JP2011036853A - Ultrasonic mist generator - Google Patents

Ultrasonic mist generator Download PDF

Info

Publication number
JP2011036853A
JP2011036853A JP2010169770A JP2010169770A JP2011036853A JP 2011036853 A JP2011036853 A JP 2011036853A JP 2010169770 A JP2010169770 A JP 2010169770A JP 2010169770 A JP2010169770 A JP 2010169770A JP 2011036853 A JP2011036853 A JP 2011036853A
Authority
JP
Japan
Prior art keywords
mist
fog
ultrasonic
blower
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010169770A
Other languages
Japanese (ja)
Inventor
Yasutaka Sakamoto
泰孝 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibata & Co Ltd
Shibata Corp
Original Assignee
Shibata & Co Ltd
Shibata Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibata & Co Ltd, Shibata Corp filed Critical Shibata & Co Ltd
Priority to JP2010169770A priority Critical patent/JP2011036853A/en
Publication of JP2011036853A publication Critical patent/JP2011036853A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Special Spraying Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic mist generator which can generate fine mists effectively in large amounts. <P>SOLUTION: In the ultrasonic mist generator 1, a blower 30 is arranged above a liquid surface LV in a mist raw material liquid storage part 18, and the mists drifting up from the liquid surface LV by ultrasonic oscillations are suctioned together with surrounding air, and are sent out from airflow outlet 16A while turning to a direction crossing a normal line of the liquid surface LV as mist-containing airflow FGV. Since the blower 30 is housed in an apparatus chassis 2 together with the mist raw material liquid storage part 18, there is no loss of mist particles due to leakage airflow outside the apparatus. Further, it is possible to suppress a return loss of the mist particles in the mist raw material liquid storage part 18 as much as possible by suctioning once the mists generated from the liquid surface LV containing coarse particles on a suction side of the blower 30 without leakage. The mist particles are fed in a coarse particle separation part 20 arranged at a sending-out side downstream of the blower 30 in a lump, and the desired fine mist particles can be discharged in a high concentration from a mist-containing airflow discharge part 3 by removing the coarse particles. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、超音波式霧発生装置に関するものである。  The present invention relates to an ultrasonic fog generator.

特許文献1〜特許文献5には、超音波振動子により水分子を霧化するようにした噴霧装置が開示されている。噴霧や超音波摩擦により霧化された水粒子は、いわゆるレナード効果により正帯電し、空気中には電荷バランスにより同量の負イオンを生ずる。これを空気中に放出することで、室内(あるいは車内)の消臭効果、室内空気の浄化、室内インテリアの帯電防止などの効果を発揮できるので、空気浄化装置として既に種々の提案がなされている(特許文献1,2)。また、水滴放出による加湿効果も期待できる。  Patent Documents 1 to 5 disclose a spray device in which water molecules are atomized by an ultrasonic vibrator. The water particles atomized by spraying or ultrasonic friction are positively charged by the so-called Leonard effect, and the same amount of negative ions is generated in the air due to the charge balance. By releasing this into the air, the effects of deodorizing the room (or the interior of the vehicle), purifying the indoor air, preventing charging of the interior of the room, etc. can be exerted, so various proposals have already been made as air purification devices. (Patent Documents 1 and 2). Moreover, the humidification effect by water droplet discharge | release is also expectable.

噴霧や超音波振動摩擦により発生した霧粒子には粗大な水滴も含まれるため、そのまま放出すると、周囲の物品に水滴が付着して濡らしてしまう問題がある。そこで、特許文献3,4には、噴霧もしくは超音波により発生した霧を、送風機により一旦管路に導き、その管路の途中に設けられたサイクロンにより粗大な水滴を捕集して、微細な水滴のみを放出する提案がなされている。また、特許文献5には、超音波振動の付加により霧チャンバー内の水面から立ち上る霧に、該霧チャンバーの側壁側からファンにより旋回気流を導入し、一定粒子径以上の霧粒子を旋回流とともに水面に戻すことで、さらに微細な霧を発生させる装置が開示されている。  Since the fog particles generated by spraying or ultrasonic vibration friction include coarse water droplets, if they are released as they are, there is a problem that the water droplets adhere to and wet the surrounding articles. Therefore, in Patent Documents 3 and 4, the mist generated by spraying or ultrasonic waves is once guided to a pipeline by a blower, and coarse water droplets are collected by a cyclone provided in the middle of the pipeline. Proposals have been made to release only water droplets. In addition, Patent Document 5 introduces a swirling airflow from a side wall side of the fog chamber to the mist rising from the water surface in the fog chamber by adding ultrasonic vibrations, so that the fog particles having a certain particle diameter or more are mixed with the swirling flow. An apparatus for generating finer mist by returning to the water surface is disclosed.

特公平5−587555号公報  Japanese Patent Publication No. 5-588555 実開平4−126717号公報  Japanese Utility Model Publication No. 4-126717 特表2001−510731号公報  JP-T-2001-510731 特開2001−304638号公報  JP 2001-304638 A 特開2006−136873号公報  JP 2006-136873 A

しかし、特許文献3〜5に開示された霧発生装置はいずれも、霧チャンバー内の水面に対し横に外れた位置に霧含有気流を送出するための送風機が設けられており、水面から立ち上る霧が強力な気流により霧チャンバー内で予備的に分級されて水に戻ってしまう結果、霧化効率が悪く、霧発生量が少ない難点があった。  However, all of the fog generators disclosed in Patent Documents 3 to 5 are provided with a blower for sending a mist-containing airflow at a position deviated laterally with respect to the water surface in the fog chamber, and the fog rising from the water surface However, as a result of being preliminarily classified in the fog chamber by a strong air flow and returning to water, the atomization efficiency is poor and the amount of generated fog is small.

本発明の課題は、微細な霧を大量かつ効率的に発生できる超音波式霧発生装置を提供することにある。  An object of the present invention is to provide an ultrasonic fog generator capable of generating a large amount of fine fog efficiently.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記の課題を解決するために、本発明の超音波式霧発生装置は、
上部が開口し、霧原料液体を収容する霧原料液体収容部と、
霧原料液体収容部内にて、収容された霧原料液体中に超音波発生面が没するように配置され、該霧原料液体に超音波振動を付加することによりこれを霧化する超音波振動子と、
霧原料液体収容部に対し、収容された霧原料液体の液面よりも上方に配置され、超音波振動の付加により液面より立ち上る霧を空気とともに吸引し、霧含有気流として液面の法線と交差する向きに方向転換しつつ気流吹き出し口より送出する送風機と、
霧原料液体収容部と送風機とを周囲空間から区画しつつ一括して収容するとともに、霧含有気流を形成するための外気吸入口を有した装置筺体と、
霧含有気流の送出方向にて送風機に隣接配置され、霧含有気流に含まれる所定粒子径を超える粗大霧粒子を分離除去する粗大霧粒子分離部と、
粗大霧粒子を分離除去後の霧含有気流を周囲雰囲気に向けて放出する霧含有気流放出部と、
を備えたことを特徴とする。
In order to solve the above problems, the ultrasonic fog generator of the present invention is
The upper part is opened, and the mist raw material liquid storage part for storing the mist raw material liquid;
In the mist raw material liquid storage unit, an ultrasonic transducer is disposed so that the ultrasonic wave generation surface is submerged in the stored mist raw material liquid, and an ultrasonic vibration is added to the mist raw material liquid to atomize it. When,
The mist raw material liquid storage part is arranged above the liquid level of the stored mist raw material liquid, and the mist rising from the liquid surface by the addition of ultrasonic vibration is sucked together with air, and the normal of the liquid level as a mist-containing air flow A blower that sends out from an air flow outlet while changing direction in a direction intersecting with
An apparatus housing having an outside air inlet for forming a mist-containing airflow while collectively storing the mist raw material liquid storage portion and the blower from the surrounding space, and
A coarse mist particle separation unit that is disposed adjacent to the blower in the direction of delivery of the mist-containing air current, and separates and removes coarse mist particles that exceed a predetermined particle size included in the mist-containing air current;
A mist-containing airflow discharge section for releasing the mist-containing airflow after separating and removing coarse mist particles toward the surrounding atmosphere;
It is provided with.

上記本発明の超音波式霧発生装置によると、霧原料液体収容部内の液面上方に送風機を配置し、超音波振動により液面より立ち上る霧を空気とともに吸引し、霧含有気流として液面の法線と交差する向きに方向転換しつつ気流吹き出し口より送出する。つまり、液面から立ち上る霧は、液面上方に配置された送風機の吸引側に吸い上げられるので、霧原料液体収容部内での予備分級により液面に戻ってしまう霧粒子を大幅に減少させることができる。また、送風機は霧原料液体収容部とともに装置筺体内に収容されるので、装置外への漏れ気流により霧粒子が損失することもない。すなわち、液面から発生した霧を粗大粒子も含めて一旦送風機の吸引側に漏らさず吸い上げることで、霧原料液体収容部内での霧粒子の戻り損失を極力抑えることができる。そして、その霧粒子を送風機の送出側下流に配置された粗大霧粒子分離部に一括して送り込み、粗大霧粒子を除去することで、所望とする微細霧粒子を霧含有気流放出部から高濃度で放出することができる。かくして、微細な霧を大量かつ効率的に発生できる超音波式霧発生装置が実現する。  According to the ultrasonic mist generator of the present invention, a blower is disposed above the liquid level in the mist raw material liquid storage unit, and the mist rising from the liquid level by ultrasonic vibration is sucked together with the air, so that the mist-containing airflow It sends out from the air flow outlet while changing direction to intersect the normal. That is, the mist rising from the liquid level is sucked up to the suction side of the blower arranged above the liquid level, so that the mist particles that return to the liquid level by the preliminary classification in the mist raw material liquid storage part can be greatly reduced. it can. In addition, since the blower is housed in the apparatus housing together with the mist raw material liquid container, the mist particles are not lost by the leakage airflow to the outside of the apparatus. In other words, the mist generated from the liquid surface, including coarse particles, is sucked up without leaking to the suction side of the blower, thereby reducing the return loss of the mist particles in the mist raw material liquid storage unit as much as possible. Then, the mist particles are collectively sent to a coarse mist particle separation unit arranged on the downstream side of the blower, and the coarse mist particles are removed, so that the desired fine mist particles are highly concentrated from the mist-containing airflow discharge unit. Can be released. Thus, an ultrasonic fog generator capable of generating a large amount of fine fog efficiently is realized.

送風機は遠心ファンとして構成できる。該遠心ファンの回転送風体は、その気流吸い込み側となる軸線方向端部を液面に対し下向きに対向するように配置することができる。そして、液面からの霧とともに気流を吸い込むための気流吸い込み口を下端に開口する整流カバーにより該回転送風体を覆い、該整流カバーの外周面に霧含有気流の吹き出し口を形成することができる。遠心ファンの回転送風体の、その気流吸い込み側となる軸線方向端部を液面に対向させることで、液面から発生する霧を極めて効率的に吸い上げることができる。そして、整流カバーにより該回転送風体を覆い、該整流カバーの外周面に霧含有気流の吹き出し口を形成することで、吸い上げた霧を含有した気流を吹き出し口にもれなく導くことができる。  The blower can be configured as a centrifugal fan. The rotary blower of the centrifugal fan can be arranged so that the axial end on the airflow suction side faces the liquid surface downward. Then, the rotating blower can be covered with a rectifying cover that opens at the lower end of an airflow inlet for sucking an airflow along with mist from the liquid surface, and a mist-containing airflow outlet can be formed on the outer peripheral surface of the rectifying cover. . Fog generated from the liquid surface can be sucked up very efficiently by making the axial direction end of the rotating blower of the centrifugal fan on the airflow suction side face the liquid surface. Then, by covering the rotary blower with the rectifying cover and forming the mist-containing airflow outlet on the outer peripheral surface of the rectifying cover, the airflow containing the sucked mist can be guided to the outlet.

上記の遠心ファンは、回転送風体の液面に対向しているのと反対側の軸線方向端面に駆動モータの回転軸先端を取り付け、該駆動モータの本体が回転送風体の反対側の端面側にて、整流カバーに対し上方に突出する形で配置できる。これにより、回転送風体の中心部から駆動モータが排除されて吸い込み空間として液面側に開口させることができるので、霧の吸引効率はさらに高められる。該構造に適した回転送風体としては、円筒状の中空フレームと、該中空フレームの周方向に複数の送風羽根が組み付けられたシロッコファンを本発明に好適に採用することができる。  In the centrifugal fan, the tip of the rotating shaft of the drive motor is attached to the axial end surface opposite to the surface facing the liquid surface of the rotating air blower, and the main body of the drive motor is the end surface on the opposite side of the rotating air blower. Therefore, it can be arranged so as to protrude upward with respect to the rectifying cover. As a result, the drive motor is eliminated from the central portion of the rotating air blower and the suction space can be opened to the liquid surface side, so that the mist suction efficiency is further enhanced. As a rotating blower suitable for the structure, a sirocco fan in which a cylindrical hollow frame and a plurality of blower blades are assembled in the circumferential direction of the hollow frame can be suitably employed in the present invention.

なお、上記の整流カバーは、装置筺体の上部内面に取り付けることができ、駆動モータは装置筺体の頂面部の上方に突出する形で配置することができる。このようにすると、装置筺体の上部を霧含有気流の吹き出し通路の一部として流用でき、かつ、駆動モータを装置筺体外に突出配置することにより、筺体のコンパクト化と筺体内のスペースの有効活用を図ることができる。  The rectifying cover can be attached to the upper inner surface of the device housing, and the drive motor can be arranged so as to protrude above the top surface portion of the device housing. In this way, the upper part of the device housing can be used as a part of the mist-containing air flow passage, and the drive motor projects outside the device housing to make the housing compact and effectively use the space inside the housing. Can be achieved.

粗大霧粒子分離部は、気流吹き出し口から吹き出される霧含有気流が上端側から内部に導入されるとともに、内周面が下端側に向かうほど縮径する円錐状に形成されたサイクロン分級部を有するものとして構成することができる。これにより、粗大霧粒子を効率よく分離・除去することができる。なお分級用の旋回流をサイクロン内に効率的に発生させるためには、霧含有気流をサイクロン分級部に対し内周面接線方向に導入することが望ましい。  The coarse mist particle separation unit is a cyclone classification unit formed in a conical shape whose diameter is reduced as the inner peripheral surface is directed to the lower end side while the mist-containing air flow blown from the air flow outlet is introduced into the inside from the upper end side. It can be configured as having. Thereby, coarse fog particles can be efficiently separated and removed. In order to efficiently generate a swirling flow for classification in the cyclone, it is desirable to introduce a mist-containing air flow in the tangential direction of the inner peripheral surface with respect to the cyclone classification portion.

霧含有気流放出部は、サイクロン分級部の上端に連通結合され、末端に霧放出口を開口する霧放出通路とすることができる。これにより、送風機からの霧含有気流はサイクロン分級部の上部下流側側壁に当たって旋回流を形成しつつ、粗大霧粒子が主体となるサイクロン側分級気流と、微細霧粒子が主体となる分級済霧含有気流とに効果的に分離できる。この場合、上記の霧放出通路は、下端側が円錐状の内周面区間に入り込む形でサイクロン分級部の内部に軸線方向に挿入配置することができる。このようにすると、霧放出通路の下端開口縁の、サイクロン分級部内周面に対する軸線方向位置、ひいては、当該軸線方向位置におけるサイクロン内径に応じて霧分級粒径を自由に設定できる利点がある。なお、霧放出通路は、サイクロン内周面と同軸的に配置される円筒部材として構成することが望ましい。  The mist-containing airflow discharge portion can be a mist discharge passage that is connected to the upper end of the cyclone classification portion and opens a mist discharge port at the end. As a result, the mist-containing airflow from the blower hits the upper downstream side wall of the cyclone classification section to form a swirling flow, while the cyclone-side classified airflow mainly composed of coarse mist particles and the classified mist content mainly composed of fine mist particles It can be effectively separated from the air current. In this case, the mist discharge passage can be inserted and arranged in the axial direction inside the cyclone classifying portion such that the lower end side enters the conical inner peripheral surface section. If it does in this way, there exists an advantage which can set a fog classification particle size freely according to the axial direction position with respect to the cyclone classification part internal peripheral surface of a lower end opening edge of a fog discharge passage, and also the cyclone internal diameter in the said axial direction position. In addition, as for a fog discharge channel | path, it is desirable to comprise as a cylindrical member arrange | positioned coaxially with a cyclone inner peripheral surface.

この場合、霧放出通路は、下端側のサイクロン分級部に対する軸線方向の挿入長を可変に構成することができる。霧放出通路下端側のサイクロン分級部への挿入長が変化すれば、その下端開口縁に対応するサイクロン内径が変化するので、霧分級粒径も変化する。つまり、上記挿入長の変更により霧分級粒径ひいては放出する霧含有気流中の霧粒径(あるいはその分布)を調整することができる。  In this case, the fog discharge passage can be configured to have a variable insertion length in the axial direction with respect to the cyclone classification portion on the lower end side. If the insertion length into the cyclone classification part at the lower end side of the fog discharge passage changes, the inner diameter of the cyclone corresponding to the lower end opening edge changes, so that the fog classification particle size also changes. That is, by changing the insertion length, it is possible to adjust the mist classification particle size and thus the mist particle size (or its distribution) in the mist-containing airflow to be discharged.

上記の構成では、サイクロン分級部側に流入する粗大霧粒子を含有した分離気流を、霧原料液体の液面よりも上方にて霧原料液体収容部に戻す戻り管路を設けることができる。サイクロン分級部から粗大霧粒子を霧原料液体収容部に戻すことで霧原料液体の無駄な消費が抑えられ、投入した霧原料液体の有効活用を図ることができる。  In said structure, the return pipeline which returns the separation airflow containing the coarse mist particle which flows in into the cyclone classification part side to the mist raw material liquid storage part above the liquid level of a mist raw material liquid can be provided. By returning the coarse mist particles from the cyclone classification unit to the mist raw material liquid storage unit, wasteful consumption of the mist raw material liquid can be suppressed, and effective utilization of the supplied mist raw material liquid can be achieved.

また、本発明の超音波式霧発生装置には、粗大霧粒子を分離除去後の霧含有気流中の霧濃度を検出する霧濃度検出手段と、検出される霧濃度に応じて送風機の送風量を調整する送風制御手段とを設けることができる。これにより、霧放出量の制御が容易になる。具体的には、霧濃度が予め定められた目標値に近づくように送風機の送風量を調整するように送風制御手段を構成することで、霧放出量を一定に保つことができる。霧濃度検出手段は、例えば、霧放出通路内を流れる霧含有気体に対し検出光を投射する投光部と、該霧含有気体内を通過した検出光を受光する受光部とを有するものと構成でき、該受光部の光検出強度に基づいて霧濃度を容易に検出することができる。  Further, the ultrasonic fog generator of the present invention includes a fog concentration detecting means for detecting the fog concentration in the fog-containing airflow after separating and removing coarse fog particles, and the blower amount of the blower according to the detected fog concentration. And a ventilation control means for adjusting the air flow. Thereby, control of the amount of fog discharge becomes easy. Specifically, the mist discharge amount can be kept constant by configuring the air blowing control means so as to adjust the air blowing amount of the blower so that the fog concentration approaches a predetermined target value. The mist concentration detection means has, for example, a configuration including a light projecting unit that projects detection light onto a mist-containing gas flowing in the mist discharge passage, and a light receiving unit that receives the detection light that has passed through the mist-containing gas. The fog density can be easily detected based on the light detection intensity of the light receiving unit.

霧含有気流放出部には負極性の放電電極を取り付けることができ、霧含有気流を該放電電極と接触させつつ放出することができる。これにより、放出される霧粒子の負帯電化を促進でき、室内(あるいは車内)の消臭効果、室内空気の浄化、室内インテリアの帯電防止などの効果をより促進することができる。また、気流中の酸素の一部をオゾン化でき、霧含有気流に殺菌機能を付与することも可能である。  A negative-polarity discharge electrode can be attached to the mist-containing airflow discharge portion, and the mist-containing airflow can be discharged while being in contact with the discharge electrode. Thereby, the negative charging of the emitted mist particles can be promoted, and the effects such as the deodorizing effect in the room (or in the vehicle), the purification of indoor air, and the prevention of charging in the indoor interior can be further promoted. Moreover, a part of oxygen in the airflow can be ozonized, and a sterilizing function can be imparted to the mist-containing airflow.

また、霧含有気流放出部には紫外線発生部を取り付けることもでき、霧含有気流に紫外線を照射しつつ放出することができる。これにより、気流中の酸素の一部をオゾン化すること、あるいは、酸素(ないし発生したオゾン)と霧粒子中の水分子との反応によるヒドロキシラジカルの発生促進により、霧含有気流に殺菌機能を付与することができる。  Moreover, an ultraviolet-ray generation | occurrence | production part can also be attached to a fog containing airflow discharge | release part, and it can discharge | emit, irradiating an ultraviolet-ray to a fog containing airflow. As a result, some of the oxygen in the air stream is ozonized, or the generation of hydroxy radicals by the reaction of oxygen (or generated ozone) with water molecules in the mist particles promotes the sterilization function of the mist-containing air stream. Can be granted.

本発明の一実施形態である超音波式霧発生装置の外観を示す二面図。  FIG. 2 is a two-sided view showing the appearance of an ultrasonic fog generator that is one embodiment of the present invention. 同じく内部構造を示す断面図。  Sectional drawing which similarly shows an internal structure. サイクロン分級部内への霧放出通路の進入長を可変にする機構の説明図。  Explanatory drawing of the mechanism which makes variable the approach length of the fog discharge passage into a cyclone classification part. 本発明の超音波式霧発生装置の制御系の一例を示す回路図。  The circuit diagram which shows an example of the control system of the ultrasonic fog generator of this invention. 霧放出通路内に負極性放電電極を設ける例を示す断面図。  Sectional drawing which shows the example which provides a negative polarity discharge electrode in a fog discharge passage. 霧放出通路内に紫外線発生部を設ける例を示す断面図。  Sectional drawing which shows the example which provides an ultraviolet-ray generation part in a fog discharge passage.

以下、本発明の実施の形態を添付の図面を参照して説明する。
図1は、本発明の一実施形態をなす超音波式霧発生装置の外観を示すものである。該超音波式霧発生装置1は装置筺体2を有し、その正面側に操作パネル5が取り付けられている。操作パネル5には電源スイッチ6、霧濃度設定部7、電源ランプ8及び液切れ警告ランプ9が設けられている。また、装置筺体2の頂面部2Tには、霧含有気流放出部3をなす管状の霧放出通路(以下、霧放出通路3ともいう)が突出して設けられ、その先端に霧放出口3Bが開口形成されている。他方、該頂面部2Tには、装置筺体2内に霧原料液体タンクをセットするためのタンクセット口が形成され、扉11により開閉可能に塞がれている。また、後述する送風機の駆動モータ10が突出配置されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 shows the appearance of an ultrasonic fog generator that constitutes an embodiment of the present invention. The ultrasonic fog generator 1 has an apparatus housing 2, and an operation panel 5 is attached to the front side thereof. The operation panel 5 is provided with a power switch 6, a fog density setting unit 7, a power lamp 8 and a liquid out warning lamp 9. Further, a tubular mist discharge passage (hereinafter also referred to as a mist discharge passage 3) that forms a mist-containing airflow discharge portion 3 is provided on the top surface portion 2T of the device housing 2 so as to protrude, and a mist discharge port 3B is opened at the tip thereof. Is formed. On the other hand, a tank setting port for setting the mist raw material liquid tank in the apparatus housing 2 is formed in the top surface portion 2T and is closed by a door 11 so as to be opened and closed. Moreover, the drive motor 10 of the air blower mentioned later is protrudingly arranged.

図2は、超音波式霧発生装置1の内部構造を示すものであり、前述の装置筺体2内に、霧原料液体収容部18、超音波振動子25、送風機30及び粗大霧粒子分離部20等が組み付けられている。霧原料液体収容部18は、金属ないし樹脂により装置筺体2の底面上に組み付けられており、上部が開口する円筒状に形成され、霧原料液体(例えば水)Lを収容する。超音波振動子25は、該霧原料液体収容部18内にて、収容された霧原料液体L中に超音波発生面Aが没するように配置され、該霧原料液体Lに超音波振動を付加することによりこれを霧化する。送風機30は、霧原料液体収容部18に対し、収容された霧原料液体Lの液面LVよりも上方に配置され、超音波振動の付加により液面LVより立ち上る霧を空気とともに吸引し、霧含有気流FGVとして液面LVの法線と交差する向きに方向転換しつつ気流吹き出し口16Aより送出する。  FIG. 2 shows the internal structure of the ultrasonic mist generating apparatus 1, and the mist raw material liquid storage unit 18, the ultrasonic vibrator 25, the blower 30, and the coarse mist particle separation unit 20 are included in the above-described apparatus housing 2. Etc. are assembled. The mist raw material liquid storage unit 18 is assembled on the bottom surface of the device housing 2 with metal or resin, is formed in a cylindrical shape with an open top, and stores the mist raw material liquid (for example, water) L. The ultrasonic vibrator 25 is disposed in the mist raw material liquid storage section 18 so that the ultrasonic wave generation surface A is submerged in the stored mist raw material liquid L, and ultrasonic vibration is applied to the mist raw material liquid L. This is atomized by adding. The blower 30 is disposed above the liquid level LV of the stored mist raw material liquid L with respect to the mist raw material liquid storage unit 18, sucks the mist rising from the liquid level LV with the addition of ultrasonic vibration together with the air, The contained air flow FGV is sent from the air flow outlet 16A while changing its direction in the direction intersecting the normal of the liquid level LV.

装置筺体2は、霧原料液体収容部18と送風機30とを周囲空間から区画しつつ、これらを一括して収容するとともに、霧含有気流FGVを形成するためのガラリ状の外気吸入口2Nを有する。粗大霧粒子分離部20は、霧含有気流FGVの送出方向にて送風機30に隣接配置され、霧含有気流FGVに含まれる所定粒子径を超える粗大霧粒子を分離除去する。霧含有気流放出部3は、粗大霧粒子を分離除去後の霧含有気流FGXを周囲雰囲気に向けて放出する。  The apparatus housing 2 divides the mist raw material liquid storage unit 18 and the blower 30 from the surrounding space, and collectively stores them, and has a garage-like outside air inlet 2N for forming a mist-containing air flow FGV. . The coarse mist particle separation unit 20 is disposed adjacent to the blower 30 in the direction in which the mist-containing airflow FGV is sent, and separates and removes coarse mist particles that exceed the predetermined particle diameter included in the mist-containing airflow FGV. The mist-containing airflow discharge unit 3 releases the mist-containing airflow FGX after separating and removing coarse mist particles toward the surrounding atmosphere.

超音波振動子25は、霧原料液体収容部18の底部に配置されたベース24の上面に、超音波放射面25Aと水面LVとがほぼ平行となるように取り付けられている。前述のタンクセット口から樹脂ないし金属製の霧原料液体タンク21を液供給口21t側が下になるように装置筺体2にセットすると、装置筺体2内のタンク支持部22に液供給口21tを進入させる形で、霧原料液体タンク21が該タンク支持部22により支持される。タンク支持部22は霧原料液体収容部18と液供給管23によりつながれており、霧発生により霧原料液体収容部18内の水位が低下すると、サイフォンの原理に基づいてタンク21から霧原料液体が液供給管23を経て霧原料液体収容部18に供給され、液面LVが一定に維持されるようになっている。  The ultrasonic transducer 25 is attached to the upper surface of the base 24 disposed at the bottom of the mist raw material liquid storage unit 18 so that the ultrasonic radiation surface 25A and the water surface LV are substantially parallel. When the resin or metal mist raw material liquid tank 21 is set in the apparatus housing 2 from the tank setting port so that the liquid supply port 21t side is down, the liquid supply port 21t enters the tank support portion 22 in the apparatus housing 2. In this manner, the mist raw material liquid tank 21 is supported by the tank support portion 22. The tank support part 22 is connected by the mist raw material liquid storage part 18 and the liquid supply pipe 23, and when the water level in the mist raw material liquid storage part 18 falls due to the generation of mist, the mist raw material liquid is supplied from the tank 21 based on the siphon principle. The liquid is supplied to the mist raw material liquid storage section 18 through the liquid supply pipe 23, and the liquid level LV is maintained constant.

次に、送風機30は遠心ファンとして構成され(以下、遠心ファン30ともいう)、該遠心ファン30の回転送風体15が、その気流吸い込み側となる軸線方向端部(下面側)が、霧原料液体収容部18内の液面LVに対し下向きに対向するように配置されている。回転送風体15は整流カバー16により覆われている。該整流カバー16は、液面LVからの霧とともに気流を吸い込むための円形の気流吸い込み口16Qが下端に開口するとともに、外周面には吹出突出部17が一体形成され、その先端に霧含有気流FGVの吹き出し口16Aが開口形成されている。遠心ファン30は、具体的には、回転送風体15が円筒状の中空フレーム15Qと、該中空フレーム15Qの周方向に複数の送風羽根15Fが組み付けられたシロッコファンとして構成されている。  Next, the blower 30 is configured as a centrifugal fan (hereinafter, also referred to as a centrifugal fan 30), and the rotating blower 15 of the centrifugal fan 30 has an axial end (lower surface side) on the airflow suction side, and the mist raw material. It arrange | positions so that it may oppose downward with respect to the liquid level LV in the liquid accommodating part 18. As shown in FIG. The rotating blower 15 is covered with a rectifying cover 16. The rectifying cover 16 has a circular air flow inlet 16Q for sucking an air flow along with the mist from the liquid level LV at the lower end, and a blowout protrusion 17 is integrally formed on the outer peripheral surface. The FGV outlet 16A is formed as an opening. Specifically, the centrifugal fan 30 is configured as a sirocco fan in which the rotary blower 15 has a cylindrical hollow frame 15Q and a plurality of blower blades 15F are assembled in the circumferential direction of the hollow frame 15Q.

遠心ファン30は、具体的には、回転送風体15が円筒状の中空フレーム15Qと、該中空フレーム15Qの周方向に複数の送風羽根15Fが組み付けられたシロッコファンとして構成されている。回転送風体15の液面LVに対向しているのと反対側の軸線方向端面には、駆動モータ10の回転軸15Jの先端が取り付けられ、該駆動モータ10の本体が回転送風体15の反対側の端面側にて、整流カバー16に対し上方に突出する形で配置されている。整流カバー16は装置筺体2の頂面部2Tの内面(下面)に取り付けられ、駆動モータ10は頂面部2Tの上方に突出する形で配置されている。  Specifically, the centrifugal fan 30 is configured as a sirocco fan in which the rotary blower 15 has a cylindrical hollow frame 15Q and a plurality of blower blades 15F are assembled in the circumferential direction of the hollow frame 15Q. The tip end of the rotating shaft 15J of the drive motor 10 is attached to the axial end surface opposite to the liquid surface LV of the rotating blower 15, and the main body of the drive motor 10 is opposite to the rotating blower 15. On the side end face side, the rectifying cover 16 is disposed so as to protrude upward. The rectifying cover 16 is attached to the inner surface (lower surface) of the top surface portion 2T of the apparatus housing 2, and the drive motor 10 is disposed so as to protrude above the top surface portion 2T.

粗大霧粒子分離部20は、気流吹き出し口16Aから吹き出される霧含有気流FGVが上端側から内部に導入されるとともに、内周面が下端側に向かうほど縮径する円錐状のサイクロン分級部(以下、サイクロン分級部20ともいう)として構成されている。気流吹き出し口16Aは絞り部19及び気流通路部19Aを介してサイクロン分級部20の上端に連通接続されている。気流通路部19Aの末端は、円形軸断面を有するサイクロン分級部20の上端部の外周接線方向に接続されており、霧含有気流FGVがサイクロン分級部20に対し内周面接線方向に導入されるようになっている。また、サイクロン分級部20側に流入する粗大霧粒子を含有した分離気流は、サイクロン分級部20の下端から戻り管路20Rにより、霧原料液体Lの液面LVよりも上方にて霧原料液体収容部18に戻されるようになっている。  The coarse mist particle separation unit 20 is a cone-shaped cyclone classification unit (in which the mist-containing airflow FGV blown from the airflow outlet 16A is introduced into the inside from the upper end side and the diameter of the inner peripheral surface decreases toward the lower end side ( Hereinafter, it is also configured as a cyclone classifying unit 20). The air flow outlet 16A is connected in communication with the upper end of the cyclone classifying unit 20 through the throttle unit 19 and the air flow passage unit 19A. The end of the airflow passage portion 19A is connected to the outer peripheral tangential direction of the upper end portion of the cyclone classification portion 20 having a circular axial cross section, and the mist-containing airflow FGV is introduced to the cyclone classification portion 20 in the inner peripheral surface tangential direction. It is like that. The separated air stream containing coarse mist particles flowing into the cyclone classification unit 20 side is stored in the mist raw material liquid above the liquid level LV of the mist raw material liquid L through the return pipe 20R from the lower end of the cyclone classification unit 20. It is returned to the part 18.

図3に示すように、霧含有気流放出部をなす霧放出通路3は、サイクロン分級部20の上端に連通結合され、末端に霧放出口3Bを開口する円筒状に形成されている。具体的には、霧放出通路3は、下端側がサイクロン分級部20の内部に対し、その円錐状の内周面区間に入り込む形で軸線方向に挿入されている。筺体2の頂面部2Tには霧放出通路3が隙間嵌めされる貫通孔2Jが形成され、該貫通孔2J内にて霧放出通路3は軸線方向に進退が可能となっている。また、該霧放出通路3の外周面には径方向のスリット4Sを有したストッパリング4が装着されている。ストッパリング4には、スリット4Sを横切る形でロックボルト4Bがねじ込まれており、該ロックボルト4Bを緩めるとスリット4Sが拡張し、ストッパリング4は霧放出通路3の外周面に沿って軸線方向に移動可能となる。  As shown in FIG. 3, the mist discharge passage 3 constituting the mist-containing airflow discharge portion is connected to the upper end of the cyclone classification portion 20 and is formed in a cylindrical shape that opens the mist discharge port 3B at the end. Specifically, the fog discharge passage 3 is inserted in the axial direction in such a manner that the lower end side enters the conical inner peripheral surface section with respect to the inside of the cyclone classification unit 20. A through-hole 2J into which the mist discharge passage 3 is fitted with a gap is formed in the top surface portion 2T of the housing 2, and the mist discharge passage 3 can advance and retreat in the axial direction in the through-hole 2J. A stopper ring 4 having a radial slit 4S is mounted on the outer peripheral surface of the mist discharge passage 3. A lock bolt 4B is screwed into the stopper ring 4 so as to cross the slit 4S. When the lock bolt 4B is loosened, the slit 4S expands, and the stopper ring 4 extends in the axial direction along the outer peripheral surface of the fog discharge passage 3. It becomes possible to move to.

この状態でストッパリング4を霧放出通路3の外周面上の所望の位置に位置合わせしてロックボルト4Bをねじ込むとスリット4Sが縮小し、該位置にストッパリング4が締め付け固定される。図3下に示すごとく、ストッパリング4を装着した状態で霧放出通路3の下端側を貫通孔2Jに挿入すると、霧放出通路3は、頂面部2Tの貫通孔2Jの周縁領域によりストッパリング4の下面にて支持される形となる。ストッパリング4の装着位置に応じ、霧放出通路3は、その下端側のサイクロン分級部20に対する軸線方向の挿入長が可変となる。また、該挿入長hが大きくなるほど、霧放出通路3の下端開口に対応するサイクロン分級部20の内周面半径rが縮小する(図3において挿入長h<h、内周面半径r>r)。その結果、霧放出通路3の下端開口位置におけるサイクロン分級部20内の旋回流速が上昇し、重い霧液滴、つまり大径液滴に対する遠心捕捉力が大きくなるので、霧放出通路3側へ流れ込む大径液滴の比率が少なくなる。つまり、霧放出通路3を通って霧放出口3Bから放出される霧液滴の平均粒径は小さくなる。逆に、挿入長hが減少すれば、霧放出通路3の下端開口位置における旋回流速が減少し、大径液滴に対する遠心捕捉力が小さくなるので、霧放出通路3を通って霧放出口3Bから放出される霧液滴の平均粒径は大きくなる。In this state, when the stopper ring 4 is positioned at a desired position on the outer peripheral surface of the fog discharge passage 3 and the lock bolt 4B is screwed in, the slit 4S is reduced, and the stopper ring 4 is fastened and fixed at this position. As shown in the lower part of FIG. 3, when the lower end side of the mist discharge passage 3 is inserted into the through hole 2J with the stopper ring 4 attached, the mist discharge passage 3 is stopped by the peripheral region of the through hole 2J of the top surface portion 2T. It becomes the form supported by the lower surface of. Depending on the mounting position of the stopper ring 4, the mist discharge passage 3 has a variable insertion length in the axial direction with respect to the cyclone classification portion 20 on the lower end side. Further, as the insertion length h is increased, the inner peripheral surface radius r of the cyclone classification unit 20 corresponding to the lower end opening of the fog discharge passage 3 is reduced (in FIG. 3, the insertion length h 1 <h 2 , the inner peripheral surface radius r). 1 > r 2 ). As a result, the swirling flow velocity in the cyclone classification unit 20 at the lower end opening position of the mist discharge passage 3 increases, and the centrifugal trapping force for heavy mist droplets, that is, large-sized droplets increases, so that the mist discharge passage 3 flows into the mist discharge passage 3 side. The ratio of large droplets is reduced. That is, the average particle diameter of the mist droplets discharged from the mist discharge port 3B through the mist discharge passage 3 is reduced. Conversely, if the insertion length h decreases, the swirling flow velocity at the lower end opening position of the mist discharge passage 3 decreases, and the centrifugal trapping force for large-diameter droplets decreases, so that the mist discharge port 3B passes through the mist discharge passage 3. The average particle size of the mist droplets discharged from is increased.

図2に戻り、霧原料液体収容部18の側壁内面にはレベルセンサ(液面センサ)26が取り付けられており、霧原料液体タンク21が空になり、霧原料液体収容部18内の液面が検知レベル以下になるとレベルセンサ26が液面非検知状態(ここではオン状態とするが、オフ状態を対応させるロジックとしてもよい)となる。また、霧放出通路3の内面には、サイクロン分級部20により粗大霧粒子を分離除去後の霧含有気流FGX中の霧濃度を検出する霧濃度検出センサ53、56が霧濃度検出手段として設けられている。この実施形態では、霧濃度検出センサ53、56は、霧放出通路3内を流れる霧含有気体に対し検出光を投射する投光部53(この実施形態では、発光ダイオードにて構成している)と、該霧含有気体内を通過した検出光を受光する受光部56(この実施形態では、フォトダイオードにて構成している)とを有し、該受光部56の光検出強度に基づいて霧濃度を検出するようになっている。具体的には、投光部53は一定光量で霧含有気流中に検出光を照出するとともに、霧濃度が高い場合には受光部56への到達光量が減少し、霧濃度が低い場合には到達光量が増加する。つまり、受光部56の検出出力は霧濃度に応じて単調に変化するので、これを用いて霧濃度を検出することができる。  Returning to FIG. 2, a level sensor (liquid level sensor) 26 is attached to the inner surface of the side wall of the mist raw material liquid storage unit 18, the mist raw material liquid tank 21 becomes empty, and the liquid level in the mist raw material liquid storage unit 18. Is below the detection level, the level sensor 26 enters a liquid level non-detection state (in this case, it is in the on state, but it may be a logic that corresponds to the off state). Further, on the inner surface of the mist discharge passage 3, mist concentration detection sensors 53 and 56 for detecting the mist concentration in the mist-containing airflow FGX after separating and removing coarse mist particles by the cyclone classification unit 20 are provided as mist concentration detecting means. ing. In this embodiment, the mist concentration detection sensors 53 and 56 project the detection light to the mist-containing gas flowing in the mist discharge passage 3 (in this embodiment, it is configured by a light emitting diode). And a light receiving portion 56 (in this embodiment, configured by a photodiode) that receives the detection light that has passed through the mist-containing gas, and the mist based on the light detection intensity of the light receiving portion 56 Concentration is detected. Specifically, the light projecting unit 53 emits detection light into the mist-containing airflow with a constant light amount, and when the fog concentration is high, the amount of light reaching the light receiving unit 56 is reduced, and when the fog concentration is low. Increases the amount of light reached. That is, since the detection output of the light receiving unit 56 changes monotonously according to the fog density, the fog density can be detected using this.

本実施形態では、その検出される霧濃度を参照して、霧濃度が予め定められた目標値に近づくように送風機30の送風量を調整する制御を行なうようにしている。前述のごとく、送風機30はシロッコファンとして構成されており、霧原料液体収容部18にて超音波振動子25が発生する霧を吸い上げてサイクロン分級部20に送り込む役割を果たす。超音波振動子25の出力(振動振幅)と周波数とを一定範囲に制御すれば、霧原料液体収容部18内の液面LVから立ち上る霧の発生量もほぼ一定となる。従って、送風機30の駆動回転数が上昇すると霧の吸い上げ量が増加し、駆動回転数が低下すると霧の吸い上げ量は減少する。そこで、霧濃度が目標値を超えている場合は、目標値との隔たりが大きいほど送風機30の駆動回転数を低下させるようにし、霧濃度が目標値を下回っている場合は、目標値との隔たりが大きいほど送風機30の駆動回転数を上昇させるように制御を行なう。  In the present embodiment, with reference to the detected fog density, control is performed to adjust the air flow rate of the blower 30 so that the fog density approaches a predetermined target value. As described above, the blower 30 is configured as a sirocco fan, and plays a role of sucking up the mist generated by the ultrasonic vibrator 25 in the mist raw material liquid storage unit 18 and sending it to the cyclone classification unit 20. If the output (vibration amplitude) and frequency of the ultrasonic transducer 25 are controlled within a certain range, the amount of mist rising from the liquid level LV in the mist raw material liquid storage unit 18 becomes substantially constant. Therefore, when the drive rotational speed of the blower 30 is increased, the mist suction amount is increased, and when the drive rotational speed is decreased, the mist suction amount is decreased. Therefore, when the fog density exceeds the target value, the drive rotation speed of the blower 30 is decreased as the distance from the target value increases, and when the fog density is lower than the target value, Control is performed so as to increase the drive rotational speed of the blower 30 as the distance increases.

図4は、その制御系の一例を示す回路図である。電源は商用交流(AC100V)であり、送風機30等を駆動するための主電源回路73に入力され、直流駆動用の主電源電圧(+VDD)に変換される。なお、主電源スイッチ6をオンにすると、電源ランプ8をなす発光ダイオードに主電源電圧+VDDが供給され、これを点灯状態とする。主電源電圧は送風機30の駆動モータ10(のモータドライバ71)等へ出力されるとともに、信号電源回路75にも分配供給される。信号電源回路75は信号電源電圧+VCCを出力する。FIG. 4 is a circuit diagram showing an example of the control system. The power source is commercial AC (AC 100 V), which is input to a main power circuit 73 for driving the blower 30 and the like, and converted into a main power voltage (+ V DD ) for DC driving. When the main power switch 6 is turned on, the main power supply voltage + V DD is supplied to the light emitting diode that forms the power lamp 8, and this is turned on. The main power supply voltage is output to the drive motor 10 (motor driver 71) of the blower 30 and the like, and is also distributed and supplied to the signal power supply circuit 75. The signal power supply circuit 75 outputs a signal power supply voltage + VCC .

また、レベルセンサ26は液面非検知状態でオンとなり、出力電圧は「H(ハイレベル)」となる。この出力により液切れ警告ランプ9をなす発光ダイオードが点灯する。他方、霧濃度検出センサの投光部53は、外乱光等に対する対ノイズ性を向上するため、一定周波数の基準パルス信号により間欠点灯駆動される。その基準パルス発生回路51からのパルス出力がレベルセンサ26の出力とともに論理IC52に入力される。該論理IC52はレベルセンサ26からの入力が液面検知状態(ここでは「L(ローレベル)」の場合にのみ、基準パルス信号に対応したパルス駆動パターンにて投光部53を間欠点灯駆動する。  The level sensor 26 is turned on when the liquid level is not detected, and the output voltage becomes “H (high level)”. With this output, the light-emitting diode that forms the out-of-liquid warning lamp 9 is turned on. On the other hand, the light projecting unit 53 of the fog density detection sensor is intermittently driven by a reference pulse signal having a constant frequency in order to improve noise resistance against disturbance light or the like. The pulse output from the reference pulse generation circuit 51 is input to the logic IC 52 together with the output of the level sensor 26. The logic IC 52 intermittently drives the light projecting unit 53 with a pulse drive pattern corresponding to the reference pulse signal only when the input from the level sensor 26 is in a liquid level detection state (here, “L (low level)”). .

受光部56をなすフォトダイオード56は信号電源電圧+VCCにより逆方向バイアスされており、受光強度が大きいほど、つまり、霧濃度が低いほど電流値が増加するので、電流検出抵抗59を経由して増幅器58に入力される入力電圧は低くなる。つまり、増幅器58の出力は霧濃度の増加に対応して単調に増加する特性を示す。該出力は両極性のパルス信号なので、整流用ダイオード62及び時定数平滑化回路63により単極性の平滑化霧濃度電圧信号Vfcに変換され、霧濃度設定部7からの霧濃度設定電圧(目標値電圧)Vfdとともに差動増幅器66に入力される。差動増幅器66は、平滑化霧濃度電圧信号Vfcと霧濃度設定電圧Vfdとの差分電圧Vfc−Vfdに比例したモータ駆動指示電圧Vdvをモータドライバ71に出力する。モータドライバ71はモータ駆動指示電圧Vdvを参照し、Vdvが例えばゼロのときは予め定められた基準速度にて送風機の駆動モータ10を駆動する。また、Vdv>0のときはVdvの絶対値が大きくなるほど駆動モータ10の速度を増加させ、Vdv<0のときはVdvの絶対値が大きくなるほど駆動モータ10の速度を減少させる制御を行なう。The photodiode 56 forming the light receiving unit 56 is reverse-biased by the signal power supply voltage + VCC , and the current value increases as the received light intensity increases, that is, the fog concentration decreases. The input voltage input to the amplifier 58 is lowered. That is, the output of the amplifier 58 exhibits a characteristic that increases monotonously in response to an increase in fog density. Since the output is a bipolar pulse signal, it is converted into a unipolar smoothed fog density voltage signal V fc by the rectifying diode 62 and the time constant smoothing circuit 63, and the fog density setting voltage (target) from the fog density setting unit 7 is set. A value voltage Vfd is input to the differential amplifier 66. The differential amplifier 66 outputs to the motor driver 71 a motor drive instruction voltage V dv that is proportional to the differential voltage V fc −V fd between the smoothed mist concentration voltage signal V fc and the mist concentration setting voltage V fd . The motor driver 71 refers to the motor drive instruction voltage V dv, and drives the blower drive motor 10 at a predetermined reference speed when V dv is zero, for example. Further, when the V dv> 0 increases the speed of the drive motor 10 as the absolute value of V dv increases, when the V dv <0 decreases the speed of the drive motor 10 as the absolute value of V dv increases control To do.

フォトダイオード56の検知信号を増幅する増幅器58の出力(以下、霧濃度検出パルス信号Pdetともいう)は外乱光等のノイズの影響を受けていなければ、基準パルス信号にほぼ対応した周波数及び位相のパルス信号となる。本実施形態において該霧濃度検出パルス信号Pdetは整流後、適当な閾電圧を基準として比較器7により整形され、基準パルス発生回路51からの基準パルス信号Prefとともにノイズ判定回路80に入力される。ノイズ判定回路80は、霧濃度検出パルス信号Pdetと基準パルス信号Prefとの不一致度が一定レベル以上に大きい場合にモータドライバ71にインヒビット信号(駆動禁止信号)を出力する。モータドライバ71はこれを受け、駆動モータ10の差動を停止又は制限する制御を行なう。If the output of the amplifier 58 that amplifies the detection signal of the photodiode 56 (hereinafter also referred to as fog density detection pulse signal Pdet ) is not affected by noise such as ambient light, the frequency and phase substantially correspond to the reference pulse signal. Pulse signal. In this embodiment, the fog density detection pulse signal P det is rectified and then shaped by the comparator 7 on the basis of an appropriate threshold voltage, and is input to the noise determination circuit 80 together with the reference pulse signal P ref from the reference pulse generation circuit 51. The The noise determination circuit 80 outputs an inhibit signal (drive inhibition signal) to the motor driver 71 when the degree of mismatch between the fog density detection pulse signal P det and the reference pulse signal P ref is greater than a certain level. In response to this, the motor driver 71 performs control to stop or limit the differential of the drive motor 10.

本実施形態では、ノイズ判定回路80を以下のように構成している。まず、霧濃度検出パルス信号Pdetと基準パルス信号Prefとは排他的論理和IC72に入力される。霧濃度検出パルス信号Pdetが基準パルス信号にほぼ対応した周波数及び位相のパルス信号になっている場合(つまり、ノイズの影響を受けていない場合)は、排他的論理和IC72の出力はほぼ定常的にLレベルとなる。他方、ノイズ等の影響により、霧濃度検出パルス信号Pdetと基準パルス信号Prefとの不一致度が大きい場合は、排他的論理和IC72に対する両信号の二値入力が不一致となる期間が増大し、排他的論理和IC72からはその不一致期間に対応した不規則なパルス信号が出力されることとなる。そこで、排他的論理和IC72の出力をコンデンサ83で平滑化後、抵抗ブリッジ81によりレベル調整されてノイズ反映信号Sとなし、これをインヒビット信号の出力部となる比較器80cにより、別の抵抗ブリッジを介して入力される閾電圧信号Sと比較する。該比較器80cは、ノイズ反映信号Sが閾電圧信号Sのレベルを超えた場合に、インヒビット信号出力をアクティブ(ここではHレベル)となす。In the present embodiment, the noise determination circuit 80 is configured as follows. First, the fog density detection pulse signal P det and the reference pulse signal P ref are input to the exclusive OR IC 72. When the fog density detection pulse signal P det is a pulse signal having a frequency and phase substantially corresponding to the reference pulse signal (that is, when not affected by noise), the output of the exclusive OR IC 72 is almost steady. Therefore, it becomes L level. On the other hand, if the degree of mismatch between the fog density detection pulse signal P det and the reference pulse signal P ref is large due to the influence of noise or the like, the period during which the binary input of both signals to the exclusive OR IC 72 is mismatched increases. The exclusive OR IC 72 outputs an irregular pulse signal corresponding to the mismatch period. Therefore, smoothed by the capacitor 83 the output of the exclusive OR IC 72, is the level adjusted by the resistor bridge 81 and the noise reflected signal S J ungated, the comparator 80c serving as an output portion of which the inhibit signal, another resistor via the bridge is compared with the threshold voltage signal S R to be inputted. The comparator 80c, if the noise reflected signal S J exceeds the level of the threshold voltage signal S R, forms an inhibit signal output active (H level in this case).

以下、上記超音波式霧発生装置1の動作について説明する。
まず、図2の霧原料液体タンク21に水等の霧原料液体を充填し、装置筺体2にセットする。そして、霧原料液体収容部18に霧原料液体が供給されれば電源スイッチ6をオンにする。すると、超音波振動子25と送風機30とが動作を開始する。霧原料液体収容部18内では超音波振動により液面LVより種々の粒径の霧粒子が発生する。液面LVから立ち上る霧は、液面LV上方に配置された送風機30の吸引側に吸い上げられるので、霧原料液体収容部18内での予備分級により液面LVに戻ってしまう霧粒子を大幅に減少させることができる。また、送風機30が霧原料液体収容部18とともに装置筐体2内に収容されているので、装置外への漏れ気流により霧粒子が損失することもない。すなわち、液面LVから発生した霧を粗大粒子も含めて漏らさず送風機30の吸引側に吸い上げることで、霧原料液体収容部18内での霧粒子の戻り損失を極力抑えることができる。
Hereinafter, the operation of the ultrasonic fog generator 1 will be described.
First, the mist raw material liquid tank 21 shown in FIG. 2 is filled with a mist raw material liquid such as water and set in the apparatus housing 2. When the mist raw material liquid is supplied to the mist raw material liquid storage unit 18, the power switch 6 is turned on. Then, the ultrasonic transducer 25 and the blower 30 start operation. In the mist raw material liquid storage unit 18, mist particles having various particle diameters are generated from the liquid level LV by ultrasonic vibration. Since the mist rising from the liquid level LV is sucked up to the suction side of the blower 30 disposed above the liquid level LV, the mist particles that return to the liquid level LV due to preliminary classification in the fog raw material liquid container 18 are greatly reduced. Can be reduced. Further, since the blower 30 is housed in the apparatus housing 2 together with the fog raw material liquid container 18, the fog particles are not lost due to the leaked airflow to the outside of the apparatus. In other words, the mist generated from the liquid level LV is sucked up to the suction side of the blower 30 without leaking including coarse particles, so that the return loss of the mist particles in the mist raw material liquid storage unit 18 can be suppressed as much as possible.

吸い上げられた霧粒子は霧含有気流FGVとして、送風機30の送出側下流に配置されたサイクロン分級部(粗大霧粒子分離部)20に一括して送り込まれ、粗大霧粒子を効率的に除去しつつ、所望とする微細霧粒子が霧放出通路3から高濃度で放出される。  The sucked mist particles are sent together as a mist-containing air flow FGV to a cyclone classification unit (coarse mist particle separation unit) 20 disposed downstream of the blower 30 while efficiently removing the coarse mist particles. The desired fine mist particles are discharged from the mist discharge passage 3 at a high concentration.

遠心ファンの回転送風体13はシロッコファンを構成しており、その気流吸い込み側となる軸線方向端部が液面LVに対向しているので、液面LVから発生する霧の吸い上げ効率がさらに高められている。該回転送風体15は整流カバー16により覆われており、該整流カバー16の外周面に霧含有気流FGVの吹き出し口16Aが形成されているので、霧含有気流FGVは吹き出し口16Aにもれなく導かれる。また、回転送風体15の中心部からは駆動モータ10が排除され、円柱状の吸い込み空間として液面LV側に開口していることも、霧の吸引効率向上に寄与している。  The rotary blower 13 of the centrifugal fan constitutes a sirocco fan, and its axial end on the airflow suction side faces the liquid level LV, so that the efficiency of sucking up fog generated from the liquid level LV is further enhanced. It has been. The rotary blower 15 is covered with a rectifying cover 16, and a mist-containing air flow FGV outlet 16A is formed on the outer peripheral surface of the rectifying cover 16, so that the mist-containing air FGV is guided to the outlet 16A without exception. . Further, the drive motor 10 is excluded from the central portion of the rotary blower 15 and the cylindrical suction space is opened on the liquid level LV side, which contributes to improvement of the mist suction efficiency.

霧放出通路3は前述の如く、サイクロン分級部20に対する軸線方向の挿入長を変更することにより、霧含有気流FGX中の霧粒径(あるいはその分布)を任意に調整することができる。送風機30の回転速度は、上記のごとく、霧濃度検出センサが検出する霧濃度が目標値に近づくように自動調整される。また、図1の霧濃度設定部7を構成するボリュームつまみを操作すると、これと連動する図4の可変抵抗70により霧濃度設定電圧(目標値)Vfdが変更され、放出される霧の濃度を所望の値に調整することができる。As described above, the mist discharge passage 3 can arbitrarily adjust the mist particle size (or its distribution) in the mist-containing air flow FGX by changing the insertion length in the axial direction with respect to the cyclone classification unit 20. As described above, the rotational speed of the blower 30 is automatically adjusted so that the fog density detected by the fog density detection sensor approaches the target value. When the volume knob constituting the mist density setting unit 7 in FIG. 1 is operated, the mist density setting voltage (target value) V fd is changed by the variable resistor 70 in FIG. Can be adjusted to a desired value.

以下、本発明の超音波式霧発生装置の変形例について説明する。
図5に示すように、霧放出通路(霧含有気流放出部)3には負極性の放電電極32を取り付けることができる。図5においては円筒状の霧放出通路3の両端開口に、気流の吸い込みないし放出を許容しつつ、電極端子3J,3Jを霧放出通路3に取り付けるためのフレーム3F,3F(例えば、図示のごとく十字状のもの)がそれぞれ設けられている。放電電極32はステンレス鋼ないしチタン等の金属により線状に形成され、霧放出通路3のほぼ中心軸線に沿う形で電極端子3J,3J間に張り渡されている。電極端子3J,3Jを介して放電電極32には、図示しない電源から1000〜20000V程度の負極性高圧が印加され、霧放出通路3を流通する霧含有気流FGXは、該放電電極32と接触させつつ放出される。放出される霧粒子は放電電極32が形成する負極性高電界により負帯電化が促進され、室内(あるいは車内)の消臭効果、室内空気の浄化、室内インテリアの帯電防止などの効果がさらに促進される。また、気流中の酸素の一部をオゾン化でき、霧含有気流FGXに殺菌機能を付与することもできる。
Hereinafter, modifications of the ultrasonic fog generator of the present invention will be described.
As shown in FIG. 5, a negative discharge electrode 32 can be attached to the mist discharge passage (fog-containing airflow discharge portion) 3. In FIG. 5, frames 3F and 3F (for example, as shown in the figure) for attaching the electrode terminals 3J and 3J to the mist discharge passage 3 while allowing the airflow to be sucked or discharged into the opening at both ends of the cylindrical mist discharge passage 3. Cross-shaped ones are provided. The discharge electrode 32 is linearly formed of a metal such as stainless steel or titanium, and is stretched between the electrode terminals 3J and 3J so as to be substantially along the central axis of the fog discharge passage 3. A negative high voltage of about 1000 to 20000 V is applied to the discharge electrode 32 from the power source (not shown) via the electrode terminals 3J, 3J, and the mist-containing air flow FGX flowing through the mist discharge passage 3 is brought into contact with the discharge electrode 32. Is released. The discharged mist particles are promoted to be negatively charged by the negative high electric field formed by the discharge electrode 32, and further promote the effects of deodorizing the interior (or the interior of the vehicle), purifying the indoor air, and preventing the interior interior from being charged. Is done. Moreover, a part of oxygen in the airflow can be ozonized, and a sterilizing function can be imparted to the fog-containing airflow FGX.

また、図6に示すように、霧放出通路(霧含有気流放出部)3には紫外線発生部を取り付けることもできる。ここでは、紫外線発生部31を低圧水銀ランプあるいはエキシマランプなどの紫外線ランプ31を使用する。具体的には、円筒状の霧放出通路3の両端開口に、気流の吸い込みないし放出を許容しつつランプソケット3S,3Sを霧放出通路3に取り付けるためのフレーム3F,3F(例えば、図示のごとく十字状のもの)がそれぞれ設けられている。紫外線ランプ31は直管状であり、両端がランプソケット3S,3Sに装着されて霧放出通路3のほぼ中心軸線に沿う形で配置され、図示しない周知の駆動回路に接続されて点灯駆動される。霧放出通路3を流通する霧含有気流FGXは、該紫外線ランプ31からの紫外線照射を受けつつ放出される。  In addition, as shown in FIG. 6, an ultraviolet ray generating part can be attached to the fog discharge passage (mist-containing airflow discharge part) 3. Here, an ultraviolet ray lamp 31 such as a low-pressure mercury lamp or an excimer lamp is used as the ultraviolet ray generator 31. Specifically, frames 3F and 3F (for example, as shown in the figure) for attaching the lamp sockets 3S and 3S to the mist discharge passage 3 while allowing the airflow to be sucked or discharged into the opening at both ends of the cylindrical mist discharge passage 3. Cross-shaped ones are provided. The ultraviolet lamp 31 has a straight tube shape, and both ends thereof are mounted on the lamp sockets 3S and 3S, are arranged along the substantially central axis of the fog discharge passage 3, and are connected to a well-known drive circuit (not shown) and driven to light. The fog-containing airflow FGX flowing through the fog discharge passage 3 is discharged while being irradiated with ultraviolet rays from the ultraviolet lamp 31.

特に低圧水銀ランプあるいはエキシマランプなど、真空紫外領域の波長帯(10nm以上200nm以下)を発生可能な紫外線ランプを採用すると、気流中の酸素の一部をオゾン化すること、あるいは、酸素(ないし発生したオゾン)と霧粒子中の水分子との反応によるヒドロキシラジカルの発生促進により、霧含有気流FGXに殺菌機能を付与することができる。低圧水銀ランプは、紫外域のスペクトルにおいて185nmと254nmとの2箇所に顕著なピークを有し、このうち波長185nmの紫外線が酸素のオゾン化に有効に寄与する。一方、波長254nmの紫外線は、発生したオゾンの活性酸素への分解、さらには、その活性酸素の霧粒子に由来した水分子との反応によるヒドロキシラジカルの生成を促進する。いずれも、殺菌効果、あるいは臭い成分の分解効果の更なる向上に寄与する。  In particular, when an ultraviolet lamp capable of generating a wavelength band in the vacuum ultraviolet region (10 nm or more and 200 nm or less) such as a low-pressure mercury lamp or an excimer lamp is adopted, a part of oxygen in the air stream is ozonized or oxygen (or generation) The sterilization function can be imparted to the fog-containing airflow FGX by promoting the generation of hydroxy radicals by the reaction between the ozone) and water molecules in the fog particles. The low-pressure mercury lamp has remarkable peaks at two locations of 185 nm and 254 nm in the ultraviolet spectrum, and among these, ultraviolet light having a wavelength of 185 nm contributes effectively to the ozonization of oxygen. On the other hand, ultraviolet light having a wavelength of 254 nm promotes decomposition of generated ozone into active oxygen, and further generation of hydroxy radicals by reaction with water molecules derived from fog particles of the active oxygen. All contribute to further improvement of the bactericidal effect or the decomposition effect of odor components.

他方、エキシマランプは真空紫外域での単色発光が可能であり(Ar :126nm、F :158nm、Xe :172nmなど、特に、波長172nmのキセノンエキシマランプが好適である)、より効率の高いオゾン化が可能である。On the other hand, the excimer lamp can emit monochromatic light in the vacuum ultraviolet region (Ar 2 * : 126 nm, F 2 * : 158 nm, Xe 2 * : 172 nm, etc., in particular, a xenon excimer lamp having a wavelength of 172 nm is preferable) More efficient ozonization is possible.

1 超音波式霧発生装置
2 装置筐体
2N 外気吸入口
3 霧放出通路(霧含有気流放出部)
10 駆動モータ
15 回転送風体
15J 回転軸
15Q 中空フレーム
15F 送風羽根
16Q 気流吸い込み口
16A 吹き出し口
16 整流カバー
18 霧原料液体収容部
20 サイクロン分級部(粗大霧粒子分離部)
20R 戻り管路
25 超音波振動子
30 送風機
31 紫外線ランプ(紫外線発生部)
32 放電電極
53 投光部(霧濃度検出手段)
56 受光部(霧濃度検出手段)
FGV,FGX 霧含有気流
DESCRIPTION OF SYMBOLS 1 Ultrasonic fog generator 2 Apparatus housing 2N Outside air inlet 3 Fog discharge passage (fog containing airflow discharge part)
DESCRIPTION OF SYMBOLS 10 Drive motor 15 Rotating air blower 15J Rotating shaft 15Q Hollow frame 15F Air blower blade 16Q Airflow suction inlet 16A Outlet 16 Rectification cover 18 Mist raw material liquid storage part 20 Cyclone classification part (coarse mist particle separation part)
20R Return pipe 25 Ultrasonic vibrator 30 Blower 31 Ultraviolet lamp (ultraviolet generation part)
32 Discharge electrode 53 Projection part (fog density detection means)
56 Light-receiving part (fog density detection means)
FGV, FGX Fog-containing airflow

Claims (16)

上部が開口し、霧原料液体を収容する霧原料液体収容部と、
前記霧原料液体収容部内にて、収容された前記霧原料液体中に超音波発生面が没するように配置され、該霧原料液体に超音波振動を付加することによりこれを霧化する超音波振動子と、
前記霧原料液体収容部に対し、収容された前記霧原料液体の液面よりも上方に配置され、前記超音波振動の付加により前記液面より立ち上る霧を空気とともに吸引し、霧含有気流として前記液面の法線と交差する向きに方向転換しつつ気流吹き出し口より送出する送風機と、
前記霧原料液体収容部と前記送風機とを周囲空間から区画しつつ一括して収容するとともに、前記霧含有気流を形成するための外気吸入口を有した装置筺体と、
前記霧含有気流の送出方向にて前記送風機に隣接配置され、前記霧含有気流に含まれる所定粒子径を超える粗大霧粒子を分離除去する粗大霧粒子分離部と、
前記粗大霧粒子を分離除去後の前記霧含有気流を周囲雰囲気に向けて放出する霧含有気流放出部と、
を備えたことを特徴とする超音波式霧発生装置。
The upper part is opened, and the mist raw material liquid storage part for storing the mist raw material liquid;
In the mist raw material liquid storage unit, an ultrasonic wave is disposed so that an ultrasonic wave generation surface is submerged in the stored mist raw material liquid, and ultrasonic waves are atomized by adding ultrasonic vibration to the mist raw material liquid. A vibrator,
With respect to the mist raw material liquid storage part, the mist that is disposed above the liquid level of the stored mist raw material liquid and rises from the liquid level by the addition of the ultrasonic vibration is sucked together with air, and the mist-containing airflow is A blower that sends out from an air flow outlet while changing direction in a direction crossing the normal of the liquid level;
An apparatus housing having an outside air inlet for forming the mist-containing airflow while collectively storing the mist raw material liquid storage unit and the blower while partitioning from the surrounding space,
A coarse mist particle separation unit that is arranged adjacent to the blower in the direction of delivery of the mist-containing air current and separates and removes coarse mist particles that exceed a predetermined particle diameter included in the mist-containing air current;
A mist-containing airflow discharge unit that discharges the mist-containing airflow after separating and removing the coarse mist particles toward the surrounding atmosphere;
An ultrasonic fog generator characterized by comprising:
前記送風機が遠心ファンとして構成され、該遠心ファンの回転送風体は、その気流吸い込み側となる軸線方向端部が前記液面に対し下向きに対向するように配置されるとともに、前記液面からの霧とともに気流を吸い込むための気流吸い込み口を下端に開口する整流カバーにより前記回転送風体が覆われてなり、該整流カバーの外周面に前記霧含有気流の吹き出し口が形成されてなる請求項1記載の超音波式霧発生装置。  The blower is configured as a centrifugal fan, and the rotary fan of the centrifugal fan is disposed so that an axial end on the airflow suction side faces downward with respect to the liquid level, and from the liquid level. The rotary air blower is covered with a rectifying cover that opens an air flow inlet for sucking an air flow along with mist at the lower end, and a blowout port for the mist-containing air flow is formed on the outer peripheral surface of the rectifying cover. The ultrasonic fog generator described. 前記遠心ファンは、前記回転送風体の前記液面に対向しているのと反対側の軸線方向端面に駆動モータの回転軸先端が取り付けられ、該駆動モータの本体が前記回転送風体の前記反対側の端面側にて、前記整流カバーに対し上方に突出する形で配置されている請求項2記載の超音波式霧発生装置。  The centrifugal fan has a rotation shaft tip of a drive motor attached to an axial end surface opposite to the liquid surface of the rotary blower, and the main body of the drive motor is opposite to the rotary blower. The ultrasonic fog generator of Claim 2 arrange | positioned in the form which protrudes upwards with respect to the said rectification | straightening cover in the end surface side. 前記回転送風体が円筒状の中空フレームと、該中空フレームの周方向に複数の送風羽根が組み付けられたシロッコファンとして構成される請求項3記載の超音波式霧発生装置。  The ultrasonic fog generator according to claim 3, wherein the rotary blower is configured as a cylindrical hollow frame and a sirocco fan in which a plurality of blower blades are assembled in a circumferential direction of the hollow frame. 前記整流カバーが前記装置筺体の上部内面に取り付けられるとともに、前記駆動モータが前記装置筺体の頂面部の上方に突出する形で配置されている請求項3又は請求項4に記載の超音波式霧発生装置。  The ultrasonic mist according to claim 3 or 4, wherein the rectifying cover is attached to an upper inner surface of the device housing, and the drive motor is disposed so as to protrude above a top surface portion of the device housing. Generator. 前記粗大霧粒子分離部は、前記気流吹き出し口から吹き出される前記霧含有気流が上端側から内部に導入されるとともに、内周面が上端側に向かうほど縮径する円錐状に形成されたサイクロン分級部を自する請求項1ないし請求項5のいずれか1項に記載の超音波式霧発生装置。  The coarse mist particle separation unit is a cyclone formed in a conical shape in which the mist-containing air flow blown from the air flow outlet is introduced into the inside from the upper end side, and the inner peripheral surface is reduced in diameter toward the upper end side. The ultrasonic fog generator according to any one of claims 1 to 5, which has a classification unit. 前記霧含有気流が前記サイクロン分級部に対し内周面接線方向に導入される請求項6記載の超音波式霧発生装置。  The ultrasonic mist generator according to claim 6, wherein the mist-containing airflow is introduced in a direction tangential to an inner circumferential surface with respect to the cyclone classification unit. 前記霧含有気流放出部は、前記サイクロン分級部の上端に連通結合され、末端に霧放出口を開口する霧放出通路である請求項6又は請求項7に記載の超音波式霧発生装置。  The ultrasonic mist generator according to claim 6 or 7, wherein the mist-containing airflow discharge portion is a mist discharge passage that is connected to the upper end of the cyclone classification portion and opens a mist discharge port at the end. 前記霧放出通路は、下端側が前記円錐状の内周面区間に入り込む形で前記サイクロン分級部の内部に軸線方向に挿入されてなる請求項8記載の超音波式霧発生装置。  The ultrasonic fog generator according to claim 8, wherein the fog discharge passage is inserted into the cyclone classifying portion in an axial direction so that a lower end side enters the conical inner peripheral surface section. 前記霧放出通路は、前記下端側の前記サイクロン分級部に対する軸線方向の挿入長が可変に構成されてなる請求項9記載の超音波式霧発生装置。  The ultrasonic fog generator according to claim 9, wherein the fog discharge passage is configured such that an insertion length in an axial direction with respect to the cyclone classification unit on the lower end side is variable. 前記サイクロン分級部側に流入する前記粗大霧粒子を含有した分離気流を、前記霧原料液体の液面よりも上方にて前記霧原料液体収容部に戻す戻り管路が設けられている請求項6ないし請求項10のいずれか1項に記載の超音波式霧発生装置。  7. A return pipe is provided for returning the separated air stream containing the coarse mist particles flowing into the cyclone classifying unit to the mist raw material liquid storage unit above the liquid level of the mist raw material liquid. The ultrasonic fog generator according to any one of claims 10 to 10. 前記粗大霧粒子を分離除去後の前記霧含有気流中の霧濃度を検出する霧濃度検出手段と、
検出される前記霧濃度に応じて前記送風機の送風量を調整する送風制御手段とを有する請求項1ないし請求項11のいずれか1項に記載の超音波式霧発生装置。
Fog concentration detecting means for detecting the fog concentration in the fog-containing airflow after separating and removing the coarse fog particles;
The ultrasonic fog generator according to any one of claims 1 to 11, further comprising a blowing control unit that adjusts a blowing amount of the blower according to the detected fog concentration.
前記送風制御手段は前記霧濃度が予め定められた目標値に近づくように前記送風機の送風量を調整するものである請求項12記載の超音波式霧発生装置。  The ultrasonic mist generating apparatus according to claim 12, wherein the air blowing control means adjusts the air blowing amount of the blower so that the fog concentration approaches a predetermined target value. 前記霧濃度検出手段は、前記霧放出通路内を流れる前記霧含有気体に対し検出光を投射する投光部と、該霧含有気体内を通過した前記検出光を受光する受光部とを有し、該受光部の光検出強度に基づいて前記霧濃度を検出するものである請求項13記載の超音波式霧発生装置。  The fog concentration detecting means includes a light projecting unit that projects detection light onto the fog-containing gas flowing in the fog discharge passage, and a light receiving unit that receives the detection light that has passed through the fog-containing gas. The ultrasonic fog generator according to claim 13, wherein the fog density is detected based on the light detection intensity of the light receiving unit. 前記霧含有気流放出部に負極性の放電電極が取り付けられ、前記霧含有気流を該放電電極と接触させつつ放出する請求項1ないし請求項14のいずれか1項に記載の超音波式霧発生装置。  The ultrasonic mist generation according to any one of claims 1 to 14, wherein a negative discharge electrode is attached to the mist-containing airflow discharge portion, and the mist-containing airflow is released while being in contact with the discharge electrode. apparatus. 前記霧含有気流放出部に紫外線発生部が取り付けられ、前記霧含有気流に紫外線を照射しつつ放出する請求項1ないし請求項14のいずれか1項に記載の超音波式霧発生装置。  The ultrasonic fog generator according to any one of claims 1 to 14, wherein an ultraviolet ray generation unit is attached to the fog-containing airflow discharge unit, and the fog-containing airflow is emitted while being irradiated with ultraviolet rays.
JP2010169770A 2009-07-13 2010-07-09 Ultrasonic mist generator Pending JP2011036853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010169770A JP2011036853A (en) 2009-07-13 2010-07-09 Ultrasonic mist generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009164562 2009-07-13
JP2010169770A JP2011036853A (en) 2009-07-13 2010-07-09 Ultrasonic mist generator

Publications (1)

Publication Number Publication Date
JP2011036853A true JP2011036853A (en) 2011-02-24

Family

ID=43765193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010169770A Pending JP2011036853A (en) 2009-07-13 2010-07-09 Ultrasonic mist generator

Country Status (1)

Country Link
JP (1) JP2011036853A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102042618B1 (en) * 2018-06-26 2019-11-08 서성균 Dust Removal Equipment
KR102061307B1 (en) * 2019-04-12 2020-02-11 서성균 Dust Removal Equipment
JP2020106182A (en) * 2018-12-27 2020-07-09 日機装株式会社 humidifier
KR20200085445A (en) * 2019-01-07 2020-07-15 주식회사 에스원 Method for High Resolution Measurement of Fog Density and The Quantized Fog Spraying System thereof
KR102344725B1 (en) * 2020-07-21 2021-12-29 주식회사 지티피에스 Control Unit of Evaporation Temperature for High Humidity Storage in Low Temperature Storage

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102042618B1 (en) * 2018-06-26 2019-11-08 서성균 Dust Removal Equipment
JP2020106182A (en) * 2018-12-27 2020-07-09 日機装株式会社 humidifier
KR20200085445A (en) * 2019-01-07 2020-07-15 주식회사 에스원 Method for High Resolution Measurement of Fog Density and The Quantized Fog Spraying System thereof
KR102145427B1 (en) 2019-01-07 2020-08-18 주식회사 에스원 Method for High Resolution Measurement of Fog Density and The Quantized Fog Spraying System thereof
KR102061307B1 (en) * 2019-04-12 2020-02-11 서성균 Dust Removal Equipment
KR102344725B1 (en) * 2020-07-21 2021-12-29 주식회사 지티피에스 Control Unit of Evaporation Temperature for High Humidity Storage in Low Temperature Storage

Similar Documents

Publication Publication Date Title
US10408478B2 (en) Humidifying apparatus
US9752789B2 (en) Humidifying apparatus
US6883724B2 (en) Method and device for production, extraction and delivery of mist with ultrafine droplets
JP2011036853A (en) Ultrasonic mist generator
JP4333339B2 (en) Toilet seat device
JP5366027B2 (en) air purifier
WO2016024419A1 (en) Bacteria eliminating function-equipped humidifying air-purifying device
EP2706864B1 (en) Ozone-based disinfecting device and mixer therefor
US10036565B2 (en) Humidifying apparatus
US10144561B2 (en) Humidifying apparatus
US10145573B2 (en) Humidifying apparatus
JP2014018641A (en) Air cleaner by cavitation bubbled water stream
WO2003084671A1 (en) Mist feeder
JP2007162997A (en) Dry fog generator
KR960030953A (en) Deodorization Method and Deodorizer
KR102418190B1 (en) Ultrasonic nebulization device
JP2005155150A (en) Toilet seat apparatus
JP2008147149A (en) Air negative ion generation method by water, and its device
JP2002364890A (en) Mist generating device
US11628463B2 (en) Atomizing diffuser for gaseous environment cleaning
JP2019056514A (en) Liquid atomization device and air cleaner or air conditioner using the same
JP2003199814A (en) Atomizing sterilization and deodorization device
JP2005144096A (en) Sprayer with illumination
JPH1133090A (en) Deodorization and sterilization device
JP7322312B1 (en) Deodorizing equipment and deodorizing system