JP2011042840A - Method for producing bolt, and bolt - Google Patents

Method for producing bolt, and bolt Download PDF

Info

Publication number
JP2011042840A
JP2011042840A JP2009192497A JP2009192497A JP2011042840A JP 2011042840 A JP2011042840 A JP 2011042840A JP 2009192497 A JP2009192497 A JP 2009192497A JP 2009192497 A JP2009192497 A JP 2009192497A JP 2011042840 A JP2011042840 A JP 2011042840A
Authority
JP
Japan
Prior art keywords
bolt
powder metal
powder
stirring
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009192497A
Other languages
Japanese (ja)
Inventor
Yoshinori Katayama
義紀 片山
Yoshiaki Saito
善章 斉藤
Yumiko Abe
由美子 阿部
Masashi Takahashi
雅士 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009192497A priority Critical patent/JP2011042840A/en
Publication of JP2011042840A publication Critical patent/JP2011042840A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a bolt which is excellent in strength, corrosion resistance and emission resistance compared with those of the conventional one, by using a friction stirring technique being a non-melting process, and to provide the bolt. <P>SOLUTION: Powder metal 2 is filled into a bolt-shaped die 1, the powder metal 2 in the bolt-shaped die 1 is subjected to friction stirring using a stirring tool 3, and, by friction heat generated by the friction stirring and the flowing of the powder metal, the powder metal is solid-phase molded into a bolt shape. Alternatively, powder metal 12 is filled into a vessel 11, the powder metal 12 in the vessel 11 is subjected to friction stirring using a stirring tool 13, and, by the friction heat generated by the friction stirring and the flowing of the powder metal 12, a solid phase molding material is produced, pressure is applied to the solid phase molding material from the upper part, and the compressed solid phase molding material is moved to a bolt-shaped die 15 installed in the lower part and is molded into a bolt shape. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ボルトの製造方法及びボルトに係り、特に原子炉等のエネルギー機器に使用可能なボルトの製造方法及びボルトに関する。   The present invention relates to a bolt manufacturing method and a bolt, and more particularly to a bolt manufacturing method and a bolt that can be used for energy equipment such as a nuclear reactor.

近年のエネルギー機器は、高温化、コンパクト化、長寿命化(メンテナンスフリ−)等が不可欠になっており、従来の単一材料では対応が困難または材料コストの大幅な上昇が予想される。そのため、複合材料や表面改質などによる材料機能向上が期待されている。中でも摩擦攪拌技術は、アルミニウムを中心に接合技術として実用化が盛んであるが、結晶粒が微細化する現象などを用いることにより新機能材料としての開発要素も多いと考えられる。   In recent years, high temperature, compactness, long life (maintenance-free), etc. are indispensable for energy devices in recent years, and it is difficult to cope with conventional single materials or a significant increase in material cost is expected. Therefore, improvement of material functions by composite materials and surface modification is expected. In particular, the friction stirrer technique is actively used as a joining technique centering on aluminum, but it is thought that there are many development factors as a new functional material by using the phenomenon that crystal grains become finer.

摩擦攪拌を利用した技術としては、結晶粒の微細化、表面改質、成型性向上、マイクロフォーミングなどが挙げられる。これらの摩擦攪拌を利用した技術は、固相プロセスである、比較的厚い層の創成・改質が可能、基材の希釈がない、自動化が容易、環境にやさしい、等の特徴がある。   Techniques using friction stirring include crystal grain refinement, surface modification, moldability improvement, microforming, and the like. These techniques using friction stirrer are characteristics of solid phase process, such as creation and modification of relatively thick layers, no dilution of base materials, easy automation, and environmental friendliness.

摩擦攪拌を利用した具体的な技術としては、例えば、強化粉末材料を供給しつつ接合工具を回転させながら突き合わせ部に沿って移動させることにより、摩擦撹拌接合する技術が知られている(例えば、特許文献1参照。)。   As a specific technique using friction agitation, for example, a technique for friction agitation welding by moving the joining tool while rotating the joining tool while supplying the reinforcing powder material is known (for example, (See Patent Document 1).

また、摩擦攪拌を利用して微細結晶粒材料を得る技術としては、例えば、対向して設けられた一対の成形工具の間に金属粉末を充填し、成形工具を押圧しつつ回転させることによって金属粉末を成形固化し、薄い円盤状の微細結晶粒材料を得る技術が知られている。   Further, as a technique for obtaining a fine crystal grain material using friction stirring, for example, a metal powder is filled between a pair of forming tools provided opposite to each other, and the metal is formed by rotating the forming tool while pressing it. A technique is known in which powder is formed and solidified to obtain a thin disc-shaped fine crystal grain material.

また、上記技術では、薄い円盤状の微細結晶粒材料しか得られないため、円筒状の粉末充填容器内に所定量の微粉物質を充填した後、充填容器内の微粉物質を棒状の撹拌工具により圧縮しつつ撹拌して固化成形し、ある程度厚みのある円柱状等の微細結晶粒材料を得る技術が知られている(例えば、特許文献1参照。)。   Further, in the above technique, only a thin disk-shaped fine crystal grain material can be obtained. Therefore, after filling a predetermined amount of fine powder substance in a cylindrical powder filling container, the fine powder substance in the filling container is removed by a rod-shaped stirring tool. There is known a technique for solidifying and forming by stirring while compressing to obtain a columnar or other fine crystal grain material having a certain thickness (see, for example, Patent Document 1).

特開2005−81427号公報JP 2005-81427 A 特開2007−70693号公報JP 2007-70693 A

エネルギー機器等に使用される構造物のうちボルトは、強度、耐食性に加えて原子炉などでは耐照射性等の高機能を要求されることが多い。このため、上述した摩擦攪拌を利用した微細化材は、エネルギー機器等に使用されるボルトに要求される機能を満たす解決策の一つと考えられる。   Of the structures used for energy equipment and the like, bolts are often required to have high functions such as irradiation resistance in a nuclear reactor in addition to strength and corrosion resistance. For this reason, the above-mentioned refined material using friction stirring is considered to be one of the solutions that satisfy the functions required for bolts used in energy devices and the like.

しかしながら、摩擦攪拌を利用して微細結晶粒材料を製造する技術では、薄い円盤状の板材か、ある程度厚みがあっても小型の円柱状の材料等しか製造することはできず、大型の構造材を得ることが困難である。このため、摩擦攪拌を利用した微細結晶粒材料を、エネルギー機器等に使用される比較的大きなボルト等に適用することは困難であるという問題があった。   However, in the technology for producing fine crystal grain material using friction stirring, only a thin disk-like plate material or a small cylindrical material can be produced even if it has a certain thickness. Is difficult to get. For this reason, there is a problem that it is difficult to apply a fine crystal grain material using friction stirring to a relatively large bolt or the like used in an energy device or the like.

本発明は上述した課題を解決するためになされたものであり、非溶融プロセスである摩擦攪拌技術を用い、従来に比べて強度、耐食性及び耐照射性に優れたボルトを製造することのできるボルト製造方法及びボルトを提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and is a bolt capable of producing a bolt excellent in strength, corrosion resistance, and irradiation resistance as compared with the prior art by using a friction stir technique that is a non-melting process. It aims at providing a manufacturing method and a bolt.

本発明に係るボルト製造方法の一態様は、ボルト形状の型の中に粉末金属を充填し、攪拌ツールを用いて前記ボルト形状の型の中の前記粉末金属の摩擦攪拌を行い、摩擦攪拌によって発生した摩擦熱と前記粉末金属の流動により、前記粉末金属をボルト形状に固相成型することを特徴とする。   In one aspect of the bolt manufacturing method according to the present invention, powder metal is filled in a bolt-shaped mold, and the powder metal in the bolt-shaped mold is frictionally stirred using a stirring tool. The powder metal is solid-phase formed into a bolt shape by the generated frictional heat and the flow of the powder metal.

本発明に係るボルト製造方法の他の態様は、容器内に粉末金属を充填し、攪拌ツールを用いて前記容器内の前記粉末金属の摩擦攪拌を行い、摩擦攪拌によって発生した摩擦熱と前記粉末金属の流動により生成した固相成型材料に上部から圧力を負荷し、下部に設置したボルト形状の型へ圧縮された前記固相成型材料を移動させてボルト形状に成型することを特徴とする。   In another aspect of the bolt manufacturing method according to the present invention, a powder metal is filled in a container, the powder metal in the container is frictionally stirred using a stirring tool, and the frictional heat generated by the friction stirring and the powder The solid-phase molding material generated by the flow of metal is loaded with pressure from above, and the solid-phase molding material compressed into a bolt-shaped mold installed at the bottom is moved to be molded into a bolt shape.

本発明によれば、非溶融プロセスである摩擦攪拌技術を用い、従来に比べて強度、耐食性及び耐照射性に優れたボルトを製造することのできるボルト製造方法及びボルトを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the bolt manufacturing method and bolt which can manufacture the bolt excellent in intensity | strength, corrosion resistance, and irradiation resistance compared with the past using the friction stirring technique which is a non-melting process can be provided.

本発明の第1実施形態に係るボルト製造方法を模式的に示す図。The figure which shows typically the bolt manufacturing method which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るボルト製造方法を模式的に示す図。The figure which shows typically the bolt manufacturing method which concerns on 2nd Embodiment of this invention.

以下、本発明のボルト製造方法の詳細を、図面を参照して実施形態について説明する。   Hereinafter, the details of the bolt manufacturing method of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は、本発明の第1実施形態に係るボルト製造方法を模式的に示した図である。第1実施形態では、図1に示すようにボルト形状の型1内に粉末金属2を充填する。この粉末金属2としては、例えば、アルミニウム系、銅系、鉄系等の粉末金属を用いることができる。
(First embodiment)
FIG. 1 is a view schematically showing a bolt manufacturing method according to the first embodiment of the present invention. In the first embodiment, a powder metal 2 is filled in a bolt-shaped mold 1 as shown in FIG. As this powder metal 2, powder metals, such as aluminum type, copper type, and iron type, can be used, for example.

次に、高硬度材料から成る棒状の攪拌ツール3を用い、ボルト形状の型1内の粉末金属2に攪拌ツール3で圧力を負荷しつつ撹拌することによって摩擦攪拌を行い、摩擦攪拌によって発生する摩擦熱と粉末金属2の流動により、粉末金属2をボルト形状に固相成型する。   Next, using a rod-like stirring tool 3 made of a high hardness material, friction stirring is performed by stirring the powder metal 2 in the bolt-shaped mold 1 while applying pressure with the stirring tool 3, and is generated by friction stirring. The powder metal 2 is solid-phase molded into a bolt shape by the frictional heat and the flow of the powder metal 2.

上記のように、摩擦攪拌を利用して成型されたボルト形状の成型体は、通常の摩擦攪拌技術によって得られる微細な結晶組織を有しており、強度、耐食性、耐照射特性などに優れている。   As described above, a bolt-shaped molded body molded using friction stirring has a fine crystal structure obtained by a normal friction stirring technique, and is excellent in strength, corrosion resistance, irradiation resistance characteristics, and the like. Yes.

ここで、例えば沸騰水型原子炉や加圧水型原子炉に使用されている炉内構造物としての締結部材に使用されるボルトは、放射線の照射により脆化することが危惧されている。したがって、本実施形態のように、摩擦攪拌を利用して成型され、微細な結晶組織を有するボルトを、沸騰水型原子炉や加圧水型原子炉の炉内構造物としての締結部材として使用すれば、放射線の照射による脆化を抑制することができ、かつ、必要とされる耐食性及び強度を確保することができる。   Here, for example, a bolt used for a fastening member as a reactor internal structure used in a boiling water reactor or a pressurized water reactor is feared to be embrittled by irradiation of radiation. Therefore, as in this embodiment, if a bolt formed using frictional stirring and having a fine crystal structure is used as a fastening member as a reactor internal structure of a boiling water reactor or a pressurized water reactor, Further, embrittlement due to irradiation of radiation can be suppressed, and necessary corrosion resistance and strength can be ensured.

また、必要に応じて、粉末金属2に添加元素を添加することにより、ボルトの機能向上を図ることができる。この場合、ボルト形状の型1内に、粉末金属2と粉末添加元素4とを混合して充填し、高硬度材料から成る攪拌ツール3を用いてボルト形状の型1内の粉末金属2と粉末添加元素4を摩擦攪拌する。これによって、摩擦攪拌によって発生する摩擦熱と粉末金属2及び粉末添加元素4の流動により、金属中に添加元素が分散した分散型複合材料からなるボルトを製造することができる。例えば、クロムは一般的に耐食性を向上させる元素であることから、粉末添加元素4としてクロムを用いると耐食性の高いボルトを製造することができる。   Moreover, the function of a volt | bolt can be aimed at by adding an additional element to the powder metal 2 as needed. In this case, the powder metal 2 and the powder additive element 4 are mixed and filled in the bolt-shaped mold 1, and the powder metal 2 and the powder in the bolt-shaped mold 1 are mixed using a stirring tool 3 made of a high hardness material. The additive element 4 is frictionally stirred. Thus, a bolt made of a dispersed composite material in which the additive element is dispersed in the metal can be manufactured by frictional heat generated by frictional stirring and the flow of the powder metal 2 and the powder additive element 4. For example, since chromium is an element that generally improves corrosion resistance, a bolt having high corrosion resistance can be manufactured by using chromium as the powder additive element 4.

さらに、微細な結晶粒径を有するオーステナイト系ステンレス鋼を製造する場合についても当該成分の微細な組材を添加元素として加入することによって、熱処理をせずに平均結晶粒径を微細な組織として成形することができる。   In addition, when manufacturing austenitic stainless steel with fine crystal grain size, the average crystal grain size is formed as a fine structure without heat treatment by adding a fine assemblage of the component as an additive element. can do.

さらにまた、一般的に材料中に酸化物を含有させると、高温強度を高めることができる。このため、ボルト形状の型1内に、粉末金属2と粉末酸化物5とを混合して充填し、高硬度材料から成る攪拌ツール3を用いてボルト形状の型1内の粉末金属2と粉末酸化物5を摩擦攪拌する。これによって、摩擦攪拌によって発生する摩擦熱と粉末金属2及び粉末酸化物5の流動により、金属中に酸化物が分散した分散型複合材料からなるボルトを製造することができる。このようにして製造したボルトは、高温で使用されるエネルギー機器において優れた高温特性を示す。粉末酸化物5としては、例えば、イットリア、チタニア、アルミナ等を用いることができる。   Furthermore, when an oxide is generally contained in the material, the high temperature strength can be increased. For this reason, the powder metal 2 and the powder oxide 5 are mixed and filled in the bolt-shaped mold 1, and the powder metal 2 and the powder in the bolt-shaped mold 1 are mixed using a stirring tool 3 made of a high hardness material. The oxide 5 is frictionally stirred. Accordingly, a bolt made of a dispersed composite material in which an oxide is dispersed in a metal can be manufactured by frictional heat generated by frictional stirring and the flow of the powder metal 2 and the powder oxide 5. The bolt manufactured in this way exhibits excellent high temperature characteristics in energy equipment used at high temperatures. As the powder oxide 5, for example, yttria, titania, alumina or the like can be used.

(第2実施形態)
次に、図2を参照して本発明の第2実施形態について説明する。本実施形態では、図2に示すように容器11内に粉末金属12を充填し、高硬度材料から成る攪拌ツール13を用いて容器11内の粉末金属12の摩擦攪拌を行う。そして、摩擦攪拌により生成した固相成型材料14に上部から圧力を負荷し、容器11の下部に設置したボルト形状の型15に圧縮された固相成型材料14を移動させ、ボルト形状に固相成型する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. In the present embodiment, as shown in FIG. 2, the powder metal 12 is filled in the container 11, and the powder metal 12 in the container 11 is frictionally stirred using the stirring tool 13 made of a high hardness material. Then, pressure is applied to the solid-phase molding material 14 generated by friction stirring from above, and the compressed solid-phase molding material 14 is moved to a bolt-shaped mold 15 installed at the bottom of the container 11 so that the solid-phase molding material 14 is transformed into a bolt shape. Mold.

上記工程によって製造されたたボルトは、通常の摩擦攪拌技術によって得られる微細な結晶組織を有しており、強度、耐食性、耐照射性等に優れている。なお、本第2実施形態においても、前述した第1実施形態の場合と同様に、必要に応じて、粉末金属12中に、粉末添加元素、粉末酸化物等を添加して耐食性の向上や、高温特性の向上を図ることができる。   The bolt manufactured by the above process has a fine crystal structure obtained by a normal friction stirring technique, and is excellent in strength, corrosion resistance, irradiation resistance, and the like. Also in the second embodiment, as in the case of the first embodiment described above, if necessary, the powder metal 12 may be added with a powder additive element, a powder oxide, etc. to improve corrosion resistance, High temperature characteristics can be improved.

1……ボルト形状の型、2……粉末金属、3……攪拌ツール、4……粉末添加元素、5……粉末酸化物、11……容器、12……粉末金属、13……攪拌ツール、14……固相成型材料、15……ボルト形状の型。   DESCRIPTION OF SYMBOLS 1 ... Bolt-shaped type | mold, 2 ... Powder metal, 3 ... Agitation tool, 4 ... Powder addition element, 5 ... Powder oxide, 11 ... Container, 12 ... Powder metal, 13 ... Agitation tool , 14 ... Solid phase molding material, 15 ... Bolt-shaped mold.

Claims (6)

ボルト形状の型の中に粉末金属を充填し、攪拌ツールを用いて前記ボルト形状の型の中の前記粉末金属の摩擦攪拌を行い、摩擦攪拌によって発生した摩擦熱と前記粉末金属の流動により、前記粉末金属をボルト形状に固相成型することを特徴とするボルトの製造方法。   Filling a bolt-shaped mold with powder metal, using a stirring tool, friction stirring of the powder metal in the bolt-shaped mold, by frictional heat generated by friction stirring and the flow of the powder metal, A method of manufacturing a bolt, wherein the powder metal is solid-phase molded into a bolt shape. 請求項1記載のボルトの製造方法において、
特定の機能向上のために、前記粉末金属に粉末添加元素を入れて摩擦攪拌を行い、前記粉末金属と前記粉末添加元素を複合化させたことを特徴とするボルトの製造方法。
In the manufacturing method of the volt | bolt of Claim 1,
In order to improve a specific function, a method for producing a bolt, wherein a powder additive element is added to the powder metal and subjected to frictional stirring so that the powder metal and the powder additive element are combined.
請求項2記載のボルトの製造方法において、
耐食性を向上させるために、前記粉末添加元素としてクロムを使用したことを特徴とするボルトの製造方法。
In the bolt manufacturing method according to claim 2,
In order to improve corrosion resistance, the manufacturing method of the volt | bolt characterized by using chromium as said powder addition element.
請求項1記載のボルトの製造方法において、
高温強度を向上させるために、前記粉末金属に粉末酸化物を入れて摩擦攪拌を行い、前記粉末金属と前記粉末酸化物を複合化させたことを特徴とするボルトの製造方法。
In the manufacturing method of the volt | bolt of Claim 1,
In order to improve high temperature strength, the powder metal was put into the said powder metal, and friction stirring was performed, and the said powder metal and the said powder oxide were compounded, The manufacturing method of the volt | bolt characterized by the above-mentioned.
容器内に粉末金属を充填し、攪拌ツールを用いて前記容器内の前記粉末金属の摩擦攪拌を行い、摩擦攪拌によって発生した摩擦熱と前記粉末金属の流動により生成した固相成型材料に上部から圧力を負荷し、下部に設置したボルト形状の型へ圧縮された前記固相成型材料を移動させてボルト形状に成型することを特徴とするボルトの製造方法。   Fill the container with powder metal, perform friction stirring of the powder metal in the container using a stirring tool, and from above the solid-state molding material generated by frictional heat generated by friction stirring and the flow of the powder metal A method for manufacturing a bolt, comprising applying a pressure and moving the compressed solid-phase molding material to a bolt-shaped mold installed at a lower portion to form a bolt shape. エネルギー機器に使用されるボルトであって、請求項1〜5のいずれか1項記載のボルトの製造方法によって製造されたことを特徴とするボルト。   It is a volt | bolt used for energy equipment, Comprising: The volt | bolt manufactured by the manufacturing method of the volt | bolt of any one of Claims 1-5.
JP2009192497A 2009-08-21 2009-08-21 Method for producing bolt, and bolt Withdrawn JP2011042840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009192497A JP2011042840A (en) 2009-08-21 2009-08-21 Method for producing bolt, and bolt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009192497A JP2011042840A (en) 2009-08-21 2009-08-21 Method for producing bolt, and bolt

Publications (1)

Publication Number Publication Date
JP2011042840A true JP2011042840A (en) 2011-03-03

Family

ID=43830466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009192497A Withdrawn JP2011042840A (en) 2009-08-21 2009-08-21 Method for producing bolt, and bolt

Country Status (1)

Country Link
JP (1) JP2011042840A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251573A (en) * 2011-05-31 2012-12-20 Hitachi Constr Mach Co Ltd Resin bearing and method for manufacturing the same
CN109128487A (en) * 2018-09-30 2019-01-04 同济大学 A kind of increasing material manufacturing method of the said magnetic powder material based on agitating friction weldering
KR102000187B1 (en) * 2019-01-10 2019-07-16 울산대학교 산학협력단 Frictional mechanical sintering apparatus and mathod
CN111168059A (en) * 2020-01-20 2020-05-19 哈尔滨工业大学 Deformation-driven solid-phase metallurgy device and method for preparing metal-matrix composite material by using same
US11198586B2 (en) 2019-07-03 2021-12-14 Otis Elevator Company Braking deceleration measurement of an elevator system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251573A (en) * 2011-05-31 2012-12-20 Hitachi Constr Mach Co Ltd Resin bearing and method for manufacturing the same
CN109128487A (en) * 2018-09-30 2019-01-04 同济大学 A kind of increasing material manufacturing method of the said magnetic powder material based on agitating friction weldering
KR102000187B1 (en) * 2019-01-10 2019-07-16 울산대학교 산학협력단 Frictional mechanical sintering apparatus and mathod
US11198586B2 (en) 2019-07-03 2021-12-14 Otis Elevator Company Braking deceleration measurement of an elevator system
CN111168059A (en) * 2020-01-20 2020-05-19 哈尔滨工业大学 Deformation-driven solid-phase metallurgy device and method for preparing metal-matrix composite material by using same

Similar Documents

Publication Publication Date Title
Bai et al. Effect of particle size distribution on powder packing and sintering in binder jetting additive manufacturing of metals
US20220009021A1 (en) System and method for additive manufacturing
JP2011042840A (en) Method for producing bolt, and bolt
Zhang et al. Influence of Ni content on microstructure of W–Ni alloy produced by selective laser melting
Bai et al. Effect of bimodal powder mixture on powder packing density and sintered density in binder jetting of metals
Neville et al. Composite metal foams processed through powder metallurgy
Dwivedi et al. Mechanical and metallurgical characterizations of AA2014/eggshells waste particulate metal matrix composite
Aversa et al. Microstructural and mechanical characterization of aluminum matrix composites produced by laser powder bed fusion
Bridges et al. Microstructure and mechanical properties of Ni nanoparticle-bonded Inconel 718
Zhang et al. Research on process and microstructure formation of W-Ni-Fe alloy fabricated by selective laser melting
CN104120297A (en) Cu-diamond based solid phase sintered body having excellent heat resistance, heat sink using the same, electronic device using the heat sink, and method for producing Cu-diamond based solid phase sintered body
Selvaraj et al. Contemporary progresses in ultrasonic welding of aluminum metal matrix composites
CN102892727B (en) High strenght diamond-SiC pressed compact and manufacture method thereof
Korium et al. Direct metal laser sintering of precious metals for jewelry applications: process parameter selection and microstructure analysis
Babalola et al. The fabrication and characterization of spark plasma sintered nickel based binary alloy at different heating rate
Thakur et al. Enhancing uniform, nonuniform, and total failure strain of aluminum by using SiC at nanolength scale
CN106141422A (en) A kind of method improving heat treatment reinforcement Aluminum Alloy Friction Stir Welding head surface corrosion resistance
Abd El Aal Recycling of Al chips and Al chips composites using high-pressure torsion
Modi Effect of Nickel Particle Sizes on Electrically Activated Reaction Syntheisis (EARS) of 3Ni-Al-CNT Composite
Ertürk et al. Fabricating of steel/cast iron composite by casting route
Jayalakshmi et al. Synthesis of light metal nanocomposites: challenges and opportunities
Sharma et al. Friction sintering of brass powder
Sun et al. Composite fabrication in cast Al A206 via friction stir processing
CN100370605C (en) Heat sink for heat pipe
Jha et al. Development processes of cost effective aluminium metal matrix composite-A review

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120614

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121106