JP2011042887A - Three-dimensional braiding, fiber reinforced composite material, and method for producing fiber reinforced composite material - Google Patents

Three-dimensional braiding, fiber reinforced composite material, and method for producing fiber reinforced composite material Download PDF

Info

Publication number
JP2011042887A
JP2011042887A JP2009190313A JP2009190313A JP2011042887A JP 2011042887 A JP2011042887 A JP 2011042887A JP 2009190313 A JP2009190313 A JP 2009190313A JP 2009190313 A JP2009190313 A JP 2009190313A JP 2011042887 A JP2011042887 A JP 2011042887A
Authority
JP
Japan
Prior art keywords
core yarn
dimensional braiding
layers
layer
penetrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009190313A
Other languages
Japanese (ja)
Other versions
JP5381493B2 (en
Inventor
Ryuta Kamiya
隆太 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2009190313A priority Critical patent/JP5381493B2/en
Priority to PCT/JP2010/062193 priority patent/WO2011021463A1/en
Publication of JP2011042887A publication Critical patent/JP2011042887A/en
Application granted granted Critical
Publication of JP5381493B2 publication Critical patent/JP5381493B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/06Braid or lace serving particular purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/24Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least three directions forming a three dimensional structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Vibration Dampers (AREA)
  • Moulding By Coating Moulds (AREA)
  • Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional braiding that is lightweight, has high energy absorption, is stably broken, and is suitable for a crush member, and a fiber-reinforced composite material. <P>SOLUTION: The three-dimensional braiding 11 includes four or more layers of core yarn layers 13 made of core yarns 12 extending in the axial direction, and through yarns 14a and 14b formed so as to pass through the core yarn layers 13, and is formed in a cylindrical shape. Through yarns 14a pass through adjacent core yarn layers 13 so as to be folded back. The peel strength of a selected core yarn layer 13 among the core yarn layers 13 provided between the outermost layer and the innermost layer is less than the peel strength of the other core yarn layers 13. The three-dimensional braiding 11 is preferably impregnated with a resin to be cured, and used as a fiber-reinforced composite material for constituting a crush member. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、三次元ブレイディング、繊維強化複合材料及び繊維強化複合材料の製造方法に係り、詳しくは自動車のバンパー周り、航空機の座席周り等に適用されるエネルギー吸収部材に好適な三次元ブレイディング、繊維強化複合材料及び繊維強化複合材料の製造方法に関する。   The present invention relates to a three-dimensional braiding, a fiber reinforced composite material, and a method for manufacturing a fiber reinforced composite material, and more particularly, a three-dimensional braiding suitable for an energy absorbing member applied around a bumper of an automobile, around an aircraft seat, and the like. The present invention relates to a fiber-reinforced composite material and a method for producing a fiber-reinforced composite material.

過大な衝撃荷重を受けた場合に破壊することによりエネルギーを吸収するエネルギー吸収部材として、繊維強化複合材料が優れたエネルギー吸収能力を有することが知られている。繊維強化複合材料は、通常はプリプレグの積層品で形成されるが、近年、層間貫通糸によりエネルギー吸収能力を高めるものや、三次元ブレイディングを用いるものが提案されている。エネルギー吸収部材を、例えば、バンパーと車体フレームの間に配置されるクラッシュボックスに用いる場合、クラッシュボックスは、通常は自己の姿勢を保持できるだけの所要の機械的強度を持つこと、及び設計値を超えた衝撃荷重がかかったときに、その衝撃荷重を吸収しながら変形して破壊することが求められる。   It is known that a fiber-reinforced composite material has an excellent energy absorbing ability as an energy absorbing member that absorbs energy by breaking when receiving an excessive impact load. The fiber reinforced composite material is usually formed of a laminate of prepregs, but in recent years, a material that enhances energy absorption capability by using an interlayer penetration yarn or a material that uses three-dimensional braiding has been proposed. When the energy absorbing member is used in, for example, a crash box disposed between a bumper and a body frame, the crash box usually has a required mechanical strength enough to maintain its own posture, and exceeds the design value. When an impact load is applied, it is required to be deformed and destroyed while absorbing the impact load.

プリプレグを積層して構成されたエネルギー吸収部材は、製造のための作業量が多く、原材料の歩留まりが悪い。また、積層した各プリプレグ層同士では強化繊維が連続していないため、必要な自己保形強度を得るために、本来クラッシュボックスとして必要とする枚数以上の単シートを積層する必要がある。それを解消するため、ブレイディング法で編み上げた筒状体を扁平に押しつぶした強化繊維編組体に樹脂を含浸させた繊維強化樹脂が立体形状に形状付与されたクラッシュボックス用の衝撃吸収材(エネルギー吸収部材)が提案されている(特許文献1参照)。   An energy absorbing member formed by laminating prepregs has a large amount of work for manufacturing and has a poor raw material yield. In addition, since the reinforcing fibers are not continuous between the laminated prepreg layers, it is necessary to laminate more than the number of single sheets originally required as a crash box in order to obtain the necessary self-holding strength. In order to solve this problem, shock absorbers for crash boxes (fibrous reinforced resin obtained by impregnating resin into a reinforcing fiber braid obtained by flattening a tubular body knitted by the braiding method into a three-dimensional shape (energy) Absorbing member) has been proposed (see Patent Document 1).

また、部材端部を起点に局部破壊あるいは変形を生じさせ、その局部破壊や変形を利用して高いエネルギーを効率良く吸収するエネルギー吸収部材が提案されている(特許文献2参照)。このエネルギー吸収部材41は、図5(a)に示すように、樹脂が含浸された複数の補強繊維層42a,42b,42c,42dを有し、補強繊維層42a〜42dの層間には、その補強繊維層42a〜42dと複合されている樹脂よりも高伸度の樹脂43a,43b,43cが配されている。補強繊維層42a〜42dは補強繊維に樹脂を含浸したプリプレグで形成されている。このエネルギー吸収部材41は、厚さ方向中心部に樹脂43bが配置されており、樹脂43bは補強繊維で強化されていないため、隣接する補強繊維層42b,42cよりも強度的に弱く、図5(b)に示すように、圧縮荷重Pに対して中心部から両側への曲げ変形、あるいは破壊の起点となって、その曲げ変形や破壊がスムーズに開始される。   In addition, an energy absorbing member has been proposed that causes local breakage or deformation starting from the end of the member and efficiently absorbs high energy using the local breakage or deformation (see Patent Document 2). As shown in FIG. 5 (a), the energy absorbing member 41 has a plurality of reinforcing fiber layers 42a, 42b, 42c, and 42d impregnated with resin, and between the reinforcing fiber layers 42a to 42d, Resins 43a, 43b, and 43c having higher elongation than the resin that is combined with the reinforcing fiber layers 42a to 42d are disposed. The reinforcing fiber layers 42a to 42d are formed of prepregs in which reinforcing fibers are impregnated with resin. In the energy absorbing member 41, the resin 43b is disposed at the center portion in the thickness direction, and the resin 43b is not reinforced with reinforcing fibers, and therefore is weaker in strength than the adjacent reinforcing fiber layers 42b and 42c. As shown in FIG. 6B, the bending deformation or destruction starts smoothly from the center to both sides with respect to the compressive load P, and the bending deformation or destruction starts smoothly.

特開2009−107408号公報JP 2009-107408 A 特開平6−307478号公報JP-A-6-307478

三次元ブレイディングをクラッシュ材に用いる場合、層間を貫通する繊維の強度によっては、図6に示すように、クラッシュ部材50は、衝撃荷重Fを受けた場合、先端からの逐次破壊を起こす前に、途中から屈曲して「く」の字状に折れ曲がった状態で破断し、吸収エネルギーが小さく、破壊モードが安定しないという問題がある。   When three-dimensional braiding is used for the crush material, depending on the strength of the fiber that penetrates between the layers, as shown in FIG. There is a problem that it is bent in the middle and is broken in the shape of a "<", and the absorbed energy is small and the fracture mode is not stable.

一方、特許文献2のエネルギー吸収部材は、補強繊維層42a〜42dを構成する複数のプリプレグの間に高伸度の樹脂43a,43b,43cを介在させて積層形成する必要があり、単に複数のプリプレグを積層して形成する一般的なエネルギー吸収部材の問題点を有するとともに、プリプレグを積層する際の作業量がより多くなるという問題がある。   On the other hand, the energy absorbing member of Patent Document 2 needs to be laminated by interposing high-strength resins 43a, 43b, and 43c between a plurality of prepregs constituting the reinforcing fiber layers 42a to 42d. While having the problem of the general energy absorption member formed by laminating | stacking a prepreg, there exists a problem that the work amount at the time of laminating | stacking a prepreg becomes more.

本発明は、前記従来の問題に鑑みてなされたものであって、その目的は、軽量で高いエネルギー吸収が可能で、安定破壊が可能なクラッシュ部材に好適な三次元ブレイディング、繊維強化複合材料及び繊維強化複合材料の製造方法を提供することにある。   The present invention has been made in view of the above-described conventional problems, and the object thereof is a three-dimensional braiding and fiber-reinforced composite material suitable for a crash member that is lightweight and capable of absorbing high energy and capable of stable fracture. And it is providing the manufacturing method of a fiber reinforced composite material.

前記の目的を達成するため、請求項1に記載の発明は、軸方向に延びる芯糸で形成された芯糸層と、前記芯糸層を貫通するように組織された貫通糸から筒状に形成された三次元ブレイディングである。そして、前記芯糸層が4層以上設けられ、前記貫通糸は隣り合う2層の芯糸層を貫通して折り返すように組織されたものを有する。最外層の芯糸層と最内層の芯糸層との間に設けられた芯糸層のうちの選択された芯糸層の強度あるいは選択された隣り合う芯糸層間の剥離する強度が他の隣り合う芯糸層間の剥離する強度よりも弱い。ここで、芯糸や貫通糸の「糸」とは、繊維が撚りを掛けられずに引きそろえられた繊維束あるいは繊維に撚りを掛けられた糸を意味し、樹脂を含浸硬化させて繊維強化複合材料として使用する場合は、繊維束が好ましい。また、芯糸層は芯糸層のなす面に垂直な方向に隣り合う。   In order to achieve the above-mentioned object, the invention according to claim 1 is formed into a cylindrical shape from a core yarn layer formed of a core yarn extending in the axial direction and a penetrating yarn organized so as to penetrate the core yarn layer. 3D braiding formed. The core yarn layer is provided with four or more layers, and the penetrating yarn has a structure which is formed so as to be folded back through two adjacent core yarn layers. Among the core yarn layers provided between the outermost core yarn layer and the innermost core yarn layer, the strength of the selected core yarn layer or the strength at which the selected adjacent core yarn layers peel is different. It is weaker than the peel strength between adjacent core yarn layers. Here, the “thread” of the core yarn or the penetrating thread means a fiber bundle in which the fibers are aligned without being twisted or a thread in which the fibers are twisted, and impregnating and curing the resin to strengthen the fiber. When used as a composite material, a fiber bundle is preferred. The core yarn layer is adjacent in a direction perpendicular to the surface formed by the core yarn layer.

この発明の三次元ブレイディングは、好ましくは樹脂を含浸硬化させて繊維強化複合材料として使用される。繊維強化複合材料をエネルギー吸収部材として使用する場合、繊維強化複合材料に対して強化繊維となる三次元ブレイディングの軸方向から過大な衝撃荷重(圧縮荷重)が加わる状態で使用される。三次元ブレイディングが、各芯糸層の強度や芯糸層間の剥離する強度に積極的に違いを設けずに形成されている場合、過大な衝撃荷重がエネルギー吸収部材に加わった際に、部材の端部から肉厚方向に裂けるように曲がって変形せずに、部材の途中から屈曲して破断する場合がある。しかし、この発明の三次元ブレイディングを用いた場合は、過大な衝撃荷重がエネルギー吸収部材に加わった際に、部材の端部において、強度の弱い芯糸層あるいは剥離する強度が弱い芯糸層間の部分からエネルギー吸収部材が肉厚方向に裂けるように曲がって逐次変形破壊するため、衝撃エネルギーが効率良く吸収される。したがって、この発明の三次元ブレイディングは、軽量で高いエネルギー吸収が可能で、安定破壊が可能なクラッシュ部材に好適である。   The three-dimensional braiding of the present invention is preferably used as a fiber-reinforced composite material by impregnating and curing a resin. When the fiber reinforced composite material is used as an energy absorbing member, the fiber reinforced composite material is used in a state where an excessive impact load (compressive load) is applied from the axial direction of the three-dimensional braiding serving as a reinforced fiber to the fiber reinforced composite material. When three-dimensional braiding is formed without positively changing the strength of each core yarn layer and the strength of peeling between the core yarn layers, when an excessive impact load is applied to the energy absorbing member, the member There is a case in which the member is bent and broken from the middle of the member without being bent and deformed so as to tear from the end of the member in the thickness direction. However, when the three-dimensional braiding of the present invention is used, when an excessive impact load is applied to the energy absorbing member, the core yarn layer having a weak strength or the core yarn layer having a weak strength to be peeled off at the end of the member. Since the energy absorbing member is bent so as to be torn in the thickness direction from the portion, and is sequentially deformed and broken, the impact energy is efficiently absorbed. Therefore, the three-dimensional braiding according to the present invention is suitable for a crash member that is lightweight and capable of absorbing high energy and capable of stable fracture.

請求項2に記載の発明は、請求項1に記載の発明において、前記選択された芯糸層を貫通する貫通糸の強度が他の貫通糸の強度より弱く形成されている。この発明の三次元ブレイディングを強化繊維とした繊維強化複合材料では、過大な衝撃荷重がエネルギー吸収部材に加わった際に、貫通糸の強度が弱い部分に対応する端部から肉厚方向に裂けるように曲がって逐次変形破壊し、衝撃エネルギーが効率良く吸収される。   According to a second aspect of the present invention, in the first aspect of the present invention, the strength of the penetrating thread that penetrates the selected core yarn layer is formed to be weaker than the strength of the other penetrating thread. In the fiber reinforced composite material using the three-dimensional braiding of the present invention as a reinforcing fiber, when an excessive impact load is applied to the energy absorbing member, it tears in the thickness direction from the end corresponding to the portion where the strength of the penetrating yarn is weak It bends in such a way that it is successively deformed and destroyed, and the impact energy is absorbed efficiently.

請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、前記三次元ブレイディングは、肉厚方向の中央が弱く形成されている。ここで、「肉厚方向」とは、筒状の三次元ブレイディングの軸方向と直交する方向を意味する。また、「肉厚方向の中央」とは、芯糸層が偶数の場合は中央の2層の芯糸層間を貫通する貫通糸の部分となり、芯糸層が奇数の場合は中央の芯糸層の部分になる。この発明の三次元ブレイディングを強化繊維とした繊維強化複合材料では、過大な衝撃荷重がエネルギー吸収部材に加わった際に、エネルギー吸収部材の端面における肉厚方向の中央の部分から左右対称な状態で肉厚方向に裂けるように曲がって逐次変形破壊する。したがって、左右非対称な状態でエネルギー吸収部材が裂けるように変形する場合に比べて破壊が安定して進行し易くなり、衝撃エネルギーがより効率良く吸収される。   According to a third aspect of the invention, in the first or second aspect of the invention, the three-dimensional braiding is formed with a weak center in the thickness direction. Here, the “thickness direction” means a direction orthogonal to the axial direction of the cylindrical three-dimensional braiding. The “center in the thickness direction” means a portion of a penetrating thread that penetrates between the two core yarn layers when the core yarn layer is an even number, and a center core yarn layer when the core yarn layer is an odd number. It becomes part of. In the fiber reinforced composite material using the three-dimensional braiding of the present invention as a reinforcing fiber, when an excessive impact load is applied to the energy absorbing member, the state is symmetrical from the central portion in the thickness direction on the end surface of the energy absorbing member. Then, it bends and tears in the thickness direction, and it is sequentially deformed and destroyed. Therefore, compared with the case where the energy absorbing member is deformed so as to be torn in a left-right asymmetric state, the breakage is likely to proceed stably and the impact energy is absorbed more efficiently.

請求項4に記載の発明は、請求項1〜請求項3のいずれか1項に記載の発明において、前記芯糸及び貫通糸は全て同種の材質製で、前記選択された芯糸層を構成する芯糸又は前記選択された隣り合う芯糸層を貫通する貫通糸の太さが細く形成されている。この発明では、芯糸及び貫通糸を全て同じ太さの糸で形成した場合に比べて、糸の本数が同じであれば、三次元ブレイディングの軽量化及び薄肉化を図ることができる。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the core yarn and the penetrating yarn are all made of the same kind of material and constitute the selected core yarn layer. Or the penetrating thread that penetrates the selected adjacent core thread layer is thin. In the present invention, the three-dimensional braiding can be reduced in weight and thickness as long as the number of yarns is the same as compared with the case where the core yarn and the penetrating yarn are all formed of the same thickness.

請求項5に記載の発明は、請求項1又は請求項3に記載の発明において、前記選択された芯糸層又は前記選択された隣り合う芯糸層を貫通して折り返す貫通糸の本数が他の芯糸層を貫通して折り返す貫通糸より少なくなっている。この発明では、三次元ブレイディングを製造する際に三次元ブレイディング装置にセットする貫通糸を減らすだけで、三次元ブレイディングひいては繊維強化複合材料の軽量化及びコスト低減を図ることができる。   The invention according to claim 5 is the invention according to claim 1 or claim 3, wherein the number of penetrating yarns that fold through the selected core yarn layer or the selected adjacent core yarn layer is different. The number of penetrating yarns is less than the number of penetrating yarns that pass through the core yarn layer and turn back. In the present invention, it is possible to reduce the weight and cost of the three-dimensional braiding, and hence the fiber reinforced composite material, simply by reducing the number of penetrating yarns set in the three-dimensional braiding apparatus when manufacturing the three-dimensional braiding.

請求項6に記載の発明は、請求項1〜請求項5のいずれか1項に記載の三次元ブレイディングを強化繊維とした繊維強化複合材料である。この発明では、請求項1〜請求項5のいずれか1項に記載の発明と同様な効果を得ることができる。   The invention described in claim 6 is a fiber-reinforced composite material using the three-dimensional braiding described in any one of claims 1 to 5 as a reinforcing fiber. In this invention, the same effect as that of any one of claims 1 to 5 can be obtained.

請求項7に記載の発明の繊維強化複合材料の製造方法は、三次元ブレイディング装置を使用してマンドレルの外側に、請求項1〜請求項5のいずれか1項に記載の三次元ブレイディングを形成する三次元ブレイディング形成工程と、形成された三次元ブレイディングの内側から前記マンドレルを除去するマンドレル除去工程と、マンドレルが除去された三次元ブレイディングに樹脂を含浸硬化させる樹脂含浸硬化工程とを備えている。したがって、三次元ブレイディングは使用するマンドレルの形状に対応した形状に形成され、一定径の円筒状に限らず、例えば、径が軸方向に変化する円筒状(円錐台状)に形成することもできる。三次元ブレイディングは、マンドレルが除去された際の形状のままで樹脂含浸硬化工程において樹脂の含浸硬化が行われるとは限らず、含浸硬化に用いる成形型の形状により円筒形状以外の形状に変更することができる。   The manufacturing method of the fiber-reinforced composite material of the invention described in claim 7 is the three-dimensional braiding according to any one of claims 1 to 5 on the outside of the mandrel using a three-dimensional braiding device. A three-dimensional braid forming step for forming the mandrel, a mandrel removing step for removing the mandrel from the inside of the formed three-dimensional braiding, and a resin impregnation curing step for impregnating and curing the resin in the three-dimensional braid from which the mandrel has been removed And. Therefore, the three-dimensional braiding is formed in a shape corresponding to the shape of the mandrel to be used, and is not limited to a cylindrical shape having a constant diameter, for example, it may be formed in a cylindrical shape (conical frustum shape) whose diameter changes in the axial direction. it can. In 3D braiding, the resin impregnation and curing process is not necessarily performed in the resin impregnation and curing process with the shape when the mandrel is removed, but it is changed to a shape other than the cylindrical shape depending on the shape of the mold used for the impregnation and curing. can do.

請求項1〜請求項5に記載の発明によれば、軽量で高いエネルギー吸収が可能で、安定破壊が可能なクラッシュ部材に好適な三次元ブレイディングを提供することができ、請求項6及び請求項7に記載の発明によれば、軽量で高いエネルギー吸収が可能で、安定破壊が可能なクラッシュ部材に好適な繊維強化複合材料を提供することができる。   According to the first to fifth aspects of the invention, it is possible to provide a three-dimensional braiding suitable for a crash member that is lightweight and capable of absorbing high energy and capable of stable fracture. According to the invention described in Item 7, it is possible to provide a fiber-reinforced composite material suitable for a crash member that is lightweight and capable of absorbing high energy and capable of stable fracture.

(a)は一実施形態の三次元ブレイディングの概略斜視図、(b)は三次元ブレイディングの組織状態を示す軸方向から見た部分模式図。(A) is a schematic perspective view of the three-dimensional braiding of one embodiment, (b) is a partial schematic view seen from the axial direction showing the tissue state of the three-dimensional braiding. (a)はエネルギー吸収部材が破壊される状態を示す模式図、(b)は貫通糸の破断し易い部分を示す模式図。(A) is a schematic diagram which shows the state in which an energy absorption member is destroyed, (b) is a schematic diagram which shows the part which a penetration thread is easy to fracture | rupture. 別の実施形態の三次元ブレイディングの組織状態を示す部分模式図。The partial schematic diagram which shows the structure | tissue state of the three-dimensional braiding of another embodiment. 別の実施形態の三次元ブレイディングの組織状態を示す部分模式図。The partial schematic diagram which shows the structure | tissue state of the three-dimensional braiding of another embodiment. (a)は従来技術のエネルギー吸収部材の部分断面図、(b)はエネルギー吸収部材が破壊される状態を示す部分断面図。(A) is a fragmentary sectional view of the energy absorption member of a prior art, (b) is a fragmentary sectional view which shows the state in which an energy absorption member is destroyed. 別のエネルギー吸収部材の破壊状態を示す模式図。The schematic diagram which shows the destruction state of another energy absorption member.

以下、本発明を具体化した一実施形態を図1及び図2にしたがって説明する。
図1(a)に示すように、三次元ブレイディング11は円筒状に形成されている。図1(b)に示すように、三次元ブレイディング11は、軸方向(紙面と直交する方向)に延びる芯糸12で形成された芯糸層13と、芯糸層13を貫通するように組織された貫通糸14a,14bとからなり、芯糸層13が5層設けられている。貫通糸は、隣り合う2層の芯糸層13を貫通して折り返すように組織された貫通糸14aと、最外層(この実施形態では第1層)あるいは最内層(この実施形態では第5層)のみを貫通して折り返すように組織された貫通糸14bとがある。そして、最外層(この実施形態では第1層)と最内層(この実施形態では第5層)の芯糸層13の間に設けられた芯糸層13のうちの選択された芯糸層13間、(この実施形態では第2層と第3層の芯糸層13間及び第3層と第4層の芯糸層13間)の剥離する強度が、他の芯糸層13間の剥離する強度よりも弱くなるように形成されている。なお、三次元ブレイディング11の軸方向は、図1(a)における円筒の軸の方向である。また、三次元ブレイディング11の肉厚方向は、図1(a)においては円筒の中心軸と直交する方向であり、図1(b)においては上下方向である。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS. 1 and 2.
As shown in FIG. 1A, the three-dimensional braiding 11 is formed in a cylindrical shape. As shown in FIG. 1B, the three-dimensional braiding 11 passes through the core yarn layer 13 formed of the core yarn 12 extending in the axial direction (direction orthogonal to the paper surface) and the core yarn layer 13. The core thread layers 13 are provided in five layers, which are composed of structured penetrating threads 14a and 14b. The penetrating thread includes a penetrating thread 14a structured so as to fold through two adjacent core thread layers 13, and an outermost layer (first layer in this embodiment) or innermost layer (fifth layer in this embodiment). ) Only through the thread 14b. And the selected core yarn layer 13 of the core yarn layers 13 provided between the outermost layer (first layer in this embodiment) and the innermost layer (fifth layer in this embodiment) of the core yarn layer 13. (In this embodiment, between the second and third core yarn layers 13 and between the third and fourth core yarn layers 13), the peel strength between the other core yarn layers 13 It is formed so as to be weaker than the strength to be applied. The axial direction of the three-dimensional braiding 11 is the axial direction of the cylinder in FIG. Further, the thickness direction of the three-dimensional braiding 11 is a direction orthogonal to the central axis of the cylinder in FIG. 1A, and the vertical direction in FIG.

詳述すると、芯糸12及び貫通糸14a,14bは全て同種の材質製の無撚りの繊維束で構成され、強度が弱く形成された繊維束は、繊維束を構成する繊維の本数を少なくして太さを細くすることで、強度が弱くなっている。この実施形態では芯糸12及び貫通糸14a,14bには炭素繊維からなる無撚りの繊維束が使用されている。炭素繊維束は細い繊維が数百〜数万本束ねられて1本の繊維束が構成されており、要求性能に適した繊維の本数の繊維束が選択される。隣り合う2層の芯糸層13を貫通して折り返すように組織された貫通糸14aのうち、第2層及び第3層の芯糸層13を貫通して折り返すように組織された貫通糸14aあるいは第3層及び第4層の芯糸層13を貫通して折り返すように組織された貫通糸14aには、他の貫通糸14a,14bより細い繊維束、即ち強度が弱い繊維束が使用されている。また、芯糸12には貫通糸14bと同じ太さの繊維束が使用されている。   More specifically, the core yarn 12 and the penetrating yarns 14a and 14b are all composed of untwisted fiber bundles made of the same kind of material, and the fiber bundle formed with low strength reduces the number of fibers constituting the fiber bundle. By reducing the thickness, the strength is weakened. In this embodiment, untwisted fiber bundles made of carbon fibers are used for the core yarn 12 and the penetrating yarns 14a and 14b. In the carbon fiber bundle, hundreds to tens of thousands of thin fibers are bundled to form one fiber bundle, and the fiber bundle having the number of fibers suitable for the required performance is selected. Among the penetrating yarns 14a structured so as to fold through the two adjacent core yarn layers 13, the penetrating yarn 14a structured so as to fold through the second and third core yarn layers 13 Alternatively, a fiber bundle thinner than the other penetration threads 14a and 14b, that is, a fiber bundle having a lower strength, is used for the penetration thread 14a that is structured so as to be folded back through the third and fourth core thread layers 13. ing. In addition, a fiber bundle having the same thickness as that of the penetrating yarn 14b is used for the core yarn 12.

なお、図1(b)では、図示の都合上、貫通糸14a,14bが同一平面状で折り返すように配列して描いているが、実際は同一平面状に配列されてはおらず、紙面を貫通する方向に延びる状態で配列されている。また、芯糸12や貫通糸14a,14bは繊維束を構成するフィラメントが拡げられて、繊維束が扁平な状態で三次元ブレイディング11を構成している。例えば、繊維束は幅が10mm程度に拡げられた状態で組織される。   In FIG. 1B, for the sake of illustration, the penetrating yarns 14a and 14b are drawn so as to be folded back in the same plane, but they are not actually arranged in the same plane, and penetrate the paper surface. It is arranged in a state extending in the direction. Further, the core yarn 12 and the penetrating yarns 14a and 14b form a three-dimensional braiding 11 in a state where the filaments constituting the fiber bundle are expanded and the fiber bundle is flat. For example, the fiber bundle is organized in a state where the width is expanded to about 10 mm.

三次元ブレイディング11は、マトリックス樹脂として熱硬化性樹脂を用いた繊維強化複合材料の強化繊維として使用される。熱硬化性樹脂としては、例えば、エポキシ樹脂が使用される。   The three-dimensional braiding 11 is used as a reinforcing fiber of a fiber-reinforced composite material using a thermosetting resin as a matrix resin. For example, an epoxy resin is used as the thermosetting resin.

三次元ブレイディング11は、三次元ブレイディング装置(三次元ブレーダ)を用いて組織される。例えば、形成すべき三次元ブレイディング11の中空部の形状を有し、複数に分割可能なマンドレルを使用して、マンドレルの外側に芯糸12及び貫通糸14a,14bを巻きつける状態で組紐組織を形成することにより三次元ブレイディング11がマンドレルの周囲に形成される(三次元ブレイディング形成工程)。三次元ブレイディング11が所定の長さに形成された後、三次元ブレイディング11はマンドレルと共に三次元ブレーダから取り外される。そして、三次元ブレイディング11の内側からマンドレルが除去される(マンドレル除去工程)。その結果、三次元ブレイディング11が完成する。   The three-dimensional braiding 11 is organized using a three-dimensional braiding device (three-dimensional braider). For example, a braid structure in a state in which the core yarn 12 and the penetrating yarns 14a and 14b are wound around the outside of the mandrel using a mandrel that has a hollow portion shape of the three-dimensional braiding 11 to be formed and can be divided into a plurality of parts. The three-dimensional braiding 11 is formed around the mandrel by forming (three-dimensional braiding forming step). After the three-dimensional braiding 11 is formed to a predetermined length, the three-dimensional braiding 11 is removed from the three-dimensional braider together with the mandrel. And a mandrel is removed from the inner side of the three-dimensional braiding 11 (mandrel removal process). As a result, the three-dimensional braiding 11 is completed.

形成された三次元ブレイディング11に、樹脂含浸硬化工程において熱硬化性樹脂が含浸硬化されてエネルギー吸収部材となる繊維強化複合材料が形成される。樹脂の含浸硬化は、例えば、RTM(レジン・トランスファー・モールディング)法で行われる。   The formed three-dimensional braiding 11 is impregnated and cured with a thermosetting resin in a resin impregnation and curing step to form a fiber reinforced composite material that becomes an energy absorbing member. The resin is impregnated and cured by, for example, an RTM (resin transfer molding) method.

次に前記のように構成された繊維強化複合材料の作用を説明する。繊維強化複合材料は軸方向から衝撃荷重(圧縮荷重)を受け、過大な衝撃荷重を受けた際に破壊することによりエネルギーを吸収するクラッシュ部材として使用される。三次元ブレイディング11が、各芯糸層13の強度や芯糸層13間の剥離する強度に積極的に違いを設けずに形成されている場合、過大な衝撃荷重がクラッシュ部材に加わると、図6に示すように、クラッシュ部材の途中から屈曲して破断し、吸収エネルギーが小さくなるとともに、破壊モードが安定しない。   Next, the operation of the fiber-reinforced composite material configured as described above will be described. The fiber reinforced composite material receives an impact load (compression load) from the axial direction and is used as a crash member that absorbs energy by breaking when receiving an excessive impact load. When the three-dimensional braiding 11 is formed without positively changing the strength of each core yarn layer 13 and the strength of peeling between the core yarn layers 13, when an excessive impact load is applied to the crash member, As shown in FIG. 6, the crash member is bent and broken from the middle, the absorbed energy is reduced, and the fracture mode is not stable.

しかし、この実施形態の三次元ブレイディング11は、第2層と第3層の芯糸層13あるいは第3層と第4層の芯糸層13を貫通して折り返すように組織される貫通糸14aが他の貫通糸14a,14bより弱い繊維束で構成されている。隣り合う芯糸層13間の剥離する強度は、隣り合う芯糸層13を貫通して折り返す状態で存在する貫通糸14a,14bの強度に依存する。クラッシュ部材に圧縮荷重が作用すると、圧縮荷重は貫通糸14a,14bに対して引っ張り力として作用する。そして、第2層と第3層の芯糸層13あるいは第3層と第4層の芯糸層13を貫いて折り返す貫通糸14aが、図2(b)に矢印Yで示す部分において破断し易くなる。その結果、第2層と第3層の芯糸層13間あるいは第3層と第4層の芯糸層13間の剥離する強度が、他の部位の剥離する強度よりも相対的に弱くなる。   However, the three-dimensional braiding 11 of this embodiment is a thread that is structured to fold through the second and third core yarn layers 13 or the third and fourth core yarn layers 13. 14a is comprised by the fiber bundle weaker than the other penetration yarns 14a and 14b. The strength at which the adjacent core yarn layers 13 are peeled off depends on the strength of the penetrating yarns 14a and 14b that exist in a state of passing through the adjacent core yarn layers 13 and turning back. When a compressive load acts on the crash member, the compressive load acts as a tensile force on the penetrating threads 14a and 14b. Then, the penetrating yarn 14a that folds through the second and third core yarn layers 13 or the third and fourth core yarn layers 13 breaks at the portion indicated by the arrow Y in FIG. It becomes easy. As a result, the peel strength between the second and third core yarn layers 13 or between the third and fourth core yarn layers 13 is relatively weaker than the peel strength at other portions. .

そして、図2(a)に示すように、クラッシュ部材20に過大な衝撃荷重Fが加わると、クラッシュ部材20は、その端部において、芯糸層13間の剥離する強度が弱い部分にクラックが発生して、端部から肉厚方向に裂けるように曲がって逐次変形破壊する。第2層と第3層の芯糸層13間あるいは第3層と第4層の芯糸層13間の剥離する強度は完全には同じとはならず、弱い方が破壊の起点となり、クラッシュ部材20は、第2層と第3層の芯糸層13間あるいは第3層と第4層の芯糸層13間から破壊が開始されて進行する。その結果、クラッシュ部材20は、途中から屈曲して破断せずに、その端部から肉厚方向に裂けるように曲がって逐次変形破壊が進行するため、衝撃エネルギーが効率良く吸収されてエネルギー吸収量が多くなる。   As shown in FIG. 2 (a), when an excessive impact load F is applied to the crash member 20, the crash member 20 has cracks at the end portions where the strength between the core yarn layers 13 is weak. It is generated, bent so as to tear in the thickness direction from the end, and successively deformed and broken. The peel strength between the second and third core yarn layers 13 or between the third and fourth core yarn layers 13 is not completely the same. The member 20 starts to break from the second layer and the third core yarn layer 13 or between the third layer and the fourth core yarn layer 13 and proceeds. As a result, the crash member 20 does not bend and break from the middle, but is bent so as to tear in the thickness direction from its end portion, so that the progressive deformation fracture proceeds, so that the impact energy is efficiently absorbed and the energy absorption amount Will increase.

この実施形態によれば、以下に示す効果を得ることができる。
(1)三次元ブレイディング11は、軸方向に延びる芯糸12で形成された5層の芯糸層13と、芯糸層13を貫通するように組織される貫通糸14a,14bから筒状に形成されている。貫通糸は隣り合う芯糸層13を貫通して折り返すように組織される貫通糸14aと、最外層あるいは最内層の芯糸層13のみを貫通して折り返すように組織される貫通糸14bとを有し、最外層と最内層の間に設けられた芯糸層13のうちの選択された芯糸層13間の剥離する強度が他の芯糸層13間の剥離する強度よりも弱い。三次元ブレイディング11は、過大な衝撃荷重(圧縮荷重)Fが加わると破壊されて衝撃エネルギーを吸収するエネルギー吸収部材(クラッシュ部材20)として使用される繊維強化複合材料の強化繊維として使用され、かつ三次元ブレイディング11の軸方向から過大な衝撃荷重が加わる状態で使用される。このクラッシュ部材20は、過大な衝撃荷重Fが加わった際に、その端部において、芯糸層13間の剥離する強度が弱い部分から肉厚方向に裂けるように曲がって逐次変形破壊するため、衝撃エネルギーを効率良く吸収する。したがって、三次元ブレイディング11は、軽量で高いエネルギー吸収が可能で、安定破壊が可能なクラッシュ部材20に好適である。
According to this embodiment, the following effects can be obtained.
(1) The three-dimensional braiding 11 has a cylindrical shape from five core yarn layers 13 formed of core yarns 12 extending in the axial direction and penetrating yarns 14a and 14b organized so as to penetrate the core yarn layer 13. Is formed. The penetrating thread includes a penetrating thread 14a that is structured to fold through adjacent core thread layers 13 and a penetrating thread 14b that is structured to fold through only the outermost or innermost core thread layer 13. And the strength of peeling between selected core yarn layers 13 among the core yarn layers 13 provided between the outermost layer and the innermost layer is weaker than the strength of peeling between the other core yarn layers 13. The three-dimensional braiding 11 is used as a reinforcing fiber of a fiber-reinforced composite material that is used as an energy absorbing member (crash member 20) that is broken and absorbs impact energy when an excessive impact load (compression load) F is applied, And it is used in the state where an excessive impact load is applied from the axial direction of the three-dimensional braiding 11. When the crash member 20 is subjected to an excessive impact load F, at its end, the crush member 20 is bent so as to tear in the thickness direction from a portion where the strength between the core yarn layers 13 is weak. Absorbs impact energy efficiently. Therefore, the three-dimensional braiding 11 is suitable for the crash member 20 that is lightweight and capable of absorbing high energy and capable of stable destruction.

(2)三次元ブレイディング11は、選択された芯糸層13(第2層と第3層の芯糸層13及び第3層と第4層の芯糸層13)を貫通して折り返す貫通糸14aの強度が他の貫通糸14a,14bの強度より弱く形成されて、選択された芯糸層13間の剥離する強度が他の芯糸層13間の剥離する強度より弱く形成されている。したがって、貫通糸14aの繊維束を他の貫通糸14a,14bより強度の弱い繊維束に変更するだけで、目的の三次元ブレイディング11を形成することができる。   (2) The three-dimensional braiding 11 penetrates through the selected core yarn layers 13 (the second and third core yarn layers 13 and the third and fourth core yarn layers 13). The strength of the yarn 14 a is formed to be weaker than the strength of the other penetration yarns 14 a and 14 b, and the strength to peel between the selected core yarn layers 13 is weaker than the strength to peel between the other core yarn layers 13. . Therefore, the target three-dimensional braiding 11 can be formed simply by changing the fiber bundle of the penetrating yarn 14a to a fiber bundle having a lower strength than the other penetrating yarns 14a and 14b.

(3)三次元ブレイディング11は、芯糸12及び貫通糸14a,14bは全て同種の材質製で、選択された芯糸層13(第2層と第3層の芯糸層13及び第3層と第4層の芯糸層13)を貫通して折り返す貫通糸14aの太さが細く形成されている。したがって、芯糸12及び貫通糸14a,14bを全て同じ太さの糸(繊維束)で形成した場合に比べて、糸の本数が同じであれば、三次元ブレイディング11の軽量化及び薄肉化を図ることができる。   (3) In the three-dimensional braiding 11, the core yarn 12 and the penetrating yarns 14a and 14b are all made of the same kind of material, and the selected core yarn layer 13 (the second and third core yarn layers 13 and the third layer). The thickness of the penetrating thread 14a that folds through the layer and the fourth core thread layer 13) is thin. Therefore, as compared with the case where the core yarn 12 and the penetrating yarns 14a and 14b are all formed of the same thickness yarn (fiber bundle), if the number of yarns is the same, the three-dimensional braiding 11 is reduced in weight and thickness. Can be achieved.

(4)クラッシュ部材20を構成する繊維強化複合材料は、(1)〜(3)に記載された三次元ブレイディング11を強化繊維としている。したがって、(1)〜(3)に対応する効果を得ることができる。   (4) The fiber-reinforced composite material constituting the crash member 20 uses the three-dimensional braiding 11 described in (1) to (3) as reinforcing fibers. Therefore, effects corresponding to (1) to (3) can be obtained.

(5)繊維強化複合材料の製造方法は、三次元ブレイディング装置を使用してマンドレルの外側に、三次元ブレイディング11を形成する三次元ブレイディング形成工程と、形成された三次元ブレイディング11の内側からマンドレルを除去するマンドレル除去工程と、マンドレルが除去された三次元ブレイディング11に樹脂を含浸硬化させる樹脂含浸硬化工程とを備えている。したがって、三次元ブレイディング11は使用するマンドレルの形状に対応した形状に形成され、筒状の三次元ブレイディング11を容易に形成することができる。また、三次元ブレイディングは、樹脂含浸硬化工程において含浸硬化に用いる成形型の形状に対応した形状の繊維強化複合材料に形成することができる。   (5) A method for producing a fiber-reinforced composite material includes a three-dimensional braiding forming step of forming a three-dimensional braiding 11 on the outside of a mandrel using a three-dimensional braiding apparatus, and the formed three-dimensional braiding 11 A mandrel removing step for removing the mandrel from the inside of the substrate, and a resin impregnating and curing step for impregnating and curing the resin in the three-dimensional braiding 11 from which the mandrel has been removed. Therefore, the three-dimensional braiding 11 is formed in a shape corresponding to the shape of the mandrel to be used, and the cylindrical three-dimensional braiding 11 can be easily formed. The three-dimensional braiding can be formed into a fiber-reinforced composite material having a shape corresponding to the shape of the mold used for the impregnation and curing in the resin impregnation and curing step.

(6)三次元ブレイディング11を構成する芯糸12及び貫通糸14a,14bとして炭素繊維が使用されているため、同じ耐衝撃強度であれば軽量化を図ることができ、同じ重量であれば耐衝撃強度の向上を図ることができる。   (6) Since carbon fibers are used as the core yarn 12 and the penetrating yarns 14a and 14b constituting the three-dimensional braiding 11, the weight can be reduced with the same impact strength and the weight is the same. The impact strength can be improved.

実施形態は前記に限定されるものではなく、例えば次のように構成してもよい。
○ 三次元ブレイディング11は、芯糸層13が4層以上設けられていればよく、芯糸層13の数は奇数に限らず偶数であってもよい。例えば、図3に示すように、三次元ブレイディング11は芯糸層13を4層有する構成としてもよい。芯糸層13の数が偶数の場合、三次元ブレイディング11の肉厚方向の中央は、肉厚方向中央部の2層(この実施形態では第2層と第3層)の芯糸層13の間となる。肉厚方向中央部の2層の芯糸層13の間を貫いて折り返す貫通糸14aを、他の2層の芯糸層13(この実施形態では第1層と第4層)を貫いて折り返す貫通糸14aより弱くした場合、肉厚方向中央部の2層の芯糸層13間が剥離する強度は他の2層の芯糸層13間の剥離する強度より弱くなる。この場合、三次元ブレイディング11を強化繊維とした繊維強化複合材料で形成したクラッシュ部材20は、過大な衝撃荷重が加わった際に、常に肉厚方向中央部の2層である第2層と第3層の芯糸層13の間に対応する端部から肉厚方向に裂けるように曲がって逐次変形破壊するため、衝撃エネルギーを効率良く吸収する。一方、芯糸層13の数が奇数の場合では、三次元ブレイディング11の肉厚方向の中央は、クラッシュ部材20の肉厚方向中央の芯糸層13(芯糸層13が5層の場合は第3層)と肉厚方向中央の芯糸層13と隣り合う2層の芯糸層13間(芯糸層13が5層の場合は第2層と第4層)に対応する2箇所である。この場合に、肉厚方向の中央の芯糸層13を他の芯糸層よりも弱く形成した場合、肉厚方向の中央の芯糸層13及び肉厚方向中央の芯糸層13と隣り合う2層の芯糸層13間の2箇所が他の部分より破壊し易くなって、破壊が1箇所又は2箇所で進行するため、芯糸層13の数が奇数である方が破壊を安定して進行させることができる。
The embodiment is not limited to the above, and may be configured as follows, for example.
The three-dimensional braiding 11 only needs to have four or more core yarn layers 13, and the number of the core yarn layers 13 is not limited to an odd number and may be an even number. For example, as shown in FIG. 3, the three-dimensional braiding 11 may be configured to have four core yarn layers 13. When the number of the core yarn layers 13 is an even number, the center in the thickness direction of the three-dimensional braiding 11 is the core yarn layer 13 of two layers (the second layer and the third layer in this embodiment) at the center portion in the thickness direction. Between. The penetrating thread 14a that folds through between the two core thread layers 13 at the center in the thickness direction is folded back through the other two core thread layers 13 (the first layer and the fourth layer in this embodiment). When weaker than the penetrating thread 14a, the strength at which the two core yarn layers 13 in the central portion in the thickness direction peel is weaker than the strength at which the other two core yarn layers 13 peel. In this case, the crash member 20 formed of a fiber-reinforced composite material using the three-dimensional braiding 11 as a reinforcing fiber is always provided with a second layer that is two layers in the central portion in the thickness direction when an excessive impact load is applied. Since it bends so as to tear in the thickness direction from the corresponding end portion between the third core yarn layers 13, the impact energy is efficiently absorbed. On the other hand, when the number of the core yarn layers 13 is an odd number, the center in the thickness direction of the three-dimensional braiding 11 is the core yarn layer 13 in the center in the thickness direction of the crash member 20 (when the core yarn layers 13 are five layers). Is the third layer) and the two core yarn layers 13 adjacent to the core yarn layer 13 in the center in the thickness direction (the second layer and the fourth layer when the core yarn layer 13 is five layers). It is. In this case, when the core yarn layer 13 at the center in the thickness direction is formed weaker than the other core yarn layers, the core yarn layer 13 at the center in the thickness direction and the core yarn layer 13 at the center in the thickness direction are adjacent to each other. Two places between the two core yarn layers 13 are easier to break than other portions, and the breakage proceeds at one or two places. Therefore, the odd number of the core yarn layers 13 stabilizes the breakage. Can be advanced.

○ 三次元ブレイディング11は、最外層又は最内層の芯糸層13のみを貫通して折り返すように組織される貫通糸14bがない構成であってもよい。
○ 三次元ブレイディング11の芯糸層13の数が奇数の場合、全ての貫通糸14a,14bには同じ強度の糸(繊維束)を用い、肉厚方向中央の芯糸層13を他の芯糸層13の強度より弱く形成してもよい。例えば、図4に示すように、肉厚方向中央の芯糸層13(第3層の芯糸層13)を構成する芯糸12に他の芯糸層13を構成する芯糸12より細い糸(繊維束)を用いる。この場合、クラッシュ部材20に過大な衝撃荷重が加わった際、中央の芯糸層13を貫通して折り返す貫通糸14aの引っ張り力により、中央の芯糸層13の芯糸12が切断する。そのため、芯糸層13の数が奇数であっても、クラッシュ部材20は、過大な衝撃荷重が加わった際に、クラッシュ部材20の肉厚方向中央の芯糸層13と対応する端部から肉厚方向に裂けるように曲がって逐次変形破壊する。
The three-dimensional braiding 11 may have a configuration without penetrating yarns 14b structured so as to penetrate only the outermost layer or the innermost core yarn layer 13 and bend back.
○ When the number of the core yarn layers 13 of the three-dimensional braiding 11 is an odd number, the same strength yarn (fiber bundle) is used for all the penetrating yarns 14a and 14b, and the core yarn layer 13 at the center in the thickness direction is replaced with another core yarn layer 13 It may be formed weaker than the strength of the core yarn layer 13. For example, as shown in FIG. 4, the core yarn 12 constituting the core yarn layer 13 (third core yarn layer 13) at the center in the thickness direction is thinner than the core yarn 12 constituting the other core yarn layer 13. (Fiber bundle) is used. In this case, when an excessive impact load is applied to the crash member 20, the core yarn 12 of the central core yarn layer 13 is cut by the pulling force of the penetrating yarn 14 a that passes through the central core yarn layer 13 and turns back. Therefore, even if the number of the core yarn layers 13 is an odd number, the crush member 20 is formed from the end corresponding to the core yarn layer 13 at the center in the thickness direction of the crush member 20 when an excessive impact load is applied. It is bent so as to tear in the thickness direction, and is successively deformed and destroyed.

○ 芯糸12や貫通糸14a,14bを構成する繊維束は炭素繊維に限らない。例えば、ガラス繊維やセラミック繊維等の無機繊維、あるいは、アラミド繊維、ポリ−p−フェニレンベンゾビスオキサゾール繊維、超高分子量ポリエチレン繊維等の高強度の有機繊維等を使用してもよく、要求性能に応じて適宜選択される。例えば、クラッシュ部材20に対する剛性・強度の要求性能が高い場合は、炭素繊維が好ましい。繊維素材に安価なガラス繊維を用いると低コストとなる。   A fiber bundle constituting the core yarn 12 and the penetrating yarns 14a and 14b is not limited to carbon fiber. For example, inorganic fibers such as glass fibers and ceramic fibers, or high-strength organic fibers such as aramid fibers, poly-p-phenylenebenzobisoxazole fibers, and ultrahigh molecular weight polyethylene fibers may be used. It is selected as appropriate. For example, when the required performance of rigidity and strength for the crash member 20 is high, carbon fiber is preferable. If an inexpensive glass fiber is used for the fiber material, the cost is low.

○ 芯糸12や貫通糸14a,14bを構成する糸は、無撚りの繊維束に限らず、繊維に撚りを掛けられた糸であってもよい。
○ 芯糸12や隣り合う芯糸層13を貫通する貫通糸14aを構成する繊維束の強度を他の芯糸12や貫通糸14a,14bより弱くする構成は、繊維束を細くする方法に限らず、繊維束の材質や種類(無撚り糸、撚り糸、フィラメント糸、ステープル糸)を変える方法でもよい。
The yarn constituting the core yarn 12 and the penetrating yarns 14a and 14b is not limited to a non-twisted fiber bundle, and may be a yarn in which fibers are twisted.
○ The configuration in which the strength of the fiber bundle constituting the penetrating yarn 14a penetrating the core yarn 12 and the adjacent core yarn layer 13 is weaker than the other core yarns 12 and penetrating yarns 14a and 14b is limited to the method of thinning the fiber bundle. Alternatively, a method of changing the material and type (non-twisted yarn, twisted yarn, filament yarn, staple yarn) of the fiber bundle may be used.

○ 選択された芯糸層13間の剥離する強度を他の芯糸層13間の剥離する強度よりも弱くするための構成として、選択された隣り合う芯糸層13を貫通して折り返す貫通糸14aの数を少なくしてもよい。この場合、三次元ブレイディング11を製造する際に三次元ブレイディング装置にセットする貫通糸14aを減らすだけで、三次元ブレイディング11ひいては繊維強化複合材料の軽量化及びコスト低減を図ることができる。   ○ As a configuration for making the strength to peel between the selected core yarn layers 13 weaker than the strength to peel between the other core yarn layers 13, the penetrating yarn that folds back through the selected adjacent core yarn layers 13 The number of 14a may be reduced. In this case, it is possible to reduce the weight and cost of the three-dimensional braiding 11 and thus the fiber-reinforced composite material by simply reducing the number of penetrating yarns 14a set in the three-dimensional braiding device when the three-dimensional braiding 11 is manufactured. .

○ 選択された隣り合う芯糸層13を貫通して折り返す貫通糸14aの数を少なくする構成は、芯糸12及び貫通糸14a,14bとして全て同じ糸を使用する構成に限らない。例えば、選択された層の貫通糸14aが細くかつ本数が少ない構成や、選択された層の貫通糸14aが他の糸に比べて強度が弱い材質の糸でありかつ本数が少ない構成にしてもよい。   The configuration in which the number of penetrating yarns 14a that fold through the selected adjacent core yarn layers 13 is reduced is not limited to a configuration in which the same yarn is used as the core yarn 12 and the penetrating yarns 14a and 14b. For example, the penetration layer 14a of the selected layer is thin and has a small number, or the penetration layer 14a of the selected layer is a yarn made of a material having a lower strength than other yarns and has a small number. Good.

○ 三次元ブレイディング11は、肉厚方向の中央、即ち芯糸層13の数が偶数の場合は貫通糸14aの部分が弱く、芯糸層13の数が奇数の場合は中央の芯糸層13の部分が弱く形成されている構成に限らない。芯糸層13の数が多い三次元ブレイディング11の場合、肉厚方向の中央以外の部分を弱く形成してもよい。しかし、クラッシュ部材20は、過大な衝撃荷重を受けた場合、対称な状態で端部から逐次変形破壊が進行すると安定して衝撃エネルギーが効率良く吸収することができるため、あまり肉厚方向の中央から外れない部分が弱く形成されているのが好ましい。   The three-dimensional braiding 11 is the center in the thickness direction, that is, when the number of core yarn layers 13 is an even number, the portion of the penetrating thread 14a is weak, and when the number of core yarn layers 13 is an odd number, the center core yarn layer is It is not restricted to the structure in which 13 part is formed weakly. In the case of the three-dimensional braiding 11 having a large number of core yarn layers 13, a portion other than the center in the thickness direction may be weakly formed. However, when the crash member 20 receives an excessive impact load, the impact energy can be absorbed stably and stably when the successive deformation fracture proceeds from the end in a symmetrical state. It is preferable that the portion that does not come off is weakly formed.

○ 三次元ブレイディング11は、肉厚方向の中央又は最外層及び最内層の中間に設けられた芯糸層13のうちの選択された芯糸層間の剥離する強度が最も弱く、それより最外層及び最内層に向かって徐々に強度が増すように形成してもよい。この三次元ブレイディング11を強化繊維とした繊維強化複合材料をクラッシュ部材20として使用した場合、強度の変化を適切に設定することにより、クラッシュ部材20に過大な衝撃荷重が作用した際に、クラッシュ部材20をその端部から、より安定して逐次変形破壊が起こるようにすることができる。   ○ The three-dimensional braiding 11 has the weakest peel strength between selected core yarn layers among the core yarn layers 13 provided in the middle of the thickness direction or in the middle between the outermost layer and the innermost layer, and the outermost layer is more than that. And you may form so that intensity | strength may increase gradually toward the innermost layer. When a fiber reinforced composite material using the three-dimensional braiding 11 as a reinforcing fiber is used as the crash member 20, when an excessive impact load is applied to the crash member 20 by appropriately setting a change in strength, the crash occurs. The member 20 can be successively and stably deformed and destroyed from its end.

○ 三次元ブレイディング11は円筒状に限らず筒状であればよい。例えば、四角筒状、六角筒状等の多角筒状や楕円筒状にしたり、径が軸方向に変化する円筒状(円錐台状)や軸方向と直交する断面における断面積が一端から他端に向かって次第に小さくなる多角錘台状にしたりしてもよい。   The three-dimensional braiding 11 is not limited to a cylindrical shape, and may be a cylindrical shape. For example, the cross-sectional area in a polygonal cylinder shape such as a square cylinder shape or a hexagonal cylinder shape or an elliptical cylinder shape, a cylindrical shape whose diameter changes in the axial direction (conical truncated cone shape), or a cross section perpendicular to the axial direction is from one end to the other. It may be a polygonal frustum shape that gradually becomes smaller toward.

○ 繊維強化複合材料のマトリックス樹脂として使用される熱硬化性樹脂はエポキシ樹脂に限らず、ビニルエステル樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ポリイミド樹脂等の熱硬化性樹脂を使用してもよい。また、マトリックス樹脂として熱硬化性樹脂に限らず、ポリアミド、ポリブチレンテレフタレート、ポリカーボネート、ポリエチレン、ポリプロピレン、あるいはABS樹脂等の熱可塑性樹脂を使用してもよい。しかし、熱硬化性樹脂の方が、一般に、成形性に優れかつ耐薬品性や耐候性などに優れるため好ましい。   The thermosetting resin used as the matrix resin for the fiber reinforced composite material is not limited to an epoxy resin, and a thermosetting resin such as a vinyl ester resin, an unsaturated polyester resin, a phenol resin, or a polyimide resin may be used. The matrix resin is not limited to a thermosetting resin, and a thermoplastic resin such as polyamide, polybutylene terephthalate, polycarbonate, polyethylene, polypropylene, or ABS resin may be used. However, thermosetting resins are preferred because they are generally excellent in moldability and excellent in chemical resistance and weather resistance.

○ 三次元ブレイディング11を強化繊維として繊維強化複合材料を形成する場合、三次元ブレイディング11の形状を変更した後、樹脂を含浸硬化させてもよい。   When forming a fiber reinforced composite material using the three-dimensional braiding 11 as a reinforcing fiber, the resin may be impregnated and cured after changing the shape of the three-dimensional braiding 11.

11…三次元ブレイディング、12…芯糸、13…芯糸層、14a,14b…貫通糸。   11 ... three-dimensional braiding, 12 ... core yarn, 13 ... core yarn layer, 14a, 14b ... penetrating yarn.

Claims (7)

軸方向に延びる芯糸で形成された芯糸層と、前記芯糸層を貫通するように組織された貫通糸から筒状に形成された三次元ブレイディングであって、
前記芯糸層が4層以上設けられ、前記貫通糸は隣り合う2層の芯糸層を貫通して折り返すように組織されたものを有し、最外層の芯糸層と最内層の芯糸層との間に設けられた芯糸層のうちの選択された芯糸層の強度あるいは選択された隣り合う芯糸層間の剥離する強度が他の隣り合う芯糸層間の剥離する強度よりも弱いことを特徴とする三次元ブレイディング。
A core yarn layer formed of a core yarn extending in the axial direction, and a three-dimensional braid formed in a cylindrical shape from a penetrating yarn organized so as to penetrate the core yarn layer,
The core yarn layer is provided with four or more layers, and the penetrating yarn is structured so as to be folded back through two adjacent core yarn layers, the outermost core yarn layer and the innermost core yarn. The strength of the selected core yarn layer of the core yarn layers provided between the layers or the strength of peeling between selected adjacent core yarn layers is weaker than the strength of peeling between other adjacent core yarn layers Three-dimensional braiding characterized by that.
前記選択された芯糸層を貫通する貫通糸の強度が他の貫通糸の強度より弱く形成されている請求項1に記載の三次元ブレイディング。   2. The three-dimensional braiding according to claim 1, wherein the penetration yarn penetrating the selected core yarn layer is formed to be weaker than other penetration yarns. 前記三次元ブレイディングは、肉厚方向の中央が弱く形成されている請求項1又は請求項2に記載の三次元ブレイディング。   The three-dimensional braiding according to claim 1 or 2, wherein the three-dimensional braiding is formed with a weak center in the thickness direction. 前記芯糸及び前記貫通糸は全て同種の材質製で、前記選択された芯糸層を構成する芯糸又は前記選択された隣り合う芯糸層を貫通する貫通糸の太さが細く形成されている請求項1〜請求項3のいずれか1項に記載の三次元ブレイディング。   The core yarn and the penetrating yarn are all made of the same material, and the thickness of the core yarn constituting the selected core yarn layer or the penetrating yarn penetrating the selected adjacent core yarn layer is thin. The three-dimensional braiding according to any one of claims 1 to 3. 前記選択された芯糸層又は前記選択された隣り合う芯糸層を貫通して折り返す貫通糸の本数が他の芯糸層を貫通して折り返す貫通糸より少なくなっている請求項1又は請求項3に記載の三次元ブレイディング。   The number of penetrating yarns that fold back through the selected core yarn layer or the selected adjacent core yarn layers is smaller than penetrating yarns that fold back through other core yarn layers. 3. Three-dimensional braiding as described in 3. 請求項1〜請求項5のいずれか1項に記載の三次元ブレイディングを強化繊維としたことを特徴とする繊維強化複合材料。   A fiber-reinforced composite material comprising the three-dimensional braiding according to any one of claims 1 to 5 as a reinforcing fiber. 三次元ブレイディング装置を使用してマンドレルの外側に、請求項1〜請求項5のいずれか1項に記載の三次元ブレイディングを形成する三次元ブレイディング形成工程と、形成された三次元ブレイディングの内側から前記マンドレルを除去するマンドレル除去工程と、マンドレルが除去された三次元ブレイディングに樹脂を含浸硬化させる樹脂含浸硬化工程とを備えていることを特徴とする繊維強化複合材料の製造方法。   A three-dimensional braiding forming step for forming the three-dimensional braiding according to any one of claims 1 to 5 on the outside of the mandrel using the three-dimensional braiding device, and the formed three-dimensional braiding A method for producing a fiber-reinforced composite material, comprising: a mandrel removing step for removing the mandrel from the inside of the wrapping; and a resin impregnation curing step for impregnating and curing the resin in the three-dimensional braiding from which the mandrel has been removed. .
JP2009190313A 2009-08-19 2009-08-19 Three-dimensional braiding, fiber reinforced composite material, and method for producing fiber reinforced composite material Expired - Fee Related JP5381493B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009190313A JP5381493B2 (en) 2009-08-19 2009-08-19 Three-dimensional braiding, fiber reinforced composite material, and method for producing fiber reinforced composite material
PCT/JP2010/062193 WO2011021463A1 (en) 2009-08-19 2010-07-20 Three-dimensional braiding, fiber reinforced composite material, and method for producing fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009190313A JP5381493B2 (en) 2009-08-19 2009-08-19 Three-dimensional braiding, fiber reinforced composite material, and method for producing fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JP2011042887A true JP2011042887A (en) 2011-03-03
JP5381493B2 JP5381493B2 (en) 2014-01-08

Family

ID=43606918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009190313A Expired - Fee Related JP5381493B2 (en) 2009-08-19 2009-08-19 Three-dimensional braiding, fiber reinforced composite material, and method for producing fiber reinforced composite material

Country Status (2)

Country Link
JP (1) JP5381493B2 (en)
WO (1) WO2011021463A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053405A (en) * 2014-09-04 2016-04-14 株式会社豊田自動織機 Energy absorption member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105094057B (en) * 2015-08-07 2017-11-14 浙江理工大学 A kind of quick forming method based on annular weaving

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138856A (en) * 1993-11-10 1995-05-30 Murata Mach Ltd Braiding method
JP2001310393A (en) * 2000-04-28 2001-11-06 Arisawa Mfg Co Ltd Method for producing fabric for frp and method for producing prepreg for frp
JP2004353134A (en) * 2003-05-30 2004-12-16 Murata Mach Ltd Braiding composition base made of broad yarn and method for producing the same
JP2007076312A (en) * 2005-09-16 2007-03-29 Murata Mach Ltd Braided frp pipe having impact energy absorption propety
JP2009107408A (en) * 2007-10-26 2009-05-21 Toyota Industries Corp Crash box and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138856A (en) * 1993-11-10 1995-05-30 Murata Mach Ltd Braiding method
JP2001310393A (en) * 2000-04-28 2001-11-06 Arisawa Mfg Co Ltd Method for producing fabric for frp and method for producing prepreg for frp
JP2004353134A (en) * 2003-05-30 2004-12-16 Murata Mach Ltd Braiding composition base made of broad yarn and method for producing the same
JP2007076312A (en) * 2005-09-16 2007-03-29 Murata Mach Ltd Braided frp pipe having impact energy absorption propety
JP2009107408A (en) * 2007-10-26 2009-05-21 Toyota Industries Corp Crash box and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053405A (en) * 2014-09-04 2016-04-14 株式会社豊田自動織機 Energy absorption member

Also Published As

Publication number Publication date
WO2011021463A1 (en) 2011-02-24
JP5381493B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
US9840792B2 (en) Minimal weight composites using open structure
ES2647862T3 (en) Composite materials reinforced with steel fiber
JP2000014843A (en) Golf club shaft
WO2011039828A1 (en) Fabric for fiber-reinforced composite material, process for producing same, structure constituted of fiber-reinforced composite material, and process for producing same
JP5381493B2 (en) Three-dimensional braiding, fiber reinforced composite material, and method for producing fiber reinforced composite material
JP4701439B2 (en) Sutured braid FRP pipe with impact energy absorption performance
JP4790848B2 (en) Golf club shaft and golf club using the same
JP6751837B2 (en) Manufacturing method of fiber reinforced resin structure
JP2015175430A (en) Resin shock absorption member
EP3190307B1 (en) Energy-absorbing member
KR20230131473A (en) Composites and Structures
JP2009107408A (en) Crash box and method of manufacturing the same
JP2010220748A (en) Seat frame and method for manufacturing the seat frame
US20150165708A1 (en) Reinforcing pin for a laminated composite structure and related methods
WO2012014613A1 (en) Fiber substrate and fiber-reinforced composite material
JP4623565B2 (en) Enclosure for drawer
JP5248661B2 (en) Golf club shaft and golf club using the same
JP4133840B2 (en) Energy absorber
WO2012014605A1 (en) Fiber substrate and fiber-reinforced composite material
JP2007064389A (en) Coil spring made of fiber-reinforced resin, and its manufacturing method
JP6790967B2 (en) Fiber structure and fiber reinforced composite
JP6295939B2 (en) Energy absorbing member
KR20220142051A (en) Impact beam, impact beam manufacturing apparatus and manufacturing method using the same
JP6715875B2 (en) blade
JPH0984495A (en) Inwardly threaded fishing rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R151 Written notification of patent or utility model registration

Ref document number: 5381493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees