JP2011039014A - Battery inspection device - Google Patents

Battery inspection device Download PDF

Info

Publication number
JP2011039014A
JP2011039014A JP2009196002A JP2009196002A JP2011039014A JP 2011039014 A JP2011039014 A JP 2011039014A JP 2009196002 A JP2009196002 A JP 2009196002A JP 2009196002 A JP2009196002 A JP 2009196002A JP 2011039014 A JP2011039014 A JP 2011039014A
Authority
JP
Japan
Prior art keywords
electrode plate
battery
transmission image
radiation
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009196002A
Other languages
Japanese (ja)
Inventor
Kiyohide Tamaki
清英 玉木
Kiichiro Uyama
喜一郎 宇山
Masashi Motoyama
正史 本山
Masaharu Shinohara
正治 篠原
Doshu Aijima
道秋 相島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba IT and Control Systems Corp
Original Assignee
Toshiba IT and Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba IT and Control Systems Corp filed Critical Toshiba IT and Control Systems Corp
Priority to JP2009196002A priority Critical patent/JP2011039014A/en
Priority to KR1020100005978A priority patent/KR101121259B1/en
Priority to CN2010101200666A priority patent/CN101997135B/en
Publication of JP2011039014A publication Critical patent/JP2011039014A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery inspection device capable of inspecting the positional deviation of an electrode plate, even for a high-capacity stacked-type battery. <P>SOLUTION: The battery inspection device for inspecting positional deviation of an electrode plate of a battery 1, having a plurality of quadrangular electrode plates forming a layer, includes a positioning mechanism 4 for positioning the battery 1 so that the electrode plates lie along an X-ray beam 3 radiated from an X-ray tube 2; an X-ray detector 5 for detecting the X-ray beam 3 transmitted through the battery 1 and outputting it as a transmission image; and a data processing part 6 for taking and processing a first transmission image acquired by detecting an X-ray beam 3, transmitted in a direction along a surface of a first corner part of the electrode plates and tilted, with respect to the side, and a second transmission image acquired, by detecting an X-ray beam 3 transmitted in a direction along a surface of a second corner part of the electrode plates and tilted with respect to the side, detecting the positional deviation of the electrode plate and determining the quality. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、容器内に層状に正極板(正極の電極板)と負極板(負極の電極板)を交互に配置して成るスタック型の電池の正極板と負極板の位置ずれを検査する電池検査装置に関する。  The present invention relates to a battery for inspecting misalignment between a positive electrode plate and a negative electrode plate of a stack type battery in which a positive electrode plate (positive electrode plate) and a negative electrode plate (negative electrode plate) are alternately arranged in layers in a container. It relates to an inspection device.

近年、携帯電話などの機器の発達や電気自動車の実用化でリチウムイオン電池やニッケル水素電池などの二次電池の需要が拡大している。  In recent years, the demand for secondary batteries such as lithium ion batteries and nickel metal hydride batteries has been increasing due to the development of devices such as mobile phones and the practical use of electric vehicles.

特に、電解液をゲル状にしたリチウムイオンポリマー電池が液漏れし難く、また、エネルギー密度が高い、薄型にできるなどの理由で普及しはじめている。リチウムイオンポリマー電池は平面状の正極板と負極板をセパレータを介して何層も積み上げる構造(以下スタック型)になっている。  In particular, lithium ion polymer batteries in which the electrolytic solution is in the form of a gel are not easily leaking, are becoming popular because of high energy density and reduction in thickness. A lithium ion polymer battery has a structure in which a flat positive electrode plate and a negative electrode plate are stacked through a separator (hereinafter referred to as a stack type).

このリチウムイオンポリマー電池において、正極板が負極板よりはみ出していると、使用しているうちに、はみ出した正極板にリチウムが析出してショートし、発火することがある。そのため、正極板と負極板の位置を保ってずれが生じないようにすることが安全のため重要である。このずれは容器封印後に放射線透視をおこなって検査されている。  In this lithium ion polymer battery, if the positive electrode plate protrudes from the negative electrode plate, lithium may deposit on the protruded positive electrode plate to cause a short circuit and ignite during use. Therefore, it is important for safety to keep the positions of the positive electrode plate and the negative electrode plate so as not to be displaced. This deviation is inspected by radioscopy after the container is sealed.

このようなスタック型電池の放射線透視を行なう従来の電池検査装置としては特許文献1に記載の装置がある。  As a conventional battery inspection apparatus for performing radioscopy of such a stack type battery, there is an apparatus described in Patent Document 1.

図17は従来のスタック型電池の放射線透視による検査方法を示す模式図である。図17に示すように、まず、電池60の正極板61の長辺に沿ったAA方向に放射線を放射し、放射線検出器40で透過像を検出する。この放射線透過像を画像処理することで、長辺に沿って層ごとに正極板61と負極板62の位置が適正か判定する。次に、電池60の正極板61の短辺に沿ったBB方向に放射線を放射し、同様に、短辺に沿って層ごとに正極板61と負極板62の位置が適正か判定する。  FIG. 17 is a schematic view showing a conventional inspection method of a stack type battery by radioscopy. As shown in FIG. 17, first, radiation is emitted in the AA direction along the long side of the positive electrode plate 61 of the battery 60, and a transmission image is detected by the radiation detector 40. By performing image processing on this radiation transmission image, it is determined whether the positions of the positive electrode plate 61 and the negative electrode plate 62 are appropriate for each layer along the long side. Next, radiation is emitted in the BB direction along the short side of the positive electrode plate 61 of the battery 60. Similarly, it is determined whether the positions of the positive electrode plate 61 and the negative electrode plate 62 are appropriate for each layer along the short side.

特開2004−22206号公報JP 2004-22206 A

近年、スタック型のリチウムイオンポリマー電池は高容量化する傾向にある。高容量化することで、電極板の大きさは例えば一辺10cmないし30cmと大型化し、正極板と負極板の一組が成す層の厚さは例えば0.15mmと薄層化し、層数も例えば50と増大している(従来は5cm、0.3mm、10層程度)。  In recent years, stack-type lithium ion polymer batteries tend to have higher capacities. By increasing the capacity, the size of the electrode plate is increased to, for example, 10 cm to 30 cm on a side, the thickness of the layer formed by a pair of the positive electrode plate and the negative electrode plate is reduced to, for example, 0.15 mm, and the number of layers is also, for example, It has increased to 50 (conventionally 5cm, 0.3mm, 10 layers).

このため、従来のように電極板の一辺に沿った方向の透視を行うと、一辺が長くなり層も薄くなっているため、電極板の反りの影響で放射線が通りにくくなることで、放射線透過像は不鮮明になり、また電極板の透過像が重なり合ってさらに不鮮明になって検査ができなくなる問題がある。  For this reason, when performing fluoroscopy in the direction along one side of the electrode plate as in the past, the side becomes longer and the layer is thinner, so that radiation is difficult to pass through due to the warpage of the electrode plate. There is a problem that the image becomes unclear, and the transmission images of the electrode plates are overlapped to become further unclear and cannot be inspected.

本発明は、上記の問題を解決するためのものであり、その目的は、高容量のスタック型の電池であっても、電極板の位置ずれを検査できる電池検査装置を提供することにある。  The present invention is to solve the above-described problems, and an object of the present invention is to provide a battery inspection apparatus that can inspect the displacement of an electrode plate even in a high-capacity stack type battery.

上記の問題を解決するために請求項1記載の発明は、層をなす複数の四角形の電極板を有する電池の前記電極板の位置ずれを検査する電池検査装置であり、放射線源と、前記放射線源から放射される放射線ビームに前記電極板が沿うように前記電池を位置決めする位置決め手段と、前記電池を透過した前記放射線ビームを検出し透過像として出力する放射線検出器と、前記電極板の第一の角部分を面に沿ってかつ辺に対し傾斜した方向で透過した放射線ビームを検出した第一の透過像と、前記電極板の第二の角部分を面に沿ってかつ辺に対し傾斜した方向で透過した放射線ビームを検出した第二の透過像とを取込んで処理し、前記電極板の位置ずれを検出して良否を判定するデータ処理手段と、を有することを要旨とする。  In order to solve the above-mentioned problem, the invention described in claim 1 is a battery inspection apparatus for inspecting a positional deviation of the electrode plate of a battery having a plurality of rectangular electrode plates forming a layer, a radiation source, and the radiation Positioning means for positioning the battery so that the electrode plate follows a radiation beam emitted from a source; a radiation detector that detects the radiation beam that has passed through the battery; A first transmission image in which a radiation beam transmitted through a corner portion along a plane and in a direction inclined with respect to the side is detected, and a second corner portion of the electrode plate is inclined along the plane and with respect to the side. And a data processing unit that captures and processes the second transmitted image obtained by detecting the radiation beam transmitted in the above-described direction, and detects the positional deviation of the electrode plate to determine whether it is good or bad.

この構成で、電極板の2つの角部分それぞれを、面に沿ってかつ辺に対し傾斜した方向で透過像を撮影(検出と出力)するので、放射線ビームが電極板を透過する長さを短くして透過像を得ることができ、電極板の反りの影響で放射線が通りにくくなることや反りの影響で電極板の像が不鮮明になることを軽減でき、また、撮影した2つの透過像から、平行ずれの前提の下に電極板の位置ずれを検出し良否判定を行うことができ、高容量のスタック型の電池で電極板が大きく薄層であっても、透過像から電極板の位置ずれを検出することが可能となる。  With this configuration, a transmission image is taken (detected and output) at each of the two corners of the electrode plate along the plane and in a direction inclined with respect to the side, so that the length of transmission of the radiation beam through the electrode plate is shortened. Transmission images can be obtained, and it is possible to reduce the difficulty of passing radiation due to the warping of the electrode plate and the blurring of the image of the electrode plate due to the warping, and from the two transmitted images taken. It is possible to determine the quality by detecting the displacement of the electrode plate under the premise of parallel displacement, and even if the electrode plate is large and thin in a high capacity stack type battery, the position of the electrode plate from the transmission image A shift can be detected.

上記の問題を解決するために請求項2記載の発明は、層をなす複数の四角形の電極板を有する電池の前記電極板の位置ずれを検査する電池検査装置であり、放射線源と、前記放射線源から放射される放射線ビームに前記電極板が沿うように前記電池を位置決めする位置決め手段と、前記電池を透過した前記放射線ビームを検出し透過像として出力する放射線検出器と、前記電極板の第一の角部分を面に沿ってかつ辺に対し傾斜した2つの方向でそれぞれ透過した放射線ビームを検出した第一の透過像と第二の透過像とを取込んで処理し、前記電極板の位置ずれを検出して良否を判定するデータ処理手段と、を有することを要旨とする。  In order to solve the above-mentioned problem, the invention according to claim 2 is a battery inspection apparatus for inspecting misalignment of the electrode plate of a battery having a plurality of rectangular electrode plates forming a layer, a radiation source, and the radiation Positioning means for positioning the battery so that the electrode plate follows a radiation beam emitted from a source; a radiation detector that detects the radiation beam that has passed through the battery; A first transmission image and a second transmission image, each of which is obtained by detecting a radiation beam transmitted through one corner portion in two directions along the surface and inclined with respect to the side, are processed and processed. The gist of the invention is to have a data processing means for detecting misalignment and judging pass / fail.

この構成で、電極板の1つの角部分を、面に沿ってかつ辺に対し傾斜した2つの方向でそれぞれ透過像を撮影するので、放射線ビームが電極板を透過する長さを短くして透過像を得ることができ、電極板の反りの影響で放射線が通りにくくなることや反りの影響で電極板の像が不鮮明になることを軽減でき、また、撮影した2つの透過像から、平行ずれの前提の下に電極板の位置ずれを検出し良否判定を行うことができ、高容量のスタック型の電池で電極板が大きく薄層であっても、透過像から電極板の位置ずれを検出することができる。  With this configuration, transmission images are taken at one corner of the electrode plate in two directions along the surface and inclined with respect to the sides, so that the length of transmission of the radiation beam through the electrode plate is reduced. An image can be obtained, and it is possible to reduce the difficulty of passing radiation due to the warping of the electrode plate and the blurring of the image of the electrode plate due to the warping. It is possible to judge the quality by detecting the displacement of the electrode plate under the premise of, and detect the displacement of the electrode plate from the transmission image even if the electrode plate is large and thin with a high capacity stack type battery. can do.

上記の問題を解決するために請求項3記載の発明は、請求項2に記載の電池検査装置において、前記データ処理手段は、前記第一の透過像と前記第二の透過像に加え、前記電極板の第二の角部分を面に沿ってかつ辺に対し傾斜した2つの方向でそれぞれ透過した放射線ビームを検出した第三の透過像と第四の透過像とを取込んで処理し、前記電極板の位置ずれを検出して良否を判定することを要旨とする。  In order to solve the above problem, the invention according to claim 3 is the battery inspection apparatus according to claim 2, wherein the data processing means includes the first transmission image and the second transmission image, Capturing and processing a third transmission image and a fourth transmission image, each of which detects a radiation beam transmitted through the second corner portion of the electrode plate along the plane and in two directions inclined with respect to the side; The gist is to determine the quality by detecting the displacement of the electrode plate.

この構成で、電極板の2つの角部分それぞれを、面に沿ってかつ辺に対し傾斜した2つの方向でそれぞれ透過像を撮影するので、放射線ビームが電極板を透過する長さを短くして透過像を得ることができ、電極板の反りの影響で放射線が通りにくくなることや反りの影響で電極板の像が不鮮明になることを軽減でき、また、撮影した4つの透過像から、平行ずれおよび回転ずれの前提の下に電極板の位置ずれを検出し良否判定を行うので、高容量のスタック型の電池で電極板が大きく薄層であっても、透過像から電極板の位置ずれを検出することができる。  With this configuration, a transmission image is taken at each of the two corners of the electrode plate in two directions along the surface and inclined with respect to the side, so the length of transmission of the radiation beam through the electrode plate is shortened. A transmission image can be obtained, and it is possible to reduce the difficulty of passing radiation due to the warpage of the electrode plate and the blurring of the image of the electrode plate due to the warpage. The electrode plate position deviation is detected under the premise of displacement and rotation deviation, and the quality is judged. Therefore, even if the electrode plate is large and thin in a high capacity stack type battery, the electrode plate position deviation from the transmission image Can be detected.

上記の問題を解決するために請求項4記載の発明は、請求項2に記載の電池検査装置において、前記データ処理手段は、前記第一の透過像と前記第二の透過像に加え、前記電極板の第二の角部分を面に沿ってかつ辺に対し傾斜した方向で透過した放射線ビームを検出した第三の透過像を取込んで処理し、前記電極板の位置ずれを検出して良否を判定することを要旨とする。  In order to solve the above problem, according to a fourth aspect of the present invention, in the battery inspection apparatus according to the second aspect, the data processing means includes the first transmission image and the second transmission image, and Capture and process a third transmission image of the radiation beam transmitted through the second corner of the electrode plate along the surface and in a direction inclined with respect to the side, and detect the displacement of the electrode plate The gist is to judge pass / fail.

この構成で、電極板の1つの角部分を、面に沿ってかつ辺に対し傾斜した2つの方向でそれぞれ透過像を撮影し、また、他の角部分を面に沿ってかつ辺に対し傾斜した1つの方向で透過像を撮影するので、放射線ビームが電極板を透過する長さを短くして透過像を得ることができ、電極板の反りの影響で放射線が通りにくくなることや反りの影響で電極板の像が不鮮明になることを軽減でき、また、撮影した3つの透過像から、平行ずれおよび回転ずれの前提の下に電極板の位置ずれを検出し良否判定を行うので、高容量のスタック型の電池で電極板が大きく薄層であっても、透過像から電極板の位置ずれを検出することができる。  With this configuration, one corner of the electrode plate is photographed in each of two directions inclined along the surface and with respect to the side, and the other corner is inclined with respect to the side and along the surface. Since the transmission image is taken in one direction, it is possible to obtain a transmission image by shortening the length of transmission of the radiation beam through the electrode plate, and it is difficult for the radiation to pass due to the influence of the warp of the electrode plate. As a result, it is possible to reduce the blurring of the image of the electrode plate due to the influence, and to detect the position of the electrode plate from the three transmitted images taken under the premise of parallel shift and rotational shift, and to judge the quality. Even if the electrode plate is large and thin in a capacity type stack type battery, the displacement of the electrode plate can be detected from the transmission image.

上記の問題を解決するために請求項5記載の発明は、層をなす複数の四角形の電極板を有する電池の前記電極板の位置ずれを検査する電池検査装置であり、放射線源と、前記放射線源から放射される放射線ビームに前記電極板が沿うように前記電池を位置決めする位置決め手段と、前記電池を透過した前記放射線ビームを検出し透過像として出力する放射線検出器と、前記電極板の4つの角部分それぞれを面に沿ってかつ辺に対し傾斜した2つの方向でそれぞれ透過した放射線ビームを検出した8つの透過像を取込んで処理し、前記電極板の位置ずれを検出して良否を判定するデータ処理手段と、を有することを要旨とする。  In order to solve the above-mentioned problem, the invention according to claim 5 is a battery inspection apparatus for inspecting misalignment of the electrode plate of a battery having a plurality of rectangular electrode plates forming a layer, and a radiation source and the radiation Positioning means for positioning the battery so that the electrode plate follows a radiation beam emitted from a source, a radiation detector for detecting the radiation beam transmitted through the battery and outputting it as a transmitted image, and 4 of the electrode plate Eight transmission images obtained by detecting the radiation beams transmitted through the two corners along the surface and in two directions inclined with respect to the sides are captured and processed to detect the positional deviation of the electrode plate. And a data processing means for judging.

この構成で、電極板の4つの角部分それぞれを、面に沿ってかつ辺に対し傾斜した2つの方向でそれぞれ透過像を撮影するので、放射線ビームが電極板を透過する長さを短くして透過像を得ることができ、電極板の反りの影響で放射線が通りにくくなることや反りの影響で電極板の像が不鮮明になることを軽減でき、また、撮影した8つの透過像から、平行ずれおよび回転ずれおよび電極板の寸法不確定の前提の下に電極板の位置ずれを検出し良否判定を行うので、高容量のスタック型の電池で電極板が大きく薄層であっても、透過像から電極板の位置ずれを検出することができる。  With this configuration, a transmission image is taken at each of the four corners of the electrode plate in two directions along the surface and inclined with respect to the side. Therefore, the length of transmission of the radiation beam through the electrode plate is shortened. A transmission image can be obtained, and it is possible to reduce the difficulty of passing radiation due to the warping of the electrode plate and the blurring of the image of the electrode plate due to the warping. The electrode plate position deviation is detected under the premise of misalignment, rotational misalignment, and uncertain dimensions of the electrode plate, and a pass / fail judgment is made. Therefore, even if the electrode plate is large and thin in a high-capacity stack type battery, The positional deviation of the electrode plate can be detected from the image.

本発明によれば、高容量のスタック型の電池であっても、電極板の位置ずれを検査できる。  According to the present invention, the displacement of the electrode plate can be inspected even in a high capacity stack type battery.

本発明の第一の実施形態の電池検査装置の構成図(平面図)。The block diagram (plan view) of the battery inspection apparatus of 1st embodiment of this invention. 電池1の構造を示す模式図。FIG. 2 is a schematic diagram showing the structure of a battery 1. 第一の実施形態の検査のフロー図。The flowchart of the test | inspection of 1st embodiment. 第一の実施形態で得られた透過像を示す模式図。The schematic diagram which shows the transmission image obtained by 1st embodiment. 第一の実施形態における位置ずれΔx,Δyを求める説明図。Explanatory drawing which calculates | requires position shift (DELTA) x and (DELTA) y in 1st embodiment. 本発明の第二の実施形態の電池検査装置の構成図(平面図)。The block diagram (plan view) of the battery inspection apparatus of 2nd embodiment of this invention. 第二の実施形態の検査のフロー図。The flowchart of the test | inspection of 2nd embodiment. 第二の実施形態における位置ずれΔx,Δyを求める説明図。Explanatory drawing which calculates | requires position shift (DELTA) x and (DELTA) y in 2nd embodiment. 本発明の第三の実施形態の電池検査装置の構成図(平面図)。The block diagram (plan view) of the battery inspection apparatus of 3rd embodiment of this invention. 第三の実施形態の検査のフロー図。The flowchart of the test | inspection of 3rd embodiment. 第三の実施形態における位置ずれΔx(i),Δy(i)を求める説明図。Explanatory drawing which calculates | requires position shift (DELTA) x (i) and (DELTA) y (i) in 3rd embodiment. 第三の実施形態の変形例2における位置ずれΔx(2),Δy(2)を求める説明図。Explanatory drawing which calculates | requires position shift (DELTA) x (2) and (DELTA) y (2) in the modification 2 of 3rd embodiment. 本発明の第四の実施形態の電池検査装置の構成図(平面図)。The block diagram (top view) of the battery test | inspection apparatus of 4th embodiment of this invention. 第四の実施形態の検査のフロー図。The flowchart of the test | inspection of 4th embodiment. 第四の実施形態における負極板の突出長さcx,cyを求める説明図。Explanatory drawing which calculates | requires protrusion length cx, cy of the negative electrode plate in 4th embodiment. 各実施形態共通の変形例3における電極板に面取りがある場合の補正の説明図(一例)。Explanatory drawing (example) of correction | amendment when there exists a chamfering in the electrode plate in the modification 3 common to each embodiment. 従来のスタック型電池の放射線透視による検査方法を示す模式図。The schematic diagram which shows the test | inspection method by radioscopy of the conventional stack type battery.

(第一の実施形態の構成)
図1は本発明の第一の実施形態の電池検査装置の構成図(平面図)である。
(Configuration of the first embodiment)
FIG. 1 is a configuration diagram (plan view) of the battery inspection apparatus according to the first embodiment of the present invention.

電池検査装置は、電池1の電極板の位置ずれを検査する装置であり、X線管2(放射線源)と、X線管2から放射されるX線ビーム3(放射線ビーム)の中に電池1を位置決めする位置決め機構4と、電池1を透過したX線ビーム3を検出し透過像(透過データ)として出力するX線検出器5(放射線検出器)と、透過像を取り込み電池の電極板の位置ずれを検出し良否を判定するデータ処理部6、データ処理部6からの指令で位置決め機構4を制御する機構制御部7、より成る。また、他の構成として、X線管2に高電圧を供給する高圧発生器や管電圧・管電流を制御するX線制御器、電池1を搬送して位置決め機構4に授受する電池搬送機構、不良と判定した電池を排除する排除機構、X線コリメータやX線遮蔽箱等を有するが、図1では省略している。  The battery inspection apparatus is an apparatus for inspecting the displacement of the electrode plate of the battery 1, and the battery is included in the X-ray tube 2 (radiation source) and the X-ray beam 3 (radiation beam) emitted from the X-ray tube 2. A positioning mechanism 4 for positioning 1, an X-ray detector 5 (radiation detector) for detecting the X-ray beam 3 transmitted through the battery 1 and outputting it as a transmission image (transmission data), and an electrode plate of the battery for capturing the transmission image A data processing unit 6 that detects a positional deviation and determines whether it is good or bad, and a mechanism control unit 7 that controls the positioning mechanism 4 according to a command from the data processing unit 6. As other configurations, a high voltage generator for supplying a high voltage to the X-ray tube 2, an X-ray controller for controlling the tube voltage / tube current, a battery transport mechanism for transporting the battery 1 and transferring it to the positioning mechanism 4, Although it has an excluding mechanism for excluding batteries determined to be defective, an X-ray collimator, an X-ray shielding box, and the like, they are omitted in FIG.

X線管2としては、例えば、X線ビーム3の発散点であるX線焦点Fの大きさが1μm程度のマイクロフォーカスX線管を用いる。  As the X-ray tube 2, for example, a microfocus X-ray tube having an X-ray focal point F that is a divergence point of the X-ray beam 3 having a size of about 1 μm is used.

X線検出器5は、2次元の分解能でX線を検出するもので、例えば、X線像を可視光像に変換するX線II(イメージインテンシファイア)と、この可視光像を撮影してデジタルデータとしての透過像を出力する撮像カメラ、及びX線IIと撮像カメラを制御する検出器制御部、等より成る。  The X-ray detector 5 detects X-rays with a two-dimensional resolution. For example, an X-ray II (image intensifier) that converts an X-ray image into a visible light image and the visible light image are captured. An imaging camera that outputs a transmission image as digital data, a detector control unit that controls the X-ray II and the imaging camera, and the like.

図2は電池1の構造を示す模式図である。図2(a)は平面図、図2(b)はE−E断面図、図2(c)は図2(b)の一部拡大図である。スタック型の電池1は、例えば、リチウムイオンポリマー電池で、電極板としては角が直角の四角形で、約100×200mmの互いに同一形状の正極板11とこれより数mm大きな互いに同一形状の負極板12が交互に重ねられ、正極板11と負極板12の一組が成す層の厚さは約0.2mmで、約30層が重ねられ、全体は約6mmの厚みになる。  FIG. 2 is a schematic diagram showing the structure of the battery 1. 2A is a plan view, FIG. 2B is an EE cross-sectional view, and FIG. 2C is a partially enlarged view of FIG. 2B. The stack type battery 1 is, for example, a lithium ion polymer battery, and the electrode plate is a quadrangle having a right angle as the electrode plate, the positive electrode plate 11 having the same shape of about 100 × 200 mm, and the negative electrode plate having the same shape that is several mm larger than this. 12 are alternately stacked, and the thickness of the layer formed by one set of the positive electrode plate 11 and the negative electrode plate 12 is about 0.2 mm, and about 30 layers are stacked, and the total thickness is about 6 mm.

正極板11と負極板12の間には薄い樹脂製のセパレータがあるが図では省略されている。電極板(正極板11と負極板12の総称)11、12の全体はアルミとポリプロピレン多層のラミネートフィルムでできたケース13に収納され電極板の間隙にはゲル状電解液14が充填されている。各正極板11には正極リード15が接続され、正極リード15は1本に束ねられて外部に取り出され、各負極板12には同様に負極リード16が接続され、同様に外部に取り出されている。  Although there is a thin resin separator between the positive electrode plate 11 and the negative electrode plate 12, it is omitted in the figure. The electrode plates (generic name of the positive electrode plate 11 and the negative electrode plate 12) 11 and 12 are accommodated in a case 13 made of a laminate film of aluminum and polypropylene, and the gap between the electrode plates is filled with a gel electrolyte solution 14. . A positive electrode lead 15 is connected to each positive electrode plate 11, the positive electrode leads 15 are bundled together and taken out to the outside, and a negative electrode lead 16 is similarly connected to each negative electrode plate 12 and also taken out to the outside. Yes.

第一の実施形態では、電池1に対し、電極板11、12の第一の角部分C1を電極板11、12の面に沿ってかつ辺に対し45°傾斜した方向P1で透過した放射線ビームを検出した第一の透過像と、電極板11、12の第二の角部分C2を電極板11、12の面に沿ってかつ辺に対し45°傾斜した方向P2で透過した放射線ビームを検出した第二の透過像を撮影する。  In the first embodiment, the radiation beam transmitted through the battery 1 in the direction P1 inclined along the surfaces of the electrode plates 11 and 12 and by 45 ° with respect to the sides of the first corner portion C1 of the electrode plates 11 and 12 is transmitted to the battery 1. And a radiation beam transmitted through the second corner portion C2 of the electrode plates 11 and 12 along the plane of the electrode plates 11 and 12 and in a direction P2 inclined by 45 ° with respect to the side. The second transmitted image is taken.

図1に戻って、位置決め機構4は平板状の電池1を水平面(紙面)に沿ってホルダ4aで保持し、X線ビーム3(のX線光軸L)に電極板11、12の面が沿うように位置決めする。位置決め機構4は、電極板の第一の角部分C1を面に沿ってかつ辺に対し45°傾斜した方向P1でX線ビーム3(のX線光軸L)が透過するよう位置決めし(実線)、さらに、電池1をホルダ4aごと水平面に沿って回転軸RAに対し回転させ、電極板の第二の角部分C2を面に沿ってかつ辺に対し45°傾斜した方向P2でX線ビーム3(のX線光軸L)が透過するよう位置決めする(点線)。  Returning to FIG. 1, the positioning mechanism 4 holds the flat battery 1 with a holder 4 a along a horizontal plane (paper surface), and the surfaces of the electrode plates 11 and 12 are placed on the X-ray beam 3 (the X-ray optical axis L). Position along. The positioning mechanism 4 positions the first corner portion C1 of the electrode plate so that the X-ray beam 3 (the X-ray optical axis L) is transmitted in a direction P1 inclined along the surface and by 45 ° with respect to the side (solid line). Further, the battery 1 is rotated with the holder 4a along the horizontal plane with respect to the rotation axis RA, and the second corner portion C2 of the electrode plate is X-ray beam in the direction P2 inclined along the surface and by 45 ° with respect to the side. 3 (X-ray optical axis L) is positioned so as to pass through (dotted line).

機構制御部7はデータ処理部6からの指令で位置決め機構4を制御するとともに、不図示の電池搬送機構や不良と判定した電池を排除する排除機構を制御するほか、これらの機構のステータスをデータ処理部6に送信する。  The mechanism control unit 7 controls the positioning mechanism 4 in response to a command from the data processing unit 6, and controls a battery transport mechanism (not shown) and a rejection mechanism that eliminates a battery determined to be defective. Transmit to the processing unit 6.

データ処理部6は、例えば、通常のコンピュータであり、CPU、メモリ、インターフェース、キーボードやマウスなどの入力部、表示部、などを持つ。データ処理部6は、記憶している検査プログラムをCPUにより実行し、X線検出器5と機構部制御部7に指令を送信して検査を行う。データ処理部6は、X線検出器5から送られた透過像をメモリに記憶し、CPUにより電極板の位置ずれ検出と判定を実行して電池1ごとに良否判定を行い、不良品の場合、機構制御部7に判定結果として不良品の排除信号を送信する。  The data processing unit 6 is, for example, a normal computer, and has a CPU, a memory, an interface, an input unit such as a keyboard and a mouse, a display unit, and the like. The data processing unit 6 executes the stored inspection program by the CPU, and transmits an instruction to the X-ray detector 5 and the mechanism unit control unit 7 to perform the inspection. When the data processing unit 6 stores the transmission image sent from the X-ray detector 5 in a memory, the CPU detects the displacement of the electrode plate and performs determination to determine whether each battery 1 is defective. Then, a reject signal for defective products is transmitted to the mechanism control unit 7 as a determination result.

(第一の実施形態の作用)
図3、図4、図5を参照して、第一の実施の形態における作用を説明する。
(Operation of the first embodiment)
The operation in the first embodiment will be described with reference to FIGS.

第一の実施形態は、複数の電極板11、12間の相対的位置ずれを、前提、
{電極板それぞれの形状は正確(辺の長さと角の角度が設計値どおり)で誤差は無視できる}、
{ずれは平行ずれのみ}、
の下に検出するものである。
The first embodiment is based on the premise of relative displacement between the plurality of electrode plates 11 and 12.
{The shape of each electrode plate is accurate (the length of the side and the angle of the corner are as designed) and the error can be ignored},
{The deviation is only parallel deviation},
It is something to detect below.

図3は第一の実施形態の検査のフロー図である。検査は、検査プログラムによりデータ処理部6のCPUにより行われる。  FIG. 3 is a flowchart of the inspection according to the first embodiment. The inspection is performed by the CPU of the data processing unit 6 by an inspection program.

ステップS1で、位置決め機構4が、電池1を第一の角部分C1を45°傾斜した方向P1でX線ビーム3が透過するよう位置決めし、X線検出器5が透過像を撮影し、データ処理部6が透過像を取込む。  In step S1, the positioning mechanism 4 positions the battery 1 so that the X-ray beam 3 is transmitted in the direction P1 in which the first corner portion C1 is inclined by 45 °, and the X-ray detector 5 takes a transmission image, and the data The processing unit 6 captures the transmission image.

図4は第一の実施形態で得られた透過像を示す模式図である。図4(a)は角部分C1、図4(b)は角部分C2の透過像である。  FIG. 4 is a schematic diagram showing a transmission image obtained in the first embodiment. 4A is a transmission image of the corner portion C1, and FIG. 4B is a transmission image of the corner portion C2.

ステップS2で、図4(a)を参照して、データ処理部6は、ステップS1で得た角部分C1の透過像を用いて正極板に対する負極板の突出長さL1を求める。突出長さL1は、上から順に、隣接する正極板11負極板12の組み合わせ番号kごとにL1(k)として求める(k=1,2,…K)。以下、便宜的にこの組み合わせ番号kを層番号kと呼ぶことにする。L1(k)は通常の画像処理を用い、例えば、フィルタ処理、2値化、電極板端部の識別と座標求出などを行って求める。  In step S2, referring to FIG. 4A, the data processing unit 6 obtains the protruding length L1 of the negative electrode plate with respect to the positive electrode plate using the transmission image of the corner portion C1 obtained in step S1. The protrusion length L1 is determined as L1 (k) for each combination number k of the adjacent positive electrode plate 11 and negative electrode plate 12 in order from the top (k = 1, 2,... K). Hereinafter, this combination number k will be referred to as a layer number k for convenience. L1 (k) is obtained by using normal image processing, for example, by performing filter processing, binarization, identification of electrode plate end portions, coordinate finding, and the like.

なお、正極板が負極板より突出していた場合、突出長さL1(k)はマイナス値とする。また、突出長さL1(k)としては画像上の画素単位の長さを実長に変換して求めるものとする。実長L1(k)は、
実長=画素単位の長さ×検出面上の1画素寸法×FOD/FDD ………(1)
で求められる。ここでFODはX線焦点Fと電池1(の角部分)の距離、FDDはX線焦点FとX線検出器5(検出面5a)との距離である(図1参照)。
If the positive electrode plate protrudes from the negative electrode plate, the protrusion length L1 (k) is a negative value. Further, the protrusion length L1 (k) is obtained by converting the length of the pixel unit on the image into the actual length. The actual length L1 (k) is
Actual length = pixel unit length × one pixel size on the detection surface × FOD / FDD (1)
Is required. Here, FOD is the distance between the X-ray focal point F and the battery 1 (the corner portion thereof), and FDD is the distance between the X-ray focal point F and the X-ray detector 5 (detection surface 5a) (see FIG. 1).

ステップS3で、位置決め機構4が、電池1を第二の角部分C2を45°傾斜した方向P2でX線ビーム3が透過するよう位置決めし、X線検出器5が透過像を撮影し、データ処理部6が透過像を取込む。  In step S3, the positioning mechanism 4 positions the battery 1 so that the X-ray beam 3 is transmitted in the direction P2 in which the second corner portion C2 is inclined by 45 °, and the X-ray detector 5 takes a transmission image, and the data The processing unit 6 captures the transmission image.

ステップS4で、図4(b)を参照して、データ処理部6は、ステップS3で得た角部分C2の透過像を用いて、ステップS2と同様に、上から順に、正極板に対する負極板の突出長さL2(k)を実長で求める(k=1,2,…K)。  In step S4, referring to FIG. 4B, the data processing unit 6 uses the transmission image of the corner portion C2 obtained in step S3, and in the same manner as in step S2, in order from the top, the negative electrode plate with respect to the positive electrode plate. Is calculated by the actual length (k = 1, 2,... K).

ステップS5で層番号kのループに入りステップS6,S7をk=1,2,…Kで以下のように繰り返す。  In step S5, a loop of layer number k is entered, and steps S6 and S7 are repeated as follows with k = 1, 2,.

ステップS6で、ステップS2、S4で求めたL1(k)、L2(k)から、負極板を基準としたときの正極板の所定位置からの位置ずれΔx,Δyを以下のように求める。  In step S6, displacements Δx and Δy from the predetermined position of the positive electrode plate with respect to the negative electrode plate are obtained from L1 (k) and L2 (k) obtained in steps S2 and S4 as follows.

図5は第一の実施形態における位置ずれΔx,Δyを求める説明図である。図5は1つの層での正極板11と負極板12の位置関係を示している。  FIG. 5 is an explanatory diagram for obtaining the positional deviations Δx and Δy in the first embodiment. FIG. 5 shows the positional relationship between the positive electrode plate 11 and the negative electrode plate 12 in one layer.

図5を参照して、ずれのないときの負極板12の突出量をx、y方向それぞれcx0、cy0とすると、ずれのないときのL1とL2は、式、
L10=cx0・sinθ1+cy0・cosθ1 ………(2)
L20=cx0・cosθ2+cy0・sinθ2 ………(3)
で求められる。ここでθ1=45°、θ2=45°である。
Referring to FIG. 5, assuming that the protruding amount of the negative electrode plate 12 when there is no deviation is cx0 and cy0 respectively in the x and y directions, L1 and L2 when there is no deviation are given by
L10 = cx0 · sin θ1 + cy0 · cos θ1 (2)
L20 = cx0 · cos θ2 + cy0 · sin θ2 (3)
Is required. Here, θ1 = 45 ° and θ2 = 45 °.

次に、L1(k)、L2(k)のずれが無いときからの変化分を、式、
ΔL1(k)=L1(k)−L10 ………(4)
ΔL2(k)=L2(k)−L20 ………(5)
で求める。
Next, the change from when there is no deviation between L1 (k) and L2 (k) is expressed as:
ΔL1 (k) = L1 (k) −L10 (4)
ΔL2 (k) = L2 (k) −L20 (5)
Ask for.

次に、図5より、ΔL1(k)、ΔL2(k)と正極板の位置ずれΔx,Δyとの間に連立方程式、
ΔL1(k)=−Δx・sinθ1−Δy・cosθ1 ………(6)
ΔL2(k)=Δx・cosθ2−Δy・sinθ2 ………(7)
が成り立つことが導ける。この連立方程式を解くと、式、
Δx={ΔL2(k)・cosθ1−ΔL1(k)・sinθ2}/cos(θ1−θ2) ………(8)
Δy={−ΔL2(k)・sinθ1−ΔL1(k)・cosθ2}/cos(θ1−θ2) ………(9)
が求められる。
Next, from FIG. 5, simultaneous equations between ΔL1 (k), ΔL2 (k) and the positional deviations Δx, Δy of the positive electrode plate,
ΔL1 (k) = − Δx · sin θ1−Δy · cos θ1 (6)
ΔL2 (k) = Δx · cos θ2−Δy · sin θ2 (7)
Can be established. Solving these simultaneous equations,
Δx = {ΔL2 (k) · cos θ1−ΔL1 (k) · sin θ2} / cos (θ1−θ2) (8)
Δy = {− ΔL2 (k) · sin θ1−ΔL1 (k) · cos θ2} / cos (θ1−θ2) (9)
Is required.

すなわち、ステップS6で、式(2)ないし式(5)、及び、式(8)、式(9)を順次計算することで、層kにおける正極板のずれΔx,Δyが求められる。  That is, in Step S6, the deviations Δx and Δy of the positive electrode plate in the layer k are obtained by sequentially calculating the expressions (2) to (5) and the expressions (8) and (9).

ステップS7で、層別の良否判定を以下のように行う。
ずれの許容値をx、y方向でそれぞれΔxlmt、Δylmtとして、
|Δx|<Δxlmt、かつ、|Δy|<Δylmt
のとき層kについて、良品とし、他の場合不良品とする。
In step S7, the quality determination for each layer is performed as follows.
The allowable deviation is set to Δxlmt and Δylmt in the x and y directions, respectively.
| Δx | <Δxlmt and | Δy | <Δylmt
In this case, the layer k is a non-defective product, and in other cases, a defective product.

ステップS8で、全kについてループが終了してない場合はステップS5にもどりkを変えてステップS6,S7を繰り返し、全kについて終了した場合はステップS9に進む。  If it is determined in step S8 that the loop has not been completed for all k, the process returns to step S5 to change k and repeat steps S6 and S7. If all k have been completed, the process proceeds to step S9.

ステップS9では、総合の良否判定を行う。総合の良否判定は全層kで良品と判定されたときのみ総合で良品と判定することで行われる。  In step S9, comprehensive quality determination is performed. The overall pass / fail judgment is performed by determining that the product is non-defective only when it is determined to be non-defective in all layers k.

以上の検査のフローにより、全層で負極板の突出長さが、xの正負方向で規定値(cx0−Δxlmt)以上、かつ、yの正負方向で規定値(cy0−Δylmt)以上となる電池1のみが良品と判定される。  Through the above inspection flow, the battery in which the protruding length of the negative electrode plate is greater than or equal to the specified value (cx0−Δxlmt) in the positive / negative direction of x and equal to or greater than the specified value (cy0−Δylmt) in the positive / negative direction of y. Only 1 is determined to be non-defective.

(第一の実施形態の効果)
第一の実施形態によれば、電極板の2つの角部分それぞれを、面に沿ってかつ辺に対し45°傾斜した方向で透過像を撮影するので、放射線ビームが電極板を透過する長さを短くして透過像を得ることができ、電極板の反りの影響で放射線が通りにくくなることや反りの影響で電極板の像が不鮮明になることを軽減でき、また、撮影した2つの透過像から、平行ずれの前提の下に電極板の位置ずれを検出し良否判定を行うことができ、高容量のスタック型の電池で電極板が大きく薄層であっても、透過像から電極板の位置ずれを検出することが可能となる。
(Effect of the first embodiment)
According to the first embodiment, each of the two corner portions of the electrode plate is photographed in a direction inclined by 45 ° along the surface and with respect to the side, so that the radiation beam passes through the electrode plate. The transmission image can be obtained by shortening the length of the image, and it is possible to reduce the difficulty of passing radiation due to the warpage of the electrode plate and the blurring of the image of the electrode plate due to the warpage. From the image, it is possible to detect the position deviation of the electrode plate under the premise of parallel displacement, and to judge whether it is good or bad. It is possible to detect the positional deviation.

(第一の実施形態の変形)
(変形例1)
第一の実施形態では、電極板の面に沿ってかつ辺に対し45°傾斜した方向で角部分を撮影しているが、必ずしも45°でなくてもよい。図5を参照して、傾斜角θ1、θ2が45°のときX線ビームが電極板を透過する長さは最小となり最良であるが、45°から離れたときこの長さの増加は緩やかで、傾斜角θ1、θ2は大まかに45°程度であれば良く、例えば約20°ないし70°の範囲に設定可能である。
(Modification of the first embodiment)
(Modification 1)
In the first embodiment, the corner portion is photographed along the surface of the electrode plate and in a direction inclined by 45 ° with respect to the side, but it does not necessarily have to be 45 °. Referring to FIG. 5, when the inclination angles θ1 and θ2 are 45 °, the length of transmission of the X-ray beam through the electrode plate is the minimum and the best, but when the inclination angle is away from 45 °, the increase in the length is moderate. The inclination angles θ1 and θ2 may be about 45 °, and can be set in a range of about 20 ° to 70 °, for example.

(変形例2)
第一の実施形態では、2つの角部分について透過像を撮影しているが、3つ以上の角部分について面に沿ってかつ辺に対し45°傾斜した方向で透過像を撮影し、これらの透過像から電極板の位置ずれを検出するようにしてもよい。これにより、統計精度を上げて位置ずれを検出することができる。ここで、位置ずれΔx、Δyを求める計算としては、例えば、角部分の2つの組み合わせを変えて、それぞれから第一の実施形態と同様に位置ずれを求め、求めた位置ずれを平均して最終的な位置ずれΔx,Δyとすることで行うことができる。
(Modification 2)
In the first embodiment, transmission images are taken for two corner portions. However, transmission images are taken for three or more corner portions along a plane and inclined at 45 ° with respect to the sides. You may make it detect the position shift of an electrode plate from a transmitted image. As a result, it is possible to increase the statistical accuracy and detect misalignment. Here, as the calculation for obtaining the positional deviations Δx and Δy, for example, by changing two combinations of the corner portions, the positional deviations are obtained from each in the same manner as in the first embodiment, and the obtained positional deviations are averaged to obtain the final result This can be done by setting the relative positional deviations Δx and Δy.

(変形例3)
図3を参照して、第一の実施形態では、kループ(ステップS5ないしS8)を全層について計算しているが、ステップS7の層別の良否判定で不良と判定されたとき、ループを終了させステップS9の総合判定に移るようにしてもよい。1つの層でも不良があった場合、総合判定で不良になるからである。
(Modification 3)
Referring to FIG. 3, in the first embodiment, k loops (steps S5 to S8) are calculated for all layers. However, when it is determined that the pass / fail determination for each layer in step S7 is defective, the loop is You may make it complete | finish and move to the comprehensive determination of step S9. This is because if there is a defect in even one layer, it becomes defective in the comprehensive determination.

(変形例4)
第一の実施形態では、2つの角部分についてそれぞれθ1、θ2傾斜した方向で撮影しているが、さらに他の1つの角部分をθ3傾斜した方向で撮影し、3つの透過像から、回転ずれも含めて位置ずれを検出することが可能である。この場合、平行ずれΔxp,Δypと回転ずれαを未知数として3つの方程式を立てることができる。この方程式は、すこし複雑であるが、方程式の数値解析により解いて位置ずれを求めることができる。
(Modification 4)
In the first embodiment, two corner portions are photographed in directions inclined by θ1 and θ2, respectively. However, another one corner portion is photographed in a direction inclined by θ3, and rotation deviation is detected from three transmitted images. In addition, it is possible to detect misalignment. In this case, three equations can be established with the parallel shifts Δxp and Δyp and the rotation shift α as unknowns. This equation is a little complicated, but it can be solved by a numerical analysis of the equation to determine the displacement.

この方式を採用する場合は、θ1,θ2,θ3は、45°でなく、透過方向が電極板の長いほうの辺と概略20°前後で交差するように設定すると精度が上がる。  When this method is adopted, θ1, θ2, and θ3 are not 45 °, and the accuracy is improved when the transmission direction is set so as to intersect the longer side of the electrode plate at about 20 °.

(第二の実施形態の構成)
図6は本発明の第二の実施形態の電池検査装置の構成図(平面図)である。第一の実施の形態と同じ構成は同じ番号を付し、説明は省略する。図6の位置決め機構4Aは図1の位置決め機構4から電池1を位置決めする動作のみが異なる。また、図6のデータ処理部6Aは図1のデータ処理部6から検査プログラムのみが異なる。
(Configuration of Second Embodiment)
FIG. 6 is a configuration diagram (plan view) of the battery inspection apparatus according to the second embodiment of the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. The positioning mechanism 4A in FIG. 6 differs only in the operation of positioning the battery 1 from the positioning mechanism 4 in FIG. 6 differs from the data processing unit 6 in FIG. 1 only in the inspection program.

位置決め機構4Aは平板状の電池1を水平面(紙面)に沿ってホルダ(不図示)で保持し、X線ビーム3(のX線光軸L)に電極板11,12の面が沿うように位置決めする。位置決め機構4Aは、電池1を、電極板の第一の角部分C1を面に沿ってかつ辺に対しθ1傾斜した方向でX線ビーム3(のX線光軸L)が透過するよう位置決めし(実線)、さらに、ホルダごと水平面に沿って回転軸RAに対し回転させ、電極板の角部分C1を面に沿ってかつ辺に対しθ2傾斜した方向でX線ビーム3(のX線光軸L)が透過するよう位置決めする(点線)。  The positioning mechanism 4A holds the flat battery 1 with a holder (not shown) along a horizontal plane (paper surface) so that the surfaces of the electrode plates 11 and 12 are along the X-ray beam 3 (of the X-ray optical axis L). Position. The positioning mechanism 4A positions the battery 1 so that the X-ray beam 3 (the X-ray optical axis L) transmits through the first corner portion C1 of the electrode plate along the surface and in a direction inclined by θ1 with respect to the side. (Solid line), and the X-ray beam 3 (the X-ray optical axis of the X-ray beam 3) in a direction in which the holder is rotated along the horizontal plane with respect to the rotation axis RA and the corner portion C1 of the electrode plate is inclined by θ2 along the surface and the side. L) is positioned so as to pass through (dotted line).

(第二の実施形態の作用)
図7、図8を参照して、第二の実施の形態における作用を説明する。
(Operation of the second embodiment)
The operation in the second embodiment will be described with reference to FIGS.

第二の実施形態は、複数の電極板11、12間の相対的位置ずれを、第一の実施形態と同じ前提、
{電極板それぞれの形状は正確で誤差は無視できる}、
{ずれは平行ずれのみ}、
の下に検出するものである。
In the second embodiment, the relative positional deviation between the plurality of electrode plates 11 and 12 is the same as the first embodiment,
{The shape of each electrode plate is accurate and errors can be ignored},
{The deviation is only parallel deviation},
It is something to detect below.

図7は第二の実施形態の検査のフロー図である。検査は、検査プログラムによりデータ処理部6AのCPUにより行われる。  FIG. 7 is a flowchart of inspection according to the second embodiment. The inspection is performed by the CPU of the data processing unit 6A by an inspection program.

ステップS11で、位置決め機構4Aが、電極板の第一の角部分C1をθ1傾斜した方向でX線ビーム3が透過するよう電池1を位置決めし、X線検出器5が透過像を撮影し、データ処理部6Aが透過像を取込む。得られた透過像は図4(a)と同等である。  In step S11, the positioning mechanism 4A positions the battery 1 so that the X-ray beam 3 is transmitted in the direction inclined by θ1 through the first corner portion C1 of the electrode plate, and the X-ray detector 5 takes a transmission image, The data processing unit 6A captures the transmission image. The obtained transmission image is equivalent to that in FIG.

ステップS12で、図4(a)を参照して、データ処理部6Aは、ステップS11で得た角部分C1の透過像を用いて正極板に対する負極板の突出長さL1を求める。突出長さL1は、第一実施形態と同様に、層kごとに実長で、上から順に、L1(k)として求める(k=1,2,…K)。  In step S12, referring to FIG. 4A, the data processing unit 6A obtains the protruding length L1 of the negative electrode plate with respect to the positive electrode plate using the transmission image of the corner portion C1 obtained in step S11. Similar to the first embodiment, the protrusion length L1 is an actual length for each layer k, and is calculated as L1 (k) in order from the top (k = 1, 2,... K).

ステップS13で、位置決め機構4Aが、電極板の第一の角部分C1をθ2傾斜した方向でX線ビーム3が透過するよう電池1を位置決めし、X線検出器5が透過像を撮影し、データ処理部6Aが透過像を取込む。得られた透過像は図4(a)と同等である。  In step S13, the positioning mechanism 4A positions the battery 1 so that the X-ray beam 3 is transmitted in a direction inclined by θ2 through the first corner portion C1 of the electrode plate, and the X-ray detector 5 takes a transmission image, The data processing unit 6A captures the transmission image. The obtained transmission image is equivalent to that in FIG.

ステップS14で、図4(a)を参照して、データ処理部6Aは、ステップS13で得た角部分C1の透過像を用いて正極板に対する負極板の突出長さL2を求める。突出長さL2は、第一実施形態と同様に、層kごとに実長で、上から順に、L2(k)として求める(k=1,2,…K)。  In step S14, referring to FIG. 4A, the data processing unit 6A obtains the protrusion length L2 of the negative electrode plate with respect to the positive electrode plate using the transmission image of the corner portion C1 obtained in step S13. Similar to the first embodiment, the protrusion length L2 is an actual length for each layer k, and is calculated as L2 (k) in order from the top (k = 1, 2,... K).

ステップS15で、層番号kのループに入りステップS16,S17をk=1,2,…Kで以下のように繰り返す。  In step S15, a loop of layer number k is entered, and steps S16 and S17 are repeated as follows with k = 1, 2,.

ステップS16で、ステップS12、S14で求めたL1(k)、L2(k)から、負極板を基準としたときの正極板の所定位置からの位置ずれΔx,Δyを以下のように求める。  In step S16, displacements Δx and Δy from the predetermined position of the positive electrode plate with respect to the negative electrode plate are obtained from L1 (k) and L2 (k) obtained in steps S12 and S14 as follows.

図8は第二の実施形態における位置ずれΔx,Δyを求める説明図である。図8は1つの層での正極板11と負極板12の位置関係を示している。  FIG. 8 is an explanatory diagram for obtaining positional deviations Δx and Δy in the second embodiment. FIG. 8 shows the positional relationship between the positive electrode plate 11 and the negative electrode plate 12 in one layer.

図8を参照して、ずれのないときの負極板12の突出量をx、y方向それぞれcx0、cy0とすると、L1(k)、L2(k)と正極板の位置ずれΔx,Δyとの間に連立方程式、
L1(k)=(cx0−Δx)・sinθ1+(cy0−Δy)・cosθ1
………(10)
L2(k)=(cx0−Δx)・sinθ2+(cy0−Δy)・cosθ2
………(11)
が成り立つことが導ける。この連立方程式を解くと、式、
Δx=cx0+{L1(k)・cosθ2−L2(k)・cosθ1}/sin(θ2−θ1) ………(12)
Δy=cy0−{L1(k)・sinθ2−L2(k)・sinθ1}/sin(θ2−θ1) ………(13)
が求められる。
Referring to FIG. 8, assuming that the protruding amount of the negative electrode plate 12 when there is no deviation is cx0 and cy0 in the x and y directions, respectively, L1 (k) and L2 (k) and the positional deviations Δx and Δy of the positive electrode plate Simultaneous equations,
L1 (k) = (cx0−Δx) · sin θ1 + (cy0−Δy) · cos θ1
……… (10)
L2 (k) = (cx0−Δx) · sin θ2 + (cy0−Δy) · cos θ2
……… (11)
Can be established. Solving these simultaneous equations,
Δx = cx0 + {L1 (k) · cos θ2−L2 (k) · cos θ1} / sin (θ2−θ1) (12)
Δy = cy0− {L1 (k) · sin θ2−L2 (k) · sin θ1} / sin (θ2−θ1) (13)
Is required.

すなわち、ステップS16で、式(12)、式(13)を計算することで、層kにおける正極板のずれΔx,Δyが求められる。  That is, in step S16, the deviations Δx and Δy of the positive electrode plate in the layer k are obtained by calculating the expressions (12) and (13).

ステップS17で、層別の良否判定を以下のように行う。
ずれの許容値をx、y方向でそれぞれΔxlmt、Δylmtとして、
|Δx|<Δxlmt、かつ、|Δy|<Δylmt
のとき層kについて、良品とし、他の場合不良品とする。
In step S17, the quality determination for each layer is performed as follows.
The allowable deviation is set to Δxlmt and Δylmt in the x and y directions, respectively.
| Δx | <Δxlmt and | Δy | <Δylmt
In this case, the layer k is a non-defective product, and in other cases, a defective product.

ステップS18で、全kについてループが終了してない場合はステップS15にもどりkを変えてステップS16,S17を繰り返し、全kについて終了した場合はステップS19に進む。  If it is determined in step S18 that the loop has not been completed for all k, the process returns to step S15 to change k and repeat steps S16 and S17. If all k have been completed, the process proceeds to step S19.

ステップS19では、総合の良否判定を行う。総合の良否判定は全層kで良品と判定されたときのみ総合で良品と判定することで行われる。  In step S19, comprehensive quality determination is performed. The overall pass / fail judgment is performed by determining that the product is non-defective only when it is determined to be non-defective in all layers k.

以上の検査のフローにより、全層で負極板の突出長さが、xの正負方向で規定値(cx0−Δxlmt)以上、かつ、yの正負方向で規定値(cy0−Δylmt)以上となる電池1のみが良品と判定される。  Through the above inspection flow, the battery in which the protruding length of the negative electrode plate is greater than or equal to the specified value (cx0−Δxlmt) in the positive / negative direction of x and equal to or greater than the specified value (cy0−Δylmt) in the positive / negative direction of y. Only 1 is determined to be non-defective.

(第二の実施形態の効果)
第二の実施形態によれば、電極板の1つの角部分を、面に沿ってかつ辺に対し傾斜した2つの方向でそれぞれ透過像を撮影するので、放射線ビームが電極板を透過する長さを短くして透過像を得ることができ、電極板の反りの影響で放射線が通りにくくなることや反りの影響で電極板の像が不鮮明になることを軽減でき、また、撮影した2つの透過像から、平行ずれの前提の下に電極板の位置ずれを検出し良否判定を行うことができ、高容量のスタック型の電池で電極板が大きく薄層であっても、透過像から電極板の位置ずれを検出することが可能となる。
(Effect of the second embodiment)
According to the second embodiment, since a transmission image is taken at each corner portion of the electrode plate in two directions along the surface and inclined with respect to the side, the length of the radiation beam passing through the electrode plate The transmission image can be obtained by shortening the length of the image, and it is possible to reduce the difficulty of passing radiation due to the warpage of the electrode plate and the blurring of the image of the electrode plate due to the warpage. From the image, it is possible to detect the position deviation of the electrode plate under the premise of parallel displacement, and to judge whether it is good or bad. It is possible to detect the positional deviation.

(第二の実施形態の変形)
(変形例1)
第二の実施形態で、傾斜角θ1、θ2は任意に設定でき、θ1、θ2の差が大きい、すなわち90°に近いほうがΔx、Δyが精度よく求められるが、θ1、θ2それぞれが0°あるいは90°に近いとX線ビームが電極板を透過する長さが長くなり透過像が不鮮明になってしまう。そこで、傾斜角θ1、θ2は、一方が概略20°前後、他方が概略70°前後とするのがよい。
(Modification of the second embodiment)
(Modification 1)
In the second embodiment, the inclination angles θ1 and θ2 can be arbitrarily set, and the difference between θ1 and θ2 is large, that is, the closer to 90 °, Δx and Δy are obtained with high accuracy, but each of θ1 and θ2 is 0 ° or When the angle is close to 90 °, the length of transmission of the X-ray beam through the electrode plate becomes long and the transmitted image becomes unclear. Therefore, it is preferable that one of the inclination angles θ1 and θ2 is approximately 20 °, and the other is approximately 70 °.

(変形例2)
第二の実施形態では、1つの角部分について2方向の透過像を撮影しているが、2つ以上の角部分について面に沿ってかつ辺に対し傾斜した2つの方向でそれぞれ透過像を撮影し、これらの透過像から電極板の位置ずれを検出するようにしてもよい。これにより、統計精度を上げて位置ずれを検出することができる。ここで、位置ずれΔx、Δyを求める計算としては、例えば、角部分を変えて、それぞれから第二の実施形態と同様に位置ずれを求め、求めた位置ずれを平均して最終的な位置ずれΔx、Δyとすることで行うことができる。
(Modification 2)
In the second embodiment, transmission images in two directions are photographed for one corner portion, but transmission images are photographed in two directions along the surface and inclined with respect to the side for two or more corner portions. Then, the displacement of the electrode plate may be detected from these transmitted images. As a result, it is possible to increase the statistical accuracy and detect misalignment. Here, as the calculation for obtaining the positional deviations Δx and Δy, for example, by changing the corner portions, the positional deviations are obtained in the same manner as in the second embodiment, and the obtained positional deviations are averaged to obtain the final positional deviation. This can be done by setting Δx and Δy.

(変形例3)
図7を参照して、第二の実施形態では、kループ(ステップS15ないしS18)を全層について計算しているが、ステップS17の層別の良否判定で不良と判定されたとき、ループを終了させステップS19の総合判定に移るようにしてもよい。1つの層でも不良があった場合、総合判定で不良になるからである。
(Modification 3)
Referring to FIG. 7, in the second embodiment, k loops (steps S15 to S18) are calculated for all layers. However, when it is determined that the quality of each layer is bad in step S17, the loop is determined. You may make it complete | finish and move to the comprehensive determination of step S19. This is because if there is a defect in even one layer, it becomes defective in the comprehensive determination.

(第三の実施形態の構成)
図9は本発明の第三の実施形態の電池検査装置の構成図(平面図)である。第一の実施の形態と同じ構成は同じ番号を付し、説明は省略する。図9の位置決め機構4Bは図1の位置決め機構4から電池1を位置決めする動作のみが異なる。また、図9のデータ処理部6Bは図1のデータ処理部6から検査プログラムのみが異なる。
(Configuration of Third Embodiment)
FIG. 9 is a configuration diagram (plan view) of the battery inspection apparatus according to the third embodiment of the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. The positioning mechanism 4B of FIG. 9 differs only in the operation of positioning the battery 1 from the positioning mechanism 4 of FIG. 9 differs from the data processing unit 6 in FIG. 1 only in the inspection program.

位置決め機構4Bは平板状の電池1を水平面(紙面)に沿ってホルダ(不図示)で保持し、X線ビーム3(のX線光軸L)に電極板11、12の面が沿うように、位置決めする。位置決め機構4Bは、第一の角部分C1を回転軸RA上に配置した状態で電池1をホルダごと水平面に沿って回転軸RAに対し回転させ、電極板の第一の角部分C1を面に沿ってかつ辺に対しθ1及びθ2傾斜した方向それぞれでX線ビーム3が透過するよう2つの位置で位置決めし(実線)、さらに、電池1をホルダごと水平面に沿って移動させ第二の角部分C2を回転軸RA上に配置させてから、電池1を回転軸RAに対し回転させ、電極板の角部分C2を面に沿ってかつ辺に対しθ3及びθ4傾斜した方向それぞれでX線ビーム3が透過するよう2つの位置で位置決めする(点線)。  The positioning mechanism 4B holds the flat battery 1 with a holder (not shown) along a horizontal plane (paper surface) so that the surfaces of the electrode plates 11 and 12 are along the X-ray beam 3 (of the X-ray optical axis L). , Positioning. The positioning mechanism 4B rotates the battery 1 together with the holder along the horizontal plane with respect to the rotation axis RA with the first corner portion C1 disposed on the rotation axis RA, and the first corner portion C1 of the electrode plate faces the surface. And the X-ray beam 3 is positioned at two positions so that the X-ray beam 3 is transmitted in each of the directions inclined by θ1 and θ2 with respect to the side (solid line), and the battery 1 is moved along the horizontal plane together with the holder. After C2 is disposed on the rotation axis RA, the battery 1 is rotated with respect to the rotation axis RA, and the X-ray beam 3 is rotated in each of the directions in which the corner portion C2 of the electrode plate is inclined along the plane and inclined by θ3 and θ4 with respect to the sides. Is positioned at two positions (dotted line) so that the light is transmitted.

(第三の実施形態の作用)
図10、図11を参照して、第三の実施の形態における作用を説明する。
(Operation of the third embodiment)
The operation of the third embodiment will be described with reference to FIGS.

第三の実施形態は、複数の電極板11、12間の相対的位置ずれを、前提、
{電極板それぞれの形状は正確で誤差は無視できる}、
{ずれは平行ずれと回転ずれを含む}、
の下に検出するものである。
The third embodiment is based on the premise of relative displacement between the plurality of electrode plates 11 and 12.
{The shape of each electrode plate is accurate and errors can be ignored},
{The displacement includes parallel displacement and rotational displacement},
It is something to detect below.

図10は第三の実施形態の検査のフロー図である。検査は、検査プログラムによりデータ処理部6BのCPUにより行われる。  FIG. 10 is a flowchart of the inspection according to the third embodiment. The inspection is performed by the CPU of the data processing unit 6B by an inspection program.

ステップS21で、位置決め機構4Bが、電極板の第一の角部分C1をθ1およびθ2傾斜した方向それぞれでX線ビーム3が透過するよう電池1を位置決めし、それぞれで、X線検出器5が透過像を撮影し、データ処理部6Bが透過像を取込む。得られた2つの透過像はそれぞれ図4(a)と同等である。  In step S21, the positioning mechanism 4B positions the battery 1 so that the X-ray beam 3 is transmitted in the directions inclined by θ1 and θ2 through the first corner portion C1 of the electrode plate, and the X-ray detector 5 is A transmission image is taken, and the data processing unit 6B captures the transmission image. The obtained two transmitted images are the same as those in FIG.

ステップS22で、図4(a)を参照して、データ処理部6Bは、ステップS21で得た角部分C1の2つの透過像を用いて正極板に対する負極板の突出長さL1とL2をそれぞれ求める。突出長さL1、L2は、第一実施形態と同様に、層kごとに実長で、上から順に、L1(k)、L2(k)として求める(k=1,2,…K)。  In step S22, referring to FIG. 4A, the data processing unit 6B uses the two transmission images of the corner portion C1 obtained in step S21 to set the protrusion lengths L1 and L2 of the negative electrode plate relative to the positive electrode plate, respectively. Ask. Similar to the first embodiment, the protrusion lengths L1 and L2 are real lengths for each layer k, and are calculated as L1 (k) and L2 (k) in order from the top (k = 1, 2,... K).

ステップS23で、位置決め機構4Bが、電極板の第二の角部分C2をθ3およびθ4傾斜した方向それぞれでX線ビーム3が透過するよう電池1を位置決めし、それぞれで、X線検出器5が透過像を撮影し、データ処理部6Bが透過像を取込む。得られた2つの透過像はそれぞれ図4(b)と同等である。  In step S23, the positioning mechanism 4B positions the battery 1 so that the X-ray beam 3 is transmitted in the directions inclined by θ3 and θ4 through the second corner portion C2 of the electrode plate, and the X-ray detector 5 is A transmission image is taken, and the data processing unit 6B captures the transmission image. The obtained two transmission images are the same as those in FIG.

ステップS24で、図4(b)を参照して、データ処理部6Bは、ステップS23で得た角部分C2の2つの透過像を用いて正極板に対する負極板の突出長さL3とL4をそれぞれ求める。突出長さL3、L4は、第一実施形態と同様に、層kごとに実長で、上から順に、L3(k)、L4(k)として求める(k=1,2,…K)。  In step S24, referring to FIG. 4B, the data processing unit 6B sets the projection lengths L3 and L4 of the negative electrode plate relative to the positive electrode plate using the two transmission images of the corner portion C2 obtained in step S23, respectively. Ask. Similar to the first embodiment, the protrusion lengths L3 and L4 are actual lengths for each layer k, and are calculated as L3 (k) and L4 (k) in order from the top (k = 1, 2,... K).

ステップS25で、層番号kのループに入りステップS26,S27をk=1,2,…Kで以下のように繰り返す。  In step S25, a loop of layer number k is entered, and steps S26 and S27 are repeated with k = 1, 2,.

ステップS26で、ステップS22、S24で求めたL1(k)、L2(k)、L3(k)、L4(k)から、負極板を基準としたときの正極板の4つの頂点の所定位置からの位置ずれΔx(i),Δy(i)、(i=1,2,3,4)を以下のように求める。  In step S26, from L1 (k), L2 (k), L3 (k), and L4 (k) obtained in steps S22 and S24, from the predetermined positions of the four vertices of the positive electrode plate when the negative electrode plate is used as a reference. Are calculated as follows: Δx (i), Δy (i), (i = 1, 2, 3, 4).

図11は第三の実施形態における位置ずれΔx(i),Δy(i)を求める説明図である。図11は1つの層での正極板11と負極板12の位置関係を示している。  FIG. 11 is an explanatory diagram for obtaining positional deviations Δx (i) and Δy (i) in the third embodiment. FIG. 11 shows the positional relationship between the positive electrode plate 11 and the negative electrode plate 12 in one layer.

図11を参照して、ずれのないときの負極板12の突出量をx、y方向それぞれcx0、cy0とすると、角部分C1での正極板の頂点Aの位置ずれΔx(1),Δy(1)は、L1(k)、L2(k)を用いて、第二実施形態と同様に、式、
Δx(1)=cx0+{L1(k)・cosθ2−L2(k)・cosθ1}/sin(θ2−θ1) ………(14)
Δy(1)=cy0−{L1(k)・sinθ2−L2(k)・sinθ1}/sin(θ2−θ1) ………(15)
で求められる。同様に、角部分C2での正極板の頂点Bの位置ずれΔx(2),Δy(2)は、L3(k)、L4(k)を用いて、第二実施形態と同様に、式、
Δx(2)=−cx0+{L3(k)・sinθ4−L4(k)・sinθ3}/sin(θ4−θ3) ………(16)
Δy(2)=cy0+{L3(k)・cosθ4−L4(k)・cosθ3}/sin(θ4−θ3) ………(17)
で求められる。(式(14)、式(15)で、Δx(1),Δy(1),cx0,cy0,L1,L2,θ1,θ2をそれぞれΔy(2),−Δx(2),cy0,cx0,L3,L4,θ3,θ4で置き換えることで式(16)、式(17)が得られる。)
Referring to FIG. 11, assuming that the protruding amount of the negative electrode plate 12 when there is no deviation is cx0 and cy0 respectively in the x and y directions, the positional deviations Δx (1) and Δy ( 1) uses L1 (k) and L2 (k), as in the second embodiment,
Δx (1) = cx0 + {L1 (k) · cos θ2−L2 (k) · cos θ1} / sin (θ2−θ1) (14)
Δy (1) = cy0− {L1 (k) · sin θ2−L2 (k) · sin θ1} / sin (θ2−θ1) (15)
Is required. Similarly, the positional deviations Δx (2) and Δy (2) of the apex B of the positive electrode plate at the corner portion C2 are expressed by the following equations using L3 (k) and L4 (k) as in the second embodiment:
Δx (2) = − cx0 + {L3 (k) · sin θ4-L4 (k) · sin θ3} / sin (θ4-θ3) (16)
Δy (2) = cy0 + {L3 (k) · cos θ4-L4 (k) · cos θ3} / sin (θ4-θ3) (17)
Is required. (In the equations (14) and (15), Δx (1), Δy (1), cx0, cy0, L1, L2, θ1, θ2 are respectively expressed as Δy (2), −Δx (2), cy0, cx0, (Expression (16) and expression (17) are obtained by replacing with L3, L4, θ3, and θ4.)

次に、正極板11(頂点A,B,C,D)の各辺の長さを2d、2hとし、平行ずれをΔxp、Δyp、回転ずれをαとすると、図11を参照して、連立方程式、
Δx(1)=Δxp+h・sinα−d・(1−cosα) ………(18)
Δy(1)=Δyp−d・sinα−h・(1−cosα) ………(19)
Δx(2)=Δxp+h・sinα+d・(1−cosα) ………(20)
Δy(2)=Δyp+d・sinα−h・(1−cosα) ………(21)
がなりたつことが導ける。この連立方程式の未知数はα、Δxp、Δypの3つで、方程式の数は4つで冗長性があるが、精度の上がる解を選択すると、α、Δxp、Δypの解として、式、
α=asin{(Δy(2)−Δy(1))/2d} ………(22)
Δxp=(Δx(2)+Δx(1))/2−(Δy(2)−Δy(1))・h/2d
………(23)
Δyp=(Δy(2)+Δy(1))/2+h・(1−cosα) ………(24)
が得られる。次に、得られたα、Δxp、Δypを用いて、角部分C3での正極板の頂点Cの位置ずれΔx(3),Δy(3)、および、角部分C4での正極板の頂点Dの位置ずれΔx(4),Δy(4)は、図11を参照して、式、
Δx(3)=Δxp−h・sinα+d・(1−cosα) ………(25)
Δy(3)=Δyp+d・sinα+h・(1−cosα) ………(26)
Δx(4)=Δxp−h・sinα−d・(1−cosα) ………(27)
Δy(4)=Δyp−d・sinα+h・(1−cosα) ………(28)
で求められる。
Next, assuming that the length of each side of the positive electrode plate 11 (vertices A, B, C, and D) is 2d and 2h, the parallel deviation is Δxp and Δyp, and the rotational deviation is α, refer to FIG. equation,
Δx (1) = Δxp + h · sin α−d · (1−cos α) (18)
Δy (1) = Δyp−d · sin α−h · (1−cos α) (19)
Δx (2) = Δxp + h · sin α + d · (1−cos α) (20)
Δy (2) = Δyp + d · sin α−h · (1−cos α) (21)
I can guide you. There are three unknowns of the simultaneous equations, α, Δxp, and Δyp, and the number of equations is four, which is redundant. However, if a solution with higher accuracy is selected, the solutions of α, Δxp, and Δyp are expressed as follows:
α = asin {(Δy (2) −Δy (1)) / 2d} (22)
Δxp = (Δx (2) + Δx (1)) / 2− (Δy (2) −Δy (1)) · h / 2d
……… (23)
Δyp = (Δy (2) + Δy (1)) / 2 + h · (1-cos α) (24)
Is obtained. Next, using the obtained α, Δxp, Δyp, the positional deviations Δx (3), Δy (3) of the vertex C of the positive electrode plate at the corner portion C3, and the vertex D of the positive electrode plate at the corner portion C4 The positional deviations Δx (4) and Δy (4) of FIG.
Δx (3) = Δxp−h · sin α + d · (1−cos α) (25)
Δy (3) = Δyp + d · sin α + h · (1−cos α) (26)
Δx (4) = Δxp−h · sin α−d · (1−cos α) (27)
Δy (4) = Δyp−d · sin α + h · (1−cos α) (28)
Is required.

すなわち、ステップS26で、式(14)ないし式(17)、及び、式(22)ないし式(28)を順次計算することで、層kにおける正極板の4つの頂点の所定位置からの位置ずれΔx(i),Δy(i)、(i=1,2,3,4)が求められる。  That is, in step S26, the positional deviation from the predetermined position of the four vertices of the positive electrode plate in the layer k is calculated by sequentially calculating the expressions (14) to (17) and the expressions (22) to (28). Δx (i), Δy (i), (i = 1, 2, 3, 4) are obtained.

ステップS27で、層別の良否判定を以下のように行う。ずれの許容値をx、y方向でそれぞれΔxlmt、Δylmtとして、
(Δx(1)<Δxlmt、)かつ、(Δy(1)<Δylmt)、かつ、
(−Δxlmt<Δx(2))、かつ、(Δy(2)<Δylmt)、かつ、
(−Δxlmt<Δx(3))、かつ、(−Δylmt<Δy(3))、かつ、
(Δx(4)<Δxlmt、)、かつ、(−Δylmt<Δy(4))、
のとき層kについて、良品とし、他の場合不良品とする。
In step S27, the quality determination for each layer is performed as follows. The allowable deviation is set to Δxlmt and Δylmt in the x and y directions, respectively.
(Δx (1) <Δxlmt,) and (Δy (1) <Δylmt), and
(−Δxlmt <Δx (2)), (Δy (2) <Δylmt), and
(−Δxlmt <Δx (3)) and (−Δylmt <Δy (3)), and
(Δx (4) <Δxlmt,), and (−Δylmt <Δy (4)),
In this case, the layer k is a non-defective product, and in other cases, a defective product.

ステップS28で、全kについてループが終了してない場合はステップS25にもどりkを変えてステップS26,S27を繰り返し、全kについて終了した場合はステップS29に進む。  If it is determined in step S28 that the loop has not been completed for all k, the process returns to step S25 to change k and repeat steps S26 and S27. If all k have been completed, the process proceeds to step S29.

ステップS29では、総合の良否判定を行う。総合の良否判定は全層kで良品と判定されたときのみ総合で良品と判定することで行われる。  In step S29, comprehensive quality determination is performed. The overall pass / fail judgment is performed by determining that the product is non-defective only when it is determined to be non-defective in all layers k.

以上の検査のフローにより、全層で負極板の突出長さが、xの正負方向で規定値(cx0−Δxlmt)以上、かつ、yの正負方向で規定値(cy0−Δylmt)以上となる電池1のみが良品と判定される。  Through the above inspection flow, the battery in which the protruding length of the negative electrode plate is greater than or equal to the specified value (cx0−Δxlmt) in the positive / negative direction of x and equal to or greater than the specified value (cy0−Δylmt) in the positive / negative direction of y. Only 1 is determined to be non-defective.

(第三の実施形態の効果)
第三の実施形態によれば、電極板の2つの角部分それぞれを、面に沿ってかつ辺に対し傾斜した2つの方向でそれぞれ透過像を撮影するので、放射線ビームが電極板を透過する長さを短くして透過像を得ることができ、電極板の反りの影響で放射線が通りにくくなることや反りの影響で電極板の像が不鮮明になることを軽減でき、また、撮影した4つの透過像から、平行ずれおよび回転ずれの前提の下に電極板の位置ずれを検出し良否判定を行うので、高容量のスタック型の電池で電極板が大きく薄層であっても、透過像から電極板の位置ずれを検出することが可能となる。
(Effect of the third embodiment)
According to the third embodiment, each of the two corner portions of the electrode plate is photographed in two directions along the plane and inclined with respect to the side, so that the radiation beam passes through the electrode plate. The transmission image can be obtained by shortening the length, and it is possible to reduce the difficulty of passing radiation due to the warpage of the electrode plate and the blurring of the image of the electrode plate due to the warpage. From the transmission image, the displacement of the electrode plate is detected under the premise of parallel displacement and rotational displacement, and the quality is judged. Therefore, even if the electrode plate is large and thin with a high capacity stack type battery, It is possible to detect the displacement of the electrode plate.

すなわち、第三の実施形態によれば、高容量のスタック型の電池に対し、電極板の平行ずれだけでなく回転ずれがある場合でも電極板の位置ずれを検出することが可能となる。  That is, according to the third embodiment, it is possible to detect the displacement of the electrode plate even when there is a rotational displacement as well as a parallel displacement of the electrode plate, for a high capacity stack type battery.

(第三の実施形態の変形)
(変形例1)
第三の実施形態で、第二実施形態と同様に、傾斜角θ1、θ2、θ3、θ4は任意に設定できる。θ1、θ2(あるいはθ3、θ4)の設定による精度の違いも第二実施形態と同様であり、傾斜角θ1、θ2(あるいはθ3、θ4)は、一方が概略20°前後、他方が概略70°前後とするのがよい。
(Modification of the third embodiment)
(Modification 1)
In the third embodiment, the tilt angles θ1, θ2, θ3, and θ4 can be arbitrarily set as in the second embodiment. The difference in accuracy depending on the setting of θ1, θ2 (or θ3, θ4) is the same as that of the second embodiment. One of the inclination angles θ1, θ2 (or θ3, θ4) is approximately 20 °, and the other is approximately 70 °. Before and after.

(変形例2)
第三の実施形態で、第二の角部分C2を2方向で撮影しているが、第二の角部分C2については面に沿ってかつ辺に対しθ3傾斜した方向のみの撮影としてもよい。それは、冗長性なくせば、3つの透過像で方程式を立てることができ、位置ずれが解けるからである。
(Modification 2)
In the third embodiment, the second corner portion C2 is photographed in two directions. However, the second corner portion C2 may be photographed only in the direction along the surface and inclined by θ3 with respect to the side. This is because without redundancy, an equation can be established with three transmitted images, and the misalignment can be solved.

すなわち、変形例2では角部分C1を方向θ1、θ2で、角部分C2を方向θ3で撮影した3つの画像から、それぞれ負極板の突出長さL1(k)、L2(k)、L3(k)を求め、L1(k)、L2(k)、L3(k)から、層kごとに正極板の4つの頂点の所定位置からの位置ずれΔx(i),Δy(i)、(i=1,2,3,4)を求める。  That is, in the modified example 2, the projection lengths L1 (k), L2 (k), and L3 (k) of the negative electrode plate are respectively obtained from three images obtained by photographing the corner portion C1 in the directions θ1 and θ2 and the corner portion C2 in the direction θ3. ) And L1 (k), L2 (k), and L3 (k), the positional deviations Δx (i), Δy (i), (i = 1, 2, 3, 4).

この場合、まず、頂点Aの位置ずれΔx(1),Δy(1)を、式(14)、式(15)で求める。次に、頂点Bの位置ずれΔx(2),Δy(2)を求める。  In this case, first, the positional deviations Δx (1) and Δy (1) of the vertex A are obtained by the equations (14) and (15). Next, the positional deviations Δx (2) and Δy (2) of the vertex B are obtained.

図12は第三の実施形態の変形例2における位置ずれΔx(2),Δy(2)を求める説明図である。図12は1つの層での正極板11の頂点A、Bのずれを示している。A、Bのずれる前の点をそれぞれA0、B0とし、B0を原点にxy座標を取る。まず、L3(k)の、ずれがない時からの変化分ΔL3(k)は、式、
ΔL3(k)=L3(k)−(cx0・cosθ3+cy0・sinθ3)
………(29)
で求められる。ΔL3(k)を用いて、図12を参照して、Line1とCircle1の交点がB点(Δx(2),Δy(2))であるので、Δx(2),Δy(2)を求める連立方程式、
Δy(2)=Δx(2)・cotθ3−ΔL3(k)/sinθ3 ………(30)
{Δx(2)−(2d+Δx(1))}+{Δy(2)−Δy(1)}=4d
………(31)
が成り立つことが導ける。これを解くと、
a=1+cotθ3 ………(32)
b=2d+Δx(1)+cotθ3・{ΔL3(k)/sinθ3+Δy(1)}
………(33)
c={2d+Δx(1)}+{ΔL3(k)/sinθ3+Δy(1)}−4d ………(34)
Δx(2)={b−√(b−a・c)}/a ………(35)
でΔx(2)が求まり、さらに、求めたΔx(2)を式(30)に代入してΔy(2)が求まる。
FIG. 12 is an explanatory diagram for obtaining positional deviations Δx (2) and Δy (2) in Modification 2 of the third embodiment. FIG. 12 shows the deviation of the vertices A and B of the positive electrode plate 11 in one layer. The points before A and B are shifted are A0 and B0, respectively, and xy coordinates are taken with B0 as the origin. First, a change ΔL3 (k) of L3 (k) from the time when there is no deviation is expressed by the following equation:
ΔL3 (k) = L3 (k) − (cx0 · cos θ3 + cy0 · sin θ3)
……… (29)
Is required. Referring to FIG. 12 using ΔL3 (k), since the intersection of Line1 and Circle1 is point B (Δx (2), Δy (2)), simultaneous determination for obtaining Δx (2), Δy (2) equation,
Δy (2) = Δx (2) · cot θ3−ΔL3 (k) / sin θ3 (30)
{Δx (2) − (2d + Δx (1))} 2 + {Δy (2) −Δy (1)} 2 = 4d 2
......... (31)
Can be established. Solving this,
a = 1 + cot 2 θ3 (32)
b = 2d + Δx (1) + cot θ3 · {ΔL3 (k) / sin θ3 + Δy (1)}
……… (33)
c = {2d + Δx (1)} 2 + {ΔL3 (k) / sin θ3 + Δy (1)} 2 −4d 2 (34)
Δx (2) = {b−√ (b 2 −a · c)} / a (35)
Δx (2) is obtained, and Δx (2) obtained by substituting the obtained Δx (2) into equation (30) is obtained.

なお、θ3は45°より大きく90°に近い角度にすると、Line1とCircle1が直角に近い角度で交わるので、Δx(2),Δy(2)が精度よく求められるが、90°に近過ぎるとX線ビームが電極板を透過する長さが長くなり透過像が不鮮明になってしまので、例えば70°程度とする。  Note that if θ3 is larger than 45 ° and close to 90 °, Line1 and Circle1 intersect at an angle close to a right angle, so Δx (2) and Δy (2) can be obtained with high accuracy, but if it is too close to 90 ° Since the length of transmission of the X-ray beam through the electrode plate becomes long and the transmitted image becomes unclear, it is set to about 70 °, for example.

以上のように、式(14)、式(15)、式(29)、式(32)乃至式(35)、及び式(30)を順次計算してΔx(1),Δy(1),Δx(2),Δy(2)が求められる。  As described above, Equation (14), Equation (15), Equation (29), Equation (32) to Equation (35), and Equation (30) are sequentially calculated to obtain Δx (1), Δy (1), Δx (2) and Δy (2) are obtained.

以下、第三の実施形態と同様に式(22)ないし式(28)を計算して、位置ずれΔx(i),Δy(i)、(i=1,2,3,4)全てを求めることができる。  Thereafter, the equations (22) to (28) are calculated in the same manner as in the third embodiment to obtain all the positional deviations Δx (i), Δy (i), (i = 1, 2, 3, 4). be able to.

変形例2によれば、透過像の撮影を1つ少なくでき、かつ、第三の実施形態と同じ効果をあげることができる。  According to the second modification, the number of transmission images can be reduced by one, and the same effect as that of the third embodiment can be obtained.

(変形例3)
第三の実施形態で、2つの角部分をそれぞれ2方向で撮影しているが、3つ以上の角部分をそれぞれ2方向で撮影してもよい。また、少なくとも1つの角部分で2方向撮影すれば残りの角部分は1方向撮影とすることもできる。透過像が3つを超えると冗長性が生じるが、余剰の透過像を統計精度を上げるために用いることができる。
(Modification 3)
In the third embodiment, two corner portions are photographed in two directions, but three or more corner portions may be photographed in two directions. Further, if two-way shooting is performed with at least one corner portion, the remaining corner portions may be one-way shooting. Redundancy occurs when the number of transmission images exceeds three, but an excess transmission image can be used to improve statistical accuracy.

(変形例4)
図10を参照して、第三の実施形態では、kループ(ステップS25ないしS28)を全層について計算しているが、ステップS27の層別の良否判定で不良と判定されたとき、ループを終了させステップS29の総合判定に移るようにしてもよい。1つの層でも不良があった場合、総合判定で不良になるからである。
(Modification 4)
Referring to FIG. 10, in the third embodiment, k loops (steps S25 to S28) are calculated for all layers. You may make it complete | finish and move to the comprehensive determination of step S29. This is because if there is a defect in even one layer, it becomes defective in the comprehensive determination.

(第四の実施形態の構成)
図13は本発明の第四の実施形態の電池検査装置の構成図(平面図)である。第一の実施の形態と同じ構成は同じ番号を付し、説明は省略する。図13の位置決め機構4Cは図1の位置決め機構4から電池1を位置決めする動作のみが異なる。また、図13のデータ処理部6Cは図1のデータ処理部6から検査プログラムのみが異なる。
(Configuration of the fourth embodiment)
FIG. 13 is a configuration diagram (plan view) of a battery inspection apparatus according to the fourth embodiment of the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. The positioning mechanism 4C in FIG. 13 differs from the positioning mechanism 4 in FIG. 1 only in the operation of positioning the battery 1. Further, the data processing unit 6C in FIG. 13 differs from the data processing unit 6 in FIG. 1 only in the inspection program.

位置決め機構4Cは平板状の電池1を水平面(紙面)に沿ってホルダ(不図示)で保持し、X線ビーム3(のX線光軸L)に電極板11、12の面が沿うように位置決めし、電池1をホルダごと水平面に沿って平行移動させるとともにX線光軸L上の回転軸RAに対し水平面に沿って回転させて位置決めする。具体的には、位置決め機構4Cは、電極板の4つの角部分Ci(i=1,2,3,4)それぞれを回転軸RAに合わせるように電池1を平行移動させ、さらに回転軸RAに対し回転させ、それぞれの角部分Ciを面に沿ってかつ辺に対し傾斜した2つの方向θ1(i),θ2(i)(実線と点線)でそれぞれ放射線ビーム3(のX線光軸L)が透過するように8つの位置決めをする。  The positioning mechanism 4C holds the flat battery 1 with a holder (not shown) along a horizontal plane (paper surface) so that the surfaces of the electrode plates 11 and 12 are along the X-ray beam 3 (of the X-ray optical axis L). Positioning is performed, and the battery 1 is translated along the horizontal plane together with the holder and rotated along the horizontal plane with respect to the rotation axis RA on the X-ray optical axis L for positioning. Specifically, the positioning mechanism 4C translates the battery 1 so that each of the four corner portions Ci (i = 1, 2, 3, 4) of the electrode plate is aligned with the rotation axis RA, and further to the rotation axis RA. The radiation beam 3 (of its X-ray optical axis L) is rotated in two directions θ1 (i) and θ2 (i) (solid line and dotted line) that are rotated with respect to each corner portion Ci along the surface and inclined with respect to the side. 8 positions so that is transparent.

(第四の実施形態の作用)
図14、図15を参照して、第四の実施の形態における作用を説明する。
(Operation of the fourth embodiment)
The operation in the fourth embodiment will be described with reference to FIGS. 14 and 15.

第四の実施形態は、複数の電極板11、12間の相対的位置ずれを、前提、
{電極板それぞれの形状は不正確で誤差は無視できない}、
{ずれは平行ずれと回転ずれを含む}、
の下に検出するものである。
The fourth embodiment is based on the premise of relative displacement between the plurality of electrode plates 11 and 12.
{The shape of each electrode plate is inaccurate and the error cannot be ignored},
{The displacement includes parallel displacement and rotational displacement},
It is something to detect below.

図14は第四の実施形態の検査のフロー図である。検査は、検査プログラムによりデータ処理部6CのCPUにより行われる。  FIG. 14 is a flowchart of inspection according to the fourth embodiment. The inspection is performed by the CPU of the data processing unit 6C by an inspection program.

ステップS31で、角部分Ci(i=1,2,3,4)のループに入りステップS32ないし,S38をi=1,2,3,4で以下のように繰り返す。  In step S31, the loop of the corner portion Ci (i = 1, 2, 3, 4) is entered, and steps S32 to S38 are repeated with i = 1, 2, 3, 4 as follows.

ステップS32で、位置決め機構4Cが、電極板の角部分Ciをθ1(i)およびθ2(i)傾斜した方向それぞれでX線ビーム3が透過するよう電池1を位置決めし、それぞれで、X線検出器5が透過像を撮影し、データ処理部6Cが透過像を取込む。得られた2つの透過像はそれぞれ図4(a)と同等である。  In step S32, the positioning mechanism 4C positions the battery 1 so that the X-ray beam 3 is transmitted in the directions in which the corner portion Ci of the electrode plate is inclined by θ1 (i) and θ2 (i). The device 5 captures the transmission image, and the data processing unit 6C captures the transmission image. The obtained two transmitted images are the same as those in FIG.

ステップS33で、図4(a)を参照して、データ処理部6Cは、ステップS32で得た角部分Ciの2つの透過像を用いて正極板に対する負極板の突出長さL1とL2をそれぞれ求める。突出長さL1、L2は、第一実施形態と同様に、層kごとに実長で、上から順に、L1(k)、L2(k)として求める(k=1,2,…K)。  In step S33, referring to FIG. 4A, the data processing unit 6C determines the protrusion lengths L1 and L2 of the negative electrode plate with respect to the positive electrode plate using the two transmission images of the corner portion Ci obtained in step S32. Ask. Similar to the first embodiment, the protrusion lengths L1 and L2 are actual lengths for each layer k, and are calculated as L1 (k) and L2 (k) in order from the top (k = 1, 2,... K).

ステップS34で、層番号kのループに入りステップS35,S36をk=1,2,…Kで以下のように繰り返す。  In step S34, a loop of layer number k is entered, and steps S35 and S36 are repeated as follows with k = 1, 2,.

ステップS35で、ステップS33で求めたL1(k)、L2(k)から、正極板頂点から負極板のx,y方向の突出長さcx,cyを以下のように求める。  In step S35, the projection lengths cx and cy in the x and y directions of the negative electrode plate from the vertex of the positive electrode plate are obtained from L1 (k) and L2 (k) obtained in step S33 as follows.

図15は第四の実施形態における負極板の突出長さcx,cyを求める説明図である。図15は角部Ciの1つの層での正極板11と負極板12の位置関係を示している。  FIG. 15 is an explanatory diagram for obtaining the protrusion lengths cx and cy of the negative electrode plate in the fourth embodiment. FIG. 15 shows the positional relationship between the positive electrode plate 11 and the negative electrode plate 12 in one layer of the corner portion Ci.

図15を参照して、連立方程式、
L1=cx・sinθ1+cy・cosθ1 ………(36)
L2=cx・sinθ2+cy・cosθ2 ………(37)
が導ける。これをcx,cyについて解くと、式、
cx=(L1・cosθ2−L2・cose1)/sin(θ1−θ2)
………(38)
cy=(L1・sinθ2−L2・sinθ1)/sin(θ2−θ1)
………(39)
となる。
Referring to FIG. 15, simultaneous equations,
L1 = cx · sin θ1 + cy · cos θ1 (36)
L2 = cx · sin θ 2 + cy · cos θ 2 (37)
Can lead. Solving this for cx, cy,
cx = (L1 · cos θ2−L2 · case1) / sin (θ1−θ2)
......... (38)
cy = (L1 · sin θ2−L2 · sin θ1) / sin (θ2−θ1)
……… (39)
It becomes.

ステップS35では、式(38)、(39)を計算することで、cx,cyが求められる。  In step S35, cx and cy are obtained by calculating equations (38) and (39).

ステップS36で層別の良否判定を行う。良否判定は、判定基準をclmtとして、
cx>clmt、かつ、cy>clmt
のとき良品、他のとき不良品とする。
In step S36, the quality of each layer is judged. In the pass / fail judgment, the judgment criterion is clmt,
cx> clmt and cy> clmt
It is considered a non-defective product at other times and a defective product at other times.

ステップS37で、全kについてループが終了してない場合はステップS34にもどりkを変えてステップS35,S36を繰り返し、全kについて終了した場合はステップS38に進む。  If it is determined in step S37 that the loop has not been completed for all k, the process returns to step S34 to change k and repeat steps S35 and S36. If all k have been completed, the process proceeds to step S38.

ステップS38では、角部分Ciでの良否判定を行う。角部分Ciでの良否判定は全層kで良品と判定されたときのみCiで良品と判定することで行われる。  In step S38, a pass / fail determination is made at the corner portion Ci. The pass / fail judgment at the corner portion Ci is performed by determining that the product is non-defective by Ci only when the non-defective product is determined by all layers k.

ステップS39で全iについてループが終了してない場合はステップS31にもどり、iを変えてステップS32ないしS38を繰り返し、全iについて終了した場合はステップS40に進む。  If the loop has not been completed for all i in step S39, the process returns to step S31, i is changed, and steps S32 to S38 are repeated. If all i are completed, the process proceeds to step S40.

ステップS40では、総合の良否判定を行う。総合の良否判定は全角部分Ciで良品と判定されたときのみ総合で良品と判定することで行われる。  In step S40, a comprehensive quality determination is performed. The overall pass / fail judgment is performed by determining that the product is non-defective only when it is determined to be non-defective at the full-width portion Ci.

以上の検査のフローにより、全角部分の全層で正極板頂点からの負極板の突出長さが、x方向で規定値clmt以上、かつ、y方向で規定値clmt以上となる電池1のみが良品と判定される。  With the above inspection flow, only the battery 1 in which the protruding length of the negative electrode plate from the apex of the positive electrode plate in all layers of the full-angle portion is not less than the specified value clmt in the x direction and not less than the specified value clmt in the y direction. It is determined.

(第四の実施形態の効果)
第四の実施形態によれば、電極板の4つの角部分それぞれを、面に沿ってかつ辺に対し傾斜した2つの方向でそれぞれ透過像を撮影するので、放射線ビームが電極板を透過する長さを短くして透過像を得ることができ、電極板の反りの影響で放射線が通りにくくなることや反りの影響で電極板の像が不鮮明になることを軽減でき、また、撮影した8つの透過像から、平行ずれおよび回転ずれおよび電極板の寸法不確定の前提の下に電極板の位置ずれを検出し良否判定を行うので、高容量のスタック型の電池で電極板が大きく薄層であっても、透過像から電極板の位置ずれを検出することが可能となる。
(Effect of the fourth embodiment)
According to the fourth embodiment, each of the four corner portions of the electrode plate is photographed in two directions along the plane and inclined with respect to the side, so that the radiation beam passes through the electrode plate. The transmission image can be obtained by shortening the length, and it is possible to reduce the difficulty of passing the radiation due to the warp of the electrode plate and the blurring of the image of the electrode plate due to the warp. From the transmission image, the electrode plate position deviation is detected under the premise of parallel deviation, rotational deviation, and electrode plate dimensional uncertainty, and the quality is judged, so the electrode plate is large and thin with a high-capacity stack type battery. Even if it exists, it becomes possible to detect the position shift of the electrode plate from the transmission image.

すなわち、第四の実施形態によれば、高容量のスタック型の電池に対し、電極板の平
行ずれだけでなく回転ずれおよび電極板の寸法不確定がある場合でも電極板の位置ずれを検出することが可能となる。
That is, according to the fourth embodiment, for a high-capacity stack type battery, not only the parallel displacement of the electrode plates but also the displacement of the electrode plates is detected even when there is a rotational displacement and an uncertain dimension of the electrode plates. It becomes possible.

(第四の実施形態の変形)
(変形例1)
第四の実施形態で、第二実施形態と同様に、傾斜角θ1、θ2は任意に設定できる。θ1、θ2の設定による精度の違いも第二実施形態と同様であり、傾斜角θ1、θ2は、一方が概略20°前後、他方が概略70°前後とするのがよい。
(Modification of the fourth embodiment)
(Modification 1)
In the fourth embodiment, the tilt angles θ1 and θ2 can be arbitrarily set as in the second embodiment. The difference in accuracy depending on the setting of θ1 and θ2 is the same as in the second embodiment, and it is preferable that one of the inclination angles θ1 and θ2 is approximately 20 ° and the other is approximately 70 °.

(変形例2)
図14を参照して、第四の実施形態では、kループ(ステップS34ないしS37)を全層について計算しているが、ステップS36の層別の良否判定で不良と判定されたとき、ループを終了させステップS38のCiでの良否判定、あるいはステップS40の総合判定に移るようにしてもよい。1つの層でも不良があった場合、Ciでの良否判定と総合判定で不良になるからである。
(Modification 2)
Referring to FIG. 14, in the fourth embodiment, k loops (steps S34 to S37) are calculated for all layers. However, when it is determined that the quality of each layer is bad in step S36, the loop is determined. You may make it complete | finish and move to the quality determination in Ci of step S38, or the comprehensive determination of step S40. This is because if there is a defect in one layer, it becomes defective in the pass / fail judgment and comprehensive judgment in Ci.

また、同様に、第四の実施形態では、iループ(ステップS31ないしS39)を全角部分Ciについて計算しているが、ステップS38のCiでの良否判定で不良と判定されたとき、ループを終了させステップS40の総合判定に移るようにしてもよい。角部分で1つでも不良があった場合、総合判定で不良に成るからである。  Similarly, in the fourth embodiment, the i-loop (steps S31 to S39) is calculated for the full-width portion Ci, but when the pass / fail determination at Ci in step S38 is determined to be bad, the loop is terminated. Then, the overall determination in step S40 may be performed. This is because if even one corner is defective, it is determined to be defective in the comprehensive determination.

(第一ないし第四の実施形態共通の変形)
以下に、第一ないし第四の実施形態に共通する変形例を示す。
(Modification common to the first to fourth embodiments)
Hereinafter, modifications common to the first to fourth embodiments will be described.

(変形例1)
各実施形態では、図4を参照して、角部分の透過像を全層が視野に入るように撮影しているが、層と直交する方向に何画像かに分割して撮影するようにしても良い。これは、電池1、X線管2、X線検出器5のいずれか1つ以上を層と直交する方向に移動させて撮影することで行う。これにより、電池1が厚くなった場合でも、拡大率を下げることなく全層の透過像が得られる。
(Modification 1)
In each embodiment, referring to FIG. 4, a transmission image at a corner portion is photographed so that the entire layer is in the field of view. However, the image is divided into several images in a direction orthogonal to the layer and photographed. Also good. This is performed by moving one or more of the battery 1, the X-ray tube 2, and the X-ray detector 5 in the direction orthogonal to the layer and taking an image. Thereby, even when the battery 1 becomes thick, a transmission image of all layers can be obtained without reducing the enlargement ratio.

(変形例2)
各実施形態では、X線IIと撮像カメラで構成されたX線検出器5を用いているが、2次元分解能のX線検出器であればよく、例えば、半導体光センサアレイとシンチレータを用いたFPD(フラットパネルディテクタ)、あるいは半導体X線センサアレイを用いたFPDでもよい。また、マイクロチャンネルプレートと撮像カメラで構成されたX線検出器などを用いてもよい。
(Modification 2)
In each embodiment, the X-ray detector 5 constituted by the X-ray II and the imaging camera is used. However, any X-ray detector having a two-dimensional resolution may be used. For example, a semiconductor photosensor array and a scintillator are used. An FPD (flat panel detector) or an FPD using a semiconductor X-ray sensor array may be used. Moreover, you may use the X-ray detector etc. which were comprised with the microchannel plate and the imaging camera.

また、X線検出器5の代わりに、1次元分解能のX線検出器(X線ラインセンサ)5Aを用いることもできる。この場合は、例えば、図1を参照して、X線ビーム3の水平方向(紙面に沿った方向)の広がりを分解して検出するようにX線検出器5Aを配置し、電池1、X線管2、X線検出器5Aのいずれか1つ以上を垂直方向に走査させながら複数点で1次元の透過像を撮影し、これを合成することで2次元の透過像を得るようにする。  Further, instead of the X-ray detector 5, an one-dimensional resolution X-ray detector (X-ray line sensor) 5A may be used. In this case, for example, referring to FIG. 1, the X-ray detector 5A is disposed so as to decompose and detect the spread of the X-ray beam 3 in the horizontal direction (the direction along the paper surface), and the batteries 1, X One-dimensional transmission images are taken at a plurality of points while scanning one or more of the tube 2 and the X-ray detector 5A in the vertical direction, and these are combined to obtain a two-dimensional transmission image. .

さらに、1次元分解能のX線検出器5Aを用いる場合、分解能方向を、X線ビーム3の中心(X線光軸L)に対して略直交する任意方向(垂直や斜め方向)に配置してもよい。この場合、電池1、X線管2、X線検出器5Aのいずれか1つ以上を分解能方向に直交する方向に走査させながら複数点で1次元の透過像を撮影し、これを合成することで2次元の透過像を得るようにできる。  Further, when the X-ray detector 5A having a one-dimensional resolution is used, the resolution direction is arranged in an arbitrary direction (vertical or oblique direction) substantially orthogonal to the center of the X-ray beam 3 (X-ray optical axis L). Also good. In this case, one-dimensional transmission images are photographed at a plurality of points while any one or more of the battery 1, the X-ray tube 2 and the X-ray detector 5A are scanned in a direction orthogonal to the resolution direction, and these are synthesized. A two-dimensional transmission image can be obtained.

(変形例3)
各実施形態では、四角形の電極板を有するスタック型の電池を検査しているが、四角形の電極板としては、角部分に面取り(平面または曲面)が施されているものも含むものとする。面取りがある場合でも、各実施形態の作用どおりに位置ずれが検出できるが、面取りが大きくなると誤差が生じてくる。この場合、面取りの形状が既知であれば、面取りを考慮して計算誤差を補正することができる。
(Modification 3)
In each embodiment, a stack type battery having a quadrangular electrode plate is inspected. However, the quadrangular electrode plate includes a chamfered (planar or curved) corner portion. Even when there is chamfering, a positional shift can be detected as in the operation of each embodiment, but an error occurs when the chamfering becomes large. In this case, if the shape of the chamfer is known, the calculation error can be corrected in consideration of the chamfer.

図16は各実施形態共通の変形例3における電極板に面取りがある場合の補正の説明図(一例)である。図16は1つの層における正極板11と負極板12の位置関係を示している。面取りは円弧状(円筒面)として、正極板で面取り半径rp、負極板で面取り半径rmとすると、測定した負極板の突出長さLは、式、
L’=L−rm+rp ………(40)
で補正できる。各実施形態では、この補正後の値を用いて、同じ計算を行えばよい。ただし、計算は、正極板11と負極板12を、面取り円弧の中心点を角の点とする仮想の正極板11’と負極板12’(点線)とみなしているので、計算に用いた所定の定数(cx0、cy0、d、h、clmt)はこれに合わせて変更する必要がある。具体的には、定数cx0、cy0、d、h、clmtは、式、
cx0’=cx0−rm+rp ………(41)
cy0’=cy0−rm+rp ………(42)
d’=d−rp ………(43)
h’=h−rp ………(44)
clmt’=clmt−rm+rp ………(45)
で補正した値を用いる。
FIG. 16 is an explanatory view (one example) of correction when the electrode plate is chamfered in Modification 3 common to the embodiments. FIG. 16 shows the positional relationship between the positive electrode plate 11 and the negative electrode plate 12 in one layer. The chamfering is arcuate (cylindrical surface), the chamfering radius rp for the positive electrode plate and the chamfering radius rm for the negative electrode plate, the measured protrusion length L of the negative electrode plate is:
L ′ = L−rm + rp (40)
It can be corrected with. In each embodiment, the same calculation may be performed using this corrected value. However, since the calculation considers the positive electrode plate 11 and the negative electrode plate 12 as a virtual positive electrode plate 11 ′ and a negative electrode plate 12 ′ (dotted line) with the center point of the chamfered arc as a corner point, the predetermined value used for the calculation is used. The constants (cx0, cy0, d, h, clmt) must be changed accordingly. Specifically, the constants cx0, cy0, d, h, and clmt are expressions,
cx0 ′ = cx0−rm + rp (41)
cy0 ′ = cy0−rm + rp (42)
d ′ = d−rp (43)
h ′ = h−rp (44)
clmt ′ = clmt−rm + rp (45)
Use the value corrected in.

(変形例4)
各実施形態では、X線管2として、マイクロフォーカスX線管を用いているが他のX線管を用いることもできる。また、各実施形態では、放射線としてX線を用いているが、他の透過性の放射線を用いてもよい。
(Modification 4)
In each embodiment, a microfocus X-ray tube is used as the X-ray tube 2, but other X-ray tubes can also be used. In each embodiment, X-rays are used as radiation, but other transmissive radiation may be used.

1…電池
2…X線管
3…X線ビーム
4,4A,4B,4C…位置決め機構、4a…ホルダ
5…X線検出器、5a…検出面
6,6A,6B,6C…データ処理部
7…機構制御部
11…正極板
12…負極板
13…ケース
14…ゲル状電解液
15…正極リード
16…負極リード
40…放射線検出器
60…電池
61…正極板
62…負極板
DESCRIPTION OF SYMBOLS 1 ... Battery 2 ... X-ray tube 3 ... X-ray beam 4, 4A, 4B, 4C ... Positioning mechanism, 4a ... Holder 5 ... X-ray detector, 5a ... Detection surface 6, 6A, 6B, 6C ... Data processing part 7 ... mechanism control unit 11 ... positive electrode plate 12 ... negative electrode plate 13 ... case 14 ... gel electrolyte 15 ... positive electrode lead 16 ... negative electrode lead 40 ... radiation detector 60 ... battery 61 ... positive electrode plate 62 ... negative electrode plate

Claims (5)

層をなす複数の四角形の電極板を有する電池の前記電極板の位置ずれを検査する電池検査装置であり、
放射線源と、前記放射線源から放射される放射線ビームに前記電極板が沿うように前記電池を位置決めする位置決め手段と、
前記電池を透過した前記放射線ビームを検出し透過像として出力する放射線検出器と、
前記電極板の第一の角部分を面に沿ってかつ辺に対し傾斜した方向で透過した放射線ビームを検出した第一の透過像と、前記電極板の第二の角部分を面に沿ってかつ辺に対し傾斜した方向で透過した放射線ビームを検出した第二の透過像とを取込んで処理し、前記電極板の位置ずれを検出して良否を判定するデータ処理手段と、
を有することを特徴とする電池検査装置。
A battery inspection device for inspecting displacement of the electrode plate of a battery having a plurality of rectangular electrode plates forming a layer,
A radiation source and positioning means for positioning the battery so that the electrode plate follows a radiation beam emitted from the radiation source;
A radiation detector that detects the radiation beam transmitted through the battery and outputs a radiation image;
A first transmission image in which a radiation beam transmitted through the first corner portion of the electrode plate along the surface and in a direction inclined with respect to the side is detected, and the second corner portion of the electrode plate along the surface And a data processing means for taking in and processing a second transmission image in which a radiation beam transmitted in a direction inclined with respect to the side is detected, and detecting a positional deviation of the electrode plate to determine whether it is good or bad;
A battery inspection apparatus comprising:
層をなす複数の四角形の電極板を有する電池の前記電極板の位置ずれを検査する電池検査装置であり、
放射線源と、前記放射線源から放射される放射線ビームに前記電極板が沿うように前記電池を位置決めする位置決め手段と、
前記電池を透過した前記放射線ビームを検出し透過像として出力する放射線検出器と、
前記電極板の第一の角部分を面に沿ってかつ辺に対し傾斜した2つの方向でそれぞれ透過した放射線ビームを検出した第一の透過像と第二の透過像とを取込んで処理し、前記電極板の位置ずれを検出して良否を判定するデータ処理手段と、
を有することを特徴とする電池検査装置。
A battery inspection device for inspecting displacement of the electrode plate of a battery having a plurality of rectangular electrode plates forming a layer,
A radiation source and positioning means for positioning the battery so that the electrode plate follows a radiation beam emitted from the radiation source;
A radiation detector that detects the radiation beam transmitted through the battery and outputs a radiation image;
Capture and process a first transmission image and a second transmission image, each of which detects a radiation beam transmitted through the first corner of the electrode plate in two directions along the plane and inclined with respect to the side. , A data processing means for detecting a positional deviation of the electrode plate and judging pass / fail,
A battery inspection apparatus comprising:
請求項2に記載の電池検査装置において、
前記データ処理手段は、
前記第一の透過像と前記第二の透過像に加え、前記電極板の第二の角部分を面に沿ってかつ辺に対し傾斜した2つの方向でそれぞれ透過した放射線ビームを検出した第三の透過像と第四の透過像とを取込んで処理し、前記電極板の位置ずれを検出して良否を判定することを特徴とする電池検査装置。
The battery inspection apparatus according to claim 2,
The data processing means includes
In addition to the first transmission image and the second transmission image, a third beam in which a radiation beam transmitted through the second corner portion of the electrode plate along the surface and in two directions inclined with respect to the side is detected. A battery inspection apparatus characterized in that a transmission image and a fourth transmission image are captured and processed, and a position determination of the electrode plate is detected to determine whether it is acceptable.
請求項2に記載の電池検査装置において、
前記データ処理手段は、
前記第一の透過像と前記第二の透過像に加え、前記電極板の第二の角部分を面に沿ってかつ辺に対し傾斜した方向で透過した放射線ビームを検出した第三の透過像を取込んで処理し、前記電極板の位置ずれを検出して良否を判定することを特徴とする電池検査装置。
The battery inspection apparatus according to claim 2,
The data processing means includes
In addition to the first transmission image and the second transmission image, a third transmission image in which a radiation beam transmitted through the second corner portion of the electrode plate along the surface and in a direction inclined with respect to the side is detected. A battery inspection apparatus characterized in that it accepts and processes and determines whether the electrode plate is misaligned or not.
層をなす複数の四角形の電極板を有する電池の前記電極板の位置ずれを検査する電池検査装置であり、
放射線源と、前記放射線源から放射される放射線ビームに前記電極板が沿うように前記電池を位置決めする位置決め手段と、
前記電池を透過した前記放射線ビームを検出し透過像として出力する放射線検出器と、
前記電極板の4つの角部分それぞれを面に沿ってかつ辺に対し傾斜した2つの方向でそれぞれ透過した放射線ビームを検出した8つの透過像を取込んで処理し、前記電極板の位置ずれを検出して良否を判定するデータ処理手段と、
を有することを特徴とする電池検査装置。
A battery inspection device for inspecting displacement of the electrode plate of a battery having a plurality of rectangular electrode plates forming a layer,
A radiation source and positioning means for positioning the battery so that the electrode plate follows a radiation beam emitted from the radiation source;
A radiation detector that detects the radiation beam transmitted through the battery and outputs a radiation image;
Eight transmission images obtained by detecting the radiation beams respectively transmitted through the four corners of the electrode plate along the plane and in two directions inclined with respect to the sides are captured and processed, and the displacement of the electrode plate is corrected. Data processing means for detecting and judging pass / fail;
A battery inspection apparatus comprising:
JP2009196002A 2009-08-06 2009-08-06 Battery inspection device Pending JP2011039014A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009196002A JP2011039014A (en) 2009-08-06 2009-08-06 Battery inspection device
KR1020100005978A KR101121259B1 (en) 2009-08-06 2010-01-22 Battery inspection apparatus
CN2010101200666A CN101997135B (en) 2009-08-06 2010-01-25 Battery inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009196002A JP2011039014A (en) 2009-08-06 2009-08-06 Battery inspection device

Publications (1)

Publication Number Publication Date
JP2011039014A true JP2011039014A (en) 2011-02-24

Family

ID=43766925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009196002A Pending JP2011039014A (en) 2009-08-06 2009-08-06 Battery inspection device

Country Status (3)

Country Link
JP (1) JP2011039014A (en)
KR (1) KR101121259B1 (en)
CN (1) CN101997135B (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110096900A1 (en) * 2009-10-26 2011-04-28 Sk Energy Co., Ltd. Electrode Inspection Device for Battery and Method of the Same
JP2012164620A (en) * 2011-02-04 2012-08-30 Toshiba It & Control Systems Corp Device and method for inspecting battery
JP2012221713A (en) * 2011-04-07 2012-11-12 Kyoto Seisakusho Co Ltd Electrode position detector and electrode position detection method
JP2014513864A (en) * 2011-07-01 2014-06-05 ジーエス エナジー コーポレーション Thin film battery packaging method and thin film battery package manufacturing apparatus
JP2016105379A (en) * 2014-12-01 2016-06-09 株式会社豊田自動織機 Manufacturing device for electrode assembly
JP2016109654A (en) * 2014-12-03 2016-06-20 東芝Itコントロールシステム株式会社 Battery inspection device
WO2016114257A1 (en) * 2015-01-13 2016-07-21 エリーパワー株式会社 Method for detecting position offset of electrode plates in electrode laminates and device therefor
JP2018087740A (en) * 2016-11-29 2018-06-07 株式会社島津製作所 Battery x-ray inspection device
US20180205059A1 (en) * 2017-01-16 2018-07-19 Gs Yuasa International Ltd. Method of manufacturing energy storage apparatus, energy storage device, and energy storage apparatus
JP2020085690A (en) * 2018-11-27 2020-06-04 パナソニックIpマネジメント株式会社 Inspection device for laminated type battery
JP2020187024A (en) * 2019-05-15 2020-11-19 株式会社島津製作所 X-ray ct device and x-ray ct photography method
JPWO2020250609A1 (en) * 2019-06-10 2020-12-17
KR20210014396A (en) * 2019-07-30 2021-02-09 주식회사 에스에프에이 Overhang inspection apparatus for secondary battery and secondary battery manufacturing system having the same
KR102236815B1 (en) * 2020-10-16 2021-04-06 박영호 Inspection device to detect missing or folding tab of battery electrode
CN112670546A (en) * 2019-10-16 2021-04-16 必达股份公司 Secondary battery manufacturing apparatus having multi-machine vision inspection function
KR20210084099A (en) * 2019-12-27 2021-07-07 주식회사 에스에프에이 Overhang inspection apparatus for secondary battery and secondary battery manufacturing system having the same
WO2022075637A1 (en) * 2020-10-08 2022-04-14 주식회사 엘지에너지솔루션 Electrode assembly stacking fault detection method, electrode assembly including insulating member, and battery cell including same
KR20220166967A (en) * 2021-06-11 2022-12-20 주식회사 엔에스머티리얼즈 Method and apparatus for detecting defect of lead tab
EP4113107A1 (en) * 2021-07-02 2023-01-04 Volkswagen Aktiengesellschaft Method for determining a deposit accuracy of a plurality of electrode sheets in a stack
US11749841B2 (en) 2018-01-29 2023-09-05 Lg Energy Solution, Ltd. Method for manufacturing electrode assembly and method for manufacturing secondary battery
JP7466362B2 (en) 2020-04-13 2024-04-12 東芝Itコントロールシステム株式会社 Non-destructive Inspection Equipment

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2696431B1 (en) * 2011-04-07 2019-01-16 Nissan Motor Co., Ltd Electrode stacking device and electrode stacking method
CN106091999B (en) * 2016-07-26 2018-08-21 东莞新能源科技有限公司 A kind of detection method and device of pole piece dislocation
KR102130027B1 (en) * 2018-07-18 2020-07-03 삼성에스디아이 주식회사 System and method for detecting misalignment of electrode
CN109307473A (en) * 2018-10-12 2019-02-05 广东正业科技股份有限公司 The detection method and detection device of laminated batteries
KR102190447B1 (en) * 2019-05-14 2020-12-14 주식회사 뷰웍스 Battery cell inspection apparatus for automation of total inspection and inspection method thereof
CN113654493A (en) * 2021-08-13 2021-11-16 苏州市比特优影像科技有限公司 Quality detection method and system for laminated soft package lithium battery
WO2024094696A1 (en) * 2022-11-02 2024-05-10 Northvolt Ab Determining alignment within electrode stacks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062131A (en) * 1996-08-15 1998-03-06 Fuji Photo Film Co Ltd Method and device for inspecting arrangement of sheet bundle
JP2001194124A (en) * 2000-01-11 2001-07-19 Tomoku Co Ltd Device for inspecting stack of corrugated board
JP2004022206A (en) * 2002-06-12 2004-01-22 Toshiba It & Control Systems Corp Battery inspection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4131214B2 (en) * 2003-08-08 2008-08-13 カシオ計算機株式会社 Inclination angle detection apparatus and inclination angle detection method
JP2005228533A (en) 2004-02-12 2005-08-25 Hitachi Engineering & Services Co Ltd Method for inspecting batteries and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062131A (en) * 1996-08-15 1998-03-06 Fuji Photo Film Co Ltd Method and device for inspecting arrangement of sheet bundle
JP2001194124A (en) * 2000-01-11 2001-07-19 Tomoku Co Ltd Device for inspecting stack of corrugated board
JP2004022206A (en) * 2002-06-12 2004-01-22 Toshiba It & Control Systems Corp Battery inspection device

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110096900A1 (en) * 2009-10-26 2011-04-28 Sk Energy Co., Ltd. Electrode Inspection Device for Battery and Method of the Same
US8369482B2 (en) * 2009-10-26 2013-02-05 Sk Innovation Co., Ltd. Electrode inspection device for battery and method of the same
JP2012164620A (en) * 2011-02-04 2012-08-30 Toshiba It & Control Systems Corp Device and method for inspecting battery
JP2012221713A (en) * 2011-04-07 2012-11-12 Kyoto Seisakusho Co Ltd Electrode position detector and electrode position detection method
JP2014513864A (en) * 2011-07-01 2014-06-05 ジーエス エナジー コーポレーション Thin film battery packaging method and thin film battery package manufacturing apparatus
JP2016105379A (en) * 2014-12-01 2016-06-09 株式会社豊田自動織機 Manufacturing device for electrode assembly
JP2016109654A (en) * 2014-12-03 2016-06-20 東芝Itコントロールシステム株式会社 Battery inspection device
KR20170102973A (en) 2015-01-13 2017-09-12 에리 파워 가부시키가이샤 Method and apparatus for detecting displacement of electrode plate in electrode laminate
JPWO2016114257A1 (en) * 2015-01-13 2017-10-19 エリーパワー株式会社 Method and apparatus for detecting displacement of electrode plate in electrode laminate
WO2016114257A1 (en) * 2015-01-13 2016-07-21 エリーパワー株式会社 Method for detecting position offset of electrode plates in electrode laminates and device therefor
JP2018087740A (en) * 2016-11-29 2018-06-07 株式会社島津製作所 Battery x-ray inspection device
US20180205059A1 (en) * 2017-01-16 2018-07-19 Gs Yuasa International Ltd. Method of manufacturing energy storage apparatus, energy storage device, and energy storage apparatus
CN108321420A (en) * 2017-01-16 2018-07-24 株式会社杰士汤浅国际 Manufacturing method, charge storage element and the electrical storage device of electrical storage device
US11749841B2 (en) 2018-01-29 2023-09-05 Lg Energy Solution, Ltd. Method for manufacturing electrode assembly and method for manufacturing secondary battery
JP7117554B2 (en) 2018-11-27 2022-08-15 パナソニックIpマネジメント株式会社 Stacked battery inspection device
JP2020085690A (en) * 2018-11-27 2020-06-04 パナソニックIpマネジメント株式会社 Inspection device for laminated type battery
JP2020187024A (en) * 2019-05-15 2020-11-19 株式会社島津製作所 X-ray ct device and x-ray ct photography method
JP7127608B2 (en) 2019-05-15 2022-08-30 株式会社島津製作所 X-ray CT apparatus and X-ray CT imaging method
WO2020250609A1 (en) * 2019-06-10 2020-12-17 東レ株式会社 Battery inspection device and battery inspection method
JP7380560B2 (en) 2019-06-10 2023-11-15 東レ株式会社 Battery inspection device and battery inspection method
CN113924675A (en) * 2019-06-10 2022-01-11 东丽株式会社 Battery inspection device and battery inspection method
CN113924675B (en) * 2019-06-10 2024-05-17 东丽株式会社 Battery inspection device and battery inspection method
JPWO2020250609A1 (en) * 2019-06-10 2020-12-17
KR102252625B1 (en) * 2019-07-30 2021-05-17 주식회사 에스에프에이 Overhang inspection apparatus for secondary battery and secondary battery manufacturing system having the same
KR20210014396A (en) * 2019-07-30 2021-02-09 주식회사 에스에프에이 Overhang inspection apparatus for secondary battery and secondary battery manufacturing system having the same
CN112670546A (en) * 2019-10-16 2021-04-16 必达股份公司 Secondary battery manufacturing apparatus having multi-machine vision inspection function
KR20210084099A (en) * 2019-12-27 2021-07-07 주식회사 에스에프에이 Overhang inspection apparatus for secondary battery and secondary battery manufacturing system having the same
KR102317424B1 (en) * 2019-12-27 2021-10-26 주식회사 에스에프에이 Overhang inspection apparatus for secondary battery and secondary battery manufacturing system having the same
JP7466362B2 (en) 2020-04-13 2024-04-12 東芝Itコントロールシステム株式会社 Non-destructive Inspection Equipment
WO2022075637A1 (en) * 2020-10-08 2022-04-14 주식회사 엘지에너지솔루션 Electrode assembly stacking fault detection method, electrode assembly including insulating member, and battery cell including same
KR102236815B1 (en) * 2020-10-16 2021-04-06 박영호 Inspection device to detect missing or folding tab of battery electrode
KR102638520B1 (en) 2021-06-11 2024-02-20 주식회사 엔에스머티리얼즈 Method and apparatus for detecting defect of lead tab
KR20220166967A (en) * 2021-06-11 2022-12-20 주식회사 엔에스머티리얼즈 Method and apparatus for detecting defect of lead tab
EP4113107A1 (en) * 2021-07-02 2023-01-04 Volkswagen Aktiengesellschaft Method for determining a deposit accuracy of a plurality of electrode sheets in a stack

Also Published As

Publication number Publication date
KR101121259B1 (en) 2012-03-22
KR20110014947A (en) 2011-02-14
CN101997135B (en) 2013-11-13
CN101997135A (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP2011039014A (en) Battery inspection device
JP6473924B2 (en) Battery inspection device
JP5458327B2 (en) Battery inspection apparatus and battery inspection method
KR101334121B1 (en) Electrode Inspection Device for Battery and Method of the Same.
JP4128397B2 (en) Battery inspection device
KR102614201B1 (en) Battery inspection device and battery inspection method
US8509512B2 (en) Examination method, examination apparatus and examination program
KR20110118581A (en) Ct device and image pickup method of ct device
JP2002310929A (en) Defect inspecting device
KR101654825B1 (en) Method for Inspecting Compact Parts Formed on Substrate in Defect Inspection
JP2020085690A (en) Inspection device for laminated type battery
CN103890570A (en) X-ray inspection method and device
JP5049246B2 (en) Object shape evaluation device
KR20200009369A (en) System and method for detecting misalignment of electrode
JP2011247864A (en) Ct apparatus
JP5049247B2 (en) Surface defect evaluation system
TW201940840A (en) Appearance inspection device
WO2022031926A1 (en) Methods and systems for inspecting integrated circuits based on x-rays
JP5708501B2 (en) Detection method and detection apparatus
KR102635148B1 (en) Vision cam convergence type x-ray inspection apparatus
KR20240003627A (en) A Vision Aligning Type of an X-ray Inspecting Method
KR102559024B1 (en) An X-ray Inspecting Apparatus Capable of Detecting Multi Directions
KR20230165172A (en) A Method for Investigating an Arrangement of a Battery Cell
CN219224633U (en) Battery cell detection device
KR20240020447A (en) Inspection method and system for pouch type secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140121