transmitting an ultrasonic wave, but in the case of reception, the opposite action is that the ultrasonic wave propagating from the measurement fluid is converted into an electrical signal by the piezoelectric body 10 and the time when the signal arrives. Is used for measurement.

以下その計測方法について説明する。   The measurement method will be described below.

図1に示す通り、超音波振動子3,4間の超音波伝達経路をL、計測部2を流れる流体の流速をV、計測する流体の超音波の音速をC、流体の流れる方向と超音波パルスの伝搬方向の角度をθとし、超音波振動子3を送波器、超音波振動子4を受波器として用いたときに、超音波振動子3からでた超音波パルスが超音波振動子4に到達する伝搬時間t1は、
t1=L/(C+Vcosθ) (1)
で示される。
As shown in FIG. 1, the ultrasonic transmission path between the ultrasonic transducers 3 and 4 is L, the flow velocity of the fluid flowing through the measurement unit 2 is V, the ultrasonic velocity of the ultrasonic fluid to be measured is C, the direction of fluid flow and the superfluidity When the angle of the propagation direction of the ultrasonic pulse is θ, the ultrasonic transducer 3 is used as a transmitter, and the ultrasonic transducer 4 is used as a receiver, the ultrasonic pulse from the ultrasonic transducer 3 is converted into an ultrasonic wave. The propagation time t1 reaching the vibrator 4 is
t1 = L / (C + V cos θ) (1)
Indicated by

次に、超音波振動子4からでた超音波パルスが超音波振動子3に到達する伝搬時間t2は、
t2=L/(C−Vcosθ) (2)
で示される。
Next, the propagation time t2 at which the ultrasonic pulse from the ultrasonic transducer 4 reaches the ultrasonic transducer 3 is:
t2 = L / (C−Vcos θ) (2)
Indicated by

そして、(1)と(2)の式から流体の音速Cを消去すると、
V=L/2cosθ(1/t1−1/t2) (3)
の式が得られる。
And if the sound velocity C of the fluid is eliminated from the equations (1) and (2),
V = L / 2 cos θ (1 / t1-1 / t2) (3)
The following equation is obtained.

Lとθが既知なら、計測回路18にてt1とt2を測定すれば演算手段19を介して流速Vが求めることができる。必要に応じて、演算手段19は前記流速Vに計測部2の断面積Sと補正係数Kを乗じれば、流量Qを求めることができる。   If L and θ are known, the flow velocity V can be obtained via the calculation means 19 if the measurement circuit 18 measures t1 and t2. If necessary, the calculation means 19 can obtain the flow rate Q by multiplying the flow velocity V by the cross-sectional area S and the correction coefficient K of the measuring unit 2.

以上のように、本実施の形態においては、被測定流体が流れる測定部2に設けられ超音波信号を送受信する一対の超音波振動子3,4と、前記超音波振動子3,4間の超音波伝搬時間を計測する計測回路18と、前記計測回路18からの信号に基づいて流体の流速および/または流量を算出する演算手段19とを備え、前記超音波振動子3,4は密閉容器8内に内包された圧電体9で構成され、前記密閉容器8の内圧P2は、前記測定部2の圧力P1の変動範囲内に設定したことにより、高圧流体、および圧力変動のある流体の計測においても、計測圧力と超音波振動子内圧との圧力差が小さくなり、超音波振動子3,4における密閉容器8の変形を小さく抑えることができ、密閉容器8内に内包されている圧電体9の破壊、或いは圧電体9と密閉容器8との接合部分が破壊することを抑制することができ、その結果、高圧流体、および圧力変動のある流体でも安定して計測することができるものである。   As described above, in the present embodiment, the pair of ultrasonic transducers 3 and 4 that are provided in the measurement unit 2 through which the fluid to be measured flows and transmits and receives an ultrasonic signal are connected between the ultrasonic transducers 3 and 4. A measurement circuit 18 for measuring the ultrasonic propagation time and a calculation means 19 for calculating the flow velocity and / or flow rate of the fluid based on the signal from the measurement circuit 18 are provided. The internal pressure P2 of the airtight container 8 is set within the fluctuation range of the pressure P1 of the measurement unit 2, and thus the high pressure fluid and the fluid with pressure fluctuation are measured. The pressure difference between the measured pressure and the internal pressure of the ultrasonic vibrator is reduced, and the deformation of the sealed container 8 in the ultrasonic vibrators 3 and 4 can be suppressed to a small level. 9 destruction or piezoelectric body 9 Can junction between the sealed container 8 is prevented from being destroyed, with the result that it can be measured stably even in high-pressure fluid, and a fluid with a pressure variation.

また、本実施の形態では、前記超音波振動子3,4における密閉容器8内の圧力P2は、前記測定部2の圧力P1の圧力安定部のおおよそ平均値としたことにより、高圧流体、および圧力変動のある流体の計測においても、計測圧力と、超音波振動子内圧との圧力差が小さくなり、超音波振動子3,4における密閉容器8の変形をより小さく抑えることが
でき、密閉容器8内に内包されている圧電体9の破壊、或いは圧電体9と密閉容器8との接合部分が破壊することを抑制することができ、その結果、高圧流体、および圧力変動のある流体でも安定して計測することができる。
In the present embodiment, the pressure P2 in the sealed container 8 of the ultrasonic transducers 3 and 4 is approximately the average value of the pressure stabilizing portion of the pressure P1 of the measurement unit 2, thereby allowing high pressure fluid and Even in the measurement of fluid with pressure fluctuation, the pressure difference between the measured pressure and the internal pressure of the ultrasonic transducer is reduced, and the deformation of the closed vessel 8 in the ultrasonic transducers 3 and 4 can be suppressed to a smaller level. It is possible to suppress the destruction of the piezoelectric body 9 included in the body 8 or the joint portion between the piezoelectric body 9 and the sealed container 8, and as a result, it is stable even with a high-pressure fluid and a fluid with pressure fluctuation. Can be measured.

また、本実施の形態の密閉容器8のヤング率は150GPa以上としたことにより、圧力による変形を軽減することができ、密閉容器8内に内包されている圧電体9の破壊、或いは圧電体9と密閉容器8との接合部分が破壊することを抑制することができ、その結果、高圧流体、および圧力変動のある流体でも安定して計測することができる。   Further, since the Young's modulus of the sealed container 8 of the present embodiment is 150 GPa or more, deformation due to pressure can be reduced, and the piezoelectric body 9 included in the sealed container 8 is broken or the piezoelectric body 9 is broken. And the sealed container 8 can be prevented from being broken, and as a result, high-pressure fluid and fluid with pressure fluctuation can be stably measured.

また本実施の形態の密閉容器8の頂壁の厚みは側壁部の厚みよりも大きくしていることにより、圧力によって側壁部が大きく変形することとなり、密閉容器8内に内包されている圧電体9の破壊、或いは圧電体9と密閉容器8との接合部分が破壊することを抑制することができ、その結果、高圧流体、および圧力変動のある流体でも安定して計測することができる。   In addition, since the thickness of the top wall of the sealed container 8 of the present embodiment is larger than the thickness of the side wall part, the side wall part is greatly deformed by pressure, and the piezoelectric body included in the sealed container 8 is used. 9 or the joint portion between the piezoelectric body 9 and the sealed container 8 can be suppressed, and as a result, high-pressure fluid and fluid with pressure fluctuation can be stably measured.

また本実施の形態の密閉容器8の頂壁の厚みは、音響整合層10に用いた波長をλとした場合に、λ/30<t<λ/10の範囲内としたことにより、密閉容器8内に内包されている圧電体9の破壊、或いは圧電体9と密閉容器8との接合部分が破壊することを抑制することができ、その結果、高圧流体および、圧力変動のある流体でも安定して計測することができる。   In addition, the thickness of the top wall of the sealed container 8 of the present embodiment is in the range of λ / 30 <t <λ / 10 when the wavelength used for the acoustic matching layer 10 is λ. It is possible to suppress the destruction of the piezoelectric body 9 included in the body 8 or the joint portion between the piezoelectric body 9 and the sealed container 8, and as a result, it is stable even with a high-pressure fluid and a fluid with pressure fluctuation. Can be measured.

(実施の形態2)
図5は、実施の形態2を示し、流体の流れ計測装置1は、計測する流体が流れる計測部2に所定の間隔をおいて超音波振動子3,4が斜めに対向するように配置された構成となっている。
(Embodiment 2)
FIG. 5 shows a second embodiment, in which the fluid flow measuring device 1 is arranged so that the ultrasonic transducers 3 and 4 are diagonally opposed to the measuring unit 2 through which the fluid to be measured flows at a predetermined interval. It becomes the composition.

流速および/または流量の計測時、計測部2の圧力の異常を検知するため、圧力検知手段20が取り付けられており、超音波振動子3,4に予め設定した密閉容器内の圧力に対し、計測部2の圧力が、想定する耐圧を超えて大きな圧力となった場合に異常を検知し、検知した信号を異常判定手段21で、予め設定した圧力限界値と比較し、圧力限界を超えた場合、警告部22へ信号を送り、表示手段23で圧力異常を表示し、過負荷、つまり、設計を超えた圧力が超音波振動子3,4に加えられていることを知らせる。   At the time of measuring the flow velocity and / or flow rate, a pressure detection means 20 is attached to detect an abnormality in the pressure of the measurement unit 2, and the pressure in the sealed container set in advance in the ultrasonic transducers 3 and 4 An abnormality is detected when the pressure of the measuring unit 2 exceeds the assumed withstand pressure and becomes a large pressure, and the detected signal is compared with a preset pressure limit value by the abnormality determination means 21 and exceeds the pressure limit. In this case, a signal is sent to the warning unit 22 and a pressure abnormality is displayed on the display means 23 to notify that an overload, that is, a pressure exceeding the design is applied to the ultrasonic transducers 3 and 4.

これによって、超音波振動子3,4の交換を促し、より耐圧の高い、つまり超音波振動子における密閉空間の圧力を高く設定したものとの交換を促す。   As a result, replacement of the ultrasonic transducers 3 and 4 is promoted, and replacement with a higher pressure resistance, that is, a pressure set in the sealed space of the ultrasonic transducer is increased.

以上のように、本実施の形態においては、超音波振動子3,4の密閉容器内圧力と圧力検知手段20によって検知した圧力を比較して、圧力異常判定を行なうことを特徴とするもので、超音波振動子3,4に想定した圧力以上に高圧が付加された場合、異常を表示し、超音波振動子3,4を保護するようにしており、その圧力による破壊を防止することができる。   As described above, the present embodiment is characterized in that the pressure abnormality determination is performed by comparing the pressure in the sealed container of the ultrasonic transducers 3 and 4 with the pressure detected by the pressure detecting means 20. When a pressure higher than the pressure assumed for the ultrasonic vibrators 3 and 4 is applied, an abnormality is displayed and the ultrasonic vibrators 3 and 4 are protected, and the damage due to the pressure can be prevented. it can.

(実施の形態3)
図6は、実施の形態3を示し、計測部分の構成は図1と同じで、便宜上同一符号を付し、具体的説明は実施の形態1のものを援用する。
(Embodiment 3)
6 shows the third embodiment, the configuration of the measurement part is the same as in FIG. 1, the same reference numerals are given for convenience, and the specific description of the first embodiment is used.

相違点は、計測部2の圧力の異常を検知するため、超音波振動子3,4の特性変化に着目したところにある。   The difference is that attention is paid to the characteristic change of the ultrasonic transducers 3 and 4 in order to detect an abnormality in the pressure of the measurement unit 2.

特性変化には、例えば、超音波振動子3,4は、もともと超音波領域で振動する振動体
であるので、計測部2の圧力が高くなると、圧力による歪によって振動の周波数が変化することを利用して圧力異常を検知する。
In the characteristic change, for example, the ultrasonic vibrators 3 and 4 are originally vibrators that vibrate in the ultrasonic region. Therefore, when the pressure of the measurement unit 2 increases, the frequency of vibration changes due to distortion due to pressure. Use to detect pressure abnormalities.

或いは、超音波振動子3,4に内包された圧電体の圧電効果を利用して計測部2の圧力が高くなると、圧電効果によって発生する電圧を検出するものでもよい。   Alternatively, the voltage generated by the piezoelectric effect may be detected when the pressure of the measuring unit 2 increases by using the piezoelectric effect of the piezoelectric body included in the ultrasonic vibrators 3 and 4.

これらに数値を単独、或いは複合して計測部2の圧力変化、圧力異常をより正確に測定することができる。   It is possible to measure the pressure change and pressure abnormality of the measuring unit 2 more accurately by combining numerical values with these alone or in combination.

このように、計測部2の圧力が想定する耐圧を超えて大きな圧力となった場合に異常を検知し、検知した信号を異常判定手段21で予め設定した圧力限界値と比較し、圧力限界を超えた場合、警告部22へ信号を送り、表示手段23で圧力異常を表示し、過負荷、つまり、設計を超えた圧力が超音波振動子3,4に加えられていることを知らせる。   As described above, when the pressure of the measuring unit 2 exceeds the assumed withstand pressure and becomes a large pressure, an abnormality is detected, and the detected signal is compared with a pressure limit value set in advance by the abnormality determination unit 21 to determine the pressure limit. When it exceeds, a signal is sent to the warning unit 22 and a pressure abnormality is displayed on the display means 23 to notify that an overload, that is, a pressure exceeding the design is applied to the ultrasonic transducers 3 and 4.

これによって、超音波振動子3,4の交換を促し、より耐圧の高い、つまり超音波振動子3,4における密閉空間の圧力を高く設定したものとの交換を促す。   As a result, replacement of the ultrasonic transducers 3 and 4 is promoted, and replacement with a higher pressure resistance, that is, replacement of the ultrasonic transducers 3 and 4 with a high pressure in the sealed space is promoted.

以上のように、本実施の形態においては、超音波振動子3,4の特性変化によって検知した計測部圧力を推定し、圧力異常判定を行なうことを特徴とするもので、圧力の異常判定を超音波振動子3,4自体で行なうため、コスト面で大いに有用である。   As described above, in the present embodiment, the pressure of the measurement unit detected by the characteristic change of the ultrasonic transducers 3 and 4 is estimated, and pressure abnormality determination is performed. Since it is performed by the ultrasonic transducers 3 and 4 themselves, it is very useful in terms of cost.

(実施の形態4)
図7は、実施の形態4を示すものである。すなわち、本実施の形態は先の実施の形態2,3の思想を併合したもので、図5,6と同作用を行う構成部分には便宜上同一符号を付し、具体的説明は実施の形態2,3のものを援用する。
(Embodiment 4)
FIG. 7 shows the fourth embodiment. In other words, this embodiment is a combination of the ideas of the previous embodiments 2 and 3, and the same reference numerals are given to the components that perform the same operations as in FIGS. Use a few.

すなわち、計測部2の圧力異常をより高精度の検知するため、圧力検知手段20、および超音波振動子3,4の特性変化も用いて圧力異常をより正確に行なうものである。   That is, in order to detect the pressure abnormality of the measurement unit 2 with higher accuracy, the pressure abnormality is more accurately performed using the pressure detection means 20 and the characteristic changes of the ultrasonic transducers 3 and 4.

以上のように本発明実施の形態においては、被測定流体が流れる計測部2と、前記計測部2設けられた一対の超音波振動子3,4と、前記計測部2の圧力検知手段20と、計測部2の圧力の異常判定手段21と、前記超音波振動子3,4間の超音波伝搬時間を計測する計測回路18と、前記計測回路18からの信号に基づいて流速および/または流量を算出する演算手段19と、表示手段23と備えるものにあって、前記超音波振動子3,4の密閉容器8内の圧力P2と前記圧力検知手段20によって検知した計測部2の圧力P1を比較する手段と、前記超音波振動子3,4の密閉容器8の内圧力P2と前記超音波振動子3,4の特性変化によって検知した計測部圧力P1を推定する手段とを組み合わせ、圧力異常判定を行なうことを特徴とすることにより、超音波振動子3,4により正確に想定した圧力以上に高圧が付加された場合、異常を表示し、超音波振動子3,4を保護するようにしており、それらの圧力による破壊を防止することができる。   As described above, in the embodiment of the present invention, the measurement unit 2 through which the fluid to be measured flows, the pair of ultrasonic vibrators 3 and 4 provided in the measurement unit 2, and the pressure detection means 20 of the measurement unit 2 The pressure abnormality determination means 21 of the measurement unit 2, the measurement circuit 18 that measures the ultrasonic propagation time between the ultrasonic transducers 3 and 4, and the flow velocity and / or flow rate based on the signal from the measurement circuit 18 Is provided with a calculation means 19 and a display means 23, and the pressure P2 in the sealed container 8 of the ultrasonic transducers 3 and 4 and the pressure P1 of the measuring unit 2 detected by the pressure detection means 20 are calculated. Combining the means for comparing with the means for estimating the internal pressure P2 of the sealed container 8 of the ultrasonic transducers 3 and 4 and the measurement unit pressure P1 detected by the characteristic change of the ultrasonic transducers 3 and 4 results in abnormal pressure. It is characterized by making a judgment Therefore, when a pressure higher than the pressure assumed by the ultrasonic transducers 3 and 4 is accurately applied, an abnormality is displayed and the ultrasonic transducers 3 and 4 are protected. Destruction can be prevented.

以上のように、本発明にかかる流体の流れ計測装置は、高圧の計測流体の流速および/または流量を計測するのに適しており、長期にわたって高圧流体の計測が可能であり、また、自動車などのバックソナー用、あるいは、タンク内のレベル計、家庭用ガスメ−タ、水道用メ−タなどの用途の適用できる。   As described above, the fluid flow measurement device according to the present invention is suitable for measuring the flow velocity and / or flow rate of a high-pressure measurement fluid, and can measure a high-pressure fluid over a long period of time. For back sonar, or a level meter in a tank, household gas meter, water meter, etc. can be applied.

2 計測部
3,4 超音波振動子
8 密閉容器
9 圧電体
10 音響整合層
11 端子板
13,14 端子
18 計測回路
19 演算手段
20 圧力検知手段
21 異常判定手段
22 警告部
23 表示手段
2 Measurement unit 3, 4 Ultrasonic transducer 8 Sealed container 9 Piezoelectric body 10 Acoustic matching layer 11 Terminal plate 13, 14 Terminal 18 Measurement circuit 19 Calculation unit 20 Pressure detection unit 21 Abnormality determination unit 22 Warning unit 23 Display unit

Claims (9)

被測定流体が流れる計測部の上下流側に配設され、超音波信号を送受信する一対の超音波振動子と、前記超音波振動子間の超音波伝搬時間を計測する計測回路と、前記計測回路からの信号に基づいて流速および/または流量を算出する演算手段とを備え、前記超音波振動子の圧電体を内設した密閉容器の内圧は、前記計測部の圧力P1の変動範囲内に設定した流体の流れ計測装置。 A pair of ultrasonic transducers that are arranged on the upstream and downstream sides of the measurement unit through which the fluid to be measured flows, transmits and receives ultrasonic signals, a measurement circuit that measures ultrasonic propagation time between the ultrasonic transducers, and the measurement Calculating means for calculating the flow velocity and / or flow rate based on the signal from the circuit, and the internal pressure of the sealed container in which the piezoelectric body of the ultrasonic transducer is provided is within the fluctuation range of the pressure P1 of the measurement unit. Set fluid flow measuring device. 密閉容器の内圧P2は、計測部における圧力P1の略平均値とした請求項1記載の流体の流れ計測装置。 The fluid flow measuring device according to claim 1, wherein the internal pressure P2 of the sealed container is a substantially average value of the pressure P1 in the measuring unit. 被測定流体が流れる計測部の上下流側に配設され、超音波信号を送受信する一対の超音波振動子と、前記超音波振動子間の超音波伝搬時間を計測する計測回路と、前記計測回路からの信号に基づいて流速および/または流量を算出する演算手段と、前記計測部の圧力を検知する圧力検知手段とを備え、前記超音波振動子の圧電体を内設した密閉容器の内圧P2と前記圧力検知手段によって検知した計測部圧力P1を比較して、圧力異常判定を行なうことを特徴とする流体の流れ計測装置。 A pair of ultrasonic transducers that are arranged on the upstream and downstream sides of the measurement unit through which the fluid to be measured flows, transmits and receives ultrasonic signals, a measurement circuit that measures ultrasonic propagation time between the ultrasonic transducers, and the measurement An internal pressure of an airtight container having a calculation means for calculating a flow velocity and / or a flow rate based on a signal from a circuit and a pressure detection means for detecting the pressure of the measurement unit, in which a piezoelectric body of the ultrasonic vibrator is provided A fluid flow measuring device characterized in that P2 and a measuring section pressure P1 detected by the pressure detecting means are compared to determine pressure abnormality. 被測定流体が流れる計測部の上下流側に配設され、超音波信号を送受信する一対の超音波振動子と、前記超音波振動子間の超音波伝搬時間を計測する計測回路と、前記計測回路からの信号に基づいて流速および/または流量を算出する演算手段と、前記計測部の圧力を超音波振動子の特性変化によって推定する圧力推定手段とを備え、前記超音波振動子の圧電体を内設した密閉容器の内圧P2と前記圧力推定手段によって推定した計測部圧力P1を比較して、圧力異常判定を行なうことを特徴とする流体の流れ計測装置。 A pair of ultrasonic transducers that are arranged on the upstream and downstream sides of the measurement unit through which the fluid to be measured flows, transmits and receives ultrasonic signals, a measurement circuit that measures ultrasonic propagation time between the ultrasonic transducers, and the measurement A calculation unit that calculates a flow velocity and / or a flow rate based on a signal from the circuit; and a pressure estimation unit that estimates a pressure of the measurement unit based on a characteristic change of the ultrasonic transducer, the piezoelectric body of the ultrasonic transducer A fluid flow measuring device characterized in that pressure abnormality determination is performed by comparing an internal pressure P2 of an airtight container provided with a measuring portion pressure P1 estimated by the pressure estimating means. 超音波振動子は、有底筒状で開放部が端子板で閉じられた導電性の密閉容器と、前記密閉容器に収容され、一方の電極側がその頂壁内面に接着された圧電体と、前記端子板を電気絶縁性を保って貫通し、前記圧電体の他方の電極側に接続された一方の端子、および同端子板に直接固定された他方の端子とからなり、前記密閉容器の頂壁外面には音響整合体を具備した請求項1〜4いずれか1項記載の流体の流れ計測装置。 The ultrasonic vibrator has a cylindrical shape with a bottom and an open portion closed by a terminal plate, a piezoelectric body housed in the closed vessel, and one electrode side bonded to the inner surface of the top wall, The terminal plate penetrates the terminal plate while maintaining electrical insulation, and includes one terminal connected to the other electrode side of the piezoelectric body and the other terminal directly fixed to the terminal plate, and the top of the sealed container. The fluid flow measuring device according to any one of claims 1 to 4, wherein an acoustic matching body is provided on the outer wall surface. 密閉容器のヤング率を150GPa以上に設置した請求項1〜5いずれか1項記載の流体の流れ計測装置。 The fluid flow measuring device according to claim 1, wherein the Young's modulus of the sealed container is set to 150 GPa or more. 密閉容器の頂壁の厚みを側壁部の厚みよりも厚く設定した請求項1〜6いずれか1項記載の流体の流れ計測装置。 The fluid flow measuring device according to any one of claims 1 to 6, wherein the thickness of the top wall of the sealed container is set to be thicker than the thickness of the side wall. 密閉容器の頂壁の厚みtは、音響整合体に用いた波長をλとしたとき、λ/30<t<λ/10に設定した請求項5記載の流体の流れ計測装置。 6. The fluid flow measuring device according to claim 5, wherein the thickness t of the top wall of the sealed container is set to λ / 30 <t <λ / 10, where λ is a wavelength used for the acoustic matching body. 超音波振動子における密閉容器の内圧P2の設定は、密閉容器を端子板によって封鎖するときに行なうようにした請求項5記載の流体の流れ計測装置。 6. The fluid flow measuring device according to claim 5, wherein the setting of the internal pressure P2 of the sealed container in the ultrasonic vibrator is performed when the sealed container is sealed with a terminal plate.
JP2009190631A 2009-08-20 2009-08-20 Fluid flow measuring device Expired - Fee Related JP5240121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009190631A JP5240121B2 (en) 2009-08-20 2009-08-20 Fluid flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009190631A JP5240121B2 (en) 2009-08-20 2009-08-20 Fluid flow measuring device

Publications (2)

Publication Number Publication Date
JP2011043366A true JP2011043366A (en) 2011-03-03
JP5240121B2 JP5240121B2 (en) 2013-07-17

Family

ID=43830908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009190631A Expired - Fee Related JP5240121B2 (en) 2009-08-20 2009-08-20 Fluid flow measuring device

Country Status (1)

Country Link
JP (1) JP5240121B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110512690A (en) * 2019-09-05 2019-11-29 哈尔滨工业大学 Water supply network independent measure subregion current divider
US11333536B2 (en) * 2018-07-10 2022-05-17 SIKA Dr. Siebert & Kühn GmbH & Co. KG Flow meter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100616U (en) * 1983-12-16 1985-07-09 富士電機株式会社 ultrasonic sensor
JPS63135120U (en) * 1987-02-25 1988-09-05
JPH0847095A (en) * 1994-07-28 1996-02-16 Nec Corp Low frequency underwater transmitter
JPH0965479A (en) * 1995-08-22 1997-03-07 Oki Electric Ind Co Ltd Housing structure of underwater wave transmitter
JPH11118550A (en) * 1997-10-15 1999-04-30 Matsushita Electric Ind Co Ltd Ultrasonic vibrator and ultrasonic flowmeter using the same
JP2003348681A (en) * 2002-03-19 2003-12-05 Matsushita Electric Ind Co Ltd Ultrasonic oscillator and ultrasonic wave flowmeter employing the same
JP2004125742A (en) * 2002-10-07 2004-04-22 Matsushita Electric Ind Co Ltd Bottomed cylindrical metal casing, production method of the same, ultrasonic vibrator using the same, and ultrasonic flow meter having ultrasonic vibrator
JP2005017093A (en) * 2003-06-25 2005-01-20 Matsushita Electric Ind Co Ltd Ultrasonic transmitter/receiver and ultrasonic flowmeter using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100616U (en) * 1983-12-16 1985-07-09 富士電機株式会社 ultrasonic sensor
JPS63135120U (en) * 1987-02-25 1988-09-05
JPH0847095A (en) * 1994-07-28 1996-02-16 Nec Corp Low frequency underwater transmitter
JPH0965479A (en) * 1995-08-22 1997-03-07 Oki Electric Ind Co Ltd Housing structure of underwater wave transmitter
JPH11118550A (en) * 1997-10-15 1999-04-30 Matsushita Electric Ind Co Ltd Ultrasonic vibrator and ultrasonic flowmeter using the same
JP2003348681A (en) * 2002-03-19 2003-12-05 Matsushita Electric Ind Co Ltd Ultrasonic oscillator and ultrasonic wave flowmeter employing the same
JP2004125742A (en) * 2002-10-07 2004-04-22 Matsushita Electric Ind Co Ltd Bottomed cylindrical metal casing, production method of the same, ultrasonic vibrator using the same, and ultrasonic flow meter having ultrasonic vibrator
JP2005017093A (en) * 2003-06-25 2005-01-20 Matsushita Electric Ind Co Ltd Ultrasonic transmitter/receiver and ultrasonic flowmeter using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11333536B2 (en) * 2018-07-10 2022-05-17 SIKA Dr. Siebert & Kühn GmbH & Co. KG Flow meter
CN110512690A (en) * 2019-09-05 2019-11-29 哈尔滨工业大学 Water supply network independent measure subregion current divider

Also Published As

Publication number Publication date
JP5240121B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
US11162829B2 (en) Multilayer body that includes piezoelectric body
WO2014073181A1 (en) Ultrasonic flow meter
US9689846B2 (en) Device and method for determining properties of a medium
JP5240121B2 (en) Fluid flow measuring device
JP6032512B1 (en) Laminate, ultrasonic transducer and ultrasonic flowmeter
JP2007208381A (en) Ultrasonic vibrator and fluid flow measurement apparatus employing the same
JP4703700B2 (en) Ultrasonic transducer and ultrasonic flowmeter
KR101324889B1 (en) A sonic sensor for alarm of limit level
JP5533332B2 (en) Ultrasonic flow meter
JP4280111B2 (en) Ultrasonic transducer and ultrasonic flowmeter
JP6751898B2 (en) Laminates, ultrasonic transmitters and receivers and ultrasonic flowmeters
JP5397051B2 (en) Ultrasonic transducer and ultrasonic flowmeter using the same
JP2014153128A (en) Manometer, level meter, and alarm system
JP3629481B2 (en) Ultrasonic vibrator and ultrasonic flow meter using the same
JP2003270012A (en) Ultrasonic transducer and ultrasonic flowmeter
JP2012249066A (en) Ultrasonic sensor and ultrasonic flowmeter using the same
KR101963732B1 (en) Fluid Level Measuring Ultrasonic Transducer
JP2014153101A (en) Physical quantity detector, level gauge and warning system
JP2018063114A (en) Acoustic matching layer, ultrasonic transducer and ultrasonic flowmeter
JP4703701B2 (en) Ultrasonic transducer and ultrasonic flowmeter
JP2007194896A (en) Ultrasonic transducer and flow measuring apparatus of fluid employing same
JP2010249788A (en) Ultrasonic flowmeter for gas
JP4765642B2 (en) Ultrasonic vibrator and fluid flow measuring device using the same
JP2021164128A (en) Ultrasonic transmitter/receiver, ultrasonic flowmeter, ultrasonic current meter, ultrasonic concentration meter, and manufacturing method
JP2015019317A (en) Ultrasonic sensor and ultrasonic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5240121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees