JP2011038482A - Wind turbine for wind power generation - Google Patents

Wind turbine for wind power generation Download PDF

Info

Publication number
JP2011038482A
JP2011038482A JP2009187561A JP2009187561A JP2011038482A JP 2011038482 A JP2011038482 A JP 2011038482A JP 2009187561 A JP2009187561 A JP 2009187561A JP 2009187561 A JP2009187561 A JP 2009187561A JP 2011038482 A JP2011038482 A JP 2011038482A
Authority
JP
Japan
Prior art keywords
main wing
screw member
power generation
support member
wind turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009187561A
Other languages
Japanese (ja)
Other versions
JP5296634B2 (en
Inventor
Eiki Tokuyama
徳山栄基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nasu Denki Tekko Co Ltd
Original Assignee
Nasu Denki Tekko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nasu Denki Tekko Co Ltd filed Critical Nasu Denki Tekko Co Ltd
Priority to JP2009187561A priority Critical patent/JP5296634B2/en
Publication of JP2011038482A publication Critical patent/JP2011038482A/en
Application granted granted Critical
Publication of JP5296634B2 publication Critical patent/JP5296634B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wind turbine for wind power generation having high fatigue strength of a fixing part of a support member and a main blade part against a centrifugal load applied to the wind turbine. <P>SOLUTION: This wind turbine for the wind power generation has: the main blade part 3 arranged in a plurality with every specific angle in the circumferential direction with a vertical rotary shaft 2 connected to a generator 1 as the center; and a plurality of support members 4 for connecting the main blade part 3 and the vertical rotary shaft 2. A screw member fixing part fixed by embedding a plurality of screw members so that one end of the plurality of screw members projects, is arranged on one end surface of the respective support members 4. The respective main blade parts 3 and the respective support members 4 are constituted to be fixed by fastening these members, by threadably attaching a nut to the respective screw members projected from an outer surface of the main blade parts 3, by inserting the respective screw members projected from the screw member fixing part into a through-hole bored in the main blade parts 3. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、風力発電用風車に関するものであって、発電機に連結される垂直回転軸を中心として複数設けられる主翼部を具備するものである。   The present invention relates to a wind turbine for wind power generation, and includes a plurality of main wing portions provided around a vertical rotating shaft connected to a generator.

通常、直線翼垂直軸風力発電用風車は、図1に示すように、支持部材4と主翼部3で構成されており、回転軸2が風向に対して垂直に位置するものである。一般的に市場で良く見られる水平軸プロペラ型とは異なり、風向に対して無指向性であることから、風向の変化が激しい市街地等に有効な風車であるといわれている。現在、このタイプの風力発電用風車は、いくつかのメーカーにより製造され、市場に出回っている。   Usually, as shown in FIG. 1, the straight blade vertical axis wind turbine for wind power generation includes a support member 4 and a main wing portion 3, and the rotation shaft 2 is positioned perpendicular to the wind direction. Unlike the horizontal axis propeller type that is commonly found in the market, it is omnidirectional with respect to the wind direction, so it is said to be an effective windmill in urban areas where the wind direction changes rapidly. Currently, this type of wind turbine is manufactured and marketed by several manufacturers.

このタイプの風力発電用風車の構造上の問題点として、支持部材と主翼部との取付方法がある。このような風力発電用風車の場合、高速に回転すると、遠心力が主翼部に等分布荷重として作用する。この遠心力は、半径と翼質量と回転速度の2乗に比例するため、風車運転時大きな荷重が加わることとなる。この遠心力は主翼部に対しては曲げ力として作用し、支持部材には主に引張り力として作用することとなる。図9は、遠心力が加わった場合の風力発電用風車に生じる曲げモーメントを示したものである。図9に示すように、曲げモーメントは、主翼部と支持部材との固定点で最大になることが分かる。また、このモーメントは、回転数に依存するものであり、風車自体の回転数は常時変動するため、繰り返し荷重として常に作用することになる。従って、主翼部と支持部材との固定箇所の疲労強度特性は、当該風力発電用風車の耐久性について重要な要素となる。現在、市場にある当該風力発電用風車の材質は、主にFRP製(=繊維強化プラスティック)とアルミ製のものとがあり、その材質によって、主翼部と支持部材との固定方法は異なっている。   As a structural problem of this type of wind turbine for wind power generation, there is a method of attaching the support member and the main wing portion. In the case of such a wind turbine for wind power generation, when it rotates at high speed, centrifugal force acts on the main wing part as an evenly distributed load. Since this centrifugal force is proportional to the square of the radius, blade mass, and rotational speed, a large load is applied during windmill operation. This centrifugal force acts as a bending force on the main wing, and acts mainly as a tensile force on the support member. FIG. 9 shows a bending moment generated in a wind turbine for wind power generation when a centrifugal force is applied. As shown in FIG. 9, it can be seen that the bending moment is maximized at the fixed point between the main wing and the support member. Further, this moment depends on the number of revolutions, and the number of revolutions of the windmill itself constantly fluctuates, and therefore always acts as a repeated load. Therefore, the fatigue strength characteristic of the fixed portion between the main wing portion and the support member is an important factor for the durability of the wind turbine for wind power generation. Currently, the wind turbines for wind power generation on the market are mainly made of FRP (= fiber reinforced plastic) and aluminum, and the fixing method of the main wing and the support member differs depending on the material. .

アルミ製の場合、図10に示すように支持部材と主翼部は曲がりプレート(=アングル材)によるねじ固定が一般的である。また、特許文献1に示す風力発電用風車のように、主翼部(=ブレード)を、貫通したねじ部材により支持部材に固定する構成も示されている。   In the case of aluminum, as shown in FIG. 10, the support member and the main wing part are generally fixed with screws by a bent plate (= angle material). Moreover, the structure which fixes a main wing | blade part (= blade) to a support member with the penetrated screw member like the windmill for wind power generation shown in patent document 1 is also shown.

一方、FRP製の場合、金属とは異なり、形状に自由度が増すため、支持部材自体も任意の形状に成型することができる。この主翼部と支持部材との取付けは図11に示すように、支持部材の一端部に孔をくり抜いて、その孔に主翼部を嵌め込んで、FRPの積層材であるガラス繊維チップを含有したポリエステル樹脂を用いて主翼部と支持部材との接合点を接着するのが一般的である。
特開2005−307850
On the other hand, in the case of FRP, unlike metal, the degree of freedom increases in shape, so that the support member itself can be molded into an arbitrary shape. As shown in FIG. 11, the attachment of the main wing part and the support member includes a glass fiber chip which is a laminated material of FRP by punching a hole in one end part of the support member and fitting the main wing part into the hole. In general, the junction between the main wing and the support member is bonded using a polyester resin.
JP 2005-307850 A

しかしながら、風力発電用風車の材質をアルミ製にした場合、曲がりプレートに曲げモーメントによる応力が集中することとなり、疲労破壊の要因となる可能性がある。よって対策として、図12に示すように、支持部材の上下にサポート材を装着する場合も見られる。この場合は、サポート材を設けたせいで抵抗が増え、風力発電用の風車としての発電効率が低下する恐れが生じる。   However, when the material of the wind turbine for wind power generation is made of aluminum, the stress due to the bending moment is concentrated on the bending plate, which may cause fatigue failure. Therefore, as a countermeasure, as shown in FIG. 12, a case where support materials are mounted on the upper and lower sides of the support member is also seen. In this case, the resistance increases due to the provision of the support material, and the power generation efficiency as a wind turbine for wind power generation may be reduced.

また、特許文献1に示す構成では、1本のねじ部材で主翼部を支持部材に固定している。そのため、支持部材を中空構造にすることができず、ムク材を使用するしかない。従って軽量なアルミ材など、比較的疲労強度の低い材料を使用せざるを得ない。また、特許文献1に示す構成では主翼部に、遠心力の他に、空気力による捩り荷重と、振動による回転接線方向の荷重が繰り返し作用する。この2つの荷重を1本のねじ部材で受けると、ねじ部材の締結箇所に、曲げ力が作用しやすくなる。また、ねじ部材と主翼部との当接箇所はねじ切り部となっているため、ねじが切られている切削箇所への応力集中と、ねじ切り部の切り欠き効果による破断の起点となる可能性によって、疲労強度が大きく低下する恐れがある。   Moreover, in the structure shown in patent document 1, the main wing | blade part is being fixed to the support member with one screw member. For this reason, the support member cannot be made into a hollow structure, and there is no choice but to use a bulk material. Therefore, a material with relatively low fatigue strength, such as a lightweight aluminum material, must be used. In the configuration shown in Patent Document 1, torsional load due to aerodynamic force and load in the rotational tangential direction due to vibration are repeatedly applied to the main wing portion in addition to centrifugal force. When these two loads are received by one screw member, a bending force is likely to act on the fastening portion of the screw member. In addition, since the contact portion between the screw member and the main wing portion is a threaded portion, the stress concentration at the cutting portion where the screw is cut and the possibility of becoming a starting point of breakage due to the notch effect of the threaded portion. Fatigue strength may be greatly reduced.

また、風力発電用風車の材質をFRP製にした場合には、アルミ製の場合にすでに述べたように、この主翼部と支持部材との固定点は、遠心力によって発生する曲げモーメントが局所的に最大となる箇所であるため、接着材のみの固定では強度的に問題となる。特に、接着部が外部にさらされているため、紫外線や大気汚染により接着強度が低下する恐れもある。この対策として、支持部材と主翼部のコア材を既に固定した状態で、そのコア材をガラス繊維シートで覆い、真空にひくことで、主翼部と支持部材との固定点を連続した繊維で繋げる方法も提案されているが、コストが高くなることや、一体にしても応力の集中を防げないことから、疲労強度の大幅な改善とはならない。   In addition, when the material of the wind turbine for wind power generation is made of FRP, as already described in the case of aluminum, the bending moment generated by the centrifugal force is localized at the fixing point between the main wing and the support member. Therefore, fixing only the adhesive causes a problem in terms of strength. In particular, since the bonding portion is exposed to the outside, the bonding strength may be reduced due to ultraviolet rays or air pollution. As a countermeasure, with the core material of the support member and main wing part already fixed, the core material is covered with a glass fiber sheet and vacuumed to connect the fixing points of the main wing part and the support member with continuous fibers. Although a method has also been proposed, the fatigue strength is not significantly improved because the cost is high and the concentration of stress cannot be prevented even if integrated.

そこで、この発明は、上記従来技術を考慮したものであって、風力発電用風車にかかる遠心力荷重に対し、疲労強度の高い風力発電用風車を提供することを目的とする。   Therefore, the present invention takes the above-described conventional technology into consideration, and an object thereof is to provide a wind turbine for wind power generation having high fatigue strength against a centrifugal load applied to the wind turbine for wind power generation.

前記目的を達成するため、請求項1の発明では、発電機に連結される垂直回転軸を中心として円周方向に一定角度ごとに複数設けられる主翼部と、当該主翼部と前記垂直回転軸とを連結する複数の支持部材を備える風力発電用風車において、
前記各支持部材の一端面に、複数のねじ部材の一端が突出するように複数のねじ部材を埋め込んで固定されたねじ部材固定部を設け、
前記各主翼部と前記各支持部材とは、前記ねじ部材固定部から突出した各ねじ部材を前記主翼部に穿った貫通孔に通して、前記主翼部の外面から突出した各ねじ部材にナットを螺着させ、これを締め付けて固定させた、風力発電用風車とした。
In order to achieve the above object, according to the first aspect of the present invention, a plurality of main wing portions provided at a predetermined angle in the circumferential direction around the vertical rotation shaft connected to the generator, the main wing portion and the vertical rotation shaft are provided. In a wind turbine for wind power generation comprising a plurality of support members for connecting
Provided on one end surface of each of the support members is a screw member fixing portion that is fixed by embedding a plurality of screw members so that one end of the plurality of screw members protrudes,
Each main wing part and each support member pass through each screw member protruding from the screw member fixing part through a through hole formed in the main wing part, and a nut is attached to each screw member protruding from the outer surface of the main wing part. A wind turbine for wind power generation, which is screwed and fastened to be fixed.

請求項2の発明では、前記支持部材は中空に形成され、中空の当該支持部材の内周に前記ねじ部材固定部が固定された、請求項1に記載の風力発電用風車とした。   The invention according to claim 2 is the wind turbine for wind power generation according to claim 1, wherein the support member is formed in a hollow shape, and the screw member fixing portion is fixed to an inner periphery of the hollow support member.

請求項3の発明では、前記ねじ部材の中央部の外周が平坦であり、主翼部に穿った前記貫通孔に通した当該ねじ部材の中央部が、主翼部と支持部材の当接部に位置される、請求項1又は2に記載の風力発電用風車とした。   In the invention of claim 3, the outer periphery of the central portion of the screw member is flat, and the central portion of the screw member that has passed through the through hole formed in the main wing portion is positioned at the contact portion between the main wing portion and the support member. The wind turbine for wind power generation according to claim 1 or 2.

請求項4の発明では、前記ナットが締め付け固定された状態の前記ねじ部材の一端と略嵌合するように、被覆部材が当該ねじ部材の上に被せられる、請求項1〜3のいずれかに記載の風力発電用風車とした。   In invention of Claim 4, a coating | coated member is covered on the said screw member so that it may substantially fit with the end of the said screw member in the state where the said nut was clamp | tightened and fixed. The wind turbine for wind power generation described was used.

請求項1〜4の発明によれば、各主翼部と各支持部材とを、各支持部材の一端面に複数の各ねじ部材の一部を突出させたねじ部材固定部を設け、当該ねじ部材を各主翼部に穿った貫通孔に通して固定させる構成とした。つまり、主翼部と支持部材を一体化した部材とせずに、夫々独立した部材とし、ねじ部材を用いて主翼部を支持部材に固定する構成とした。そのため、風車を回転させた場合に発生する遠心力による曲げ力は、主翼部にのみに作用し、支持部材には作用しない。支持部材には遠心力による引っ張り力のみが作用する。よって、主翼部と支持部材との固定部に遠心力による曲げ力と引っ張り力が同時に作用せず、応力集中が起こらない。厳密には、振動等や、遠心力により生じる曲げ力は、主翼部を通じて支持部材のねじ部材に生じるが、ねじ部材は鉄鋼材料のものを使用するため、アルミやFRPよりもずっと疲労強度は強い。またこのような構成とすると10,000(N)を超える遠心力の荷重のほとんどは引っ張り力となり、この引っ張り力をねじ部材固定部とねじ部材固定部に埋め込まれた複数のねじ部材で受けることになるため、静的荷重強度はもとより、支持部材の疲労強度も格段に増加する。さらに、主翼部と支持部材とを分けた状態で搬送し、現場で支持部材に主翼部をねじ部材で固定して組み立てることができるため、風力発電用風車設置時の作業負担も軽減される。   According to invention of Claims 1-4, each main wing | blade part and each support member are provided with the screw member fixing | fixed part which made some screw members protrude from the one end surface of each support member, The said screw member Is fixed through a through-hole formed in each main wing. That is, the main wing part and the support member are not integrated members, but are independent members, and the main wing part is fixed to the support member using a screw member. Therefore, the bending force due to the centrifugal force generated when the windmill is rotated acts only on the main wing portion and does not act on the support member. Only a tensile force due to centrifugal force acts on the support member. Therefore, the bending force and the pulling force due to the centrifugal force do not act simultaneously on the fixing portion between the main wing portion and the support member, and stress concentration does not occur. Strictly speaking, the bending force generated by vibration or centrifugal force is generated in the screw member of the support member through the main wing, but since the screw member is made of steel material, the fatigue strength is much stronger than aluminum or FRP. . Moreover, with such a configuration, most of the load of centrifugal force exceeding 10,000 (N) becomes a tensile force, and this tensile force is received by the screw member fixing portion and a plurality of screw members embedded in the screw member fixing portion. Therefore, not only the static load strength but also the fatigue strength of the support member is remarkably increased. Furthermore, since the main wing portion and the support member can be transported separately and assembled at the site by fixing the main wing portion to the support member with a screw member, the work load when installing the wind turbine for wind power generation is reduced.

また特に請求項3の発明によれば、主翼部に穿った前記貫通孔を通した、外周が平坦なねじ部材の中央部が、主翼部と支持部材の当接部に位置される構成となっているため、振動や主翼部を通じて作用する遠心力による曲げ力に対し、疲労の影響で破断の起点となることはなく、遠心力等による曲げ力を疲労の影響が少ない平坦な形状で受けることとなる。   In particular, according to the invention of claim 3, the central portion of the screw member having a flat outer periphery through the through hole formed in the main wing portion is positioned at the contact portion between the main wing portion and the support member. Therefore, the bending force due to vibration or centrifugal force acting through the main wing part does not become the starting point of breakage due to fatigue, and the bending force due to centrifugal force or the like is received in a flat shape that is less affected by fatigue. It becomes.

また特に請求項4の発明によれば、ナットが締め付け固定された状態のねじ部材の一端に、被覆部材が被せられる構成としたため、主翼部と支持部材との固定部の周辺の空気の流れを整え、発電用風車としての効率を高めることができる。   In particular, according to the invention of claim 4, since the covering member is put on one end of the screw member in a state where the nut is fastened and fixed, the air flow around the fixing portion between the main wing portion and the support member is reduced. The efficiency of the wind turbine for power generation can be improved.

この発明は、発電機に連結される垂直回転軸を中心として円周方向に一定角度ごとに複数設けられる主翼部と、当該主翼部と前記垂直回転軸と連結する複数の支持部材を備える風力発電用風車において、前記各支持部材の一端面に、複数のねじ部材の一端が突出するように複数のねじ部材を埋め込んで固定されたねじ部材固定部を設け、前記各主翼部と前記各支持部材とは、前記ねじ部材固定部から突出した各ねじ部材を前記主翼部に穿った貫通孔に通して、前記主翼部の外面から突出した各ねじ部材にナットを螺着させ、これを締め付けて固定させた構成としたため、遠心力荷重に対して支持部材の強度が格段に向上する。   The present invention provides a wind power generator comprising a plurality of main wing portions provided at a certain angle in the circumferential direction around a vertical rotation shaft connected to a generator, and a plurality of support members connected to the main wing portion and the vertical rotation shaft. In the wind turbine, a screw member fixing portion in which a plurality of screw members are embedded and fixed so that one end of the plurality of screw members protrudes is provided on one end surface of each support member, and the main wing portions and the support members are provided. Means that each screw member protruding from the screw member fixing portion is passed through a through hole formed in the main wing portion, and a nut is screwed to each screw member protruding from the outer surface of the main wing portion, and then tightened and fixed. Since it was set as the structure made to become, the intensity | strength of a support member improves markedly with respect to a centrifugal-force load.

図1は、風力発電用風車Cの全体を示す正面図である。図2は、風力発電用風車Cを平面から見た概念図である。発電機1に連結され、風向きに対して垂直に直立する垂直回転軸2を中心として、円周方向の一定角度ごとに主翼部3が複数設けられている。各主翼部3と垂直回転軸2とは支持部材4で夫々連結されている。そして、各主翼部3と垂直回転軸2とを連結するために、上下に2本の支持部材4が設けられている。   FIG. 1 is a front view showing the entire wind turbine C for wind power generation. FIG. 2 is a conceptual view of the wind turbine C for wind power generation as viewed from above. A plurality of main wing portions 3 are provided for each constant angle in the circumferential direction around a vertical rotation shaft 2 that is connected to the generator 1 and stands upright perpendicular to the wind direction. Each main wing 3 and the vertical rotation shaft 2 are connected by a support member 4. And in order to connect each main wing | blade part 3 and the vertical rotating shaft 2, the two support members 4 are provided up and down.

図2及び図3に示すように、主翼部3は夫々、風車の回転方向に対して、空気の抵抗を最小限にするために断面が流線型に成型されている。   As shown in FIGS. 2 and 3, each of the main wing portions 3 is formed into a streamlined cross section in order to minimize air resistance with respect to the rotation direction of the windmill.

支持部材4は、図4に示すように中空構造になっており、図5に示すように、この中空構造の支持部材4の一端の略中央に、ねじ部材固定部5が挟持されている。ねじ部材固定部5には、図6に示すように、長手方向の一端部から2本のねじ部材6が、その一部が突出するように埋め込まれている。この場合、ねじ部材固定部5のねじ部材6の突出面と支持部材4の先端面とが同一面上に形成されている。また、ねじ部材固定部5は、当接する支持部材4の内面に、接着剤で接着され、繊維シートを掛けて強固に固定される。このように支持部材4とねじ部材固定部5とを、支持部材4の内部で固定する構成となっているため、前記接着剤は紫外線等の環境影響を受けず、固定箇所に経年劣化が生じない。さらに、ねじ部材固定部5の大きさを大きくし、支持部材4との接着面積を増やすことによって、遠心力による引っ張り力の増加に対応することができる。   As shown in FIG. 5, the support member 4 has a hollow structure, and as shown in FIG. 5, a screw member fixing portion 5 is sandwiched between substantially the ends of one end of the support member 4 having the hollow structure. As shown in FIG. 6, two screw members 6 are embedded in the screw member fixing portion 5 so as to partially protrude from one end portion in the longitudinal direction. In this case, the protruding surface of the screw member 6 of the screw member fixing portion 5 and the distal end surface of the support member 4 are formed on the same surface. Moreover, the screw member fixing | fixed part 5 is adhere | attached with the adhesive agent on the inner surface of the support member 4 which contact | abuts, and it fixes firmly with a fiber sheet. Since the support member 4 and the screw member fixing portion 5 are fixed inside the support member 4 as described above, the adhesive is not affected by the environment such as ultraviolet rays, and the fixed portion is aged over time. Absent. Furthermore, by increasing the size of the screw member fixing portion 5 and increasing the bonding area with the support member 4, it is possible to cope with an increase in tensile force due to centrifugal force.

ねじ部材固定部5に埋め込まれているねじ部材6は、先端にねじ切り部11が設けられており、このねじ切り部11に後述するナット9を締結させる。ねじ部材6の中央部12は、ねじが切られておらず、外周が平坦になっている。後述するように支持部材4に主翼部3を固定するために、ねじ部材6を主翼部3に穿った貫通孔(図示省略)に通した場合には、ねじ部材6の中央部12が主翼部3と支持部材4の当接部に位置する。ねじ部材6には、振動や、遠心力による曲げ力が、少なからず主翼部3を通じて作用するが、主翼部3と支持部材4との当接部に位置する中央部12は外周が平坦で、ねじが切られておらず、切り欠きがないため、疲労の影響で破断の起点となることはない。疲労の影響が少ない平坦な形状で受けることとなる。なお、本実施例では、支持部材4を中空構造にして、その内部にねじ部材固定部5を挟持させる構成としたが、FRP等で支持部材4とねじ部材固定部5が一体に成形されている構成としても良い。   The screw member 6 embedded in the screw member fixing portion 5 is provided with a threaded portion 11 at the tip, and a nut 9 described later is fastened to the threaded portion 11. The central portion 12 of the screw member 6 is not threaded and has a flat outer periphery. As will be described later, when the screw member 6 is passed through a through hole (not shown) formed in the main wing portion 3 in order to fix the main wing portion 3 to the support member 4, the central portion 12 of the screw member 6 is the main wing portion. 3 and the support member 4 are located at the contact portion. The screw member 6 is subjected to vibration and bending force due to centrifugal force through the main wing part 3, but the central part 12 located at the contact part between the main wing part 3 and the support member 4 has a flat outer periphery. Since the screw is not cut and there is no notch, it does not become the starting point of fracture due to fatigue. It will be received in a flat shape that is less affected by fatigue. In the present embodiment, the support member 4 has a hollow structure, and the screw member fixing portion 5 is sandwiched therein. However, the support member 4 and the screw member fixing portion 5 are integrally formed with FRP or the like. It is good also as composition which has.

次に、主翼部3と支持部材4との固定方法について図3を用いて説明する。支持部材4の一端から突出している2つのねじ部材6を主翼部3に穿った貫通孔に通し、当て座7を被せ、さらにその上からワッシャー8を被せて、その状態でナット9を締め付け、支持部材4の一端に主翼部3が接合するように固定する。   Next, a method of fixing the main wing part 3 and the support member 4 will be described with reference to FIG. Two screw members 6 projecting from one end of the support member 4 are passed through a through-hole formed in the main wing portion 3, covered with a seat 7 and further covered with a washer 8, and in that state, a nut 9 is tightened. The main wing portion 3 is fixed to one end of the support member 4 so as to be joined.

更に、ナット9が締め付け固定された状態のねじ部材6の一端と略嵌合するように、一側面に2つの孔を穿った(図示省略)カバー等の被覆部材10を、ナット9が締結された状態のねじ部材6の上に被せ、ボルト(図示省略)等で支持部材4に固定する。   Further, the nut 9 is fastened with a covering member 10 such as a cover (not shown) having two holes in one side (not shown) so that the nut 9 is substantially fitted to one end of the screw member 6 in a tightened and fixed state. It covers on the screw member 6 in a state of being caught and is fixed to the support member 4 with a bolt (not shown) or the like.

主翼部3及び支持部材4、ねじ部材固定部5、被覆部材10はアルミ合金製等の金属で成型しても良いが、ねじ部材固定部5はねじ部材6の一部を埋め込む構成であるため、ムク材を使用する必要があり、その場合にはねじ部材固定部5を支持部材4の内周に溶接等して固定する必要がある。そのため主翼部3及び支持部材4、被覆部材10は軽量かつ成型しやすいFRP製で成型し、ねじ部材固定部5も、軽量化を図るために、樹脂材やFRPを用いる方が望ましい。   The main wing part 3, the support member 4, the screw member fixing part 5, and the covering member 10 may be formed of a metal such as an aluminum alloy, but the screw member fixing part 5 is configured to embed a part of the screw member 6. In this case, it is necessary to fix the screw member fixing portion 5 to the inner periphery of the support member 4 by welding or the like. Therefore, the main wing part 3, the support member 4, and the covering member 10 are preferably made of lightweight and easy to mold FRP, and the screw member fixing part 5 is preferably made of a resin material or FRP in order to reduce the weight.

このような構成にすることによって、風力発電用風車Cを回転させた場合に発生する遠心力による曲げ力は、ほとんど主翼部3にのみに作用し、主翼部3の部材の強度そのもので受けることとなる。支持部材4には遠心力による引っ張り力のみが作用するが、この引っ張り力はねじ部材固定部5及びねじ部材6で受ける。そのため遠心力が分散され、主翼部3と支持部材4との固定箇所に応力集中が起こらない。またこのような構成とすると、10,000(N)を超える遠心力の荷重のほとんどは引っ張り力となり、この引っ張り力をねじ部材固定部5とねじ部材固定部5に埋め込まれたねじ部材6で受けることになるため、静的荷重強度はもとより、支持部材4の疲労強度も格段に増加する。また、主翼部3から突出するナット9が締め付け固定されたねじ部材6の一端を被覆部材10で被覆する構成にすることによって、主翼部3と支持部材4との固定部の周辺の空気の流れを整え、発電用風車としての効率を高めることができる。   With such a configuration, the bending force due to the centrifugal force generated when the wind turbine C for wind power generation is rotated acts only on the main wing part 3 and is received by the strength of the members of the main wing part 3 itself. It becomes. Only a tensile force due to centrifugal force acts on the support member 4, and this tensile force is received by the screw member fixing portion 5 and the screw member 6. Therefore, the centrifugal force is dispersed, and stress concentration does not occur at the fixed portion between the main wing part 3 and the support member 4. Further, with such a configuration, most of the load of centrifugal force exceeding 10,000 (N) becomes a tensile force, and this tensile force is applied to the screw member fixing portion 5 and the screw member 6 embedded in the screw member fixing portion 5. Therefore, not only the static load strength but also the fatigue strength of the support member 4 is remarkably increased. In addition, by adopting a configuration in which one end of the screw member 6 to which the nut 9 protruding from the main wing portion 3 is fastened and fixed is covered with the covering member 10, the air flow around the fixing portion between the main wing portion 3 and the support member 4. To improve efficiency as a wind turbine for power generation.

そして、この発明に係る発明品について試作し、従来品と対比して強度試験を行った結果、遠心力荷重に対する支持部材の強度は、従来の構成の3倍以上になることを確認した。   And, as a result of making a prototype of the inventive product according to the present invention and conducting a strength test in comparison with the conventional product, it was confirmed that the strength of the support member with respect to the centrifugal load is three times or more that of the conventional configuration.

以下、強度試験の詳細を説明する。この発明に係る発明品として、主翼部及び支持部材をFRP製で作成し、支持部材に、ねじ部材の一部が突出したねじ部材固定部を設け、当該ねじ部材を主翼部に貫通させて、ナットを締めて、主翼部を支持部材に固定した。一方、従来品は、FRP製で主翼部と支持部材とを接着剤で固定した構成である。図7及び8に示すように、この発明に係る発明品と従来品とを順番に固定して、主翼部側から等分布の引っ張り荷重を印加し、破断するか否かを目視で評価する。詳しくは、規格荷重まで印加し、1分間保持した後、荷重を戻し、各部の状況を目視にて確認する。続いて終極荷重(規格の3倍)まで印加し状況を目視にて確認する。終極荷重に達しても破壊しない場合は、破壊に至るまで続けて荷重を印加し、破壊性状について目視にて確認する。   Details of the strength test will be described below. As an invention according to this invention, the main wing part and the support member are made of FRP, the support member is provided with a screw member fixing part from which a part of the screw member protrudes, and the screw member penetrates the main wing part, The nut was tightened to fix the main wing part to the support member. On the other hand, the conventional product is made of FRP and has a configuration in which the main wing portion and the support member are fixed with an adhesive. As shown in FIGS. 7 and 8, the invention product according to the present invention and the conventional product are fixed in order, an equally distributed tensile load is applied from the main wing portion side, and whether or not the fracture occurs is visually evaluated. Specifically, after applying to the standard load and holding for 1 minute, return the load and visually check the status of each part. Then, apply up to the ultimate load (3 times the standard) and visually check the situation. If it does not break even when the ultimate load is reached, continue to apply the load until it breaks and visually check the breaking properties.

その結果、従来品については、引っ張り荷重は7,100Nで支持部材に亀裂が生じ、8,000Nで支持部材が破断した。一方、この発明に係る発明品については、12,000Nの引っ張り荷重を印加しても異常はなく、31,700Nで主翼部がせん断破壊したが、主翼部と支持部材との固定箇所では異常は生じなかった。このように遠心力荷重に対する支持部材の強度は、従来の構成の3倍以上になることを確認した。   As a result, with regard to the conventional product, the support member cracked when the tensile load was 7,100N, and the support member broke at 8,000N. On the other hand, for the invention according to the present invention, there was no abnormality even when a tensile load of 12,000 N was applied, and the main wing part was sheared and destroyed at 31,700 N. It was. As described above, it was confirmed that the strength of the support member against the centrifugal load is three times or more that of the conventional configuration.

この発明に係る実施例1の風力発電用風車Cの全体的な構成を示す正面図である。It is a front view which shows the whole structure of the windmill C for wind power generation of Example 1 which concerns on this invention. この発明に係る実施例1の風力発電用風車Cの全体的な構成を示す平面図である。It is a top view which shows the whole structure of the windmill C for wind power generation of Example 1 which concerns on this invention. この発明に係る実施例1の風力発電用風車Cの主翼部と支持部材との固定方法を示す平面図である。It is a top view which shows the fixing method of the main wing | blade part and support member of the windmill C for wind power generation of Example 1 which concerns on this invention. この発明に係る実施例1の風力発電用風車Cの図3に示す支持部材のA−A断面図である。It is AA sectional drawing of the supporting member shown in FIG. 3 of the windmill C for wind power generation of Example 1 which concerns on this invention. この発明に係る実施例1の風力発電用風車Cの図3に示す支持部材のB−B断面図である。It is BB sectional drawing of the supporting member shown in FIG. 3 of the windmill C for wind power generation of Example 1 which concerns on this invention. この発明に係る実施例1の風力発電用風車Cのねじ部材固定部を示す(a)平面図及び(b)左側面図である。It is the (a) top view and (b) left view which show the screw member fixing | fixed part of the windmill C for wind power generation of Example 1 which concerns on this invention. この発明に係る発明品と従来品の強度試験の様子を示す正面図である。It is a front view which shows the mode of the strength test of the invention which concerns on this invention, and a conventional product. この発明に係る発明品と従来品の強度試験の様子を示す一部平面図である。It is a partial top view which shows the mode of the strength test of the invention which concerns on this invention, and a conventional product. 従来の直線翼垂直軸風力発電用風車の(a)概念的な平面図及び(b)モーメント図である。It is (a) conceptual top view and (b) moment diagram of the conventional wind turbine for straight blade vertical axis wind power generation. 従来のアルミ製風力発電用風車の(a)正面図及び(b)一部拡大図である。It is (a) front view and (b) partially enlarged view of a conventional wind turbine for aluminum wind power generation. 従来のFRP製風力発電用風車の(a)正面図及び(b)一部拡大図である。It is (a) front view and (b) partially enlarged view of a conventional FRP wind turbine for wind power generation. 別の態様の従来のアルミ製風力発電用風車の正面図である。It is a front view of the conventional aluminum wind turbine for wind power generation of another aspect.

C:風力発電用風車、
1:発電機、2:垂直回転軸、3:主翼部、4:支持部材、5:ねじ部材固定部、6:ねじ部材、7:当て座、8:ワッシャー、9:ナット、10:被覆部材、11:ねじ切り部、12:中央部
C: Wind turbine for wind power generation,
1: generator, 2: vertical rotating shaft, 3: main wing part, 4: support member, 5: screw member fixing part, 6: screw member, 7: rest seat, 8: washer, 9: nut, 10: covering member 11: Thread cutting part, 12: Center part

Claims (4)

発電機に連結される垂直回転軸を中心として円周方向に一定角度ごとに複数設けられる主翼部と、当該主翼部と前記垂直回転軸とを連結する複数の支持部材を備える風力発電用風車において、
前記各支持部材の一端面に、複数のねじ部材の一端が突出するように複数のねじ部材を埋め込んで固定されたねじ部材固定部を設け、
前記各主翼部と前記各支持部材とは、前記ねじ部材固定部から突出した各ねじ部材を前記主翼部に穿った貫通孔に通して、前記主翼部の外面から突出した各ねじ部材にナットを螺着させ、これを締め付けて固定させたことを特徴とする、風力発電用風車。
In a wind turbine for wind power generation, comprising: a plurality of main wing portions provided at a predetermined angle in the circumferential direction around a vertical rotation shaft connected to a generator; and a plurality of support members connecting the main wing portion and the vertical rotation shaft. ,
Provided on one end surface of each of the support members is a screw member fixing portion that is fixed by embedding a plurality of screw members so that one end of the plurality of screw members protrudes,
Each main wing part and each support member pass through each screw member protruding from the screw member fixing part through a through hole formed in the main wing part, and a nut is attached to each screw member protruding from the outer surface of the main wing part. A wind turbine for wind power generation, wherein the wind turbine is screwed and fastened.
前記支持部材は中空に形成され、中空の当該支持部材の内周に前記ねじ部材固定部が固定されたことを特徴とする、請求項1に記載の風力発電用風車。   The wind turbine for wind power generation according to claim 1, wherein the support member is formed in a hollow shape, and the screw member fixing portion is fixed to an inner periphery of the hollow support member. 前記ねじ部材の中央部の外周が平坦であり、主翼部に穿った前記貫通孔に通した当該ねじ部材の中央部が、主翼部と支持部材の当接部に位置されることを特徴とする、請求項1又は2に記載の風力発電用風車。   The outer periphery of the central portion of the screw member is flat, and the central portion of the screw member that is passed through the through hole formed in the main wing portion is positioned at the contact portion between the main wing portion and the support member. The wind turbine for wind power generation according to claim 1 or 2. 前記ナットが締め付け固定された状態の前記ねじ部材の一端と略嵌合するように、被覆部材が当該ねじ部材の上に被せられることを特徴とする、請求項1〜3のいずれかに記載の風力発電用風車。


The covering member is put on the screw member so as to substantially fit with one end of the screw member in a state where the nut is fastened and fixed. Wind turbine for wind power generation.


JP2009187561A 2009-08-12 2009-08-12 Wind turbine for wind power generation Expired - Fee Related JP5296634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009187561A JP5296634B2 (en) 2009-08-12 2009-08-12 Wind turbine for wind power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009187561A JP5296634B2 (en) 2009-08-12 2009-08-12 Wind turbine for wind power generation

Publications (2)

Publication Number Publication Date
JP2011038482A true JP2011038482A (en) 2011-02-24
JP5296634B2 JP5296634B2 (en) 2013-09-25

Family

ID=43766493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009187561A Expired - Fee Related JP5296634B2 (en) 2009-08-12 2009-08-12 Wind turbine for wind power generation

Country Status (1)

Country Link
JP (1) JP5296634B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020230685A1 (en) * 2019-05-10 2020-11-19

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191871U (en) * 1981-05-30 1982-12-04
JP2008101536A (en) * 2006-10-19 2008-05-01 Kikukawa Kogyo Kk Blade for wind power generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191871U (en) * 1981-05-30 1982-12-04
JP2008101536A (en) * 2006-10-19 2008-05-01 Kikukawa Kogyo Kk Blade for wind power generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020230685A1 (en) * 2019-05-10 2020-11-19
WO2020230685A1 (en) * 2019-05-10 2020-11-19 国立大学法人大阪大学 Floating offshore wind turbine and installation method for floating offshore wind turbine

Also Published As

Publication number Publication date
JP5296634B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
AU2006328296B2 (en) Lightning protection device of windmill blade
AU2004243414B2 (en) Rotor blade connection
US8662847B2 (en) Rotor blade with control tube
US9458822B2 (en) Rotor for a wind turbine
JPWO2005111415A1 (en) Vertical axis wind turbine support arm mounting structure and vertical axis wind turbine
JP5749777B2 (en) Wind turbine with offset suction side
JP2015500420A (en) Rotor blade and connecting device
WO2017076096A1 (en) Reinforced blade for wind-driven generator
WO2018113204A1 (en) Centering fastener, methods for manufacturing and using same, and wind turbine
KR101578745B1 (en) Spiral blade unit and wind generator and blade connector for the unit
JP5296634B2 (en) Wind turbine for wind power generation
JP2017207001A (en) Wind turbine blade, wind turbine, process of manufacture for wind turbine blade and wind turbine blade connection structure
KR101592289B1 (en) Spiral blade unit and method for making the same
US11725631B2 (en) Method for testing a rotor blade component of a rotor blade for a wind power installation, and rotor blade component
ES2585832T3 (en) Wind power installation
JP2006274989A (en) Windmill
JPS61175274A (en) Rotor blade construction of wind mill
JP7529272B2 (en) Magnus type thrust generating device, wind power rotating device, water power rotating device, tidal power rotating device using said Magnus type thrust generating device, and wind power generator, water power generator, tidal power generator using said Magnus type thrust generating device
JP6937910B2 (en) Connecting the rotor blades of a wind turbine to the rotor hub
WO2013186276A1 (en) Improved hinge for wind turbine blades
EP4130458A1 (en) Vertical axis wind turbine
WO2022022788A1 (en) Wind turbine blade portion connector
AU2008200963A1 (en) Rotor blade connection
KR20120042327A (en) Vertical-axis wind power generator which have dual hub
CN110567695A (en) Auxiliary device for reducing wind power blade waving direction fatigue test air resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees