JP2011037675A - Method for producing silicon carbide - Google Patents

Method for producing silicon carbide Download PDF

Info

Publication number
JP2011037675A
JP2011037675A JP2009187603A JP2009187603A JP2011037675A JP 2011037675 A JP2011037675 A JP 2011037675A JP 2009187603 A JP2009187603 A JP 2009187603A JP 2009187603 A JP2009187603 A JP 2009187603A JP 2011037675 A JP2011037675 A JP 2011037675A
Authority
JP
Japan
Prior art keywords
silicon carbide
sic
powder
particle size
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009187603A
Other languages
Japanese (ja)
Other versions
JP5466455B2 (en
Inventor
Yoshihiro Kubota
芳宏 久保田
Hiromi Osaki
浩美 大崎
Masahiro Mochizuki
正裕 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Shinano Electric Refining Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Shinano Electric Refining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Shinano Electric Refining Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009187603A priority Critical patent/JP5466455B2/en
Priority to KR1020127002489A priority patent/KR101766928B1/en
Priority to PCT/JP2010/063624 priority patent/WO2011019054A1/en
Priority to CN2010800353215A priority patent/CN102482102A/en
Publication of JP2011037675A publication Critical patent/JP2011037675A/en
Application granted granted Critical
Publication of JP5466455B2 publication Critical patent/JP5466455B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/97Preparation from SiO or SiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce silicon carbide usable as a grinding material, abrasive grains, or an abrasive material by making it possible to recover SiC and Si from a solution or a waste liquid to such a degree as to eliminate wastewater pollution. <P>SOLUTION: Provided is a method for producing silicon carbide comprising the step of subjecting a solution or waste liquid at least containing fine SiC particles and/or fine Si particles to solid/liquid separation by using a separation aid at least containing a carbon powder and a silicon oxide powder to obtain a solid component, the step of mixing the solid component with optionally an additive containing a carbon powder and/or a silicon oxide powder, and the step of reacting the solid component or the solid component mixed with the additive by heating to a temperature which is higher than 1,850°C and lower than 2,400°C in a non-oxidizing atmosphere, to produce silicon carbide. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、(a)SiC微粉を製造する際の分級工程で目的粒径以下で副産物として生成する不要SiC微粒子を含んだ溶液、(b)単結晶や多結晶のSiインゴットや成形物を研削する際のSi切子微粒子を含有した廃液、(c)SiCを砥粒として単結晶や多結晶シリコンをワイヤーソーで切断し、ウエハー、薄片を製造する際に発生するSiC、Si微粒子を含有したスラリー廃液などの中から、これまで利用が難しく不要とされていたSiCやSi或いはこれらの混合微粉を回収、再生する方法に関するものである。   The present invention includes: (a) a solution containing unnecessary SiC fine particles produced as a by-product with a particle size equal to or smaller than the target particle size in the classification step when producing SiC fine powder; and (b) grinding a single crystal or polycrystalline Si ingot or molded product. (C) Slurry containing SiC and Si fine particles generated when wafers and flakes are produced by cutting a single crystal or polycrystalline silicon with a wire saw using SiC as abrasive grains. The present invention relates to a method for recovering and regenerating SiC, Si, or a mixed fine powder thereof, which has been conventionally difficult and unnecessary from waste liquids.

近年、炭化珪素粉は、シリコン,水晶、SiC,GaAs,GaN等の単結晶や多結晶の基板あるいはガラス、セラミックスなどの切断、研削、研磨、更にはSiC成形体の原料に多用されている。この炭化珪素粉は、通常、旧来のアチソン法によりバッチ反応で製造されている。アチソン法は、大気開放のU型炉で、中心に長手方向にグラファイト電極を通し、その電極周りに、数mm〜数cmの珪砂と炭素の混合物を蒲鉾状に積み上げ、グラファイト電極に大電流を流し加熱してSiCを製造するものである。この反応(SiO+3C→SiC+2CO)は吸熱反応であり、グラファイト電極のみが発熱体で高温なので、反応は電極周りは良く反応し、主として高温安定型結晶のα−SiCが生成するが、電極から離れた部分は未反応であったり、比較的用途が限定されている低温安定型結晶のβ−SiCとα−SiCの混合物などが多く生成する。炉は、大気開放なので熱効率が悪く、粉塵や反応で発生するCOガスなどで周囲の環境を汚染し易い。反応後、塊状に硬く固まった炉内物を粗く砕き、所望のα−SiC部分のみを選別し、更に微粉砕する。残りの未反応物やβ−SiCとα−SiCとの混合物は不要品として再度、反応原料に戻される。上記の微粉砕品は更に各種用途に応じて、水などを用いた湿式分級や空気や窒素などを用いた乾式分級で、用途に応じた最適な粒度や粒度分布に調整される。かくして得られたSiC微粉は前記の切断、研削、研磨の砥粒、研削材として或いはSiC成形体の原料粉末として、現在、大量に用いられている。 In recent years, silicon carbide powder has been frequently used as a raw material for single crystal or polycrystalline substrates such as silicon, quartz, SiC, GaAs, and GaN, or for cutting, grinding, polishing, and further forming glass and ceramics. This silicon carbide powder is usually produced by a batch reaction by the conventional Atchison method. The Atchison method is a U-type furnace that is open to the atmosphere. A graphite electrode is passed through the center in the longitudinal direction, and a mixture of several millimeters to several centimeters of silica sand and carbon is piled up around the electrode in a bowl shape. The SiC is manufactured by flowing and heating. This reaction (SiO 2 + 3C → SiC + 2CO) is an endothermic reaction, and since only the graphite electrode is a heating element and has a high temperature, the reaction reacts well around the electrode and mainly produces α-SiC as a high-temperature stable crystal. A remote portion is unreacted or a large amount of a mixture of β-SiC and α-SiC, which is a low-temperature stable crystal whose use is relatively limited, is generated. Since the furnace is open to the atmosphere, the thermal efficiency is poor, and the surrounding environment is likely to be polluted with dust or CO gas generated by the reaction. After the reaction, the in-furnace hardened and hardened material is roughly crushed, and only the desired α-SiC portion is selected and further pulverized. The remaining unreacted material and the mixture of β-SiC and α-SiC are returned to the reaction raw material again as unnecessary products. The finely pulverized product is further adjusted to an optimum particle size and particle size distribution according to the application by wet classification using water or the like and dry classification using air or nitrogen according to various applications. The SiC fine powder thus obtained is currently used in a large amount as the above-mentioned cutting, grinding and polishing abrasive grains, abrasives, or as raw material powder for SiC molded bodies.

ところで前述の如く、(a)SiC微粉の製造では使用目的や用途により、最適な平均粒径や粒度分布が要求されるため、所望粒度と不要粒度を分ける分級工程が不可欠である。この分級では比較的低コストで精密分級が可能な水分級法が一般的であるが、需要の無い不要なSiC微粉水溶液が多量に発生する。また、乾式分級の場合でも同様に不要の微粉が発生し、それらの処理に困っていた。また、(b)単結晶や多結晶シリコンのインゴットや成形物を研削する際にもSi切子微粒子を含有した廃液が沢山発生しており、その処分も問題となっていた。一方、(c)ワイヤーソーでは水または油の溶媒中に研削材のSiC微粉とエチレングリコール、界面活性剤、防錆剤などの種々の添加材を加えたスラリーを作りシリコンインゴット等の切断に使用する。このスラリーは単結晶や多結晶シリコンを多量に切断すると当初、最適であったSiCの粒径や粒度分布がSiC微粉の磨耗や割れなどで、へたり、細粒化あるいは粒度分布の広がり等で切断能力が低下すると共に、切子のシリコン微粉が蓄積してスラリー粘度が上昇し、スラリーの循環使用が不能となり、新スラリーと交換される。使用不能になった廃スラリーには水または油の溶媒以外に消耗し細粒化したSiCと切子のSi微粉や各種の添加剤が存在しており、排水汚染などの面から単純に廃棄も出来ず、その処分が大きな問題であった。   By the way, as described above, in the production of (a) SiC fine powder, an optimum average particle size and particle size distribution are required depending on the purpose of use and application. Therefore, a classification step for separating desired particle size and unnecessary particle size is indispensable. In this classification, a moisture classification method that enables precise classification at a relatively low cost is common, but a large amount of unnecessary SiC fine powder aqueous solution that is not in demand is generated. Further, even in the case of dry classification, unnecessary fine powder was generated in the same manner, and it was difficult to process them. In addition, (b) a large amount of waste liquid containing Si facet particles was generated when grinding an ingot or molded product of single crystal or polycrystalline silicon, and disposal of the waste was also a problem. On the other hand, in (c) wire saws, a slurry in which various additives such as SiC fine powder and ethylene glycol, surfactants, rust preventives, etc. are added in water or oil solvent is used to cut silicon ingots. To do. When this slurry is cut into a large amount of single crystal or polycrystalline silicon, the optimum SiC particle size and particle size distribution are initially caused by wear and cracking of SiC fine powder, etc. As the cutting ability decreases, the silicon fine powder of the face accumulates and the viscosity of the slurry rises, making it impossible to circulate and replace the slurry. The waste slurry that has become unusable contains not only water or oil solvents, but also consumed SiC and finely divided SiC powder and various additives, and can be simply discarded from the standpoint of drainage pollution. The disposal was a big problem.

上記(a)、(b)の水溶液や廃液の処理は、現状、その溶液や廃液からSiCやSiの微粉を遠心分離機や濾過機で回収し有効利用しようとしても超微粉のため、固液の完全分離が極めて難しく、止む無く産業廃棄物か焼却処分、或いは大量な熱で加熱乾燥した後、乾燥残渣のSiCやSiを経済的価値の低い溶鉱炉の脱酸剤やアチソン炉の原料戻し等に利用されているに過ぎない。   The treatment of the aqueous solutions and waste liquids in the above (a) and (b) is currently a solid liquid because it is super fine even if SiC or Si fine powder is recovered from the solution or waste liquid with a centrifuge or a filter and used effectively. It is extremely difficult to completely separate the waste, industrial waste or incineration without cease, or after drying by heating with a large amount of heat, the dry residue SiC or Si is returned to the deoxidizer of the blast furnace or the raw material of the Atchison furnace with low economic value It is only used for.

上記(c)のワイヤーソースラリー廃液のSiCとSiの混合微粉については、特許文献1〜2など、これまで幾つかの回収、有効活用法が提案されている。これらの方法は、含有Si微粉をSiCに転換出来るに十分な量の炭素、例えば石油コークスやカーボンブラックを廃スラリーに添加し、乾燥したもの、或いは遠心分離や濾過して得られた固形スラッジをそのまま加熱して切子のSiをSiC(Si+C→SiC)として回収し活用しようとするものである。
しかし、これらの提案法は実施しようとすると種々の問題が発生し、また、得られるSiCは細かな微粉過ぎ利用価値が低くいものである。即ち、上記の方法で炭素に石油コークスを使用した場合、カーボンの比表面積が小さ過ぎ、SiC、Si微粉の吸着が十分に出来ず、遠心分離や濾過しても濾液中に微粉が多く漏洩し、SiC、Si固形分の回収が不十分となり、濾液も混濁して排水処理上、問題となる。また、炭素にカーボンブラックを用いた場合、細かい粒子径のため、廃液の粘度が上がり遠心分離や濾過操作が困難となり、実用的でない。一方、溶液や廃液を固液分離せずにそのまま加熱乾燥するのは大きな熱が必要となり経済的でない。廃スラリ中に残存し回収されたSiC微粉は前記した様にへたりや細粒化のままの状態で、ワイヤーソーなどの高度な用途には使用出来ない。また、SiCと共に回収された切子のSi微粉は加熱によりカーボンと反応し新たにSiCを生成するが、原料となる回収Siはワイヤーソーの切子ゆえ超微粉で、且つ粒度分布が広いため、生成SiCも超微粒で粒度分布が広くなってしまい、回収SiCと同様に、所要の粒径を持ち、且つ粒度分布がシャープであることが要求されるワイヤーソー用などには不向きな低付加価値の物であり、これらの改善が望まれていた。
Regarding the mixed fine powder of SiC and Si in the wire saw slurry waste liquid of (c) above, several recovery and effective utilization methods have been proposed so far, such as Patent Documents 1 and 2. In these methods, a sufficient amount of carbon, such as petroleum coke or carbon black, that can convert the contained Si fine powder into SiC is added to the waste slurry, and dried, or solid sludge obtained by centrifugation or filtration is used. By heating as it is, the Si of the facet is collected and utilized as SiC (Si + C → SiC).
However, various problems occur when these proposed methods are carried out, and the obtained SiC is too fine and has a low utility value. In other words, when petroleum coke is used for carbon by the above method, the specific surface area of carbon is too small, and SiC and Si fine powder cannot be sufficiently adsorbed, and a lot of fine powder leaks into the filtrate even after centrifugation or filtration. , SiC and Si solids are not sufficiently recovered, and the filtrate becomes turbid and causes a problem in wastewater treatment. In addition, when carbon black is used for carbon, because of the fine particle size, the viscosity of the waste liquid is increased and centrifugal separation and filtration operations become difficult, which is not practical. On the other hand, it is not economical to heat and dry a solution or waste liquid as it is without solid-liquid separation because a large amount of heat is required. The SiC fine powder remaining and recovered in the waste slurry is in a state of sag and fine grain as described above and cannot be used for advanced applications such as a wire saw. The fine Si powder collected together with SiC reacts with carbon by heating to produce new SiC, but the recovered Si used as a raw material is a fine powder because of the wire saw face and has a wide particle size distribution. Is very fine and has a wide particle size distribution. Like recovered SiC, it has a required particle size and is not suitable for wire saws that require a sharp particle size distribution. These improvements have been desired.

特開平11−116227号公報Japanese Patent Laid-Open No. 11-116227 特開2002−255532号公報JP 2002-255532 A

本発明は、例えば、(a)SiC微粒を製造する際の分級工程で目的粒径以下で副産物として生成する不要SiC微粒子を含んだ溶液、(b)単結晶や多結晶のSiインゴットや成形物を研削する際のSi切子微粒子を含有した廃液、(c)SiCを砥粒として単結晶や多結晶シリコンをワイヤーソーで切断し、ウエハー、薄片を製造する際に発生するSiC、Si微粒子を含有したスラリー廃液、等の溶液や廃液中のSiC、Siを排水汚濁も無くほぼ完璧に回収し、ワイヤーソー、ラッピング、ポリシング用などの高純度で高付加価値の研削材、砥粒、研磨材に再生する方法を提供するものである。   The present invention includes, for example, (a) a solution containing unnecessary SiC fine particles generated as a by-product with a particle size equal to or smaller than a target particle size in a classification step when producing SiC fine particles, and (b) a single crystal or polycrystalline Si ingot or molded product. Waste liquid containing Si facet fine particles when grinding, (c) SiC and Si fine particles generated when wafers and flakes are produced by cutting single crystal or polycrystalline silicon with wire saw using SiC as abrasive grains The slurry waste solution, etc., and SiC and Si in the waste solution are recovered almost completely without drainage pollution, and used as a high-purity, high-value-added abrasive, abrasive, and abrasive for wire saws, lapping, polishing, etc. It provides a method of playing.

本発明は、(a)、(b)及び(c)等のSiC微粒子及び/又はSi微粒子を少なくとも含む溶液又は廃液を、炭素粉及び酸化珪素粉を少なくとも含む分離助材を用いて固液分離して固体分を得るステップと、この固体分を必要に応じて炭素粉及び/又は酸化珪素粉を含む添加剤と混合するステップと、炭化珪素を得るために、この固体分又は添加剤と混合された固体分を、非酸化性雰囲気で1850℃を超えて2400℃未満に加熱反応させるステップとを少なくとも含んでなる炭化珪素の製造方法を提供する。これにより、上記の溶液や廃液中のSiCやSiを排水汚濁なく回収可能で且つ、最適粒径と粒度分布を持った高付加価値な研削材、砥粒、研磨材に再生できる。
即ち、本発明は、上記した溶液や廃液中のSiC微粉及び/又はSi微粉を回収、再生するに際し、その溶液及び/又は廃液に少なくとも炭素粉と酸化珪素粉を組み合わせ、固液分離の分離助材として、更にはSiCの粒径肥大化の反応原料として用い、必要に応じて炭素粉及び/又は酸化珪素粉を含む添加剤と混合した後、非酸化性雰囲気で1850℃を超えて2400℃未満に加熱反応させる。また、固液分離により固体分を回収し、Si微粉及び炭素粉との反応でSiC微粉を生成し、循環使用で消耗して、へたりや細粒化した残存SiC微粉を肥大化(粒成長)して再生し、用途に応じた最適な粒径と粒度分布を得る方法を提供したものである。
In the present invention, a solution or waste liquid containing at least SiC fine particles and / or Si fine particles such as (a), (b) and (c) is subjected to solid-liquid separation using a separation aid containing at least carbon powder and silicon oxide powder. To obtain a solid content, mixing the solid content with an additive containing carbon powder and / or silicon oxide powder, if necessary, and mixing with the solid content or additive to obtain silicon carbide. And a step of heating and reacting the solid content in a non-oxidizing atmosphere at a temperature higher than 1850 ° C. and lower than 2400 ° C. Thereby, SiC and Si in the above solution and waste liquid can be recovered without drainage pollution, and can be regenerated into a high-value-added abrasive, abrasive, or abrasive having an optimum particle size and particle size distribution.
That is, the present invention recovers and regenerates SiC fine powder and / or Si fine powder in the above-mentioned solution and waste liquid, and combines the solution and / or waste liquid with at least carbon powder and silicon oxide powder to assist the separation in solid-liquid separation. As a material, it is further used as a reaction raw material for SiC particle size enlargement, and if necessary mixed with an additive containing carbon powder and / or silicon oxide powder, then exceeds 1850 ° C. and 2400 ° C. in a non-oxidizing atmosphere. Heat reaction to less than In addition, the solid content is recovered by solid-liquid separation, SiC fine powder is generated by reaction with Si fine powder and carbon powder, and the residual SiC fine powder that is consumed and circulated is enlarged and grown (grain growth). ) To obtain the optimum particle size and particle size distribution according to the application.

前述した如く、従来法では、廃液に炭素のみの添加なので添加する炭素が大きな粒子径あるいは比表面積の小さい場合は、遠心分離や濾過などの固液分離の際に、細かなSiCやSiは漏れて回収が不十分となる。一方、炭素が細かい微粒子の場合は必要量の炭素を溶液や廃液に添加するとグリースや団子状になり固液分離の操作が不可能となる。また、これらの方法では、回収SiC及びSiと炭素との反応生成物のSiC共々、細かい粒径であり、炭素のみの添加では粒子の肥大化が難しく、所要の大きさの粒径が得られない。これに対して本発明では、炭素と酸化珪素が分離助材及びSiC反応原料として機能するため、消耗し細粒化したSiCも切子Siと炭素より反応生成物のSiCとも粒子の肥大化が起こり、所望の大きさの粒子が得られるものである。   As described above, in the conventional method, since only carbon is added to the waste liquid, when the added carbon has a large particle size or a small specific surface area, fine SiC or Si leaks during solid-liquid separation such as centrifugation or filtration. Recovery is insufficient. On the other hand, in the case of fine particles of carbon, if a necessary amount of carbon is added to the solution or waste liquid, it becomes a grease or dumpling, and the operation of solid-liquid separation becomes impossible. Moreover, in these methods, the recovered SiC and the SiC of the reaction product of Si and carbon have a fine particle size, and the addition of carbon alone makes it difficult to enlarge the particle, and a particle size of the required size can be obtained. Absent. In contrast, in the present invention, since carbon and silicon oxide function as a separation aid and SiC reaction raw material, both the consumed and finely-divided SiC particles are larger than both the facet Si and the carbon of the reaction product SiC. Thus, particles having a desired size can be obtained.

以下に本発明の方法を更に詳細に説明する。
まず、炭化珪素微粒子及び/又はシリコン微粒子を少なくとも含む溶液又は廃液に、炭素粉及び酸化珪素粉を少なくとも含む分離助材を用いて固液分離して固体分を得る。
炭化珪素微粒子及び/又はシリコン微粒子を少なくとも含む溶液又は廃液は、例えば、(a)SiC微粒を製造する際の水分級などの湿式分級工程で、目的粒径以下で副産物として生成する不要SiC微粒子を含んだ溶液、または、ふるい分級などの乾式分級工程で副産物として生成する不要SiC微粉を分散させた溶液、(b)単結晶や多結晶のSiインゴットや成形物を研削する際のSi切子微粒子を含有した廃液、(c)SiCを砥粒として単結晶や多結晶シリコンをワイヤーソーで切断し、ウエハー、薄片を製造する際に発生するSiC微粒子、Si微粒子を含有したスラリー廃液が挙げられる。
溶液や廃液に含まれる炭化珪素微粒子の平均粒経は、一般には20μm以下で、用途により適切な粒径が用いられ通常は、1〜20μmである。平均粒径が1μm未満まで使用すると切断速度が落ち、生産性が悪くなり、また、所望の粒度や研削、研磨の能力に再生するのが困難となる。一方、20μmを超えると、大きな研削傷や切断ロスが多く発生しやすい。
なお、本明細書に記載する平均粒径は、レーザ回折・散乱法による。
溶液又は廃液中の炭化珪素微粒子とシリコン微粒子の合計量の好ましい濃度は、5〜70%である。希薄すぎると固液分離の効率が悪くなる場合があり、濃縮すぎると流動性が悪く取り扱いが困難となる場合がある。固液分離に先立って、濃縮や希釈を行い、好ましい濃度に調節してもよい。
The method of the present invention will be described in detail below.
First, a solution or waste liquid containing at least silicon carbide fine particles and / or silicon fine particles is subjected to solid-liquid separation using a separation aid containing at least carbon powder and silicon oxide powder to obtain a solid content.
The solution or waste liquid containing at least silicon carbide fine particles and / or silicon fine particles includes, for example, (a) a wet classification process such as a moisture class when producing SiC fine particles, and unnecessary SiC fine particles that are generated as a by-product at a target particle size or less. A solution containing unnecessary SiC fine powder produced as a by-product in a dry classification process such as sieve classification, or (b) Si facet fine particles when grinding a single crystal or polycrystalline Si ingot or molded product. Examples of the waste liquid contained include: (c) SiC fine particles generated when SiC and abrasive grains are cut with a wire saw to produce wafers and flakes, and a slurry waste liquid containing Si fine particles.
The average particle size of the silicon carbide fine particles contained in the solution or the waste liquid is generally 20 μm or less, and an appropriate particle size is used depending on the application, and is usually 1 to 20 μm. When the average particle size is less than 1 μm, the cutting speed is lowered, the productivity is deteriorated, and it is difficult to regenerate the desired particle size, grinding and polishing ability. On the other hand, if it exceeds 20 μm, many grinding scratches and cutting loss are likely to occur.
In addition, the average particle diameter described in this specification is based on a laser diffraction / scattering method.
A preferred concentration of the total amount of silicon carbide fine particles and silicon fine particles in the solution or waste liquid is 5 to 70%. If it is too dilute, the efficiency of solid-liquid separation may deteriorate, and if it is too concentrated, the fluidity may be poor and handling may be difficult. Prior to solid-liquid separation, concentration or dilution may be performed to adjust to a preferred concentration.

本発明で使用される分離助材は、少なくとも炭素粉と酸化珪素粉を含む。
分離助剤に含まれる炭素粉は、BET法を用いて好ましくは1m/g〜700m/gの比表面積を有する。SiC、Si微粉が炭素に十分吸着し、固液分離も良好となり、操作も容易で、高い回収が可能だからである。比表面積が余り小さいと、分離助材として固形微粒子の吸着能が劣る場合があり、逆に余り大き過ぎると粘度が上がり、固液分離操作が困難になる場合がある。分離助剤に用いる炭素粉の平均粒径は、好ましくは上記比表面積を与えるものであり、例えば0.1μm〜1mmである。
分離助剤に用いる炭素の種類としては、木炭、コークス、活性炭等が挙げられる。
The separation aid used in the present invention contains at least carbon powder and silicon oxide powder.
Carbon powder contained in the separation aid, preferably having a specific surface area of 1m 2 / g~700m 2 / g using the BET method. This is because SiC and Si fine powder are sufficiently adsorbed on carbon, solid-liquid separation is improved, operation is easy, and high recovery is possible. If the specific surface area is too small, the adsorption ability of the solid fine particles may be inferior as a separation aid. Conversely, if the specific surface area is too large, the viscosity increases and the solid-liquid separation operation may be difficult. The average particle diameter of the carbon powder used for the separation aid preferably gives the specific surface area, and is, for example, 0.1 μm to 1 mm.
Examples of the type of carbon used for the separation aid include charcoal, coke, and activated carbon.

分離助剤に用いる酸化珪素粉は、後工程でのSiC化反応を考慮すると、好ましくは1mm以下の平均粒径を有する。
分離助剤に含まれる炭素粉と酸化珪素粉の好ましい質量比は、後工程でのSiC化を考慮すると炭素粉/酸化珪素粉が好ましくは0.6以上である。
The silicon oxide powder used for the separation aid preferably has an average particle size of 1 mm or less in consideration of the SiC-forming reaction in a later step.
The preferable mass ratio of the carbon powder and the silicon oxide powder contained in the separation aid is preferably 0.6 or more for the carbon powder / silicon oxide powder in view of the conversion to SiC in the subsequent process.

分離助剤は、固液分離を容易にするため、更に有機高分子凝集剤を含んでもよい。有機高分子凝集剤としては、例えば、ポリアクリルアミド、ポリエチレンアミンやポリエチレンイミンなどの加熱分解して炭素になり、無機凝集剤の様に残存して不純物とならない物が好ましく、これらの使用は、炭化珪素微粒子及び/又はシリコン微粒子の更に効果的な回収が可能である。
分離助剤に含まれる高分子凝集剤の含有量は、凝集効率及び経済性を考慮すると分離助剤に含まれる炭素粉と酸化珪素粉の合計量に対して好ましくは0〜10質量%である。
The separation aid may further contain an organic polymer flocculant in order to facilitate solid-liquid separation. As the organic polymer flocculant, for example, polyacrylamide, polyethyleneamine, polyethyleneimine, etc. are thermally decomposed to become carbon, and those which remain as impurities, such as inorganic flocculants, are preferable. More effective recovery of silicon fine particles and / or silicon fine particles is possible.
The content of the polymer flocculant contained in the separation aid is preferably 0 to 10% by mass with respect to the total amount of carbon powder and silicon oxide powder contained in the separation aid in consideration of aggregation efficiency and economy. .

分離助剤の使用量は、溶液又は廃液中の炭化珪素微粒子とシリコン微粒子の合計質量に対して濾過効率や経済性を考慮すると、溶液又は廃液に含まれる炭化珪素微粒子及びシリコン微粒子の合計量1.0モルにつき、好ましくは0.1〜10モルである。   The amount of separation aid used is the total amount of silicon carbide fine particles and silicon fine particles contained in the solution or waste liquid, considering the filtration efficiency and economic efficiency with respect to the total mass of silicon carbide fine particles and silicon fine particles in the solution or waste liquid. It is preferably 0.1 to 10 mol per 0.0 mol.

固液分離は、公知の方法を用いて行なうことができ、例えば、濾過法、フィルタープレスや遠心分離機の使用が挙げられる。   Solid-liquid separation can be performed using a known method, and examples thereof include filtration, use of a filter press and a centrifuge.

次に、固液分離により分離された固体分は、必要に応じて炭素粉及び/又は酸化珪素粉を少なくとも含む添加剤と混合される。必要に応じてとは、分離助剤として添加した量では、粒径増大化に不十分の場合に添加剤と混合される意味である。
固体分に必要に応じて添加される炭素粉は、SiCの反応原料の一部として、又は反応の場として機能し、反応速度や生成SiCの収率を決定する。したがって、その粒径が余り大きいと反応速度が遅くなると共に生成SiCの収率が低下し経済的でない。固体分に必要に応じて添加される炭素粉の平均粒径は、好ましくは1mm以下、より好ましくは0.1μm〜100μmである。
固体分に必要に応じて添加される炭素の種類としては、木炭、コークス、活性炭等が挙げられる。
Next, the solid component separated by solid-liquid separation is mixed with an additive containing at least carbon powder and / or silicon oxide powder as necessary. The term “as needed” means that the amount added as a separation aid is mixed with an additive when the particle size is insufficient for increasing the particle size.
The carbon powder added to the solid as necessary functions as a part of the reaction raw material of SiC or as a reaction field, and determines the reaction rate and the yield of produced SiC. Therefore, if the particle size is too large, the reaction rate becomes slow and the yield of produced SiC decreases, which is not economical. The average particle diameter of the carbon powder added to the solid as necessary is preferably 1 mm or less, more preferably 0.1 μm to 100 μm.
Charcoal, coke, activated carbon, etc. are mentioned as a kind of carbon added to solid content as needed.

固体分に必要に応じて添加される酸化珪素粉の粒経は、固体分に必要に応じて添加される炭素粉と異なり、殆ど生成SiCの収率に影響は無いが、余り大き過ぎると反応速度が遅くなり得策でない。固体分に必要に応じて添加される酸化珪素粉の平均粒経は、好ましくは1mm以下である。   The particle size of silicon oxide powder added to the solid content as needed is different from the carbon powder added as needed to the solid content, and hardly affects the yield of generated SiC, but if it is too large, the reaction The speed is slow and this is not a good idea. The average particle size of the silicon oxide powder added to the solid as necessary is preferably 1 mm or less.

固体分に必要に応じて炭素粉を添加するか、酸化珪素粉を添加するか、又は両者を如何なる割合で添加するかは、SiCの肥大化の度合いと両者の反応に関与する割合等を考慮して選択できる。   Whether carbon powder, silicon oxide powder, or both ratios are added to the solids as necessary depends on the degree of SiC enlargement and the ratio involved in the reaction between the two. Can be selected.

分離助材に含まれる炭素粉及び酸化珪素粉と、必要に応じて添加される添加剤に含まれる炭素粉及び酸化珪素粉の合計は、添加剤中の炭素と同様に、共に廃液中に残存していたSiC又は新たに生成するSiCの反応原料となる。即ち、細粒化或いはへたった残存SiC粒には粒の肥大化(粒成長化)原料として働き、新たに生成するSiCにはそのものの反応原料として働く。したがって、固液分離により得られた固体分の組成により、添加される炭素及び酸化珪素の合計量も変わる。
分離助材と添加剤に含まれる炭素粉及び酸化珪素粉との合計量は、溶液又は廃液に含まれる炭化珪素微粒子及びシリコン微粒子の合計量1.0モルにつき、好ましくは0.1〜50モルである。0.1モル未満では、残存SiCの粒径の肥大化が不十分であったり、新たな生成SiCの粒径が極めて微小となる。また、50モルを超えると反応に必要な量に対して過剰となり、反応後、余分な除去工程が必要となる場合があり、粒径が大きく成り過ぎて好ましくない場合がある。
The total of the carbon powder and silicon oxide powder contained in the separation aid and the carbon powder and silicon oxide powder contained in the additive that is added as necessary remains in the waste liquid as well as the carbon in the additive. It becomes a reaction raw material of SiC that has been produced or newly produced SiC. That is, it works as a raw material for grain enlargement (grain growth) for finely-grained or just remaining SiC grains, and as a reaction raw material for newly produced SiC. Accordingly, the total amount of carbon and silicon oxide added varies depending on the composition of the solid obtained by solid-liquid separation.
The total amount of carbon powder and silicon oxide powder contained in the separation aid and the additive is preferably 0.1 to 50 mol per 1.0 mol of the total amount of silicon carbide fine particles and silicon fine particles contained in the solution or waste liquid. It is. If it is less than 0.1 mol, enlargement of the particle size of the remaining SiC is insufficient, or the particle size of newly produced SiC becomes extremely small. Moreover, when it exceeds 50 mol, it will become excess with respect to the quantity required for reaction, and an extra removal process may be needed after reaction, and a particle size may become large and may be unpreferable.

次に、炭化珪素を得るために、固液分離後の固体分又は必要に応じて添加剤と混合後の固体分を、非酸化性雰囲気下、加熱反応させる。
加熱反応は、炭化珪素前駆体及び/又はβ−炭化珪素を生成した後、更にα−炭化珪素に結晶転位させるための温度勾配で行うことが好ましい。
酸化珪素が炭素で還元されて生じる中間体は、下記式(1)と(2)に示すようにSiOとSiである。
SiO+C=SiO+CO ・・・(1)
SiO+C=Si+CO ・・・(2)
SiCの反応原料である、酸化珪素が炭素で還元されて生じる中間体のSiOとSi、或いは回収溶液や廃液中の切子などのSi微粉は高温では蒸発揮散しやすい。したがって、加熱反応に際し、SiCを収率良く得るには、反応初期に急昇温せずに、できるだけSiOやSiの形で蒸発揮散させず逸早く、好ましくは1100〜1850℃にて酸化珪素を炭素と完全反応させて炭化珪素前駆体及び/又はβ−炭化珪素を生成した後、更に、好ましくは1850℃を超えて2400℃未満の高温に上げてα−炭化珪素に結晶転位する様な温度勾配が好ましい。一括、炭化珪素前駆体であれ、β−炭化珪素であれ、SiC化合物になれば蒸気圧が極めて小さく、2400℃を以上でないと分解もしないのでロスは殆ど無く、最終の最高温度が1850℃以下であると反応物を完全にα−炭化珪素化するのが困難となる場合があるからである。
非酸化性雰囲気下としては、例えば、窒素、アルゴン等から選ばれるガスの雰囲気下が挙げられる。
なお、炭化珪素前駆体は、例えば残留した廃液中の有機物や添加した有機高分子凝集剤の一部が反応した有機珪素化合物等である。また、炭化珪素前駆体やβ−炭化珪素からα−炭化珪素への結晶転位は、例えば、
X線回折装置による分析等を用いて確認できる。
Next, in order to obtain silicon carbide, the solid content after solid-liquid separation or the solid content after mixing with an additive as necessary is heated and reacted in a non-oxidizing atmosphere.
The heating reaction is preferably performed at a temperature gradient for crystal rearrangement to α-silicon carbide after the silicon carbide precursor and / or β-silicon carbide is generated.
Intermediates produced by reducing silicon oxide with carbon are SiO and Si as shown in the following formulas (1) and (2).
SiO 2 + C = SiO + CO (1)
SiO + C = Si + CO (2)
The intermediate reaction SiO and Si produced by reducing silicon oxide with carbon, which is a reaction raw material for SiC, or Si fine powder such as facets in the recovered solution and waste liquid is easily evaporated. Therefore, in order to obtain SiC in a high yield in the heating reaction, the silicon oxide is carbonized at a temperature of 1100 to 1850 ° C. quickly, preferably without causing rapid evaporation in the form of SiO or Si as much as possible without first raising the temperature at the beginning of the reaction. The temperature gradient is such that the silicon carbide precursor and / or β-silicon carbide is produced by complete reaction with C, and is further raised to a high temperature of more than 1850 ° C. and less than 2400 ° C. to cause crystal dislocation to α-silicon carbide. Is preferred. Whether it is a silicon carbide precursor or β-silicon carbide at once, the vapor pressure is extremely low if it is a SiC compound, and it does not decompose unless it exceeds 2400 ° C, so there is almost no loss, and the final maximum temperature is 1850 ° C or less. This is because it may be difficult to completely convert the reactant into α-silicon carbide.
Examples of the non-oxidizing atmosphere include a gas atmosphere selected from nitrogen, argon, and the like.
The silicon carbide precursor is, for example, an organic silicon compound in which a part of the remaining organic matter in the waste liquid or an added organic polymer flocculant has reacted. Further, the crystal dislocation from the silicon carbide precursor or β-silicon carbide to α-silicon carbide is, for example,
This can be confirmed by analysis using an X-ray diffractometer.

加熱反応に温度勾配を与える方法としては、例えば、同一反応炉内で温度領域をくぎった装置や、温度の異なる複数の反応炉で、温度の低い領域から高い領域へ移動させる方法がある。
好ましくは、一定時間毎に一定距離を移動するプッシャー又はロータリー式密閉反応炉を用いるとよい。量産性と上記の最適な温度勾配が取れ、粉塵の発生も少なく、熱効率も良く、副生ガスの回収が容易に出来る反応炉として、一定時間毎に一定距離を移動する密閉反応炉、例えば温度制御のプシャー式反応炉、ロータリー式反応炉が最適だからである。
As a method of giving a temperature gradient to the heating reaction, for example, there is a method of moving from a low temperature region to a high temperature region in an apparatus that cuts the temperature region in the same reaction furnace or a plurality of reaction furnaces having different temperatures.
Preferably, a pusher or a rotary sealed reactor that moves a certain distance every certain time may be used. Massive productivity and the above optimal temperature gradient, less dust generation, good thermal efficiency, and easy recovery of by-product gas as a closed reactor that moves a certain distance every fixed time, such as temperature This is because a controlled pusher reactor and rotary reactor are optimal.

加熱反応させて得られた炭化珪素粉は、好ましくは1〜200μmの平均粒径を有する。必要であれば、粉砕機を用いて粉砕しても良い。この炭化珪素粉は、研削材、砥粒、研磨材に再利用することができる。   The silicon carbide powder obtained by heating reaction preferably has an average particle size of 1 to 200 μm. If necessary, it may be pulverized using a pulverizer. This silicon carbide powder can be reused for abrasives, abrasive grains, and abrasives.

以下、本発明について実施例を挙げて具体的に説明するが、本発明はこれらになんら限定されるものでない。
実施例1
アチソン法で製造したα−SiCを平均粒径10μmに粉砕した後、水分級で粗め部分と細かめ部分をカットした。粗め部分は、再度、粉砕原料に回した。平均粒径2μm以下の細かめ部分の水溶液1000kg(固形分:40%)と、平均粒径80μmで比表面積393m/gの木炭粉48kgと、平均粒径120μmのシリカ粉70kgを良く混合後に、エクセルフィルターで濾過をした。固液分離は良好で濾過液は微粉の混入もなく透明であった。この回収された固形分を乾燥した。その後、第1ゾーンを1400℃、第2ゾーンを1600℃、第3ゾーンを1800℃、第4ゾーンを2300℃に温度制御したプッシャー炉でArガスの流通下に容器に入れた固形分を30分毎に各ゾーンを移動させながら加熱、反応した。
なお、第1〜第3ゾーンでSiやSiOの蒸発揮散は殆ど無く、β−SiCがほぼ理論値の100%生成し、第4ゾーンで完全にα−SiCに結晶が転移していた。更に大気中、750℃で過剰な炭素を除去した。その結果、平均粒径2μm以下の細かめ部分のα−SiCは平均粒径9.5μmのα−SiCとして、不要なSiC微粉を肥大化(粒成長)して回収、再生された。この物はワイヤーソウー用の砥粒として好適なものであった。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these at all.
Example 1
After crushing α-SiC produced by the Atchison method to an average particle size of 10 μm, the coarse and fine portions were cut with a moisture grade. The rough part was again turned into a pulverized raw material. After thoroughly mixing 1000 kg of an aqueous solution (solid content: 40%) of a fine portion having an average particle size of 2 μm or less, 48 kg of charcoal powder having an average particle size of 80 μm and a specific surface area of 393 m 2 / g, and 70 kg of silica powder having an average particle size of 120 μm The solution was filtered with an Excel filter. Solid-liquid separation was good, and the filtrate was transparent with no mixing of fine powder. The collected solid was dried. Thereafter, the solid content in the container under the Ar gas flow in the pusher furnace in which the first zone was controlled at 1400 ° C., the second zone at 1600 ° C., the third zone at 1800 ° C., and the fourth zone at 2300 ° C. Each zone was heated and reacted while moving through each zone.
In addition, there was almost no evaporation of Si or SiO in the first to third zones, β-SiC was generated almost 100% of the theoretical value, and crystals were completely transferred to α-SiC in the fourth zone. Further, excess carbon was removed at 750 ° C. in the atmosphere. As a result, α-SiC in the finer portion having an average particle diameter of 2 μm or less was recovered and regenerated as α-SiC having an average particle diameter of 9.5 μm by enlarging unnecessary SiC fine powder (grain growth). This thing was suitable as an abrasive grain for wire saws.

比較例1
アチソン法で製造したα−SiCを平均粒径10μmに粉砕した後、水分級で粗め部分と細かめ部分をカットした。粗め部分は、再度、粉砕原料に回した。平均粒径2μm以下の細かめ部分の水溶液1000kg(固形分;40%)と、平均粒径110μmで比表面積0.5m/gのオイルコークス48kgを良く混合後に、エクセルフィルターで濾過をした。しかし、濾布が目詰まりし、固液分離に長時間を要すると共に濾液は混濁して濾液に固形分の微粉が逃げてしまった。
Comparative Example 1
After crushing α-SiC produced by the Atchison method to an average particle size of 10 μm, the coarse and fine portions were cut with a moisture grade. The rough part was again turned into a pulverized raw material. After thoroughly mixing 1000 kg (solid content: 40%) of an aqueous solution of finely divided portions having an average particle size of 2 μm or less and 48 kg of oil coke having an average particle size of 110 μm and a specific surface area of 0.5 m 2 / g, the mixture was filtered through an Excel filter. However, the filter cloth was clogged, and it took a long time for solid-liquid separation, and the filtrate became turbid, and fine powder of solids escaped into the filtrate.

比較例2
アチソン法で製造したα−SiCを平均粒径10μmに粉砕した後、水分級で粗め部分と細かめ部分をカットした。粗め部分は、再度、粉砕原料に回した。平均粒径2μm以下の細かめ部分の水溶液1000kg(固形分;40%)と、比表面積750m/gのアセチレンブラック48kgを良く混合後に、エクセルフィルターで濾過をした。しかし、溶液粘度が上がりポンプで送液が出来ず固液分離の操作が不可能であった。
Comparative Example 2
After crushing α-SiC produced by the Atchison method to an average particle size of 10 μm, the coarse and fine portions were cut with a moisture grade. The rough part was again turned into a crushed raw material. After thoroughly mixing 1000 kg of an aqueous solution (solid content: 40%) of a finely divided portion having an average particle diameter of 2 μm or less and 48 kg of acetylene black having a specific surface area of 750 m 2 / g, the mixture was filtered through an Excel filter. However, the viscosity of the solution increased and liquid could not be sent with a pump, and solid-liquid separation operation was impossible.

実施例2
固形成分35質量%と溶液成分65質量%のワイヤーソー廃液であって、固形成分が30質量%のα−SiCと4.1質量%のSiと0.9質量%のFeからなり、溶液成分がエチレングリコールと界面活性剤と水の混合物であるワイヤーソー廃液を準備した。このワイヤーソー廃液1000kgに平均粒径15μmに粉砕した比表面面積50m/gのコークス20kgと平均粒径50μmのシリカ粉20kg、高分子凝集剤のポリアクリルアミド500gを添加、混合した液をデカンターで固液分離した。固液分離は容易で濾液は無色透明で綺麗であった。分離された固形物に更に上記のコークス56kgとシリカ粉30kgを混合した。この物を乾燥して第1ゾーンを1850℃(このゾーンでほぼ100%のβ−SiCが生成)、第2ゾーンを1950℃、第3ゾーンを2200℃に温度制御したロータリー炉で容器に入れた固形分を20分毎に移動させ、Arガス流通下に加熱反応させた。得られた回収、再生品は100%のα−SiCで平均粒径8μmあり、これは使用前のSiC砥粒の平均粒径8.5μmとほぼ同じに再生することが出来た。なお、再生前の廃液中のSiCは平均粒径3μmでかなり、へたったものであった。
Example 2
A wire saw waste liquid of 35% by mass of solid component and 65% by mass of solution component, wherein the solid component is composed of 30% by mass of α-SiC, 4.1% by mass of Si, and 0.9% by mass of Fe. Prepared a wire saw waste liquid which is a mixture of ethylene glycol, surfactant and water. To this 1000 kg of wire saw waste liquid, 20 kg of coke having a specific surface area of 50 m 2 / g pulverized to an average particle diameter of 15 μm, 20 kg of silica powder having an average particle diameter of 50 μm, and 500 g of polyacrylamide as a polymer flocculant were added and mixed. Solid-liquid separation. Solid-liquid separation was easy, and the filtrate was clear and colorless. The solid matter thus separated was further mixed with 56 kg of the above coke and 30 kg of silica powder. This material is dried and placed in a container in a rotary furnace in which the first zone is controlled to 1850 ° C. (approximately 100% β-SiC is formed in this zone), the second zone is controlled to 1950 ° C., and the third zone is controlled to 2200 ° C. The solid content was moved every 20 minutes, and heated and reacted under Ar gas flow. The obtained recovered and reclaimed product was 100% α-SiC and had an average particle size of 8 μm, which could be regenerated to be almost the same as the average particle size of 8.5 μm of the SiC abrasive grains before use. In addition, SiC in the waste liquid before reproduction | regeneration was quite unsatisfactory with the average particle diameter of 3 micrometers.

比較例3
シリカを添加しない以外は実施例2と全く同一条件で回収、再生を試みた。細粒化したSiCの粒径は肥大化(粒成長)出来ず、殆ど平均粒径3μmそのままであり、切子のSi微粉とコークスとの反応で生成した新たなSiCは平均粒径1μmで2つのピークを持った粒度分布広いものであった。この物はワイヤーソーなどの高度な用途には不向きなものであった。
Comparative Example 3
Recovery and regeneration were attempted under exactly the same conditions as in Example 2 except that no silica was added. The grain size of finely divided SiC cannot be enlarged (granular growth), and the average grain diameter remains almost 3 μm, and new SiC produced by the reaction between the faceted Si fine powder and coke has an average grain diameter of 1 μm. The particle size distribution with a peak was wide. This product was unsuitable for advanced applications such as wire saws.

実施例3
単結晶Siインゴットを円筒研削した際のSi切子微粒子を含有した廃水溶液1000kg(切子、平均粒径1.1μmのSi微粒子を25.3質量%、微量のアミン系防錆材を含有)に、平均粒径32μmで比表面積695m/gの活性炭150kgと、平均粒径170μmの石英粉25kg加え、良く混合した後に自動フィルタープレスで固液分離を行った。固液は良く分離し、濾液は無色透明であり、そのまま排水可能であった。回収された固形分は乾燥し実施例1と同じプシャー式反応炉で、第1ゾーンを1300℃、第2ゾーンを1500℃、第3ゾーンを1700℃、第4ゾーンを2250℃に温度制御し、Arガスの流通下に容器に入れた固形分を40分毎に各ゾーンを移動させながら加熱、反応した。なお、第1〜第3ゾーンでSiやSiOの蒸発揮散は殆ど無く、β−SiCがほぼ理論値の100%生成し、第4ゾーンで完全にα−SiC化していた。更に大気中、750℃で過剰な炭素を除去した。その結果、平均粒径1.1μmの細かなSi切子は平均粒径7.5μmのα−SiCとして回収、有効資源化された。この物はラップ研磨用砥粒やSiC成形原料用に好適な価値の高いものであった。
Example 3
1000 kg of waste aqueous solution containing Si facet particles when cylindrically grinding a single crystal Si ingot (facet, 25.3 mass% of Si fine particles with an average particle size of 1.1 μm, containing a trace amount of amine-based rust preventive material) 150 kg of activated carbon having an average particle diameter of 32 μm and a specific surface area of 695 m 2 / g and 25 kg of quartz powder having an average particle diameter of 170 μm were added and mixed well, followed by solid-liquid separation with an automatic filter press. The solid liquid separated well, and the filtrate was colorless and transparent and could be drained as it was. The recovered solid content was dried and the temperature was controlled at 1300 ° C. in the first zone, 1500 ° C. in the second zone, 1700 ° C. in the third zone, and 2250 ° C. in the fourth zone in the same pusher reactor as in Example 1. The solid content in the container under the flow of Ar gas was heated and reacted while moving through each zone every 40 minutes. In addition, there was almost no evaporation of Si or SiO in the first to third zones, β-SiC was generated almost 100% of the theoretical value, and α-SiC was completely formed in the fourth zone. Further, excess carbon was removed at 750 ° C. in the atmosphere. As a result, fine Si facets having an average particle diameter of 1.1 μm were recovered as α-SiC having an average particle diameter of 7.5 μm and turned into effective resources. This product had a high value suitable for lapping abrasive grains and SiC forming raw materials.

比較例4
実施例3で用いたのと同じ廃水溶液1000kgに、平均粒子径53μmのタルク149kgを分離助材として加え、良く混合した後に自動フィルタープレスで固液分離を行った。しかし、濾過速度が極めて遅い上に濾過液は濁りの多いものとなりSiの回収は不完全であり、固形分は利用不能な廃棄物であった。
Comparative Example 4
To 1000 kg of the same waste aqueous solution used in Example 3, 149 kg of talc having an average particle size of 53 μm was added as a separation aid, and after mixing well, solid-liquid separation was performed with an automatic filter press. However, the filtration rate was very slow and the filtrate was turbid and the recovery of Si was incomplete, and the solid content was an unusable waste.

Claims (8)

炭化珪素微粒子及び/又はシリコン微粒子を少なくとも含む溶液又は廃液を、炭素粉及び酸化珪素粉を少なくとも含む分離助材を用いて固液分離して固体分を得るステップと、
上記固体分を必要に応じて炭素粉及び/又は酸化珪素粉を少なくとも含む添加剤と混合するステップと、
炭化珪素を得るために、上記固体分又は上記添加剤と混合された固体分を、非酸化性雰囲気下1850℃を超えて2400℃未満に加熱反応させるステップと
を少なくとも含んでなる炭化珪素の製造方法。
Separating a solution or waste liquid containing at least silicon carbide fine particles and / or silicon fine particles by solid-liquid separation using a separation aid containing at least carbon powder and silicon oxide powder;
Mixing the solid content with an additive containing at least carbon powder and / or silicon oxide powder as required;
In order to obtain silicon carbide, production of silicon carbide comprising at least a step of heating and reacting the solid content or the solid content mixed with the additive in a non-oxidizing atmosphere at a temperature higher than 1850 ° C. and lower than 2400 ° C. Method.
上記加熱反応させて得られる炭化珪素が、1〜200μmの平均粒径を有する請求項1に記載の炭化珪素の製造方法。   The method for producing silicon carbide according to claim 1, wherein the silicon carbide obtained by the heating reaction has an average particle diameter of 1 to 200 μm. 上記分離助材に含まれる炭素粉が、BET法に基づき1〜700m/gの比表面積を有する請求項1又は請求項2に記載の炭化珪素の製造方法。 The method for producing silicon carbide according to claim 1 or 2 , wherein the carbon powder contained in the separation aid has a specific surface area of 1 to 700 m 2 / g based on the BET method. 上記加熱反応させるステップが、炭化珪素前駆体及び/又はβ−炭化珪素を生成した後、更にα−炭化珪素に結晶転位させるための温度勾配を有する請求項1〜3のいずれかに記載の炭化珪素の製造方法。   The carbonization according to any one of claims 1 to 3, wherein the heating reaction step has a temperature gradient for crystal rearrangement to α-silicon carbide after the silicon carbide precursor and / or β-silicon carbide is formed. A method for producing silicon. 上記加熱反応させるステップが、一定時間毎に一定距離を移動するプッシャー又はロータリー式密閉反応炉を用いる請求項1〜4のいずれかに記載の炭化珪素の製造方法。   The method for producing silicon carbide according to any one of claims 1 to 4, wherein the heating reaction step uses a pusher or a rotary sealed reaction furnace that moves a certain distance every certain time. 上記分離助材と上記添加剤に含まれる炭素粉及び酸化珪素粉との合計量が、上記溶液又は廃液に含まれる炭化珪素微粒子及びシリコン微粒子の合計量1.0モルにつき0.1〜50モルである請求項1〜5のいずれかに記載の炭化珪素の製造方法。   The total amount of carbon powder and silicon oxide powder contained in the separation aid and the additive is 0.1 to 50 mol per 1.0 mol of silicon carbide fine particles and silicon fine particles contained in the solution or waste liquid. The method for producing silicon carbide according to any one of claims 1 to 5. 上記添加剤に含まれる炭素粉が、100μm以下の平均粒径を有する請求項1〜6のいずれかに記載の炭化珪素の製造方法。   The method for producing silicon carbide according to claim 1, wherein the carbon powder contained in the additive has an average particle size of 100 μm or less. 上記分離助材が、さらに有機高分子凝集剤を含む請求項1〜7のいずれかに記載の炭化珪素の製造方法。
The method for producing silicon carbide according to claim 1, wherein the separation aid further contains an organic polymer flocculant.
JP2009187603A 2009-08-13 2009-08-13 Method for producing silicon carbide Expired - Fee Related JP5466455B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009187603A JP5466455B2 (en) 2009-08-13 2009-08-13 Method for producing silicon carbide
KR1020127002489A KR101766928B1 (en) 2009-08-13 2010-08-11 Method for producing silicon carbide
PCT/JP2010/063624 WO2011019054A1 (en) 2009-08-13 2010-08-11 Method for producing silicon carbide
CN2010800353215A CN102482102A (en) 2009-08-13 2010-08-11 Method For Producing Silicon Carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009187603A JP5466455B2 (en) 2009-08-13 2009-08-13 Method for producing silicon carbide

Publications (2)

Publication Number Publication Date
JP2011037675A true JP2011037675A (en) 2011-02-24
JP5466455B2 JP5466455B2 (en) 2014-04-09

Family

ID=43586229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009187603A Expired - Fee Related JP5466455B2 (en) 2009-08-13 2009-08-13 Method for producing silicon carbide

Country Status (4)

Country Link
JP (1) JP5466455B2 (en)
KR (1) KR101766928B1 (en)
CN (1) CN102482102A (en)
WO (1) WO2011019054A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101102697B1 (en) 2010-10-13 2012-01-05 전북대학교산학협력단 Method for separating silicon and silicon carbide from the disposed sludge produced in the process of silicon wafer
CN102502650A (en) * 2011-10-08 2012-06-20 江苏佳宇资源利用股份有限公司 Method for preparing crystalline silicon components from crystalline silicon cutting waste mortar
JP2013066871A (en) * 2011-09-26 2013-04-18 Shin-Etsu Chemical Co Ltd Method for recovering solid fine particles
WO2013145245A1 (en) * 2012-03-29 2013-10-03 イビデン株式会社 Honeycomb structure, honeycomb filter for exhaust gas purification, and exhaust gas purification device
JP2015139861A (en) * 2014-01-30 2015-08-03 株式会社クラレ Coolant recycling method and recycled coolant intermediate product
JP2015224142A (en) * 2014-05-26 2015-12-14 公立大学法人大阪府立大学 Silicon carbide fine powder, and method for producing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502643B (en) * 2011-10-08 2013-06-05 江苏佳宇资源利用股份有限公司 Method for realizing resource recycling of silicon powder components in waste mortar from crystalline silicon cutting
CN102530944B (en) * 2012-03-16 2013-12-04 河南醒狮高新技术股份有限公司 Method for manufacturing silicon carbide blade material for grinding and polishing sapphire and special grading device
CN102746936A (en) * 2012-08-08 2012-10-24 铁生年 Recycling purification method for carborundum powder in silicon slice cutting waste liquid
JP2014047105A (en) * 2012-08-31 2014-03-17 Shinano Denki Seiren Kk Method for producing silicon carbide powder
CN105818287B (en) * 2016-05-31 2017-11-10 上海纳晶科技有限公司 A kind of method that mass prepares high-purity sub-micron hydration silicon and silicon particle
CN106087061B (en) * 2016-07-28 2018-05-22 李志文 The method that powder quartz ore processes cubic silicon carbide whisker
CN110054497A (en) * 2019-05-24 2019-07-26 哈尔滨工业大学 A kind of preparation method of the nanometer toughening silicon carbide complex phase ceramic of densification
DE102022111456A1 (en) * 2022-05-09 2023-11-09 ESK-SIC GmbH Silicon carbide gravel and process for its production

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166510A (en) * 1992-11-26 1994-06-14 Tokai Carbon Co Ltd Production of silicon carbide fine powder
JPH10500933A (en) * 1994-06-06 1998-01-27 ノートン・エイ・エス Method for producing silicon carbide
JPH11116227A (en) * 1997-10-15 1999-04-27 Yakushima Denko Kk Production of silicon carbide
JPH11335172A (en) * 1998-05-26 1999-12-07 Tokai Konetsu Kogyo Co Ltd Production of porous silicon carbide sintered compact
JP2002255532A (en) * 2001-02-06 2002-09-11 Kishun Kin Method for producing silicon carbide and method for disposing waste silicon sludge
JP2005289732A (en) * 2004-03-31 2005-10-20 Kishun Kin Magnetic silicon carbide and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637229A (en) * 1995-02-17 1997-06-10 Enviroguard, Inc. Self flocculating separation medium and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166510A (en) * 1992-11-26 1994-06-14 Tokai Carbon Co Ltd Production of silicon carbide fine powder
JPH10500933A (en) * 1994-06-06 1998-01-27 ノートン・エイ・エス Method for producing silicon carbide
JPH11116227A (en) * 1997-10-15 1999-04-27 Yakushima Denko Kk Production of silicon carbide
JPH11335172A (en) * 1998-05-26 1999-12-07 Tokai Konetsu Kogyo Co Ltd Production of porous silicon carbide sintered compact
JP2002255532A (en) * 2001-02-06 2002-09-11 Kishun Kin Method for producing silicon carbide and method for disposing waste silicon sludge
JP2005289732A (en) * 2004-03-31 2005-10-20 Kishun Kin Magnetic silicon carbide and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101102697B1 (en) 2010-10-13 2012-01-05 전북대학교산학협력단 Method for separating silicon and silicon carbide from the disposed sludge produced in the process of silicon wafer
JP2013066871A (en) * 2011-09-26 2013-04-18 Shin-Etsu Chemical Co Ltd Method for recovering solid fine particles
CN102502650A (en) * 2011-10-08 2012-06-20 江苏佳宇资源利用股份有限公司 Method for preparing crystalline silicon components from crystalline silicon cutting waste mortar
WO2013145245A1 (en) * 2012-03-29 2013-10-03 イビデン株式会社 Honeycomb structure, honeycomb filter for exhaust gas purification, and exhaust gas purification device
JP2015139861A (en) * 2014-01-30 2015-08-03 株式会社クラレ Coolant recycling method and recycled coolant intermediate product
JP2015224142A (en) * 2014-05-26 2015-12-14 公立大学法人大阪府立大学 Silicon carbide fine powder, and method for producing the same

Also Published As

Publication number Publication date
WO2011019054A1 (en) 2011-02-17
KR101766928B1 (en) 2017-08-09
CN102482102A (en) 2012-05-30
KR20120075456A (en) 2012-07-06
JP5466455B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5466455B2 (en) Method for producing silicon carbide
TWI498281B (en) Method for producing silicon carbide powder
JP5615542B2 (en) Method for producing silicon for solar cell and other uses
CN102421706B (en) High purity silicon-containing products and manufacture method
CN101033066B (en) Method of recovering silicon carbide micro-powder
CN101014533B (en) Composition and method for making silicon-containing products
JP2011516290A (en) Method and apparatus for recovery of silicon and silicon carbide from spent wafer sawing slurry
JP5342794B2 (en) Carbon material manufacturing method
CN102787011A (en) Comprehensive treatment technology of waste mortar processing by crystalline silicon with no sewage and solid waste discharge
JP5631782B2 (en) Method for recovering silicon and method for manufacturing silicon
CN113880136B (en) Zirconium tetrachloride and/or silicon tetrachloride, preparation method and preparation device thereof
JP5795728B2 (en) Solid particulate collection method
CN102399620B (en) Method for recovering silicon carbide component from crystal silicon cutting waste mortar
Jiang et al. An efficient way of recycling silicon kerf waste for synthesis of high‐quality SiC
US20130272945A1 (en) Method for Producing Silicon Chloride from Silicon Sludge
JP2009084069A (en) Apparatus and method for regenerating silicon
JP2006256894A (en) Raw material for silicon carbide sintered compact and silicon carbide sintered compact obtained using the same
EP2534100A1 (en) Method for recovering solar grade silicon
US4812167A (en) Process for recovering metallic gallium from gallium compound-containing waste
JP6014012B2 (en) Coke production method and coke
JP2010030873A (en) High purity silicon and production method thereof
JP4457575B2 (en) Zeolite-modified soil production method, zeolite-modified soil production system, and zeolitic-modified soil
RU2240979C2 (en) Silicon carbide production process
TW202130579A (en) Silicon carbide (sic) preparation system and method thereof by combining eco-carbon black with silicon sources
CN114988412A (en) Preparation method of silicon carbide micro powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140124

R150 Certificate of patent or registration of utility model

Ref document number: 5466455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees