JP2011035258A - Organic thin-film solar cell and method of manufacturing the same - Google Patents

Organic thin-film solar cell and method of manufacturing the same Download PDF

Info

Publication number
JP2011035258A
JP2011035258A JP2009181578A JP2009181578A JP2011035258A JP 2011035258 A JP2011035258 A JP 2011035258A JP 2009181578 A JP2009181578 A JP 2009181578A JP 2009181578 A JP2009181578 A JP 2009181578A JP 2011035258 A JP2011035258 A JP 2011035258A
Authority
JP
Japan
Prior art keywords
solar cell
organic thin
film
metal
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009181578A
Other languages
Japanese (ja)
Inventor
Kaori Kamiguchi
加織 上口
Hiroyuki Suzuki
裕行 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2009181578A priority Critical patent/JP2011035258A/en
Publication of JP2011035258A publication Critical patent/JP2011035258A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic thin-film solar cell which is reducible in manufacturing cost by simplifying manufacturing processes. <P>SOLUTION: The organic thin-film solar cell includes a metal electrode substrate 10, a conductive film 12 containing a compound such that metal atoms are bonded to each other through an oxygen atom, and are each bonded at least to an oxygen atom of any of an alkoxyl group and a hydroxyl group, and provided on a surface of the metal electrode substrate 10, a photoelectric conversion film 14 containing an electron donative material and an electron receptive material and provided on a surface of the conductive film 12, and a transparent electrode 16 provided on a surface of the photoelectric conversion film 14. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有機薄膜太陽電池及びその製造方法に関する。   The present invention relates to an organic thin film solar cell and a method for manufacturing the same.

有機薄膜太陽電池の製造方法は、未だその多くを蒸着などのドライプロセスが占めている。低分子蒸着型はもちろんのこと、高分子塗布型の有機薄膜太陽電池でも透明電極、電子輸送層、裏面金属電極を構築する際にドライプロセスを採用していることが多い。ドライプロセスは真空成膜環境が必要なうえ、プロセス上有機薄膜太陽電池の作製工程を煩雑にする。そのため、ウェットプロセスに比較して製造コストが高くなっている。そこで近年では、ドライプロセスを用いず製造コストを低減することが可能な有機薄膜太陽電池の製造方法が要求されている。   The organic thin film solar cell manufacturing method is still mostly occupied by dry processes such as vapor deposition. The dry process is often adopted when constructing the transparent electrode, the electron transport layer, and the back surface metal electrode not only in the low molecular vapor deposition type but also in the polymer coated type organic thin film solar cell. The dry process requires a vacuum film-forming environment and makes the process of manufacturing an organic thin-film solar cell complicated in the process. Therefore, the manufacturing cost is higher than that of the wet process. Therefore, in recent years, there is a demand for a method for manufacturing an organic thin-film solar cell that can reduce the manufacturing cost without using a dry process.

しかし、その一手法として、光電変換層の上部に電子輸送層、裏面金属電極を蒸着以外の方法で形成することを考えると、層間の密着性や電気化学的に良好な接触界面を得ることが難しくなる。例えば塗布法で形成する場合には、下層の光電変換層と相溶しない限られた溶媒で金属材料を分散させねばならず、その手法は電子輸送層、裏面金属電極の作用を阻害しないものでなければならない。このように、透明電極付き基板上に必要な層を積層していく従来の有機薄膜太陽電池の製造方法では、電子輸送層、裏面金属電極に関して蒸着、総じてドライプロセス以外の方法を採用することが難しく、製造コストの削減は困難であった。   However, as one method, considering the formation of the electron transport layer and the backside metal electrode on the photoelectric conversion layer by a method other than vapor deposition, it is possible to obtain a good contact interface between layers and an electrochemically good contact interface. It becomes difficult. For example, in the case of forming by a coating method, the metal material must be dispersed with a limited solvent that is not compatible with the lower photoelectric conversion layer, and the method does not hinder the action of the electron transport layer and the back surface metal electrode. There must be. Thus, in the conventional method for manufacturing an organic thin-film solar cell in which necessary layers are stacked on a substrate with a transparent electrode, a method other than vapor deposition and generally a dry process can be employed for the electron transport layer and the back surface metal electrode. It was difficult to reduce the manufacturing cost.

上記問題点を鑑み、本発明の目的は、製造工程を変更、簡易化して一部ドライプロセスからの脱却を図ることで、製造コストの低減が可能な有機薄膜太陽電池及びその製造方法を提供することにある。   In view of the above problems, an object of the present invention is to provide an organic thin-film solar cell capable of reducing the manufacturing cost by changing and simplifying the manufacturing process and partially moving away from the dry process, and a manufacturing method thereof. There is.

本発明の第1の態様によれば、金属電極基板と、金属原子同士が酸素原子を介して結合し、更に金属原子のそれぞれが、少なくともアルコキシル基及び水酸基のいずれかの酸素原子と結合した化合物を含み、金属電極基板の表面に設けられた導電膜と、電子供与性材料及び電子受容性材料を含み、導電膜の表面に設けられた光電変換膜と、光電変換膜の表面に設けられた透明電極とを備える有機薄膜太陽電池が提供される。   According to the first aspect of the present invention, a compound in which a metal electrode substrate is bonded to metal atoms via oxygen atoms, and each metal atom is bonded to at least one of an alkoxyl group and a hydroxyl group. A conductive film provided on the surface of the metal electrode substrate, a photoelectric conversion film provided on the surface of the conductive film, including an electron donating material and an electron accepting material, and provided on the surface of the photoelectric conversion film An organic thin film solar cell comprising a transparent electrode is provided.

本発明の第2の態様によれば、金属箔の表面に金属アルコキシドを含む溶液を塗布して、金属原子同士が酸素原子を介して結合し、更に金属原子のそれぞれが、少なくともアルコキシル基及び水酸基のいずれかの酸素原子と結合した化合物を含む導電膜を形成する工程と、導電膜の表面に電子供与性材料及び電子受容性材料を含む光電変換膜を塗布する工程と、光電変換膜の表面に透明電極を形成する工程とを含む有機薄膜太陽電池の製造方法が提供される。   According to the second aspect of the present invention, a metal alkoxide-containing solution is applied to the surface of the metal foil, the metal atoms are bonded through oxygen atoms, and each of the metal atoms is at least an alkoxyl group and a hydroxyl group. A step of forming a conductive film containing a compound bonded to any of the oxygen atoms, a step of applying a photoelectric conversion film containing an electron-donating material and an electron-accepting material to the surface of the conductive film, and a surface of the photoelectric conversion film A method for producing an organic thin-film solar cell including a step of forming a transparent electrode is provided.

本発明によれば、製造工程を変更、簡易化して一部ドライプロセスからの脱却を図ることで、製造コストの低減した有機薄膜太陽電池及びその製造方法を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the organic thin-film solar cell and its manufacturing method with which manufacturing cost was reduced by changing and simplifying a manufacturing process and trying to escape from a partial dry process.

本発明の実施の形態に係る有機薄膜太陽電池の一例を示す断面図である。It is sectional drawing which shows an example of the organic thin film solar cell which concerns on embodiment of this invention. 本発明の実施の形態に係る有機薄膜太陽電池の製造方法の一例を示す工程断面図(その1)である。It is process sectional drawing (the 1) which shows an example of the manufacturing method of the organic thin-film solar cell which concerns on embodiment of this invention. 本発明の実施の形態に係る有機薄膜太陽電池の製造方法の一例を示す工程断面図(その2)である。It is process sectional drawing (the 2) which shows an example of the manufacturing method of the organic thin film solar cell which concerns on embodiment of this invention. 本発明の実施の形態に係る有機薄膜太陽電池の製造方法の一例を示す工程断面図(その3)である。It is process sectional drawing (the 3) which shows an example of the manufacturing method of the organic thin film solar cell which concerns on embodiment of this invention.

以下図面を参照して、本発明の形態について説明する。以下の図面の記載において、同一または類似の部分には同一または類似の符号が付してある。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

又、以下に示す本発明の実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。   The following embodiments of the present invention exemplify apparatuses and methods for embodying the technical idea of the present invention. The technical idea of the present invention is based on the material and shape of component parts. The structure, arrangement, etc. are not specified below. The technical idea of the present invention can be variously modified within the technical scope described in the claims.

本発明の実施の形態に係る有機薄膜太陽電池は、図1に示すように、金属電極基板10、金属電極基板10表面に設けられた導電膜12、導電膜12表面に設けられた光電変換膜14、光電変換膜14表面に設けられた透明電極16を備える。導電膜12は、金属原子同士が酸素原子を介して結合し、更に金属原子のそれぞれが、少なくともアルコキシル基及び水酸基のいずれかの酸素原子と結合した化合物を含む。光電変換膜14は、電子供与性材料及び電子受容性材料を含む。   As shown in FIG. 1, the organic thin film solar cell according to the embodiment of the present invention includes a metal electrode substrate 10, a conductive film 12 provided on the surface of the metal electrode substrate 10, and a photoelectric conversion film provided on the surface of the conductive film 12. 14. A transparent electrode 16 provided on the surface of the photoelectric conversion film 14 is provided. The conductive film 12 includes a compound in which metal atoms are bonded through oxygen atoms, and each metal atom is bonded to at least one of an alkoxyl group and a hydroxyl group. The photoelectric conversion film 14 includes an electron donating material and an electron accepting material.

金属電極基板10として、アルミニウム(Al)、チタン(Ti)、ステンレス鋼(SUS)等の金属箔が用いられる。特に、加工が容易なAlは、金属電極基板10の材料として好ましい。   As the metal electrode substrate 10, a metal foil such as aluminum (Al), titanium (Ti), stainless steel (SUS) is used. In particular, Al that is easy to process is preferable as the material of the metal electrode substrate 10.

導電膜12は、金属アルコキシド(M(OR)x:Mは金属、Oは酸素、Rはアルキル基、xは金属の価数)を原料としてゾルゲル法により形成される。金属Mとして、チタン(Ti )、亜鉛(Zn)、及びジルコニウム(Zr)等の金属が用いられる。チタンアルコキシドとしては、チタンテトラエトキシド、チタンテトライソプロポキシド、チタンテトラノルマルイソプロポキシド、チタンテトライソブトキシド、チタンテトラ−t−ブトキシド、チタンテトラノルマルブトキシド、テトラノルマルブチルチタネートダイマー、チタンテトラ‐2‐エチルヘキソキシド、ジイソプロポキシビストリエタノールアミネートチタン、テトラステアリルチタネート等が用いられる。亜鉛アルコキシドとしては、亜鉛テトラエトキシド、亜鉛テトライソプロポキシド、亜鉛テトラノルマルプロポキシド、亜鉛テトライソブトキシド、亜鉛テトラ−t−ブトキシド、亜鉛テトラノルマルブトキシド等が用いられる。ジルコニウムアルコキシドとしては、ジルコニウムテトラエトキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラノルマルプロポキシド、ジルコニウムテトライソブトキシド、ジルコニウムテトラ−t−ブトキシド、ジルコニウムテトラノルマルブトキシド等が用いられる。 The conductive film 12 is formed by a sol-gel method using a metal alkoxide (M (OR) x : M is a metal, O is oxygen, R is an alkyl group, and x is a valence of the metal) as a raw material. As the metal M, metals such as titanium (Ti 2), zinc (Zn), and zirconium (Zr) are used. Titanium alkoxide includes titanium tetraethoxide, titanium tetraisopropoxide, titanium tetranormal isopropoxide, titanium tetraisobutoxide, titanium tetra-t-butoxide, titanium tetranormal butoxide, tetranormal butyl titanate dimer, titanium tetra-2 -Ethylhexoxide, diisopropoxy bistriethanolaminate titanium, tetrastearyl titanate, etc. are used. As the zinc alkoxide, zinc tetraethoxide, zinc tetraisopropoxide, zinc tetranormal propoxide, zinc tetraisobutoxide, zinc tetra-t-butoxide, zinc tetranormal butoxide and the like are used. Examples of the zirconium alkoxide include zirconium tetraethoxide, zirconium tetraisopropoxide, zirconium tetranormal propoxide, zirconium tetraisobutoxide, zirconium tetra-t-butoxide, zirconium tetranormal butoxide and the like.

例えば、イソプロピルアルコール(IPA)等の溶媒で希釈した金属アルコキシド溶液を準備する。金属箔表面に金属アルコキシド溶液を大気中で塗布する。金属箔表面において、大気中の水分により金属アルコキシドの加水分解及び重縮合反応が起こる。例えば、金属アルコキシドの加水分解は次式で表される。   For example, a metal alkoxide solution diluted with a solvent such as isopropyl alcohol (IPA) is prepared. A metal alkoxide solution is applied to the surface of the metal foil in the air. On the surface of the metal foil, hydrolysis and polycondensation reaction of the metal alkoxide occur due to moisture in the atmosphere. For example, hydrolysis of a metal alkoxide is represented by the following formula.


M(OR)x + H2O → M(OR)x-1(OH) + ROH (1)

更に、反応が進むと、アルコキシル基(‐OR) が水酸基(‐OH)に加水分解されて、最終的には金属水酸化物(M(OH)x)が生成される。

M (OR) x + H 2 O → M (OR) x-1 (OH) + ROH (1)

When the reaction further proceeds, the alkoxyl group (—OR) is hydrolyzed to a hydroxyl group (—OH), and finally a metal hydroxide (M (OH) x ) is generated.

加水分解により生成された有機金属化合物あるいは金属水酸化物間の重縮合反応は、例えば次式で表される。   The polycondensation reaction between the organometallic compound or metal hydroxide produced by hydrolysis is represented by the following formula, for example.


2M(OR)x-1(OH) → (OR)x-1M-O-M(OR)x-1 + H2O (2)

2M(OH)x → (OH)x-1M-O-M(OH)x-1 + H2O (3)

化学式(1)〜(3)に示した脱水縮重合反応により、コロイド溶液(ゾル)が生成される。更に、脱水縮重合反応が促進すると、コロイド溶液中の粒子が流動性を失い固体(ゲル)を形成する。このようにして、導電膜12が形成される。

2M (OR) x-1 (OH) → (OR) x-1 MOM (OR) x-1 + H 2 O (2)

2M (OH) x → (OH) x-1 MOM (OH) x-1 + H 2 O (3)

A colloidal solution (sol) is generated by the dehydration condensation polymerization reaction represented by the chemical formulas (1) to (3). Further, when the dehydration condensation polymerization reaction is accelerated, the particles in the colloidal solution lose fluidity and form a solid (gel). In this way, the conductive film 12 is formed.

導電膜12においては、金属原子同士は酸素原子を介して結合し、更に金属原子のそれぞれは、少なくともアルコキシル基及び水酸基のいずれかの酸素原子と結合している。導電膜12は、導電性を有する。また、導電膜12表面に均一に密着性よく光電変換膜14を塗布することができる。   In the conductive film 12, metal atoms are bonded to each other through oxygen atoms, and each metal atom is bonded to at least one of an alkoxyl group and a hydroxyl group. The conductive film 12 has conductivity. In addition, the photoelectric conversion film 14 can be uniformly applied to the surface of the conductive film 12 with good adhesion.

導電膜12の膜厚は、例えば、5nm〜50nmの範囲、好ましくは10nm〜30nmの範囲である。導電膜12の膜厚が5nmより薄いと、光電変換膜14を均一に密着性よく塗布することが困難となる。導電膜12の膜厚が50nmより厚いと、抵抗が大きくなり光電変換効率が低下する。   The film thickness of the conductive film 12 is, for example, in the range of 5 nm to 50 nm, preferably in the range of 10 nm to 30 nm. If the thickness of the conductive film 12 is less than 5 nm, it is difficult to uniformly apply the photoelectric conversion film 14 with good adhesion. If the thickness of the conductive film 12 is greater than 50 nm, the resistance increases and the photoelectric conversion efficiency decreases.

光電変換膜14は、電子供与性材料と電子受容性材料が混在したバルクヘテロ接合、あるいは電子供与性材料膜上に電子受容性材料膜を積層したヘテロ接合を有する。光電変換効率を高くするためには、バルクヘテロ接合が望ましい。   The photoelectric conversion film 14 has a bulk heterojunction in which an electron donating material and an electron accepting material are mixed, or a heterojunction in which an electron accepting material film is stacked on the electron donating material film. In order to increase the photoelectric conversion efficiency, a bulk heterojunction is desirable.

光電変換膜14の膜厚は、例えば、0.2nm〜3000nmの範囲内、好ましくは1nm〜600nmの範囲内である。光電変換膜14の膜厚が3000nmより厚いと、光電変換膜14の体積抵抗が高くなる場合がある。一方、膜厚が0.2nmより薄いと、光を十分に吸収できなかったり、電極間で短絡が生じたりする場合がある。   The film thickness of the photoelectric conversion film 14 is, for example, in the range of 0.2 nm to 3000 nm, and preferably in the range of 1 nm to 600 nm. If the film thickness of the photoelectric conversion film 14 is thicker than 3000 nm, the volume resistance of the photoelectric conversion film 14 may increase. On the other hand, if the film thickness is less than 0.2 nm, light may not be sufficiently absorbed or a short circuit may occur between the electrodes.

光電変換膜14の電子供与性材料としては、電子供与体としての機能を有するものであれば特に限定されるものではないが、湿式塗工法により成膜可能なものであることが好ましい。中でも電子供与性の導電性高分子材料であることが好ましい。導電性高分子はいわゆるπ共役高分子であり、炭素−炭素またはヘテロ原子を含む二重結合または三重結合が、単結合と交互に連なったπ共役系から成り立っており、半導体的性質を示すものである。また、導電性高分子材料は、導電性高分子材料を溶媒に溶解もしくは分散させた塗工液を用いることで湿式塗工法により容易に成膜可能であることから、大面積の有機薄膜太陽電池を高価な設備を必要とせず低コストで製造できるという利点がある
電子供与性材料としては、例えば、ポリチオフェン(P3HT)、ポリフェニレン、ポリフェニレンビニレン、ポリシラン、ポリカルバゾール、ポリビニルカルバゾール、ポルフィリン、ポリアセチレン、ポリピロール、ポリアニリン、ポリフルオレン、ポリビニルピレン、ポリビニルアントラセン、及びびこれらの誘導体、ならびにこれらの共重合体、あるいは、フタロシアニン含有ポリマ、カルバゾール含有ポリマ、有機金属ポリマ等の高分子材料が用いられる。上記の中でも、チオフェン−フルオレン共重合体、ポリアルキルチオフェン、フェニレンエチニレン−フェニレンビニレン共重合体、フェニレンエチニレン−チオフェン共重合体、フェニレンエチニレン−フルオレン共重合体、フルオレン−フェニレンビニレン共重合体、チオフェン−フェニレンビニレン共重合体等が好ましく用いられる。これらの電子供与性材料は、多くの電子受容性材料に対して、最低非占有分子軌道(LUMO)のエネルギー準位差が適切なヘテロ接合を形成することが可能である。
The electron donating material of the photoelectric conversion film 14 is not particularly limited as long as it has a function as an electron donor, but is preferably a film that can be formed by a wet coating method. Among these, an electron donating conductive polymer material is preferable. A conductive polymer is a so-called π-conjugated polymer, which is composed of a π-conjugated system in which double bonds or triple bonds containing carbon-carbon or heteroatoms are alternately linked to single bonds, and exhibits semiconductor properties. It is. In addition, since the conductive polymer material can be easily formed by a wet coating method by using a coating solution in which the conductive polymer material is dissolved or dispersed in a solvent, a large-area organic thin film solar cell As an electron-donating material, for example, polythiophene (P3HT), polyphenylene, polyphenylene vinylene, polysilane, polycarbazole, polyvinyl carbazole, porphyrin, polyacetylene, polypyrrole, Polymer materials such as polyaniline, polyfluorene, polyvinylpyrene, polyvinylanthracene, and derivatives thereof, and copolymers thereof, or phthalocyanine-containing polymers, carbazole-containing polymers, and organometallic polymers are used. Among the above, thiophene-fluorene copolymer, polyalkylthiophene, phenylene ethynylene-phenylene vinylene copolymer, phenylene ethynylene-thiophene copolymer, phenylene ethynylene-fluorene copolymer, fluorene-phenylene vinylene copolymer A thiophene-phenylene vinylene copolymer is preferably used. These electron donating materials can form a heterojunction in which the energy level difference of the lowest unoccupied molecular orbital (LUMO) is appropriate for many electron accepting materials.

光電変換膜14の電子受容性材料としては、電子受容体としての機能を有するものであれば特に限定されるものではないが、湿式塗工法により成膜可能なものであることが好ましい。電子受容性材料としては、例えば、ポリフェニレンビニレン、ポリフルオレン、及びこれらの誘導体、ならびにこれらの共重合体等の高分子材料、あるいは、カーボンナノチューブ(CNT)、フェニルC61−ブチリック酸メチルエスタ(PCBM)等のフラーレン誘導体、シアノ(CN)基又はトリフルオロメチル(CF3)基含有ポリマ、及びそれらの(CF3)基置換ポリマ等が用いられる。 The electron-accepting material of the photoelectric conversion film 14 is not particularly limited as long as it has a function as an electron acceptor, but it is preferable that the film can be formed by a wet coating method. Examples of the electron-accepting material include polyphenylene vinylene, polyfluorene, and derivatives thereof, and polymer materials such as copolymers thereof, carbon nanotubes (CNT), phenyl C61-butyric acid methyl ester (PCBM), and the like. Fullerene derivatives, cyano (CN) group or trifluoromethyl (CF 3 ) group-containing polymers, and (CF 3 ) group-substituted polymers.

透明電極16としては、導電性及び透明性を有する材料であれば特に限定されない。例えば、透明電極16としては、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化スズ(SnO2)、フッ素(F)をドープしたSnO2、酸化亜鉛(ZnO)、AlドープZnO、酸化亜鉛スズ(ZnSnO)等が用いられる。 The transparent electrode 16 is not particularly limited as long as it is a material having conductivity and transparency. For example, the transparent electrode 16, indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO 2), SnO 2, zinc oxide doped with fluorine (F) (ZnO), Al-doped ZnO, oxide Zinc tin (ZnSnO) or the like is used.

透明電極16の全光線透過率は、85%以上、好ましくは90%以上、更に好ましくは92%以上である。透明電極16の全光線透過率が85%以上であれば、透明電極16は光を十分に透過することができ、光電変換膜14にて光を効率的に吸収することができる。透明電極16は、単層であってもよく、また、異なる透明導電材料を積層したものであってもよい。透明電極16の膜厚は、0.1nm〜500nmの範囲、好ましくは1nm〜300nmの範囲である。膜厚が0.1nmより薄い場合は、透明電極16のシート抵抗が大きくなりすぎ、発生した光電荷を十分に外部回路へ伝達することが困難となる。一方、膜厚が500nmより厚い場合には、全光線透過率が低下し、光電変換効率を低下させてしまう。   The total light transmittance of the transparent electrode 16 is 85% or more, preferably 90% or more, and more preferably 92% or more. If the total light transmittance of the transparent electrode 16 is 85% or more, the transparent electrode 16 can sufficiently transmit light, and the photoelectric conversion film 14 can efficiently absorb light. The transparent electrode 16 may be a single layer or a laminate of different transparent conductive materials. The film thickness of the transparent electrode 16 is in the range of 0.1 nm to 500 nm, preferably in the range of 1 nm to 300 nm. When the film thickness is less than 0.1 nm, the sheet resistance of the transparent electrode 16 becomes too large, and it becomes difficult to sufficiently transmit the generated photocharge to the external circuit. On the other hand, when the film thickness is thicker than 500 nm, the total light transmittance is lowered and the photoelectric conversion efficiency is lowered.

従来の有機薄膜太陽電池は、透明電極が形成された透明な基板上に光電変換膜を設け、光電変換膜上に蒸着法により金属電極が形成される。一方、本発明の実施の形態に係る有機薄膜太陽電池では、アルミニウム金属箔の金属電極基板10表面にゾルゲル法により形成した導電膜12表面に光電変換膜14を塗布形成し、光電変換膜14上に透明電極が形成される。このように、本発明の実施の形態では、基材としての役割を担う金属電極基板10が蒸着法を用いずに供される。   In a conventional organic thin film solar cell, a photoelectric conversion film is provided on a transparent substrate on which a transparent electrode is formed, and a metal electrode is formed on the photoelectric conversion film by a vapor deposition method. On the other hand, in the organic thin film solar cell according to the embodiment of the present invention, the photoelectric conversion film 14 is formed on the surface of the conductive film 12 formed by the sol-gel method on the surface of the metal electrode substrate 10 of the aluminum metal foil. A transparent electrode is formed on the substrate. As described above, in the embodiment of the present invention, the metal electrode substrate 10 serving as a base material is provided without using a vapor deposition method.

また、金属箔に光電変換膜を直接塗布形成する場合、アミノシラン系等のカップリング剤を予め金属箔表面に塗布して均一性及び密着性を向上させている。しかし、このようなカップリング剤は通常は絶縁層であり、金属電極の電極作用を阻害する。本発明の実施の形態では、金属電極基板10の表面にゾルゲル法により導電膜12が形成される。導電膜12は、導電性を有し、且つカップリング剤の効果も有する。そのため、導電膜12表面に光電変換膜14を均一に密着性よく形成できる。   In addition, when the photoelectric conversion film is directly applied and formed on the metal foil, a coupling agent such as an aminosilane is previously applied to the surface of the metal foil to improve uniformity and adhesion. However, such a coupling agent is usually an insulating layer and inhibits the electrode action of the metal electrode. In the embodiment of the present invention, the conductive film 12 is formed on the surface of the metal electrode substrate 10 by the sol-gel method. The conductive film 12 has conductivity and also has a coupling agent effect. Therefore, the photoelectric conversion film 14 can be uniformly formed on the surface of the conductive film 12 with good adhesion.

次に、本発明の実施の形態に係る有機薄膜太陽電池の製造方法を、図2〜図4に示す工程断面図を用いて説明する。   Next, the manufacturing method of the organic thin-film solar cell concerning embodiment of this invention is demonstrated using process sectional drawing shown in FIGS.

図2に示すように、例えば厚さが約25μmのアルミニウム金属箔(金属電極基板10)の表面を脱脂洗浄する。洗浄した金属箔の表面に、テトラノルマルブチルチタネート等の金属アルコキシドをIPAで約20%に希釈した溶液をバー塗布等により塗布する。塗布された膜において、大気下で金属アルコキシドのゾルゲル反応が生じ、固化した導電膜12が形成される。導電膜12中には、微量のIPAが残存する。導電膜12の厚さは、例えば、約20nmである。なお、導電膜12を、スピン塗布法やディップ法等を用いて形成してもよい。   As shown in FIG. 2, for example, the surface of an aluminum metal foil (metal electrode substrate 10) having a thickness of about 25 μm is degreased and cleaned. A solution obtained by diluting a metal alkoxide such as tetranormal butyl titanate to about 20% with IPA is applied to the surface of the cleaned metal foil by bar coating or the like. In the applied film, a sol-gel reaction of metal alkoxide occurs in the atmosphere, and a solidified conductive film 12 is formed. A trace amount of IPA remains in the conductive film 12. The thickness of the conductive film 12 is about 20 nm, for example. Note that the conductive film 12 may be formed using a spin coating method, a dipping method, or the like.

P3HT(poly(3-hexylthiophene-2,5-diyl):Aldrich社)及びPCBM([6,6]-phenyl-C61-butyric acid mettric ester:Nano-C社)をブロモベンゼン、o-ジクロロベンゼン等の溶媒に溶解させ、固形分濃度がそれぞれ約2.5重量%及び約1重量%の塗工溶液を準備する。図3に示すように、バー塗布法により、準備した塗工溶液を導電膜12上に塗布して光電変換膜14を形成する。その後、導電膜12および光電変換膜14を約100℃で約2分間乾燥させる。なお、光電変換膜14を、スピン塗布法やディップ法等を用いて形成してもよい。   P3HT (poly (3-hexylthiophene-2,5-diyl): Aldrich) and PCBM ([6,6] -phenyl-C61-butyric acid mettric ester: Nano-C) such as bromobenzene, o-dichlorobenzene, etc. And a coating solution having a solid content concentration of about 2.5% by weight and about 1% by weight, respectively, is prepared. As shown in FIG. 3, the prepared coating solution is apply | coated on the electrically conductive film 12 with the bar coating method, and the photoelectric converting film 14 is formed. Thereafter, the conductive film 12 and the photoelectric conversion film 14 are dried at about 100 ° C. for about 2 minutes. Note that the photoelectric conversion film 14 may be formed using a spin coating method, a dipping method, or the like.

図4に示すように、光電変換膜14の表面にITO膜等の透明電極16を形成する。例えば、ITO膜を低温イオンプレーティング法により、パワーが約4kW、圧力が0.1Pa,成膜速度が約200nm/時間、基板温度が約−10℃の条件で成膜する。成膜された透明電極16は、厚さが約160nmで、シート抵抗が約27Ω/□である。このようにして、有機薄膜太陽電池が製造される。   As shown in FIG. 4, a transparent electrode 16 such as an ITO film is formed on the surface of the photoelectric conversion film 14. For example, an ITO film is formed by low-temperature ion plating under the conditions of a power of about 4 kW, a pressure of 0.1 Pa, a film formation rate of about 200 nm / hour, and a substrate temperature of about −10 ° C. The formed transparent electrode 16 has a thickness of about 160 nm and a sheet resistance of about 27Ω / □. Thus, an organic thin film solar cell is manufactured.

製造された有機薄膜太陽電池の太陽電池特性を評価した。ソースメジャーユニット等の電流電圧源を用いて電流電圧特性の測定を行った。測定した電流電圧特性より、有機薄膜太陽電池の動作を得ることができた。   The solar cell characteristics of the manufactured organic thin film solar cell were evaluated. Current-voltage characteristics were measured using a current-voltage source such as a source measure unit. The operation of the organic thin film solar cell was able to be obtained from the measured current-voltage characteristics.

本発明の実施の形態に係る有機薄膜太陽電池の製造方法によれば、金属電極基板10に金属箔が用いられる。導電膜12及び光電変換膜14は、塗布法により形成される。透明電極16は、光電変換膜14上にイオンプレーティング法等により成膜される。このように、本発明の実施の形態では、従来の蒸着法による電子輸送層、裏面金属電極の形成工程を省略でき、製造工程を簡略化することができる。さらに、高価な透明電極が形成された基板を用いる必要がない。これも踏まえ、有機薄膜太陽電池の製造コストを低減することが可能となる。   According to the method of manufacturing an organic thin film solar cell according to the embodiment of the present invention, a metal foil is used for the metal electrode substrate 10. The conductive film 12 and the photoelectric conversion film 14 are formed by a coating method. The transparent electrode 16 is formed on the photoelectric conversion film 14 by an ion plating method or the like. As described above, in the embodiment of the present invention, the steps of forming the electron transport layer and the back surface metal electrode by the conventional vapor deposition method can be omitted, and the manufacturing process can be simplified. Furthermore, it is not necessary to use a substrate on which an expensive transparent electrode is formed. Based on this, the manufacturing cost of the organic thin film solar cell can be reduced.

(その他の実施の形態)
上記のように、本発明の実施の形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者にはさまざまな代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
Although the embodiments of the present invention have been described as described above, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

本発明の実施の形態においては、透明電極16が、光電変換膜14表面に設けられる。しかし、透明電極16と光電変換膜14との間に正孔取出層を設けてもよい。正孔取出層は、光電変換膜14で生成された正孔を、正孔取出電極である透明電極16へと容易に取り出すためのものである。これにより、光電変換膜14から透明電極16への正孔取出効率が高められるため、光電変換効率を向上させることが可能となる。   In the embodiment of the present invention, the transparent electrode 16 is provided on the surface of the photoelectric conversion film 14. However, a hole extraction layer may be provided between the transparent electrode 16 and the photoelectric conversion film 14. The hole extraction layer is for easily extracting holes generated by the photoelectric conversion film 14 to the transparent electrode 16 that is a hole extraction electrode. Thereby, since the hole extraction efficiency from the photoelectric conversion film 14 to the transparent electrode 16 is increased, the photoelectric conversion efficiency can be improved.

このように、本発明はここでは記載していないさまざまな実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係わる発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments that are not described herein. Accordingly, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

10…金属電極基板
12…導電膜
14…光電変換膜
16…透明電極
DESCRIPTION OF SYMBOLS 10 ... Metal electrode substrate 12 ... Conductive film 14 ... Photoelectric conversion film 16 ... Transparent electrode

Claims (8)

金属電極基板と、
金属原子同士が酸素原子を介して結合し、更に前記金属原子のそれぞれが、少なくともアルコキシル基及び水酸基のいずれかの酸素原子と結合した化合物を含み、前記金属電極基板の表面に設けられた導電膜と、
電子供与性材料及び電子受容性材料を含み、前記導電膜の表面に設けられた光電変換膜と、
前記光電変換膜の表面に設けられた透明電極
とを備えることを特徴とする有機薄膜太陽電池。
A metal electrode substrate;
A conductive film provided on the surface of the metal electrode substrate, wherein metal atoms are bonded through oxygen atoms, and each of the metal atoms further includes a compound bonded to at least one of an alkoxyl group and a hydroxyl group. When,
A photoelectric conversion film provided on the surface of the conductive film, comprising an electron donating material and an electron accepting material;
An organic thin film solar cell comprising: a transparent electrode provided on a surface of the photoelectric conversion film.
前記金属電極基板が、アルミニウム金属箔であることを特徴とする請求項1に記載の有機薄膜太陽電池。   The organic thin film solar cell according to claim 1, wherein the metal electrode substrate is an aluminum metal foil. 前記導電膜が、チタン、亜鉛、及びジルコニウムのいずれかを含むことを特徴とする請求項1又は2に記載の有機薄膜太陽電池。   The organic thin film solar cell according to claim 1 or 2, wherein the conductive film contains any one of titanium, zinc, and zirconium. 前記導電膜の厚さが、5nmから50nmの範囲であることを特徴とする請求項1〜3のいずれか1項に記載の有機薄膜太陽電池。   The thickness of the said electrically conductive film is the range of 5 nm to 50 nm, The organic thin film solar cell of any one of Claims 1-3 characterized by the above-mentioned. 金属箔の表面に金属アルコキシドを含む溶液を塗布して、金属原子同士が酸素原子を介して結合し、更に前記金属原子のそれぞれが、少なくともアルコキシル基及び水酸基のいずれかの酸素原子と結合した化合物を含む導電膜を形成する工程と、
前記導電膜の表面に電子供与性材料及び電子受容性材料を含む光電変換膜を塗布する工程と、
前記光電変換膜の表面に透明電極を形成する工程
とを含むことを特徴とする有機薄膜太陽電池の製造方法。
A compound in which a metal alkoxide-containing solution is applied to the surface of a metal foil, metal atoms are bonded to each other through oxygen atoms, and each of the metal atoms is bonded to at least one of an alkoxyl group and a hydroxyl group. Forming a conductive film comprising:
Applying a photoelectric conversion film containing an electron donating material and an electron accepting material on the surface of the conductive film;
And a step of forming a transparent electrode on the surface of the photoelectric conversion film.
前記金属箔が、アルミニウム金属箔であることを特徴とする請求項5に記載の有機薄膜太陽電池の製造方法。   The method for producing an organic thin film solar cell according to claim 5, wherein the metal foil is an aluminum metal foil. 前記金属アルコキシドが、チタンアルコキシド、亜鉛アルコキシド、及びジルコニウムアルコキシドのいずれかであることを特徴とする請求項5又は6に記載の有機薄膜太陽電池の製造方法。   The method for producing an organic thin-film solar cell according to claim 5 or 6, wherein the metal alkoxide is any one of titanium alkoxide, zinc alkoxide, and zirconium alkoxide. 前記導電膜を、5nmから50nmの範囲の厚さで塗布することを特徴とする請求項5〜7のいずれか1項に記載の有機薄膜太陽電池の製造方法。   The method for producing an organic thin-film solar cell according to claim 5, wherein the conductive film is applied with a thickness in the range of 5 nm to 50 nm.
JP2009181578A 2009-08-04 2009-08-04 Organic thin-film solar cell and method of manufacturing the same Pending JP2011035258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009181578A JP2011035258A (en) 2009-08-04 2009-08-04 Organic thin-film solar cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009181578A JP2011035258A (en) 2009-08-04 2009-08-04 Organic thin-film solar cell and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011035258A true JP2011035258A (en) 2011-02-17

Family

ID=43764019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009181578A Pending JP2011035258A (en) 2009-08-04 2009-08-04 Organic thin-film solar cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011035258A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015195254A (en) * 2014-03-31 2015-11-05 Jfeスチール株式会社 Organic thin film solar battery and photovoltaic power generation module
KR20180021181A (en) 2015-09-07 2018-02-28 제이에프이 스틸 가부시키가이샤 Substrate for photoelectric conversion element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344741A (en) * 2005-06-08 2006-12-21 Sharp Corp Organic solar cell and its manufacturing method
WO2007029750A1 (en) * 2005-09-06 2007-03-15 Kyoto University Organic thin film photoelectric converter and method for manufacturing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344741A (en) * 2005-06-08 2006-12-21 Sharp Corp Organic solar cell and its manufacturing method
WO2007029750A1 (en) * 2005-09-06 2007-03-15 Kyoto University Organic thin film photoelectric converter and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015195254A (en) * 2014-03-31 2015-11-05 Jfeスチール株式会社 Organic thin film solar battery and photovoltaic power generation module
KR20180021181A (en) 2015-09-07 2018-02-28 제이에프이 스틸 가부시키가이샤 Substrate for photoelectric conversion element
US10636985B2 (en) 2015-09-07 2020-04-28 Jfe Steel Corporation Substrate for photoelectric conversion element

Similar Documents

Publication Publication Date Title
Liu et al. Recent challenges in perovskite solar cells toward enhanced stability, less toxicity, and large‐area mass production
Sun et al. Transparent conductive oxide-free perovskite solar cells with PEDOT: PSS as transparent electrode
Guo et al. Graphene based materials: enhancing solar energy harvesting
Jung et al. High-efficiency polymer solar cells with water-soluble and self-doped conducting polyaniline graft copolymer as hole transport layer
JP5625852B2 (en) Organic photoelectric conversion device and method for producing organic photoelectric conversion device
Bao et al. Facile preparation of TiO X film as an interface material for efficient inverted polymer solar cells
Tran et al. Low-temperature solution-processed ionic liquid modified SnO2 as an excellent electron transport layer for inverted organic solar cells
JP5949335B2 (en) Tandem type photoelectric conversion element and solar cell using the same
JP2009146981A (en) Organic thin-film solar cell and organic thin-film solar cell casing-sealed panel
Jon et al. Flexible perovskite solar cells based on AgNW/ATO composite transparent electrodes
JP5862189B2 (en) Organic photoelectric conversion device and solar cell using the same
EP2671269A1 (en) Photovoltaic cells
JP2013055125A (en) Method of manufacturing hole block layer, hole block layer, photoelectric conversion element, photoelectric conversion device, organic thin-film solar cell panel, and light-emitting device
JP5527060B2 (en) ORGANIC PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL
JP5444743B2 (en) Organic photoelectric conversion element
JP5593900B2 (en) Organic photoelectric conversion element
Yi et al. Multifunctional polymer capping frameworks enable high-efficiency and stable all-inorganic perovskite solar cells
Li et al. Increased efficiency for perovskite photovoltaics based on aluminum-doped zinc oxide transparent electrodes via surface modification
JP2010161270A (en) Organic photoelectric conversion element and manufacturing method therefor
JP5700044B2 (en) Organic photoelectric conversion element and manufacturing method thereof
JP5870722B2 (en) Organic photoelectric conversion element and solar cell
JP2011035258A (en) Organic thin-film solar cell and method of manufacturing the same
KR101458565B1 (en) Organic solar cell and the manufacturing method thereof
Liu et al. Counter Electrode Materials for Organic-Inorganic Perovskite Solar Cells
Zhang et al. Facilitating electron collection of organic photovoltaics by passivating trap states and tailoring work function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130820

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130920