JP2010161270A - Organic photoelectric conversion element and manufacturing method therefor - Google Patents

Organic photoelectric conversion element and manufacturing method therefor Download PDF

Info

Publication number
JP2010161270A
JP2010161270A JP2009003342A JP2009003342A JP2010161270A JP 2010161270 A JP2010161270 A JP 2010161270A JP 2009003342 A JP2009003342 A JP 2009003342A JP 2009003342 A JP2009003342 A JP 2009003342A JP 2010161270 A JP2010161270 A JP 2010161270A
Authority
JP
Japan
Prior art keywords
transport layer
electromagnetic wave
photoelectric conversion
layer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009003342A
Other languages
Japanese (ja)
Inventor
Hiroaki Ito
宏明 伊東
Takahiko Nojima
隆彦 野島
Yasushi Okubo
康 大久保
Ayako Wachi
晃矢子 和地
Makoto Honda
本田  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2009003342A priority Critical patent/JP2010161270A/en
Publication of JP2010161270A publication Critical patent/JP2010161270A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic photoelectric conversion element (bulk heterojunction-type organic solar cell), having a charge transport layer which has superior block capability, in a low-temperature film forming process, with respect to the recombination of electronsdes generated by light absorption and holes (charge carriers) and having improved energy conversion rate, and to provide a method for manufacturing the element. <P>SOLUTION: The organic photoelectric conversion element 10 is formed, by laminating at least a photoelectric conversion layer 14 and a hole transport layer or electron transport layer between a first electrode 12 and a second electrode 15, and has the hole transport layer or electron transport layer made of a thermal conversion material, and the thermal conversion material is converted into a composition of the hole transport layer or electron transport layer by heat. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、エネルギー変換効率を向上させた有機光電変換素子とその製造方法に関する。   The present invention relates to an organic photoelectric conversion element having improved energy conversion efficiency and a method for producing the same.

バルクヘテロジャンクション型の有機太陽電池(有機光電変換素子)は、光吸収によって形成した励起子を失活する前に効率よく電荷分離できることが特徴だが、発生したフリーキャリアは、有機ドナー材料または有機アクセプター材料がそれぞれ相分離した形で存在するパーコレーション構造中を拡散によって移動するため、両極性のフリーキャリア同士が電極上で再結合してしまい、エネルギー変換効率の低下を起こしやすいといった問題があった。   Bulk heterojunction organic solar cells (organic photoelectric conversion elements) are characterized by efficient charge separation before quenching excitons formed by light absorption, but the generated free carriers are organic donor materials or organic acceptor materials. However, since the free carriers of both polarities are recombined on the electrode, the energy conversion efficiency is liable to decrease.

それに対し、発電層と電極間に励起子ブロック層を設けることで電極上でのキャリア再結合を抑制する技術が紹介されており(例えば特許文献1参照)、高効率化に向けて重要な知見と言える。同じような技術として、パルスレーザー製膜法を用いて発電層と電極の間に酸化ニッケルからなる層を形成し、高いキャリア分離能を得る技術が紹介されている(例えば非特許文献1)。しかしながら、これらの製法では、真空下で均一性の高い層を形成する必要があり、有機太陽電池の高い生産性をスポイルしていた。   On the other hand, a technique that suppresses carrier recombination on the electrode by providing an exciton blocking layer between the power generation layer and the electrode has been introduced (see, for example, Patent Document 1), and important knowledge for higher efficiency is introduced. It can be said. As a similar technique, a technique has been introduced in which a layer made of nickel oxide is formed between a power generation layer and an electrode using a pulse laser film forming method to obtain high carrier separation (for example, Non-Patent Document 1). However, in these manufacturing methods, it is necessary to form a highly uniform layer under vacuum, and high productivity of the organic solar cell is spoiled.

更に、この様なブロック能を有する層(電荷輸送層)を塗布法で形成する方法として、光電変換層と電極の間にバンドギャップ1.8eV以上の共役ポリマー層を形成する方法(例えば特許文献2)や、熱変換型のベンゾポルフィリン層を形成する方法(例えば特許文献3)、金属アルコキシドの溶液を塗布し、大気中で加水分解させることで金属酸化物層とする方法(例えば、特許文献4または特許文献5)等が紹介されている。   Further, as a method of forming such a layer having a blocking ability (charge transport layer) by a coating method, a method of forming a conjugated polymer layer having a band gap of 1.8 eV or more between the photoelectric conversion layer and the electrode (for example, Patent Documents) 2), a method of forming a heat conversion type benzoporphyrin layer (for example, Patent Document 3), a method of applying a metal alkoxide solution and hydrolyzing it in the atmosphere to form a metal oxide layer (for example, Patent Document) 4 or Patent Document 5).

しかし、この様な塗布型の電荷輸送層では、未だキャリアの分離能が低く、電極上でのフリーキャリア同士の再結合を十分に抑制できていなかった。上述した金属酸化物を電荷輸送層に用いる場合、高いブロック能を付与するためには、少なくとも300℃以上の焼成プロセスが必要になり、有機物を用いた素子や、フレキシブルな樹脂基板を用いた素子においては不適であり、低温製膜プロセスで優れたブロック能を有する電荷輸送層を形成する方法が望まれていた。   However, such a coating type charge transport layer still has low carrier separation ability, and recombination of free carriers on the electrode has not been sufficiently suppressed. When the metal oxide described above is used for the charge transport layer, a firing process of at least 300 ° C. or more is required in order to impart high blocking ability, and an element using an organic substance or an element using a flexible resin substrate Therefore, a method for forming a charge transport layer having an excellent blocking ability in a low temperature film forming process has been desired.

米国特許第7,026,041号明細書US Pat. No. 7,026,041 国際公開第04/017422号パンフレットInternational Publication No. 04/017422 Pamphlet 特開2008−135622号公報JP 2008-135622 A 国際公開第07/011741号パンフレットInternational Publication No. 07/011741 Pamphlet 特開2007−273939号公報JP 2007-273939 A

Michael D.Irwin et al.,PNAS,vol.105,No.8,2783−2787Michael D. Irwin et al. , PNAS, vol. 105, no. 8,2783-2787

本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、光吸収によって発生した電子と正孔(電荷キャリア)の再結合に対し低温製膜プロセスで優れたブロック能を有する電荷輸送層を備え、エネルギー変換効率を向上させた有機光電変換素子(バルクヘテロジャンクション型の有機太陽電池)及びその製造方法を提供することである。   The present invention has been made in view of the above problems and circumstances, and its solution is to provide excellent blocking ability in a low-temperature film-forming process against recombination of electrons and holes (charge carriers) generated by light absorption. It is to provide an organic photoelectric conversion element (bulk heterojunction type organic solar cell) having a charge transport layer having improved energy conversion efficiency and a method for producing the same.

本発明に係る上記課題は、以下の手段により解決される。   The above-mentioned problem according to the present invention is solved by the following means.

1.第1の電極と第2の電極との間に少なくとも光電変換層と正孔輸送層または電子輸送層とを積層してなる有機光電変換素子であって、当該正孔輸送層または電子輸送層が熱変換材料からなり、当該熱変換材料が熱により正孔輸送層または電子輸送層の組成物に変換されたことを特徴とする有機光電変換素子。   1. An organic photoelectric conversion element in which at least a photoelectric conversion layer and a hole transport layer or an electron transport layer are laminated between a first electrode and a second electrode, wherein the hole transport layer or the electron transport layer is An organic photoelectric conversion element comprising a heat conversion material, wherein the heat conversion material is converted into a composition of a hole transport layer or an electron transport layer by heat.

2.前記正孔輸送層または電子輸送層の少なくとも一部に、(i)熱変換材料または熱変換材料を含むエリアと、(ii)前記熱変換材料または熱変換材料を含むエリアに隣接もしくは近接して、電磁波吸収能を持つ物質または電磁波吸収能を持つ物質を含むエリアとが、配置され、電磁波が照射された際に、当該電磁波吸収能を持つ物質が発生する熱により、当該熱変換材料が正孔輸送層または電子輸送層の組成物に変換されたことを特徴とする前記1に記載の有機光電変換素子。   2. At least a part of the hole transport layer or the electron transport layer includes (i) an area containing a heat conversion material or a heat conversion material, and (ii) adjacent to or close to the area containing the heat conversion material or the heat conversion material. When an electromagnetic wave absorbing substance or an area containing an electromagnetic wave absorbing substance is disposed and the electromagnetic wave is irradiated, the heat conversion material is corrected by heat generated by the electromagnetic wave absorbing substance. 2. The organic photoelectric conversion element as described in 1 above, which has been converted into a composition of a hole transport layer or an electron transport layer.

3.前記正孔輸送層または電子輸送層の少なくとも一部に、熱変換材料と電磁波吸収能を持つ物質を含むエリアとが配置され、電磁波が照射された際に、当該電磁波吸収能を持つ物質が発生する熱により、当該熱変換材料が正孔輸送層または電子輸送層の組成物に変換されたことを特徴とする前記1に記載の有機光電変換素子。   3. At least a part of the hole transport layer or the electron transport layer is provided with a heat conversion material and an area containing a substance having an electromagnetic wave absorbing ability, and when the electromagnetic wave is irradiated, the substance having the electromagnetic wave absorbing ability is generated. 2. The organic photoelectric conversion element as described in 1 above, wherein the heat conversion material is converted into a composition of a hole transport layer or an electron transport layer by heat to be generated.

4.前記電磁波吸収能を持つ物質が、導電性の金属酸化物であることを特徴とする前記2又は前記3に記載の有機光電変換素子。   4). 4. The organic photoelectric conversion element as described in 2 or 3 above, wherein the substance having electromagnetic wave absorbing ability is a conductive metal oxide.

5.前記熱変換材料が、少なくとも3種類以上の金属元素を含む無機半導体前駆体であり、無機半導体に変換されたことを特徴とする前記1から前記4のいずれか一項に記載の有機光電変換素子。   5. 5. The organic photoelectric conversion element according to any one of 1 to 4, wherein the heat conversion material is an inorganic semiconductor precursor containing at least three or more kinds of metal elements and is converted into an inorganic semiconductor. .

6.前記無機半導体が、少なくとも、In、Zn、Snのいずれかの元素を含むことを特徴とする前記5に記載の有機光電変換素子。   6). 6. The organic photoelectric conversion element as described in 5 above, wherein the inorganic semiconductor contains at least one element of In, Zn, and Sn.

7.前記無機半導体が、Ga、Alのいずれかを含むことを特徴とする前記4から前記6のいずれか一項に記載の有機光電変換素子。   7). The organic photoelectric conversion element according to any one of 4 to 6, wherein the inorganic semiconductor contains Ga or Al.

8.前記無機半導体が、金属酸化物半導体であることを特徴とする前記5から前記7のいずれか一項に記載の有機光電変換素子。   8). 8. The organic photoelectric conversion element according to any one of 5 to 7, wherein the inorganic semiconductor is a metal oxide semiconductor.

9.前記熱変換材料が、有機半導体前駆体であり、有機半導体に変換されたことを特徴とする前記1から前記4のいずれか一項に記載の有機光電変換素子。   9. 5. The organic photoelectric conversion element according to any one of 1 to 4, wherein the heat conversion material is an organic semiconductor precursor and is converted into an organic semiconductor.

10.前記1から前記9のいずれか一項に記載の有機光電変換素子を製造する有機光電変換素子の製造方法であって、正孔輸送層または電子輸送層の少なくとも一部に、(i)熱変換材料または熱変換材料を含むエリアと、(ii)前記熱変換材料または熱変換材料を含むエリアに隣接もしくは近接して電磁波吸収能を持つ物質又は電磁波吸収能を持つ物質を含むエリアとを、配置し、電磁波を照射して、当該電磁波吸収能を持つ物質が発生する熱により、当該熱変換材料を正孔輸送層または電子輸送層の組成物に変換することを特徴とする有機光電変換素子の製造方法。   10. It is a manufacturing method of the organic photoelectric conversion element which manufactures the organic photoelectric conversion element as described in any one of said 1 to 9, Comprising: At least one part of a positive hole transport layer or an electron carrying layer, (i) Thermal conversion An area containing a material or a heat conversion material, and (ii) an area containing an electromagnetic wave absorbing substance or a substance having an electromagnetic wave absorbing ability adjacent to or in close proximity to the heat conversion material or the area containing the heat conversion material are arranged. An organic photoelectric conversion element characterized by converting the heat conversion material into a composition of a hole transport layer or an electron transport layer by heat generated by the substance having the ability to absorb electromagnetic waves by irradiating electromagnetic waves Production method.

11.前記1から前記9のいずれか一項に記載の有機光電変換素子を製造する有機光電変換素子の製造方法であって、正孔輸送層または電子輸送層の少なくとも一部に、熱変換材料と電磁波吸収能を持つ物質を含むエリアを配置し、電磁波を照射して、当該電磁波吸収能を持つ物質が発生する熱により、当該熱変換材料を正孔輸送層または電子輸送層の組成物に変換することを特徴とする有機光電変換素子の製造方法。   11. It is a manufacturing method of the organic photoelectric conversion element which manufactures the organic photoelectric conversion element as described in any one of said 1 to 9, Comprising: At least one part of a positive hole transport layer or an electron carrying layer WHEREIN: A heat conversion material and electromagnetic waves An area including a substance having an absorptive ability is arranged, irradiated with electromagnetic waves, and the heat conversion material is converted into a composition of a hole transport layer or an electron transport layer by heat generated by the substance having the ability to absorb electromagnetic waves. The manufacturing method of the organic photoelectric conversion element characterized by the above-mentioned.

12.基板の一方の面に形成した電磁波吸収能を持つ電極層上に、熱変換材料を含む層を塗布形成し、電磁波照射することによって、当該電極から発生する熱により、当該熱変換材料を含む層を正孔輸送層または電子輸送層に変換することを特徴とする前記10に記載の有機光電変換素子の製造方法。   12 A layer containing the heat conversion material is formed by coating and forming a layer containing a heat conversion material on an electrode layer having electromagnetic wave absorption ability formed on one surface of the substrate, and irradiating the electromagnetic wave. 11. The method for producing an organic photoelectric conversion element as described in 10 above, wherein the compound is converted into a hole transport layer or an electron transport layer.

13.電磁波吸収能を持つ基板の一方の面に形成した電極層上に、熱変換材料を含む層を塗布形成し、電磁波照射することによって、当該基板から発生する熱により、当該熱変換材料を含む層を正孔輸送層または電子輸送層に変換することを特徴とする前記10に記載の有機光電変換素子の製造方法。   13. A layer containing the heat conversion material is formed by applying a layer containing a heat conversion material on the electrode layer formed on one surface of the substrate having electromagnetic wave absorption ability and irradiating the electromagnetic wave, thereby generating heat from the substrate. 11. The method for producing an organic photoelectric conversion element as described in 10 above, wherein the compound is converted into a hole transport layer or an electron transport layer.

14.基板の一方の面に形成した電極層上に、熱変換材料と電磁波吸収能を持つ物質を含む層を塗布形成し、電磁波照射することによって、当該電磁波吸収能を持つ物質から発生する熱により、当該熱変換材料を含む層を正孔輸送層または電子輸送層に変換することを特徴とする前記11に記載の有機光電変換素子の製造方法。   14 On the electrode layer formed on one surface of the substrate, a layer containing a heat conversion material and a substance having an electromagnetic wave absorbing ability is applied and formed by irradiating the electromagnetic wave, thereby generating heat from the substance having the electromagnetic wave absorbing ability, 12. The method for producing an organic photoelectric conversion element as described in 11 above, wherein the layer containing the heat conversion material is converted into a hole transport layer or an electron transport layer.

15.前記電磁波が、マイクロ波であることを特徴とする前記10から前記14のいずれか一項に記載の有機光電変換素子の製造方法。   15. 15. The method for producing an organic photoelectric conversion element according to any one of 10 to 14, wherein the electromagnetic wave is a microwave.

本発明の上記手段により、光吸収によって発生した電子と正孔(電荷キャリア)の再結合に対し低温製膜プロセスで優れたブロック能を有する電荷輸送層を備え、エネルギー変換効率を向上させた有機光電変換素子(バルクヘテロジャンクション型の有機太陽電池)及びその製造方法を提供することができる。   An organic material comprising a charge transport layer having an excellent blocking ability in a low-temperature film-forming process against recombination of electrons and holes (charge carriers) generated by light absorption by the above means of the present invention, and improving energy conversion efficiency A photoelectric conversion element (bulk heterojunction type organic solar cell) and a manufacturing method thereof can be provided.

本発明の有機光電変換素子の基本構造を示す概略断面図。The schematic sectional drawing which shows the basic structure of the organic photoelectric conversion element of this invention. 熱変換材料が電荷輸送層の組成物に変換される工程の概念図。The conceptual diagram of the process by which a heat conversion material is converted into the composition of an electric charge transport layer.

本発明の、有機光電変換素子は、第1の電極と第2の電極との間に少なくとも光電変換層と正孔輸送層または電子輸送層(以下、「正孔輸送層」と「電子輸送層」を総じて「電荷輸送層」ともいう。)とを積層してなる有機光電変換素子であって、当該正孔輸送層または電子輸送層が熱変換材料からなり、当該熱変換材料が熱により正孔輸送層または電子輸送層の組成物に変換されたことを特徴とする。この特徴は、請求項1から請求項15に係る発明に共通する技術的特徴である。   The organic photoelectric conversion element of the present invention includes at least a photoelectric conversion layer and a hole transport layer or an electron transport layer (hereinafter referred to as “hole transport layer” and “electron transport layer” between the first electrode and the second electrode. Is generally referred to as a “charge transport layer”), and the hole transport layer or the electron transport layer is made of a heat conversion material, and the heat conversion material is heated by heat. The composition is converted into a composition of a hole transport layer or an electron transport layer. This feature is a technical feature common to the inventions according to claims 1 to 15.

本発明の実施態様としては、発明の効果の観点から、前記電荷輸送層の少なくとも一部に、(i)熱変換材料または熱変換材料を含むエリアと、(ii)前記熱変換材料または熱変換材料を含むエリアに隣接もしくは近接して、電磁波吸収能を持つ物質または電磁波吸収能を持つ物質を含むエリアとが配置され、電磁波が照射された際に、当該電磁波吸収能を持つ物質が発生する熱により、当該熱変換材料が電荷輸送層の組成物に変換された態様であることが好ましい。また、当該電荷輸送層の少なくとも一部に、熱変換材料と電磁波吸収能を持つ物質を含むエリアとが配置され、電磁波が照射された際に、当該電磁波吸収能を持つ物質が発生する熱により、当該熱変換材料が電荷輸送層の組成物に変換された態様であることも好ましい。   In an embodiment of the present invention, from the viewpoint of the effect of the invention, at least a part of the charge transport layer includes (i) an area containing a heat conversion material or a heat conversion material, and (ii) the heat conversion material or the heat conversion. A substance having electromagnetic wave absorbing ability or an area containing an electromagnetic wave absorbing substance is arranged adjacent to or close to the area containing the material, and when the electromagnetic wave is irradiated, the substance having the electromagnetic wave absorbing ability is generated. The heat conversion material is preferably converted into a charge transport layer composition by heat. Further, at least a part of the charge transport layer is provided with a heat conversion material and an area containing a substance having electromagnetic wave absorption ability, and when irradiated with electromagnetic waves, the heat generated by the substance having electromagnetic wave absorption ability is generated. It is also preferable that the heat conversion material is converted into a charge transport layer composition.

本発明においては、前記熱変換材料が、少なくとも3種類以上の金属元素を含む無機半導体前駆体であり、無機半導体に変換された態様であることが好ましい。また、当該無機半導体が、少なくとも、In、Zn、Snのいずれかの元素を含むことが好ましい。更に、当該無機半導体が、Ga、Alのいずれかを含むことが好ましい。   In this invention, it is preferable that the said heat conversion material is an inorganic semiconductor precursor containing at least 3 or more types of metal elements, and is the aspect converted into the inorganic semiconductor. The inorganic semiconductor preferably contains at least one of In, Zn, and Sn. Further, the inorganic semiconductor preferably contains either Ga or Al.

また、前記無機半導体が、金属酸化物半導体であることが好ましい。   The inorganic semiconductor is preferably a metal oxide semiconductor.

本発明においては、前記熱変換材料が、有機半導体前駆体であり、有機半導体に変換された態様であることも好ましい。   In this invention, it is also preferable that the said heat conversion material is an organic-semiconductor precursor, and is the aspect converted into the organic semiconductor.

一方、前記電磁波吸収能を持つ物質が、導電性の金属酸化物であることが好ましい。   On the other hand, it is preferable that the substance having electromagnetic wave absorbing ability is a conductive metal oxide.

本発明の有機光電変換素子を製造する有機光電変換素子の製造方法としては、電荷輸送層の少なくとも一部に、(i)熱変換材料または熱変換材料を含むエリアと、(ii)前記熱変換材料または熱変換材料を含むエリアに隣接もしくは近接して電磁波吸収能を持つ物質又は電磁波吸収能を持つ物質を含むエリアとを、配置し、電磁波を照射して、当該電磁波吸収能を持つ物質が発生する熱により、当該熱変換材料を電荷輸送層の組成物に変換する態様の製造方法であることが好ましい。また、電荷輸送層の少なくとも一部に、熱変換材料と電磁波吸収能を持つ物質を含むエリアを配置し、電磁波を照射して、当該電磁波吸収能を持つ物質が発生する熱により、当該熱変換材料を電荷輸送層の組成物に変換する態様であることも好ましい。   The organic photoelectric conversion device manufacturing method for manufacturing the organic photoelectric conversion device of the present invention includes (i) a heat conversion material or an area containing the heat conversion material in at least a part of the charge transport layer, and (ii) the heat conversion. A substance having an electromagnetic wave absorbing ability or an area containing an electromagnetic wave absorbing substance adjacent to or in the vicinity of an area containing a material or a heat conversion material is disposed and irradiated with an electromagnetic wave. It is preferable that the heat conversion material is converted into the charge transport layer composition by the generated heat. In addition, an area including a heat conversion material and a substance having electromagnetic wave absorbing ability is disposed in at least a part of the charge transport layer, and the heat conversion is performed by heat generated by the substance having the electromagnetic wave absorbing ability by irradiation with electromagnetic waves. It is also preferred that the material be converted into a charge transport layer composition.

本発明においては、基板の一方の面に形成した電磁波吸収能を持つ電極層上に、熱変換材料を含む層を塗布形成し、電磁波照射することによって、当該電極から発生する熱により、当該熱変換材料を含む層を電荷輸送層に変換する態様の製造方法であることが好ましい。また、電磁波吸収能を持つ基板の一方の面に形成した電極層上に、熱変換材料を含む層を塗布形成し、電磁波照射することによって、当該基板から発生する熱により、当該熱変換材料を含む層を電荷輸送層に変換する態様の製造方法であることも好ましい。更に、基板の一方の面に形成した電極層上に、熱変換材料と電磁波吸収能を持つ物質を含む層を塗布形成し、電磁波照射することによって、当該電磁波吸収能を持つ物質から発生する熱により、当該熱変換材料を含む層を電荷輸送層に変換する態様であることが好ましい。   In the present invention, a layer containing a heat conversion material is applied and formed on an electrode layer having electromagnetic wave absorption ability formed on one surface of a substrate, and the heat is generated by the heat generated from the electrode by irradiating the electromagnetic wave. It is preferable that the production method has a mode in which a layer containing a conversion material is converted into a charge transport layer. In addition, a layer containing a heat conversion material is applied and formed on an electrode layer formed on one surface of a substrate having electromagnetic wave absorbing ability, and the heat conversion material is applied by heat generated from the substrate by irradiating the electromagnetic wave. It is also preferable that the production method has a mode in which the layer to be contained is converted into a charge transport layer. Further, a heat conversion material and a layer containing a substance capable of absorbing electromagnetic waves are applied and formed on the electrode layer formed on one side of the substrate, and heat generated from the substance having the ability to absorb electromagnetic waves is irradiated by electromagnetic waves. Thus, it is preferable that the layer containing the heat conversion material is converted into a charge transport layer.

なお、本発明においては、前記電磁波が、マイクロ波であることが好ましい。   In the present invention, the electromagnetic wave is preferably a microwave.

以下、本発明とその構成要素、及び、本発明を実施するための最良の形態・態様について詳細な説明をする。   Hereinafter, the present invention, its components, and the best mode and mode for carrying out the present invention will be described in detail.

(本発明の有機光電変換素子の基本構造)
本発明の有機光電変換素子は、第1の電極と第2の電極との間に少なくとも光電変換層と電荷輸送層とを積層してなる有機光電変換素子であるが、その有機光電変換素子の基本構造の一例の概略断面図を図1に示す。図1において、有機光電変換素子10は、基板11の一方面上に、第1電極12、第1の電荷輸送層13、バルクヘテロジャンクション構造(p型半導体層及びn型半導体層を含む混合により形成されたドメイン構造)を有する光電変換層14(以下「バルクヘテロジャンクション層」ともいう。)、第2の電荷輸送層15、及び第2電極16が図1に示すように順次積層された構造からなる。
(Basic structure of the organic photoelectric conversion device of the present invention)
The organic photoelectric conversion element of the present invention is an organic photoelectric conversion element formed by laminating at least a photoelectric conversion layer and a charge transport layer between a first electrode and a second electrode. A schematic sectional view of an example of the basic structure is shown in FIG. In FIG. 1, an organic photoelectric conversion element 10 is formed on one surface of a substrate 11 by mixing a first electrode 12, a first charge transport layer 13, and a bulk heterojunction structure (including a p-type semiconductor layer and an n-type semiconductor layer). 1 has a structure in which a photoelectric conversion layer 14 (hereinafter also referred to as a “bulk heterojunction layer”), a second charge transport layer 15, and a second electrode 16 are sequentially stacked as shown in FIG. .

光電変換層14に外部光を入射させるためには、前記基板11及び第1電極12、もしくは第2電極が発電に寄与する光の波長域に対して実質透明であることが好ましい。基板11と第1電極が透明で、且つ第2電極が第1電極側から入射して、光電変換層14を透過してきた光を反射させる構成であることがより好ましい。また、基板11及び第1電極、第2電極が共に透明である構成も、本発明において好ましく用いることができる。   In order for external light to enter the photoelectric conversion layer 14, the substrate 11 and the first electrode 12 or the second electrode are preferably substantially transparent to the wavelength range of light that contributes to power generation. More preferably, the substrate 11 and the first electrode are transparent, and the second electrode is incident from the first electrode side and reflects light transmitted through the photoelectric conversion layer 14. A configuration in which the substrate 11 and the first electrode and the second electrode are both transparent can also be preferably used in the present invention.

第1電極が正極である場合は、正孔と電子からなるフリー電荷の内、正孔を主に取り出す構成のため、上述した第1の電荷輸送層13は正孔輸送層であることが好ましい。同様に、第2電極が陰極である場合は電子を主に取り出す構成のため、第2の電荷輸送層15は電子輸送層であることが好ましい。   When the first electrode is a positive electrode, the first charge transport layer 13 described above is preferably a hole transport layer because of the configuration in which holes are mainly extracted from free charges composed of holes and electrons. . Similarly, in the case where the second electrode is a cathode, the second charge transport layer 15 is preferably an electron transport layer because of a configuration in which electrons are mainly extracted.

本発明において、第1の電荷輸送層と第2の電荷輸送層で輸送される電荷は、電子または正孔のどちらでもよく、好ましくは対になる選択することがより好ましい。また、本発明の有機光電変換素子は、第1の電荷輸送層と第2の電荷輸送層の少なくともどちらかの層を有していればよく、図1に示されるように、光電変換層14を上下から挟む様な形態で、第1の電荷輸送層、第2の電荷輸送層それぞれを有することがより好ましい。   In the present invention, the charges transported in the first charge transport layer and the second charge transport layer may be either electrons or holes, and more preferably selected in pairs. Moreover, the organic photoelectric conversion element of this invention should just have a layer of at least one of a 1st charge transport layer and a 2nd charge transport layer, and as FIG. 1 shows, the photoelectric converting layer 14 is shown. It is more preferable to have each of the first charge transport layer and the second charge transport layer in such a form that is sandwiched from above and below.

(熱変換材料と電磁波吸収能を持つ物質)
本発明に係る電荷輸送層は、その少なくとも一部に、(i)熱変換材料または熱変換材料を含むエリアと、(ii)前記熱変換材料または熱変換材料を含むエリアに隣接もしくは近接して、電磁波吸収能を持つ物質または電磁波吸収能を持つ物質を含むエリアとが、配置され、電磁波が照射された際に、当該電磁波吸収能を持つ物質が発生する熱により、当該熱変換材料が電荷輸送層の組成物に変換される態様であることが好ましい。また、当該電荷輸送層の少なくとも一部に、熱変換材料と電磁波吸収能を持つ物質を含むエリアとが配置され、電磁波が照射された際に、当該電磁波吸収能を持つ物質が発生する熱により、当該熱変換材料が電荷輸送層の組成物に変換される態様であることも好ましい。
(Heat conversion material and substance with electromagnetic wave absorption ability)
The charge transport layer according to the present invention includes, at least in part, (i) an area including a heat conversion material or a heat conversion material, and (ii) adjacent to or close to the area including the heat conversion material or the heat conversion material. When the electromagnetic wave absorbing substance or the area containing the electromagnetic wave absorbing substance is disposed and the electromagnetic wave is irradiated, the heat conversion material is charged by the heat generated by the electromagnetic wave absorbing substance. It is preferable that it is the aspect converted into the composition of a transport layer. Further, at least a part of the charge transport layer is provided with a heat conversion material and an area containing a substance having electromagnetic wave absorption ability, and when irradiated with electromagnetic waves, the heat generated by the substance having electromagnetic wave absorption ability is generated. It is also preferable that the heat conversion material is converted into the charge transport layer composition.

〈熱変換材料〉
本発明に係る前記熱変換材料は、少なくとも3種類以上の金属元素を含む無機半導体前駆体であり、無機半導体に変換される材料であることが好ましい。
<Heat conversion material>
The heat conversion material according to the present invention is an inorganic semiconductor precursor containing at least three or more kinds of metal elements, and is preferably a material that is converted into an inorganic semiconductor.

また、当該無機半導体が、少なくとも、In、Zn、Snのいずれかの元素を含む半導体であることが好ましい。更に、当該無機半導体が、Ga、Alのいずれかを含む半導体であっても良い。   The inorganic semiconductor is preferably a semiconductor containing at least one of In, Zn, and Sn. Furthermore, the inorganic semiconductor may be a semiconductor containing either Ga or Al.

本発明においては、当該無機半導体が、金属酸化物半導体であることが特に好ましい。また、熱変換材料として、有機半導体前駆体であり、有機半導体に変換される材料を用いることも好ましい。   In the present invention, the inorganic semiconductor is particularly preferably a metal oxide semiconductor. Moreover, it is also preferable to use the material which is an organic semiconductor precursor and is converted into an organic semiconductor as the heat conversion material.

以下、熱変換材料について更に詳しく説明する。   Hereinafter, the heat conversion material will be described in more detail.

本発明において、熱変換材料である半導体前駆体としては、金属酸化物半導体前駆体、また有機半導体前駆体材料も用いることができる。   In the present invention, a metal oxide semiconductor precursor or an organic semiconductor precursor material can also be used as the semiconductor precursor that is a heat conversion material.

(金属酸化物半導体)
金属酸化物半導体前駆体としては、金属元素含有化合物が挙げられ、金属元素含有化合物には、金属元素を含む、金属塩、ハロゲン化金属化合物、有機金属化合物等を挙げることができる。
(Metal oxide semiconductor)
Examples of the metal oxide semiconductor precursor include a metal element-containing compound, and examples of the metal element-containing compound include metal salts, metal halide compounds, and organic metal compounds containing a metal element.

金属塩、ハロゲン金属化合物、有機金属化合物の金属としては、Li、Be、B、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Rb、Sr、Y、Zr、Nb、Mo、Cd、In、Ir、Sn、Sb、Cs、Ba、La、Hf、Ta、W、Tl、Pb、Bi、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等を挙げることができる。   Metals of metal salts, halogen metal compounds, and organometallic compounds include Li, Be, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Cd, In, Ir, Sn, Sb, Cs, Ba, La, Hf, Ta, W, Tl, Pb, Bi, Ce, Pr Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and the like.

それらの金属元素のうち、In(インジウム)、Zn(亜鉛)、Sn(錫)、のいずれかの金属イオンを含むことが好ましく、それらを併用して混合させてもよい。   Among these metal elements, it is preferable to include any metal ion of In (indium), Zn (zinc), or Sn (tin), and they may be used in combination.

また、その他の金属元素として、Ga(ガリウム)、Al(アルミニウム)を含むことが好ましい。   Further, it is preferable that other metal elements include Ga (gallium) and Al (aluminum).

金属塩としては、硝酸塩、酢酸塩等を、ハロゲン金属化合物としては塩化物、ヨウ化物、臭化物等を好適にもちいることができる。   As the metal salt, nitrate, acetate and the like can be suitably used, and as the halogen metal compound, chloride, iodide, bromide and the like can be suitably used.

有機金属化合物としては、下記の一般式(OMI)で示すものが挙げられる。   Examples of the organometallic compound include those represented by the following general formula (OMI).

一般式(OMI) R MR
式中、Mは金属、Rはアルキル基、Rはアルコキシ基、Rはβ−ジケトン錯体基、β−ケトカルボン酸エステル錯体基、β−ケトカルボン酸錯体基及びケトオキシ基(ケトオキシ錯体基)から選ばれる基であり、金属Mの価数をmとした場合、x+y+z=mであり、x=0〜m、またはx=0〜m−1であり、y=0〜m、z=0〜mで、いずれも0または正の整数である。Rのアルキル基としては、メチル基、エチル基、プロピル基、ブチル基等を挙げることができる。Rのアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、3,3,3−トリフルオロプロポキシ基等を挙げることができる。またアルキル基の水素原子をフッ素原子に置換したものでもよい。Rのβ−ジケトン錯体基、β−ケトカルボン酸エステル錯体基、β−ケトカルボン酸錯体基及びケトオキシ基(ケトオキシ錯体基)から選ばれる基としては、β−ジケトン錯体基として、例えば、2,4−ペンタンジオン(アセチルアセトン或いはアセトアセトンともいう)、1,1,1,5,5,5−ヘキサメチル−2,4−ペンタンジオン、2,2,6,6−テトラメチル−3,5−ヘプタンジオン、1,1,1−トリフルオロ−2,4−ペンタンジオン等を挙げることができ、β−ケトカルボン酸エステル錯体基として、例えばアセト酢酸メチルエステル、アセト酢酸エチルエステル、アセト酢酸プロピルエステル、トリメチルアセト酢酸エチル、トリフルオロアセト酢酸メチル等を挙げることができ、β−ケトカルボン酸として、例えば、アセト酢酸、トリメチルアセト酢酸等を挙げることができ、またケトオキシとして、例えば、アセトオキシ基(またはアセトキシ基)、プロピオニルオキシ基、ブチリロキシ基、アクリロイルオキシ基、メタクリロイルオキシ基等を挙げることができる。これらの基の炭素原子数は18以下が好ましい。また直鎖または分岐のもの、また水素原子をフッ素原子にしたものでもよい。有機金属化合物の中では、分子内に少なくとも1つ以上の酸素を有するものが好ましい。このようなものとしてRのアルコキシ基を少なくとも1つを含有する有機金属化合物、またRのβ−ジケトン錯体基、β−ケトカルボン酸エステル錯体基、β−ケトカルボン酸錯体基及びケトオキシ基(ケトオキシ錯体基)から選ばれる基を少なくとも1つ有する金属化合物が最も好ましい。金属塩のなかでは、硝酸塩が好ましい。硝酸塩は高純度品が入手しやすく、また使用時の媒体として好ましい水に対する溶解度が高い。硝酸塩としては、硝酸インジウム、硝酸錫、硝酸亜鉛、硝酸ガリウム等が挙げられる。
General formula (OMI) R 1 x MR 2 y R 3 z
In the formula, M is a metal, R 1 is an alkyl group, R 2 is an alkoxy group, R 3 is a β-diketone complex group, a β-ketocarboxylic acid ester complex group, a β-ketocarboxylic acid complex group, and a ketooxy group (ketooxy complex group). X + y + z = m, x = 0 to m, or x = 0 to m−1, and y = 0 to m, z = 0. ~ M, each of which is 0 or a positive integer. Examples of the alkyl group for R 1 include a methyl group, an ethyl group, a propyl group, and a butyl group. Examples of the alkoxy group for R 2 include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a 3,3,3-trifluoropropoxy group. Further, a hydrogen atom in the alkyl group may be substituted with a fluorine atom. Examples of the group selected from a β-diketone complex group, a β-ketocarboxylic acid ester complex group, a β-ketocarboxylic acid complex group, and a ketooxy group (ketooxy complex group) of R 3 include, for example, 2,4 -Pentanedione (also called acetylacetone or acetoacetone), 1,1,1,5,5,5-hexamethyl-2,4-pentanedione, 2,2,6,6-tetramethyl-3,5-heptanedione , 1,1,1-trifluoro-2,4-pentanedione, and the β-ketocarboxylic acid ester complex group includes, for example, acetoacetic acid methyl ester, acetoacetic acid ethyl ester, acetoacetic acid propyl ester, trimethylacetate Examples thereof include ethyl acetate, methyl trifluoroacetoacetate and the like, and examples of β-ketocarboxylic acid include Examples thereof include acetoacetic acid and trimethylacetoacetic acid, and examples of ketooxy include acetooxy group (or acetoxy group), propionyloxy group, butyryloxy group, acryloyloxy group, and methacryloyloxy group. These groups preferably have 18 or less carbon atoms. Further, it may be linear or branched, or a hydrogen atom may be a fluorine atom. Among organometallic compounds, those having at least one oxygen in the molecule are preferable. As such, an organometallic compound containing at least one alkoxy group of R 2 , a β-diketone complex group, a β-ketocarboxylic acid ester complex group, a β-ketocarboxylic acid complex group and a ketooxy group (ketooxy group) of R 3 Most preferred are metal compounds having at least one group selected from (complex groups). Among the metal salts, nitrate is preferable. Nitrate is easily available as a high-purity product and has high solubility in water, which is preferable as a medium for use. Examples of nitrates include indium nitrate, tin nitrate, zinc nitrate, and gallium nitrate.

以上の金属酸化物半導体前駆体のうち、好ましいのは、金属の硝酸塩、金属のハロゲン化物、アルコキシド類である。具体例としては、硝酸インジウム、硝酸亜鉛、硝酸ガリウム、硝酸スズ、硝酸アルミニウム、塩化インジウム、塩化亜鉛、塩化スズ(2価)、塩化スズ(4価)、塩化ガリウム、塩化アルミニウム、トリ−i−プロポキシインジウム、ジエトキシ亜鉛、ビス(ジピバロイルメタナト)亜鉛、テトラエトキシスズ、テトラ−i−プロポキシスズ、トリ−i−プロポキシガリウム、トリ−i−プロポキシアルミニウムなどが挙げられる。   Of the above metal oxide semiconductor precursors, metal nitrates, metal halides, and alkoxides are preferable. Specific examples include indium nitrate, zinc nitrate, gallium nitrate, tin nitrate, aluminum nitrate, indium chloride, zinc chloride, tin chloride (divalent), tin chloride (tetravalent), gallium chloride, aluminum chloride, tri-i-. Examples include propoxyindium, diethoxyzinc, bis (dipivaloylmethanato) zinc, tetraethoxytin, tetra-i-propoxytin, tri-i-propoxygallium, and tri-i-propoxyaluminum.

(金属酸化物半導体前駆体薄膜の成膜方法)
これらの金属酸化物半導体の前駆体となる金属を含有する薄膜を形成するためには、公知の成膜法、真空蒸着法、分子線エピタキシャル成長法、イオンクラスタービーム法、低エネルギーイオンビーム法、イオンプレーティング法、CVD法、スパッタリング法、大気圧プラズマ法などを用いることができるが、本発明については金属塩、ハロゲン化物、有機金属化合物等を適切な溶媒に溶解した溶液を用いて基板上に連続的に塗設することで生産性を大幅に向上することが出来好ましい。この点からも、金属化合物としては、塩化物、硝酸塩、酢酸塩、金属アルコキシド等を用いること事が溶解性の観点からより好ましい。
(Metal oxide semiconductor precursor thin film deposition method)
In order to form a thin film containing a metal as a precursor of these metal oxide semiconductors, a known film formation method, vacuum deposition method, molecular beam epitaxial growth method, ion cluster beam method, low energy ion beam method, ion A plating method, a CVD method, a sputtering method, an atmospheric pressure plasma method, and the like can be used. In the present invention, a solution in which a metal salt, a halide, an organometallic compound, or the like is dissolved in an appropriate solvent is used on the substrate. The continuous coating is preferable because it can greatly improve the productivity. Also from this point, it is more preferable from the viewpoint of solubility to use a chloride, nitrate, acetate, metal alkoxide or the like as the metal compound.

溶媒としては、水の他、用いる金属化合物を溶解するものであれば特に制限されるところではないが、水や、エタノール、プロパノール、エチレングリコールなどのアルコール類、テトラヒドロフラン、ジオキサン等のエーテル系、酢酸メチル、酢酸エチル等のエステル系、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系、ジエチレングリコールモノメチルエーテル等グリコールエーテル系、また、アセトニトリルなど、更に、キシレン、トルエン等の芳香族炭化水素系溶媒、o−ジクロロベンゼン、ニトロベンゼン、m−クレゾール等の芳香族系溶媒、ヘキサン、シクロヘキサン、トリデカンなどの脂肪族炭化水素溶媒、α−テルピネオール、また、クロロホルムや1,2−ジクロロエタン等のハロゲン化アルキル系溶媒、N−メチルピロリドン、2硫化炭素等を好適に用いることができる。   The solvent is not particularly limited as long as it dissolves the metal compound to be used in addition to water, but water, alcohols such as ethanol, propanol, and ethylene glycol, ethers such as tetrahydrofuran and dioxane, acetic acid, and the like. Esters such as methyl and ethyl acetate, ketones such as acetone, methyl ethyl ketone, and cyclohexanone, glycol ethers such as diethylene glycol monomethyl ether, acetonitrile, and aromatic hydrocarbon solvents such as xylene and toluene, o-dichlorobenzene , Aromatic solvents such as nitrobenzene and m-cresol, aliphatic hydrocarbon solvents such as hexane, cyclohexane and tridecane, α-terpineol, and halogenated alkyl solvents such as chloroform and 1,2-dichloroethane N- methylpyrrolidone, can be preferably used carbon disulfide and the like.

金属ハロゲン化物及び/又は金属アルコキシドを用いた場合には比較的極性の高い溶媒が好ましく、中でも沸点が100℃以下の水、エタノール、プロパノール等のアルコール類、アセトニトリル、又はこれらの混合物を用いると乾燥温度を低くする事ができため、樹脂基板に塗設することが可能となりより好ましい。   When a metal halide and / or metal alkoxide is used, a solvent having a relatively high polarity is preferable. Among them, water having a boiling point of 100 ° C. or less, alcohols such as ethanol and propanol, acetonitrile, or a mixture thereof is dried. Since the temperature can be lowered, it is possible to coat the resin substrate, which is more preferable.

また、溶媒中に金属アルコキシドと種々のアルカノールアミン、α−ヒドロキシケトン、β−ジケトンなどの多座配位子であるキレート配位子を添加すると、金属アルコキシドを安定化したり、カルボン酸塩の溶解度を増加させる事ができ、悪影響が出ない範囲で添加することが好ましい。   Addition of metal alkoxide and various ligands such as alkanolamines, α-hydroxy ketones, β-diketones and other chelating ligands in the solvent stabilizes the metal alkoxide and the solubility of the carboxylate. It is preferable to add it in a range that does not cause adverse effects.

半導体前駆体材料を含有する液体を基材上に適用して薄膜を形成する方法としては、スピンコート法、スプレーコート法、ブレードコート法、ディップコート法、キャスト法、バーコート法、ダイコート法など塗布法、また、凸版、凹版、平版、スクリーン印刷、インクジェットなどの印刷法等、広い意味での塗布による方法が挙げられ、また、これによりパターン化する方法などが挙げられる。また、塗布膜からフォトリソグラフ法、レーザーアブレーションなどによりパターン化してもよい。これらのうち、好ましいのは薄膜の塗布が可能な、インクジェット法、スプレーコート法等である。   Examples of methods for forming a thin film by applying a liquid containing a semiconductor precursor material onto a substrate include spin coating, spray coating, blade coating, dip coating, casting, bar coating, and die coating. Examples of the coating method include a method by coating in a broad sense such as a printing method such as a relief printing plate, an intaglio plate, a planographic printing method, a screen printing method, and an ink jet printing method, and a method of patterning by this. Alternatively, the coating film may be patterned by photolithography, laser ablation, or the like. Among these, the ink jet method, spray coating method, etc. which can apply | coat a thin film are preferable.

成膜する場合、塗布後、150℃程度で溶媒を揮発させることにより金属酸化物の前駆体の薄膜が形成される。尚、溶液を滴下する際、基板自体を150℃程度に加熱しておくと、塗布、乾燥の2プロセスを同時に行えるため好ましい。   In the case of film formation, a thin film of a metal oxide precursor is formed by volatilizing the solvent at about 150 ° C. after coating. In addition, when dropping the solution, it is preferable to heat the substrate itself to about 150 ° C. because two processes of coating and drying can be performed simultaneously.

(金属の組成比)
好ましい、金属の組成比としては、Inを1とした時、ZnSn1−y(ここにおいてyは0〜1の正数)は0.2〜5、好ましくは0.5〜2とする。さらにInを1とした時に、Gaの組成比は0.2〜5、好ましくは0.5〜2とする。
(Composition ratio of metal)
As a preferred metal composition ratio, when In is 1, Zn y Sn 1-y (where y is a positive number from 0 to 1 ) is 0.2 to 5, preferably 0.5 to 2. . Furthermore, when In is set to 1, the composition ratio of Ga is 0.2 to 5, preferably 0.5 to 2.

また、前駆体となる金属を含む薄膜の膜厚は1〜200nm、より好ましくは5〜100nmである。   Moreover, the film thickness of the thin film containing the metal used as a precursor is 1-200 nm, More preferably, it is 5-100 nm.

(非晶質酸化物)
形成される金属酸化物半導体としては、単結晶、多結晶、非晶質のいずれの状態も使用可能だが、好ましくは非晶質の薄膜を用いる。
(Amorphous oxide)
As the metal oxide semiconductor to be formed, any state of single crystal, polycrystal, and amorphous can be used, but an amorphous thin film is preferably used.

(有機半導体材料)
有機半導体前駆体材料としては、例えば、前記特開2003−304014号公報に記載のような環状構造をもつビシクロ化合物(ビシクロポルフィリン化合物)が挙げられる。これらの化合物で形成された膜は、加熱により、脱エチレン化反応が進行して、平面性の高いテトラベンゾポルフィリン等の膜を得ることができ高効率の有機半導体層を形成する。半導体前駆体として、これらのビシクロポルフィリン化合物又その金属錯体を用いることで、ITO電極の電磁波吸収による発熱によって同じく平面性の高い有機半導体層が形成できる。
(Organic semiconductor materials)
Examples of the organic semiconductor precursor material include bicyclo compounds (bicycloporphyrin compounds) having a cyclic structure as described in JP-A-2003-304014. A film formed of these compounds undergoes a deethylation reaction by heating, whereby a film such as tetrabenzoporphyrin having high planarity can be obtained, and a highly efficient organic semiconductor layer is formed. By using these bicycloporphyrin compounds or metal complexes thereof as a semiconductor precursor, an organic semiconductor layer having high planarity can be formed by heat generated by electromagnetic wave absorption of the ITO electrode.

これらビシクロポルフィリン化合物の具体的化合物例としては、前記有機特開2003−304014号明細書、段落(0022)〜(0025)に記載されており、これらの化合物、また例えば銅等の金属錯体を用いることができる。具体例を以下に挙げる。   Specific examples of these bicycloporphyrin compounds are described in the above-mentioned organic Japanese Patent Application Laid-Open No. 2003-304014, paragraphs (0022) to (0025), and these compounds and metal complexes such as copper are used. be able to. Specific examples are given below.

Figure 2010161270
Figure 2010161270

これらのビシクロ化合物も必要に応じ溶媒に溶解して塗布することができる。特に脱エチレン反応にて変換される分子が溶媒に難溶なものが有用である。塗布の方法としては、キャスティング法、スピンコート法、スプレーコート法、ブレードコート法、ディップコート法、バーコート法、ダイコート法など塗布法、また、凸版、凹版、平版、スクリーン印刷、インクジェットなどの印刷法等、広い意味での塗布による方法を用いることができる。また、これによりパターン化する方法などが挙げられる。また、塗布膜からフォトリソグラフ法、レーザーアブレーションなどによりパターン化してもよい。   These bicyclo compounds can also be dissolved and applied in a solvent as required. Particularly useful are those in which the molecules converted by the deethyleneation reaction are hardly soluble in the solvent. Coating methods include casting methods, spin coating methods, spray coating methods, blade coating methods, dip coating methods, bar coating methods, die coating methods, and printing methods such as relief printing, intaglio printing, lithographic printing, screen printing, and inkjet printing. A method by coating in a broad sense such as a method can be used. Moreover, the method of patterning by this is mentioned. Alternatively, the coating film may be patterned by photolithography, laser ablation, or the like.

〈電磁波吸収能を持つ物質を含むエリア〉
本発明に係る電磁波吸収能を持つ物質は、照射された電磁波を吸収し熱変化することで、当該物質自身が発熱して熱源となるため、誘電損失または抵抗損失が大きく効率よく発熱する材料が好ましい。
<Areas containing substances that absorb electromagnetic waves>
The substance having electromagnetic wave absorbing ability according to the present invention absorbs the irradiated electromagnetic wave and changes heat, so that the substance itself generates heat and becomes a heat source. preferable.

電磁波吸収能を持つ材料としては、金属酸化物が好ましい。金属酸化物としては、チタン、銅、ニッケル、亜鉛、錫、インジウムの酸化物が好ましい。   A metal oxide is preferable as the material having electromagnetic wave absorbing ability. As the metal oxide, titanium, copper, nickel, zinc, tin, and indium oxides are preferable.

また、酸素の存在下で電磁波を照射することにより酸化して金属酸化物となる場合には、金属原子を含む、金属塩、ハロゲン化物、有機金属化合物を用いることもできる。   In the case where a metal oxide is oxidized by irradiation with electromagnetic waves in the presence of oxygen, a metal salt, halide, or organometallic compound containing a metal atom can also be used.

金属塩、金属酸化物、有機金属化合物、ハロゲン金属化合物、金属水素化合物の金属としては、Li、Be、B、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Rb、Sr、Y、Zr、Nb、Mo、Cd、In、Ir、Sn、Sb、Cs、Ba、La、Hf、Ta、W、Tl、Pb、Bi、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等を挙げることができる。   Metals of metal salts, metal oxides, organometallic compounds, halogen metal compounds, metal hydrides include Li, Be, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Cd, In, Ir, Sn, Sb, Cs, Ba, La, Hf, Ta, W, Tl , Pb, Bi, Ce, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and the like.

金属塩としては、硝酸塩、酢酸塩等を、ハロゲン化物としては塩化物、ヨウ化物、臭化物等を好適に用いることができる。   As metal salts, nitrates, acetates and the like can be suitably used, and as halides, chlorides, iodides, bromides and the like can be suitably used.

有機金属化合物としては、下記一般式(I)で示すものが挙げられる。   Examples of the organometallic compound include those represented by the following general formula (I).

一般式(I) R MR
式中、Mは金属、Rはアルキル基、Rはアルコキシ基、Rはβ−ジケトン錯体基、β−ケトカルボン酸エステル錯体基、β−ケトカルボン酸錯体基及びケトオキシ基(ケトオキシ錯体基)から選ばれる基であり、金属Mの価数をmとした場合、x+y+z=mであり、x=0〜m、またはx=0〜m−1であり、y=0〜m、z=0〜mで、いずれも0または正の整数である。
Formula (I) R 1 x MR 2 y R 3 z
In the formula, M is a metal, R 1 is an alkyl group, R 2 is an alkoxy group, R 3 is a β-diketone complex group, a β-ketocarboxylic acid ester complex group, a β-ketocarboxylic acid complex group, and a ketooxy group (ketooxy complex group). X + y + z = m, x = 0 to m, or x = 0 to m−1, and y = 0 to m, z = 0. ~ M, each of which is 0 or a positive integer.

のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基等を挙げることができる。Rのアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、3,3,3−トリフルオロプロポキシ基等を挙げることができる。また、アルキル基の水素原子をフッ素原子に置換したものでもよい。 Examples of the alkyl group for R 1 include a methyl group, an ethyl group, a propyl group, and a butyl group. Examples of the alkoxy group for R 2 include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a 3,3,3-trifluoropropoxy group. Moreover, what substituted the hydrogen atom of the alkyl group by the fluorine atom may be used.

のβ−ジケトン錯体基、β−ケトカルボン酸エステル錯体基、β−ケトカルボン酸錯体基及びケトオキシ基(ケトオキシ錯体基)から選ばれる基としては、β−ジケトン錯体基として、例えば、2,4−ペンタンジオン(アセチルアセトンまたはアセトアセトンともいう)、1,1,1,5,5,5−ヘキサメチル−2,4−ペンタンジオン、2,2,6,6−テトラメチル−3,5−ヘプタンジオン、1,1,1−トリフルオロ−2,4−ペンタンジオン等を挙げることができ、β−ケトカルボン酸エステル錯体基として、例えばアセト酢酸メチルエステル、アセト酢酸エチルエステル、アセト酢酸プロピルエステル、トリメチルアセト酢酸エチル、トリフルオロアセト酢酸メチル等を挙げることができ、β−ケトカルボン酸として、例えば、アセト酢酸、トリメチルアセト酢酸等を挙げることができ、またケトオキシとして、例えば、アセトオキシ基(またはアセトキシ基)、プロピオニルオキシ基、ブチリロキシ基、アクリロイルオキシ基、メタクリロイルオキシ基等を挙げることができる。これらの基の炭素原子数は18以下が好ましい。 Examples of the group selected from the β-diketone complex group, the β-ketocarboxylic acid ester complex group, the β-ketocarboxylic acid complex group, and the ketooxy group (ketooxy complex group) of R 3 include, for example, 2,4 -Pentanedione (also called acetylacetone or acetoacetone), 1,1,1,5,5,5-hexamethyl-2,4-pentanedione, 2,2,6,6-tetramethyl-3,5-heptanedione , 1,1,1-trifluoro-2,4-pentanedione, and the β-ketocarboxylic acid ester complex group includes, for example, acetoacetic acid methyl ester, acetoacetic acid ethyl ester, acetoacetic acid propyl ester, trimethylacetate Examples thereof include ethyl acetate, methyl trifluoroacetoacetate and the like, and examples of β-ketocarboxylic acid include Examples thereof include acetoacetic acid and trimethylacetoacetic acid, and examples of ketooxy include acetooxy group (or acetoxy group), propionyloxy group, butyryloxy group, acryloyloxy group, and methacryloyloxy group. These groups preferably have 18 or less carbon atoms.

また、直鎖または分岐のもの、また水素原子をフッ素原子にしたものでもよい。有機金属化合物の中では、分子内に少なくとも1つ以上の酸素を有するものが好ましい。このようなものとしてRのアルコキシ基を少なくとも1つを含有する有機金属化合物、また、Rのβ−ジケトン錯体基、β−ケトカルボン酸エステル錯体基、β−ケトカルボン酸錯体基及びケトオキシ基(ケトオキシ錯体基)から選ばれる基を少なくとも1つ有する金属化合物が最も好ましい。 Further, a straight chain or branched chain, or a hydrogen atom converted to a fluorine atom may be used. Among organometallic compounds, those having at least one oxygen in the molecule are preferable. As such, an organometallic compound containing at least one alkoxy group of R 2 , a β-diketone complex group, a β-ketocarboxylic acid ester complex group, a β-ketocarboxylic acid complex group and a ketooxy group of R 3 ( Most preferred is a metal compound having at least one group selected from a ketooxy complex group.

金属塩の中では、硝酸塩が好ましい。硝酸塩は高純度品が入手しやすく、また使用時の媒体として好ましい水に対する溶解度が高い。硝酸塩としては、硝酸インジウム、硝酸錫、硝酸亜鉛、硝酸ガリウム等が挙げられる。   Among metal salts, nitrate is preferable. Nitrate is easily available as a high-purity product and has high solubility in water, which is preferable as a medium for use. Examples of nitrates include indium nitrate, tin nitrate, zinc nitrate, and gallium nitrate.

以上のうち、好ましいのは、金属の硝酸塩、ハロゲン化物、アルコキシド類である。具体例としては、硝酸インジウム、硝酸亜鉛、硝酸ガリウム、硝酸スズ、硝酸アルミニウム、塩化インジウム、塩化亜鉛、塩化スズ(2価)、塩化スズ(4価)、塩化ガリウム、塩化アルミニウム、トリ−i−プロポキシインジウム、ジエトキシ亜鉛、ビス(ジピバロイルメタナト)亜鉛、テトラエトキシスズ、テトラ−i−プロポキシスズ、トリ−i−プロポキシガリウム、トリ−i−プロポキシアルミニウム等が挙げられる。   Of these, preferred are metal nitrates, halides and alkoxides. Specific examples include indium nitrate, zinc nitrate, gallium nitrate, tin nitrate, aluminum nitrate, indium chloride, zinc chloride, tin chloride (divalent), tin chloride (tetravalent), gallium chloride, aluminum chloride, tri-i-. Examples include propoxyindium, diethoxyzinc, bis (dipivaloylmethanato) zinc, tetraethoxytin, tetra-i-propoxytin, tri-i-propoxygallium, and tri-i-propoxyaluminum.

本発明で好ましく用いることができる電磁波吸収能を持つ物質として、金属を好適に用いることができ、例えば、白金、金、銀、ニッケル、クロム、銅、鉄、錫、アンチモン鉛、タンタル、インジウム、パラジウム、テルル、レニウム、イリジウム、アルミニウム、ルテニウム、ゲルマニウム、モリブデン、タングステン、酸化スズ・アンチモン、酸化インジウム・スズ(ITO)、フッ素ドープ酸化亜鉛、亜鉛、炭素、グラファイト、グラッシーカーボン、銀ペースト及びカーボンペースト、リチウム、ベリリウム、ナトリウム、マグネシウム、カリウム、カルシウム、スカンジウム、チタン、マンガン、ジルコニウム、ガリウム、ニオブ、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、アルミニウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム混合物、リチウム/アルミニウム混合物等を用いることができる。   As a substance having electromagnetic wave absorbing ability that can be preferably used in the present invention, a metal can be suitably used. For example, platinum, gold, silver, nickel, chromium, copper, iron, tin, antimony lead, tantalum, indium, Palladium, tellurium, rhenium, iridium, aluminum, ruthenium, germanium, molybdenum, tungsten, tin oxide / antimony, indium tin oxide (ITO), fluorine-doped zinc oxide, zinc, carbon, graphite, glassy carbon, silver paste and carbon paste , Lithium, beryllium, sodium, magnesium, potassium, calcium, scandium, titanium, manganese, zirconium, gallium, niobium, sodium, sodium-potassium alloy, magnesium, lithium, aluminum, magnesium Copper mixture, a magnesium / silver mixture, a magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide mixture, can be used lithium / aluminum mixtures.

本発明に係る電磁波吸収能を持つ物質は、熱源として用いるため粒子として添加することも好ましい。   The substance having electromagnetic wave absorbing ability according to the present invention is also preferably added as particles for use as a heat source.

前記粒子からなる電磁波吸収能を持つ物質(電磁波を吸収する粒子)は、前記の熱変換材料に隣接するエリアに埋設させる形で存在してもよいが、熱変換材料の存在する層に混合して存在してもよい。   The substance having the ability to absorb electromagnetic waves (particles that absorb electromagnetic waves) made of the particles may exist in the form of being embedded in an area adjacent to the heat conversion material, but is mixed with the layer in which the heat conversion material exists. May exist.

より具体的には、電磁波を吸収する粒子を含む熱変換材料層を形成した後、前記熱変換材料層に電磁波を照射し、当該熱変換材料層に含まれる電磁波を吸収する粒子を発熱させることにより、当該熱変換材料が電荷輸送層の組成物に変換される形態も好ましく用いることができる。   More specifically, after forming a heat conversion material layer containing particles that absorb electromagnetic waves, the heat conversion material layer is irradiated with electromagnetic waves, and the particles that absorb the electromagnetic waves contained in the heat conversion material layer are heated. Thus, a form in which the heat conversion material is converted into the composition of the charge transport layer can also be preferably used.

本発明の好ましい形態である電磁波を吸収する粒子は、照射された電磁波を吸収し熱変化することで、粒子自身が発熱して熱源となるため、誘電損失または抵抗損失が大きく効率よく発熱する材料が好ましい。   Particles that absorb electromagnetic waves, which is a preferred form of the present invention, are materials that generate heat efficiently due to large dielectric loss or resistance loss because the particles themselves generate heat by becoming a heat source by absorbing irradiated electromagnetic waves and changing heat. Is preferred.

更に、電磁波を吸収する粒子の粒径を小さくする必要はないが、平均粒径1〜500nmの微粒子を用いることが好ましい。さらに好ましくは1〜100nmであり、より好ましくは5〜50nmである。また、有機光電変換素子においては、ミー散乱領域の粒径として、光散乱能を併せ持った構成としてもよい。   Furthermore, although it is not necessary to reduce the particle size of the particles that absorb electromagnetic waves, it is preferable to use fine particles having an average particle size of 1 to 500 nm. More preferably, it is 1-100 nm, More preferably, it is 5-50 nm. Moreover, in an organic photoelectric conversion element, it is good also as a structure which has light scattering ability as a particle size of a Mie scattering area | region.

(熱変換材料が電荷輸送層の組成物に変換される工程)
本発明は、電荷輸送層の少なくとも一部に、(i)熱変換材料または熱変換材料を含むエリアと、(ii)前記熱変換材料または熱変換材料を含むエリアに隣接もしくは近接して電磁波吸収能を持つ物質又は電磁波吸収能を持つ物質を含むエリアとを、配置し、電磁波を照射して、当該電磁波吸収能を持つ物質が発生する熱により、当該熱変換材料を電荷輸送層の組成物に変換することを特徴とする有機光電変換素子の製造方法である。
(Process in which the heat conversion material is converted into the composition of the charge transport layer)
In the present invention, at least a part of the charge transport layer includes (i) a heat conversion material or an area containing the heat conversion material, and (ii) an electromagnetic wave absorption adjacent to or close to the heat conversion material or the area containing the heat conversion material. And a region containing a substance having an electromagnetic wave absorption ability, and radiating an electromagnetic wave, and the heat conversion material is converted into a composition of the charge transport layer by heat generated by the substance having the electromagnetic wave absorption ability It is the manufacturing method of the organic photoelectric conversion element characterized by converting into.

本発明に係る熱変換材料が電荷輸送層の組成物に変換される工程について、図2(A)〜(C)を用いて説明する。   The process in which the heat conversion material according to the present invention is converted into the composition of the charge transport layer will be described with reference to FIGS.

図2(A)は、本発明の好ましい形態であり、図示しない基板の一方の面に形成した電磁波吸収能を持つ電極層上に、熱変換材料を含む層を塗布形成し、電磁波照射することによって、当該電極から発生する熱により、当該熱変換材料を含む層を正孔輸送層または電子輸送層(第1の電荷輸送層)に変換する形態を例示した図である。   FIG. 2 (A) is a preferred embodiment of the present invention, in which a layer containing a heat conversion material is applied and formed on an electrode layer having electromagnetic wave absorbing ability formed on one surface of a substrate (not shown) and irradiated with electromagnetic waves. FIG. 6 is a diagram illustrating a mode in which a layer containing the heat conversion material is converted into a hole transport layer or an electron transport layer (first charge transport layer) by heat generated from the electrode.

図2(B)は、本発明の好ましい形態であり、電磁波吸収能を持つ基板の一方の面に形成した電極層上に、熱変換材料を含む層を塗布形成し、電磁波照射することによって、当該基板から発生する熱により、当該熱変換材料を含む層を正孔輸送層または電子輸送層(第1の電荷輸送層)に変換する形態を例示した図である。本発明においては、この基板自体に電磁波を吸収する物質を選択してもよいし、上述した電磁波吸収能を持つ物質を混合またはコンポジットした基板や、電磁波吸収能を持つ物質を表面に薄膜形成させた2層以上の積層構造からなる基板としても本発明において好ましく用いることができる。ここで言う基板は上述の電磁波吸収能を有する電極とは異なり、必ずしも導電性を有している必要は無いことが本発明において好ましい。   FIG. 2 (B) is a preferred embodiment of the present invention. On the electrode layer formed on one surface of the substrate having electromagnetic wave absorbing ability, a layer containing a heat conversion material is applied and irradiated with electromagnetic waves. It is the figure which illustrated the form which converts the layer containing the said heat conversion material into the positive hole transport layer or the electron carrying layer (1st charge transport layer) with the heat which generate | occur | produces from the said board | substrate. In the present invention, a substance that absorbs electromagnetic waves may be selected for the substrate itself, or a substrate in which the above-described substances having electromagnetic wave absorbing ability are mixed or composited or a substance having electromagnetic wave absorbing ability is formed on the surface as a thin film. In addition, it can be preferably used in the present invention as a substrate having a laminated structure of two or more layers. It is preferable in the present invention that the substrate referred to here is not necessarily required to have conductivity, unlike the above-described electrode having electromagnetic wave absorbing ability.

図2(C)は、本発明の好ましい形態であり、図示しない基板の一方の面に形成した電極層上に、熱変換材料と電磁波吸収能を持つ物質とを含む層を塗布形成し、電磁波照射することによって、当該電磁波吸収能を持つ物質から発生する熱により、当該熱変換材料を含む層を正孔輸送層または電子輸送層に変換する形態を例示した図である。   FIG. 2C shows a preferred embodiment of the present invention, in which a layer containing a heat conversion material and a substance having electromagnetic wave absorbing ability is applied and formed on an electrode layer formed on one surface of a substrate (not shown). It is the figure which illustrated the form which converts the layer containing the said heat conversion material into a positive hole transport layer or an electron transport layer with the heat which generate | occur | produces from the said substance which has the electromagnetic wave absorption ability by irradiating.

上述した図2(A)〜(C)に示される熱変換材料が電荷輸送層の組成物に変換される工程においては、電磁波吸収能を持つ物質に隣接または近接させて熱変換材料を含む層を形成してから、上層を積層せず、すぐに電磁波を照射し熱変換させてもよいが、当該熱変換材料を含む層を形成した上に、光電変換層やその他の機能層を積層した後、電磁波を照射して当該熱変換材料を熱変換させ電荷輸送層の組成物とする方法も好ましく用いることができる。   In the process of converting the heat conversion material shown in FIGS. 2A to 2C into the composition of the charge transport layer, the layer containing the heat conversion material adjacent to or close to the substance having electromagnetic wave absorbing ability. It is possible to heat-convert by irradiating electromagnetic waves immediately without forming the upper layer, but after forming the layer containing the heat conversion material, the photoelectric conversion layer and other functional layers are stacked. Thereafter, a method of irradiating electromagnetic waves to thermally convert the heat conversion material into a charge transport layer composition can also be preferably used.

(電磁波吸収能を持つ物質を含むエリアの形成方法)
上述した図2(A)または(B)に関係し、電磁波吸収能を持つ物質を含むエリアを形成する方法としては特に限定されず、真空蒸着法、スパッタ法、スプレー熱分解法、プラズマCVD法、塗布法、印刷法など如何なる方法を用いてもよい。生産性の観点からより、好ましくは、当該電磁波吸収能を持つ物質を適切な溶媒に分散または溶解した分散液または溶液を用いて、基板または光電変換層等の機能層上に連続的に塗布により成膜する方法(「ウェットプロセス」ともいう。)が好ましい。
(Method of forming an area containing a substance having electromagnetic wave absorption ability)
There is no particular limitation on a method for forming an area containing a substance having an electromagnetic wave absorbing ability in relation to the above-described FIG. 2A or 2B, and a vacuum deposition method, a sputtering method, a spray pyrolysis method, a plasma CVD method is used. Any method such as a coating method or a printing method may be used. From the viewpoint of productivity, preferably, by using a dispersion or solution obtained by dispersing or dissolving the substance having electromagnetic wave absorbing ability in an appropriate solvent, by continuous coating on a functional layer such as a substrate or a photoelectric conversion layer. A method of forming a film (also referred to as “wet process”) is preferable.

(熱変換材料と電磁波吸収能を持つ物質の分散液の調製)
上述した図2(C)に関係して、熱変換材料と電磁波吸収能を持つ物質とを含む層を塗布(ウェットプロセス)で行う場合には、上記の電磁波吸収能を持つ物質を適当な分散媒に分散させ、当該熱変換材料を分散媒に同じく分散または溶解させたコロイド分散液を用いることが好ましい。
(Preparation of dispersion of heat conversion material and substance with electromagnetic wave absorption ability)
In relation to FIG. 2C described above, when a layer containing a heat conversion material and a substance having electromagnetic wave absorbing ability is applied (wet process), the substance having the electromagnetic wave absorbing ability is appropriately dispersed. It is preferable to use a colloidal dispersion in which the heat conversion material is dispersed or dissolved in a dispersion medium.

(電磁波の照射)
本発明に係る電磁波とは、電離放射線(X線やガンマ線)、紫外線、可視光線(人間の目に見える光)、赤外線、電波(マイクロ波等)をいうが、本発明においては、0.3GHz〜50GHzの周波数を持つマイクロ波を用いることが好ましい。
(Electromagnetic radiation)
The electromagnetic wave according to the present invention refers to ionizing radiation (X-rays or gamma rays), ultraviolet rays, visible rays (light visible to the human eye), infrared rays, radio waves (microwaves, etc.). In the present invention, 0.3 GHz It is preferable to use a microwave having a frequency of ˜50 GHz.

以下、上記以外の構成要素等について詳細な説明をする。   In the following, components other than those described above will be described in detail.

(基板)
基板は、順次積層された第1電極、好ましく用いられる第1の電荷輸送層、光電変換層、第2の電荷輸送層、及び第2電極を保持する部材である。本実施形態では、少なくとも第1電極または第2電極、更には両方の電極から光電変換される光が透過することが可能なように、光電変換すべき光の波長に対して透明な基板であることが望ましい。
(substrate)
The substrate is a member that holds the first electrode, the first charge transport layer, the photoelectric conversion layer, the second charge transport layer, and the second electrode that are sequentially stacked. In the present embodiment, the substrate is transparent to the wavelength of light to be photoelectrically converted so that light that is photoelectrically converted from at least the first electrode or the second electrode, or both electrodes can be transmitted. It is desirable.

基板(以下「透明基板」ともいう。)は、例えば、ガラス基板や樹脂基板等が好適な例として挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることがより好ましい。本発明で透明基板として好ましく用いることができる透明樹脂フィルムには特に制限がなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。   As a substrate (hereinafter also referred to as “transparent substrate”), for example, a glass substrate, a resin substrate, and the like are preferable examples. However, it is more preferable to use a transparent resin film from the viewpoint of lightness and flexibility. There is no restriction | limiting in particular in the transparent resin film which can be preferably used as a transparent substrate by this invention, The material, a shape, a structure, thickness, etc. can be suitably selected from well-known things.

例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380〜780nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。   For example, polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, polyolefin resins such as cyclic olefin resin Film, vinyl resin film such as polyvinyl chloride, polyvinylidene chloride, polyether ether ketone (PEEK) resin film, polysulfone (PSF) resin film, polyether sulfone (PES) resin film, polycarbonate (PC) resin film, A polyamide resin film, a polyimide resin film, an acrylic resin film, a triacetyl cellulose (TAC) resin film, and the like can be given. If the resin film transmittance of 80% or more at ~780nm), can be preferably applied to a transparent resin film according to the present invention.

中でも、透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。   Among them, from the viewpoint of transparency, heat resistance, ease of handling, strength and cost, it is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film. More preferred are a stretched polyethylene terephthalate film and a biaxially stretched polyethylene naphthalate film.

本発明に用いられる透明基材には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。   The transparent substrate used in the present invention can be subjected to a surface treatment or an easy-adhesion layer in order to ensure the wettability and adhesion of the coating solution. A conventionally well-known technique can be used about a surface treatment or an easily bonding layer. For example, the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment. Examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer.

透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57〜1.63とすることで、フィルム基材と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。   When the transparent resin film is a biaxially stretched polyethylene terephthalate film, by making the refractive index of the easy adhesion layer adjacent to the film 1.57-1.63, the interface reflection between the film substrate and the easy adhesion layer can be achieved. Since it can reduce and can improve the transmittance | permeability, it is more preferable. The method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin.

易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。また、透明基材にはバリアコート層が予め形成されていてもよいし、透明導電層を転写する反対側にはハードコート層が予め形成されていてもよい。   The easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion. Moreover, the barrier coat layer may be formed in advance on the transparent substrate, or the hard coat layer may be formed in advance on the opposite side to which the transparent conductive layer is transferred.

(第1の電極)
第1の電極(「第1電極」ともいう。)は、陰極、陽極は特に限定せず、素子構成により選択することができる。光電変換層において光電変換される光を透過させることが可能な電極であることが好ましく、300〜800nmの光を透過する電極であることがより好ましい。
(First electrode)
The cathode and anode of the first electrode (also referred to as “first electrode”) are not particularly limited, and can be selected depending on the element configuration. An electrode that can transmit light that is photoelectrically converted in the photoelectric conversion layer is preferable, and an electrode that transmits light of 300 to 800 nm is more preferable.

本発明における第1の電極は、電磁波照射に対して吸収能を持ち、発熱する物質であり、且つ、電極としての導電性、隣接する機能層との電気的な接合性を併せ持った特性であることも本発明において好ましく用いることができる形態である。   The first electrode in the present invention is a substance that absorbs electromagnetic waves and generates heat, and also has the characteristics of having conductivity as an electrode and electrical bonding with an adjacent functional layer. This is also a form that can be preferably used in the present invention.

具体的な材料としては、例えば、インジウムチンオキシド(ITO)、SnO、フッ素ドープSnO(FTO)、ZnO、アルミニウムドープZnO(AZO)等の透明導電性金属酸化物、金、銀、白金等の金属薄膜、金属ナノワイヤ、カーボンナノチューブ、導電性高分子を用いることができる。 Specific examples of the material include transparent conductive metal oxides such as indium tin oxide (ITO), SnO 2 , fluorine-doped SnO 2 (FTO), ZnO, and aluminum-doped ZnO (AZO), gold, silver, platinum, and the like. Metal thin films, metal nanowires, carbon nanotubes, and conductive polymers can be used.

(第2の電極)
対電極の第2の電極(「第1電極」ともいう。)は、金属(例えば、金、銀、銅、白金、ロジウム、ルテニウム、アルミニウム、マグネシウム、インジウム等)、炭素、あるいは第1電極の材料等を用いることができるが、これに限らない。
(Second electrode)
The second electrode of the counter electrode (also referred to as “first electrode”) is a metal (for example, gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium, indium, etc.), carbon, or the first electrode Although material etc. can be used, it is not restricted to this.

(光電変換層)
光電変換層は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有して構成される。p型半導体材料は相対的に電子供与体(ドナー)として機能し、n型半導体材料は相対的に電子受容体(アクセプター)として機能する。ここで、電子供与体及び電子受容体は、“光を吸収した際に電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)を形成する電子供与体及び電子受容体”であり、電極のように単に電子を供与あるいは受容するものではなく、光反応によって、電子を供与あるいは受容するものである。
(Photoelectric conversion layer)
The photoelectric conversion layer is a layer that converts light energy into electric energy, and includes a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed. The p-type semiconductor material relatively functions as an electron donor (donor), and the n-type semiconductor material relatively functions as an electron acceptor (acceptor). Here, the electron donor and the electron acceptor are “an electron donor that moves from the electron donor to the electron acceptor when absorbing light and forms a hole-electron pair (charge separation state) and It is an “electron acceptor”, which does not simply donate or accept electrons like an electrode, but donates or accepts electrons by a photoreaction.

本発明に用いられるp型半導体材料としては、種々の縮合多環芳香族化合物や共役系化合物が挙げられる。   Examples of the p-type semiconductor material used in the present invention include various condensed polycyclic aromatic compounds and conjugated compounds.

縮合多環芳香族化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、及びこれらの誘導体や前駆体が挙げられる。   As the condensed polycyclic aromatic compound, for example, anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, sarkham anthracene, bisanthene, zestrene, heptazelene, Examples thereof include compounds such as pyranthrene, violanthene, isoviolanthene, cacobiphenyl, anthradithiophene, and derivatives and precursors thereof.

共役系化合物としては、例えば、ポリチオフェン及びそのオリゴマー、ポリピロール及びそのオリゴマー、ポリアニリン、ポリフェニレン及びそのオリゴマー、ポリフェニレンビニレン及びそのオリゴマー、ポリチエニレンビニレン及びそのオリゴマー、ポリアセチレン、ポリジアセチレン、テトラチアフルバレン化合物、キノン化合物、テトラシアノキノジメタン等のシアノ化合物、フラーレン及びこれらの誘導体あるいは混合物を挙げることができる。   Examples of the conjugated compound include polythiophene and its oligomer, polypyrrole and its oligomer, polyaniline, polyphenylene and its oligomer, polyphenylene vinylene and its oligomer, polythienylene vinylene and its oligomer, polyacetylene, polydiacetylene, tetrathiafulvalene compound, quinone Compounds, cyano compounds such as tetracyanoquinodimethane, fullerenes and derivatives or mixtures thereof.

また、特にポリチオフェン及びそのオリゴマーの内、チオフェン6量体であるα−セクシチオフェンα,ω−ジヘキシル−α−セクシチオフェン、α,ω−ジヘキシル−α−キンケチオフェン、α,ω−ビス(3−ブトキシプロピル)−α−セクシチオフェン、等のオリゴマーが好適に用いることができる。   In particular, among polythiophene and oligomers thereof, thiophene hexamer α-seccithiophene α, ω-dihexyl-α-sexualthiophene, α, ω-dihexyl-α-kinkethiophene, α, ω-bis (3- An oligomer such as butoxypropyl) -α-sexithiophene can be preferably used.

その他、高分子p型半導体の例としては、ポリアセチレン、ポリパラフェニレン、ポリピロール、ポリパラフェニレンスルフィド、ポリチオフェン、ポリフェニレンビニレン、ポリカルバゾール、ポリイソチアナフテン、ポリヘプタジイン、ポリキノリン、ポリアニリンなどが挙げられ、更には特開2006−36755号公報などの置換−無置換交互共重合ポリチオフェン、特開2007−51289号公報、特開2005−76030号公報、J.Amer.Chem.Soc.,2007,p4112、J.Amer.Chem.Soc.,2007,p7246などの縮環チオフェン構造を有するポリマー、国際公開第08/664号パンフレット、Adv.Mater.,2007,p4160、Macromolecules,2007,Vol.40,p1981などのチオフェン共重合体などを挙げることができる。   Other examples of the polymer p-type semiconductor include polyacetylene, polyparaphenylene, polypyrrole, polyparaphenylene sulfide, polythiophene, polyphenylene vinylene, polycarbazole, polyisothianaphthene, polyheptadiyne, polyquinoline, polyaniline, and the like. Substituted-unsubstituted alternating copolymer polythiophenes such as JP-A-2006-36755, JP-A-2007-51289, JP-A-2005-76030, J. Org. Amer. Chem. Soc. , 2007, p4112, J.A. Amer. Chem. Soc. , 2007, p7246, etc., polymers having a condensed thiophene structure, WO08 / 664 pamphlet, Adv. Mater. , 2007, p4160, Macromolecules, 2007, Vol. Examples thereof include thiophene copolymers such as 40 and p1981.

更に、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)−テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)−過塩素酸錯体、BEDTTTF−ヨウ素錯体、TCNQ−ヨウ素錯体、等の有機分子錯体、C60、C70、C76、C78、C84等のフラーレン類、SWNT等のカーボンナノチューブ、メロシアニン色素類、ヘミシアニン色素類等の色素等、更にポリシラン、ポリゲルマン等のσ共役系ポリマーや特開2000−260999号公報に記載の有機・無機混成材料も用いることができる。   Further, porphyrin, copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bisethylenetetrathiafulvalene (BEDTTTTF) -perchloric acid complex, BEDTTTTF-iodine complex, TCNQ-iodine complex, etc. Organic molecular complexes, fullerenes such as C60, C70, C76, C78, C84, carbon nanotubes such as SWNT, dyes such as merocyanine dyes and hemicyanine dyes, σ-conjugated polymers such as polysilane, polygermane, and the like Organic-inorganic hybrid materials described in 2000-260999 can also be used.

n型半導体材料としては、比較的高い光電変換効率を実現するために、例えば、フラーレン誘導体化合物等が用いられる。   As the n-type semiconductor material, for example, a fullerene derivative compound or the like is used in order to realize relatively high photoelectric conversion efficiency.

具体例としては、フラーレン、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物が挙げられる。   Specific examples include fullerene, octaazaporphyrin, p-type semiconductor perfluoro compounds (perfluoropentacene, perfluorophthalocyanine, etc.), naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylene. Examples thereof include an aromatic carboxylic acid anhydride such as tetracarboxylic acid diimide and a polymer compound containing an imidized product thereof as a skeleton.

中でも、フラーレン含有高分子化合物が好ましい。フラーレン含有高分子化合物としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等を骨格に持つ高分子化合物が挙げられる。フラーレン含有高分子化合物では、フラーレンC60を骨格に持つ高分子化合物(誘導体)が好ましい。   Among these, fullerene-containing polymer compounds are preferable. Fullerene-containing polymer compounds include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), etc. Examples thereof include a polymer compound having a skeleton. As the fullerene-containing polymer compound, a polymer compound (derivative) having fullerene C60 as a skeleton is preferable.

電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層の形成方法としては、本発明においては塗布法(キャスト法、スピンコート法を含む)等を例示することができる。そして、光電変換層は光電変換率を向上すべく、製造工程中において所定の温度でアニール処理され、微視的に一部結晶化されている。   Examples of a method for forming a bulk heterojunction layer in which an electron acceptor and an electron donor are mixed include a coating method (including a casting method and a spin coating method). The photoelectric conversion layer is annealed at a predetermined temperature during the manufacturing process in order to improve the photoelectric conversion rate, and is partially crystallized microscopically.

(電荷輸送層)
電荷輸送層としては、具体的には正孔輸送層、電子輸送層が挙げられる。本発明においては、電荷輸送層のうち、正孔輸送層もしくは電子輸送層の少なくともどちらかが、上述したように、熱変換材料からなり、熱によって当該正孔輸送層もしくは電子輸送層へと変換される材料からなることが好ましい。
(Charge transport layer)
Specific examples of the charge transport layer include a hole transport layer and an electron transport layer. In the present invention, of the charge transport layer, at least one of the hole transport layer and the electron transport layer is made of a heat conversion material as described above, and is converted into the hole transport layer or the electron transport layer by heat. It is preferable that it consists of the material made.

〈正孔輸送層〉
これらの層を構成する材料としては、例えば、正孔輸送層(電子ブロック層)としては、スタルクヴイテック製、商品名BaytronP等のPEDOT、ポリアニリン及びそのドープ材料、特開平5−271166号公報等に記載のトリアリールアミン系化合物、国際公開第06/19270号パンフレット等に記載のシアン化合物、また酸化モリブデン、酸化ニッケル、酸化タングステン等の金属酸化物等を用いることができる。
<Hole transport layer>
As a material constituting these layers, for example, as a hole transport layer (electron block layer), PEDOT such as Product name BaytronP manufactured by Stark Vitec, polyaniline and its doped material, Japanese Patent Laid-Open No. 5-271166, etc. The triarylamine compounds described in 1), the cyanide compounds described in WO 06/19270 pamphlet, and the like, and metal oxides such as molybdenum oxide, nickel oxide, and tungsten oxide can be used.

また、本発明においては、バルクヘテロジャンクション層(光電変換層)に用いたp型半導体材料単体からなる層を用いることもできる。   Moreover, in this invention, the layer which consists of a p-type semiconductor material single-piece | unit used for the bulk heterojunction layer (photoelectric converting layer) can also be used.

〈電子輸送層〉
また、電子輸送層(正孔ブロック層)としては、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型半導体材料、及び酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物及びフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。
<Electron transport layer>
In addition, as the electron transport layer (hole blocking layer), octaazaporphyrin, p-type semiconductor perfluoro (perfluoropentacene, perfluorophthalocyanine, etc.), naphthalene tetracarboxylic anhydride, naphthalene tetracarboxylic diimide, perylene N-type semiconductor materials such as tetracarboxylic acid anhydride and perylenetetracarboxylic acid diimide, and n-type inorganic oxides such as titanium oxide, zinc oxide and gallium oxide, and alkali metals such as lithium fluoride, sodium fluoride and cesium fluoride A compound or the like can be used.

また、バルクヘテロジャンクション層(光電変換層)に用いたn型半導体材料単体からなる層を用いることもできる。   Moreover, the layer which consists of a n-type semiconductor material single-piece | unit used for the bulk heterojunction layer (photoelectric converting layer) can also be used.

(タンデム型構成)
太陽光利用率(光電変換効率)の向上を目的として、有機光電変換素子を積層したタンデム型の構成としてもよい。タンデム型構成の場合、基板上に順次透明電極、第1の光電変換層を積層した後、電荷再結合層を積層した後、第2の光電変換層、次いで対電極を積層することで、タンデム型の構成とすることができる。第2の光電変換層は、第1の光電変換層の吸収スペクトルと同じスペクトルを吸収する層でもよいし、異なるスペクトルを吸収する層でもよいが、好ましくは異なるスペクトルを吸収する層である。また、電荷再結合層の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、ITO、AZO、FTO、酸化チタン等の透明金属酸化物、Ag、Al、Au等の非常に薄い金属層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等が好ましい。
(Tandem configuration)
For the purpose of improving the sunlight utilization rate (photoelectric conversion efficiency), a tandem configuration in which organic photoelectric conversion elements are stacked may be employed. In the case of a tandem type configuration, a transparent electrode and a first photoelectric conversion layer are sequentially stacked on a substrate, a charge recombination layer is stacked, a second photoelectric conversion layer, and then a counter electrode are stacked to form a tandem It can be configured as a mold. The second photoelectric conversion layer may be a layer that absorbs the same spectrum as the absorption spectrum of the first photoelectric conversion layer, or may be a layer that absorbs a different spectrum, but is preferably a layer that absorbs a different spectrum. The material of the charge recombination layer is preferably a layer using a compound having both transparency and conductivity, such as transparent metal oxides such as ITO, AZO, FTO, and titanium oxide, Ag, Al, Au, etc. A very thin metal layer, a conductive polymer material such as PEDOT: PSS, polyaniline, and the like are preferable.

(封止)
また、作製した有機光電変換素子が環境中の酸素、水分等で劣化しないために、公知の手法によって封止することが好ましい。例えば、アルミまたはガラスでできたキャップを接着剤によって接着することによって封止する手法、アルミニウム、酸化ケイ素、酸化アルミニウム等のガスバリア層が形成されたプラスチックフィルムと有機光電変換素子上を接着剤で貼合する手法、ガスバリア性の高い有機高分子材料(ポリビニルアルコール等)をスピンコートする方法、ガスバリア性の高い無機薄膜(酸化ケイ素、酸化アルミニウム等)を直接堆積する方法、及びこれらを複合的に積層する方法等を挙げることができる。
(Sealing)
Moreover, it is preferable to seal by the well-known method so that the produced organic photoelectric conversion element may not deteriorate with oxygen, moisture, etc. in the environment. For example, a method of sealing a cap made of aluminum or glass by bonding with an adhesive, a plastic film on which a gas barrier layer such as aluminum, silicon oxide, or aluminum oxide is formed and an organic photoelectric conversion element are pasted with an adhesive. , A method of spin-coating organic polymer materials (polyvinyl alcohol, etc.) with high gas barrier properties, a method of directly depositing inorganic thin films (silicon oxide, aluminum oxide, etc.) with high gas barrier properties, and laminating these in a composite manner And the like.

更に本発明においては、エネルギー変換効率と素子寿命向上の観点から、素子全体を2枚のバリア付き基板で封止した構成でもよく、好ましくは、水分ゲッター等を同封した構成であることが本発明においてより好ましい。   Furthermore, in the present invention, from the viewpoint of improving energy conversion efficiency and device life, the entire device may be sealed with two substrates with a barrier, and preferably a structure in which a moisture getter or the like is enclosed. Is more preferable.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

〔有機光電変換素子SC−101の作製〕
バリア層付きPENフィルム基板上に、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗13Ω/□)を、通常のフォトリソグラフィ技術と塩酸エッチングとを用いて1cm幅にパターニングして、フレキシブル透明電極を形成した。パターン形成した透明電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素による乾燥を行い、最後に紫外線オゾン洗浄を行った。
[Production of Organic Photoelectric Conversion Element SC-101]
A 150-nm thick indium tin oxide (ITO) transparent conductive film deposited on a PEN film substrate with a barrier layer (sheet resistance 13Ω / □) is patterned to a width of 1 cm using ordinary photolithography and hydrochloric acid etching. Thus, a flexible transparent electrode was formed. The patterned transparent electrode was cleaned in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried with nitrogen, and finally with ultraviolet ozone cleaning.

次に、脱水エタノールにTi−イソプロポキシドを0.05mol/lになるように溶解した液を調製し、膜厚が20nmになるように塗布を行い、室温に放置して乾燥させた。続けて、取り出し電極部を拭き取りパターニングし、水蒸気量を調節した窒素チャンバーに搬送し放置して電子輸送層を製膜した。   Next, a solution in which Ti-isopropoxide was dissolved in dehydrated ethanol to a concentration of 0.05 mol / l was prepared, applied to a film thickness of 20 nm, and allowed to stand at room temperature to dry. Subsequently, the extraction electrode portion was wiped and patterned, transported to a nitrogen chamber in which the amount of water vapor was controlled, and allowed to stand to form an electron transport layer.

次に、クロロベンゼンにP3HT(プレクトロニクス社製:レジオレギュラーポリ−3−ヘキシルチオフェン)(Mn=52000、高分子p型半導体材料)とPCBM(フロンティアカーボン:6,6−フェニル−C61−ブチリックアシッドメチルエステル)(Mw=911、低分子n型半導体材料)を3.0質量%になるように1:1で混合した液を調製し、フィルタでろ過しながら膜厚が100nmになるように塗布を行い、窒素雰囲気中、室温で乾燥させバルクヘテロジャンクション型の光電変換層(BHJ層)を形成した。続けて、導電性高分子であるBaytron P 4083(スタルクヴィテック社製)を膜厚が50nmになるように塗布した後、大気下にて120℃で10分間乾燥させ、光電変換層上に正孔輸送層を成膜した。   Next, P3HT (manufactured by Prectronics: regioregular poly-3-hexylthiophene) (Mn = 52000, polymer p-type semiconductor material) and PCBM (frontier carbon: 6,6-phenyl-C61-butyric acid) were added to chlorobenzene. Methyl ester) (Mw = 911, low molecular weight n-type semiconductor material) prepared in a 1: 1 mixture so as to be 3.0% by mass, applied to a film thickness of 100 nm while filtering through a filter. And dried at room temperature in a nitrogen atmosphere to form a bulk heterojunction photoelectric conversion layer (BHJ layer). Subsequently, Baytron P 4083 (made by Starck Vitec), which is a conductive polymer, was applied to a film thickness of 50 nm, and then dried at 120 ° C. for 10 minutes in the atmosphere, and positively coated on the photoelectric conversion layer. A hole transport layer was formed.

次に、分散液として調製した銀ナノワイヤーを目付け量80mg/mとなるように塗布し、乾燥させることで銀ナノワイヤー層を形成した。更に、銀ナノワイヤー上に導電性高分子であるBaytron PH510(スタルクヴィテック社製)を塗布した後、室温で乾燥させることで電極層を形成した。 Next, a silver nanowire layer was formed by applying silver nanowires prepared as a dispersion so as to have a basis weight of 80 mg / m 2 and drying. Furthermore, after apply | coating Baytron PH510 (made by Stark Vitec) which is a conductive polymer on silver nanowire, the electrode layer was formed by making it dry at room temperature.

銀ナノワイヤーはAdv.Mater.,2002,14,833〜837に記載の方法を参考に、平均直径75nm、平均長さ35μmの銀ナノワイヤーを作製し、限外濾過膜を用いて銀ナノワイヤーを濾別かつ水洗処理した後、エタノール中に再分散して銀ナノワイヤー分散液(銀ナノワイヤー含有量5質量%)を調製した。   Silver nanowires are described in Adv. Mater. , 2002, 14, 833 to 837, after producing silver nanowires having an average diameter of 75 nm and an average length of 35 μm, and filtering and washing the silver nanowires using an ultrafiltration membrane Then, it was re-dispersed in ethanol to prepare a silver nanowire dispersion (silver nanowire content: 5% by mass).

得られた素子を窒素雰囲気グローブボックスに移動し、ホットプレート上で140℃で30分間加熱処理を行った。更に、バリア付きPENフィルムとUV硬化樹脂を用いて封止を行って、受光部が10×100mmサイズの有機光電変換素子SC−101を得た。   The obtained element was moved to a nitrogen atmosphere glove box and subjected to heat treatment at 140 ° C. for 30 minutes on a hot plate. Furthermore, it sealed using the PEN film with a barrier, and UV curable resin, and obtained the organic photoelectric conversion element SC-101 whose light-receiving part is a 10 * 100 mm size.

〔有機光電変換素子SC−102の作製〕
前記SC−101の作製において、電子輸送層を製膜後、Niフォームを通して500Wの出力で2.45GHzのマイクロ波を15分間照射した。このとき、マイクロ波は間欠照射し、電子輸送層表面温度は約250℃であったが、基板の変形や湾曲は見られなかった。
[Production of Organic Photoelectric Conversion Element SC-102]
In the production of SC-101, after the electron transport layer was formed, a 2.45 GHz microwave was irradiated for 15 minutes at a power of 500 W through a Ni foam. At this time, the microwave was intermittently irradiated and the surface temperature of the electron transport layer was about 250 ° C., but no deformation or bending of the substrate was observed.

電子輸送層の形成以外はSC−101の作製と同様にしてSC−102を得た。   SC-102 was obtained in the same manner as in the preparation of SC-101 except for the formation of the electron transport layer.

〔有機光電変換素子SC−103の作製〕
前記SC−102の作製において、電子輸送層をIn:Zn金属比率が1:1になるように、それぞれの金属の硝酸塩を水/エタノール=9/1(質量比)溶媒に10質量%溶解した溶液を調製し、乾燥膜厚が20nmになる様に塗布し、120℃で乾燥して製膜した以外はSC−102と同様にしてSC−103を得た。このとき、電子輸送層はInおよびZnを含む金属酸化物層を形成した。
[Production of Organic Photoelectric Conversion Element SC-103]
In the preparation of SC-102, 10 mass% of nitrate of each metal was dissolved in water / ethanol = 9/1 (mass ratio) solvent so that the electron transport layer had an In: Zn metal ratio of 1: 1. SC-103 was obtained in the same manner as SC-102 except that a solution was prepared, applied to a dry film thickness of 20 nm, and dried at 120 ° C. to form a film. At this time, the electron transport layer formed a metal oxide layer containing In and Zn.

〔有機光電変換素子SC−104の作製〕
前記SC−102の作製において、電子輸送層をIn:Ga:Zn金属比率が1:1:1になるように、それぞれの金属の硝酸塩を水/エタノール=9/1(質量比)溶媒に10質量%溶解した溶液を調製し、塗布乾燥して製膜した以外はSC−102と同様にしてSC−104を得た。このとき、電子輸送層はIn、GaおよびZnを含む金属酸化物層を形成した。
[Production of Organic Photoelectric Conversion Element SC-104]
In the preparation of SC-102, the nitrate of each metal is 10 in water / ethanol = 9/1 (mass ratio) solvent so that the electron transport layer has an In: Ga: Zn metal ratio of 1: 1: 1. SC-104 was obtained in the same manner as SC-102 except that a solution in which the mass% was dissolved was prepared, coated and dried to form a film. At this time, a metal oxide layer containing In, Ga, and Zn was formed as the electron transport layer.

〔有機光電変換素子SC−105の作製〕
前記SC−102の作製において、電子輸送層をIn:Al:Zn金属比率が1:1:1になるように、それぞれの金属の硝酸塩を水/エタノール=9/1(質量比)溶媒に10質量%溶解した溶液を調製し、塗布乾燥して製膜した以外はSC−102と同様にしてSC−105を得た。このとき、電子輸送層はIn、AlおよびZnを含む金属酸化物層を形成した。
[Production of Organic Photoelectric Conversion Element SC-105]
In the preparation of SC-102, the nitrate of each metal was used in a solvent of water / ethanol = 9/1 (mass ratio) 10 so that the electron transport layer had an In: Al: Zn metal ratio of 1: 1: 1. SC-105 was obtained in the same manner as SC-102 except that a solution in which mass% was dissolved was prepared, coated and dried to form a film. At this time, a metal oxide layer containing In, Al, and Zn was formed as the electron transport layer.

〔有機光電変換素子SC−106の作製〕
バリア層付きPENフィルム基板上に、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗13Ω/□)を、通常のフォトリソグラフィ技術と塩酸エッチングとを用いて1cm幅にパターニングして、フレキシブル透明電極を形成した。パターン形成した透明電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素による乾燥を行い、最後に紫外線オゾン洗浄を行った。
[Production of Organic Photoelectric Conversion Element SC-106]
A 150-nm thick indium tin oxide (ITO) transparent conductive film deposited on a PEN film substrate with a barrier layer (sheet resistance 13Ω / □) is patterned to a width of 1 cm using ordinary photolithography and hydrochloric acid etching. Thus, a flexible transparent electrode was formed. The patterned transparent electrode was cleaned in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried with nitrogen, and finally with ultraviolet ozone cleaning.

次に、例示化合物1(〔化1〕)の前駆体をトルエンに1質量%溶解した液を塗布し、正孔輸送層を乾燥膜厚が40nmの膜厚になるよう製膜した。正孔輸送層を製膜後、Niフォームを通して500Wの出力で2.45GHzのマイクロ波を15分間照射した。このとき、マイクロ波は間欠照射し、正孔輸送層表面温度は約250℃であったが、基板の変形や湾曲は見られなかった。   Next, a solution in which the precursor of Exemplary Compound 1 ([Chemical Formula 1]) was dissolved in 1% by mass in toluene was applied, and a hole transport layer was formed to a dry film thickness of 40 nm. After forming the hole transport layer, a 2.45 GHz microwave was irradiated for 15 minutes at a power of 500 W through a Ni foam. At this time, the microwave was intermittently irradiated, and the surface temperature of the hole transport layer was about 250 ° C., but no deformation or bending of the substrate was observed.

次に、クロロベンゼンにP3HT(プレクトロニクス社製:レジオレギュラーポリ−3−ヘキシルチオフェン)(Mn=52000、高分子p型半導体材料)とPCBM(フロンティアカーボン:6,6−フェニル−C61−ブチリックアシッドメチルエステル)(Mw=911、低分子n型半導体材料)を3.0質量%になるように1:1で混合した液を調製し、フィルタでろ過しながら膜厚が100nmになるように塗布を行い、窒素雰囲気中、室温で乾燥させバルクヘテロジャンクション型の光電変換層(BHJ層)を形成した。   Next, P3HT (manufactured by Prectronics: regioregular poly-3-hexylthiophene) (Mn = 52000, polymer p-type semiconductor material) and PCBM (frontier carbon: 6,6-phenyl-C61-butyric acid) were added to chlorobenzene. Methyl ester) (Mw = 911, low molecular weight n-type semiconductor material) prepared in a 1: 1 mixture so as to be 3.0% by mass, applied to a film thickness of 100 nm while filtering through a filter. And dried at room temperature in a nitrogen atmosphere to form a bulk heterojunction photoelectric conversion layer (BHJ layer).

次に、脱水エタノールにTi−イソプロポキシドを0.05mol/lになるように溶解した液を調製し、膜厚が20nmになるように塗布を行い、室温に放置して乾燥させた。続けて、取り出し電極部を拭き取りパターニングし、水蒸気量を調節した窒素チャンバーに搬送し放置して電子輸送層を製膜した。   Next, a solution in which Ti-isopropoxide was dissolved in dehydrated ethanol to a concentration of 0.05 mol / l was prepared, applied to a film thickness of 20 nm, and allowed to stand at room temperature to dry. Subsequently, the extraction electrode portion was wiped and patterned, transported to a nitrogen chamber in which the amount of water vapor was controlled, and allowed to stand to form an electron transport layer.

次に、分散液として調製した銀ナノワイヤーを目付け量80mg/mとなるように塗布し、乾燥させることで銀ナノワイヤー層を形成した。更に、銀ナノワイヤー上に導電性高分子であるBaytron PH510(スタルクヴィテック社製)を塗布した後、室温で乾燥させることで電極層を形成した。 Next, a silver nanowire layer was formed by applying silver nanowires prepared as a dispersion so as to have a basis weight of 80 mg / m 2 and drying. Furthermore, after apply | coating Baytron PH510 (made by Stark Vitec) which is a conductive polymer on silver nanowire, the electrode layer was formed by making it dry at room temperature.

銀ナノワイヤーはAdv.Mater.,2002,14,833〜837に記載の方法を参考に、平均直径75nm、平均長さ35μmの銀ナノワイヤーを作製し、限外濾過膜を用いて銀ナノワイヤーを濾別かつ水洗処理した後、エタノール中に再分散して銀ナノワイヤー分散液(銀ナノワイヤー含有量5質量%)を調製した。   Silver nanowires are described in Adv. Mater. , 2002, 14, 833 to 837, after producing silver nanowires having an average diameter of 75 nm and an average length of 35 μm, and filtering and washing the silver nanowires using an ultrafiltration membrane Then, it was re-dispersed in ethanol to prepare a silver nanowire dispersion (silver nanowire content: 5% by mass).

得られた素子を窒素雰囲気グローブボックスに移動し、ホットプレート上で140℃で30分間加熱処理を行った。更に、バリア付きPENフィルムとUV硬化樹脂を用いて封止を行って、受光部が10×100mmサイズの有機光電変換素子SC−106を得た。   The obtained element was moved to a nitrogen atmosphere glove box and subjected to heat treatment at 140 ° C. for 30 minutes on a hot plate. Furthermore, it sealed using the PEN film with a barrier, and UV curable resin, and obtained the organic photoelectric conversion element SC-106 whose light-receiving part is a 10 * 100 mm size.

〔有機光電変換素子SC−107の作製〕
前記SC−104の作製において、PEN基板上に電磁波吸収能を持つ物質としてSnOゾルをコートし、さらに分散液として調製した銀ナノワイヤーを目付け量40mg/mとなるように塗布し、乾燥させることで銀ナノワイヤー層を形成した。更に、銀ナノワイヤー上に導電性高分子であるBaytron PH510(スタルクヴィテック社製)を塗布した後、室温で乾燥させることで電極層を形成した(シート抵抗15Ω/□)。
[Production of Organic Photoelectric Conversion Element SC-107]
In the production of SC-104, SnO 2 sol was coated on the PEN substrate as a substance having electromagnetic wave absorption ability, and further, silver nanowires prepared as a dispersion were applied so as to have a basis weight of 40 mg / m 2 and dried. By doing so, a silver nanowire layer was formed. Furthermore, after apply | coating Baytron PH510 (made by Starck Vitec) which is a conductive polymer on silver nanowire, the electrode layer was formed by making it dry at room temperature (sheet resistance 15 ohms / square).

銀ナノワイヤーはAdv.Mater.,2002,14,833〜837に記載の方法を参考に、平均直径75nm、平均長さ35μmの銀ナノワイヤーを作製し、限外濾過膜を用いて銀ナノワイヤーを濾別かつ水洗処理した後、エタノール中に再分散して銀ナノワイヤー分散液(銀ナノワイヤー含有量5質量%)を調製した。   Silver nanowires are described in Adv. Mater. , 2002, 14, 833 to 837, after producing silver nanowires having an average diameter of 75 nm and an average length of 35 μm, and filtering and washing the silver nanowires using an ultrafiltration membrane Then, it was re-dispersed in ethanol to prepare a silver nanowire dispersion (silver nanowire content: 5% by mass).

上記作製した電極層上に電子輸送層を形成した以外は、SC−104の作製と同様にしてSC−107を得た。   SC-107 was obtained in the same manner as SC-104 except that an electron transport layer was formed on the electrode layer prepared above.

〔有機光電変換素子SC−108の作製〕
前記SC−104の作製において、電子輸送層をIn:Ga:Zn金属比率が1:1:1になるように、それぞれの金属の硝酸塩を水/エタノール=9/1(質量比)溶媒に10質量%溶解した溶液を調製し、更に、溶液に電磁波吸収能を持つ物質としてITO微粒子(シーアイ化成製NanoTech)を5質量%混合し均一に分散して半導体前駆体溶液を調製した。
[Production of Organic Photoelectric Conversion Element SC-108]
In the production of SC-104, the nitrate of each metal was 10 in water / ethanol = 9/1 (mass ratio) solvent so that the electron transport layer had an In: Ga: Zn metal ratio of 1: 1: 1. A solution in which mass% was dissolved was prepared, and further, 5 mass% of ITO fine particles (Ciano Kasei NanoTech) as a substance having electromagnetic wave absorbing ability were mixed and uniformly dispersed to prepare a semiconductor precursor solution.

上記の分散溶液を塗布乾燥して製膜した以外はSC−104と同様にしてSC−108を得た。このとき、電子輸送層はIn、GaおよびZnを含む金属酸化物層を形成した。   SC-108 was obtained in the same manner as SC-104 except that the dispersion solution was applied and dried to form a film. At this time, a metal oxide layer containing In, Ga, and Zn was formed as the electron transport layer.

《エネルギー変換特性評価》
上記方法で作製した有機光電変換素子について、ソーラーシミュレーターを用いたAM1.5Gフィルタ、100mW/cmの強度の光を照射し、マスクを受光部に重ね、I−V特性を評価し、特性値として、短絡電流密度Jsc(mA/cm)及び開放電圧Voc(V)、フィルファクターffから式1を用いてエネルギー変換効率η(%)を得て、SC−101のエネルギー変換効率を100としたときの相対値を表1に示した。
<Energy conversion characteristics evaluation>
About the organic photoelectric conversion element produced by the above method, an AM1.5G filter using a solar simulator, light with an intensity of 100 mW / cm 2 is irradiated, the mask is overlaid on the light receiving portion, the IV characteristic is evaluated, and the characteristic value The energy conversion efficiency η (%) is obtained from the short-circuit current density Jsc (mA / cm 2 ), the open-circuit voltage Voc (V), and the fill factor ff using Equation 1, and the energy conversion efficiency of SC-101 is 100. The relative values are shown in Table 1.

(式1):Jsc(mA/cm)×Voc(V)×ff=η(%)
《素子寿命評価》
上記作製した素子を、60℃90%RHの高温高湿条件化に500時間放置し、この素子について、上述の方法と同様にしてエネルギー変換効率を求め、式2に従って保持率を求め、表1に示した。
(Formula 1): Jsc (mA / cm 2 ) × Voc (V) × ff = η (%)
<Element life evaluation>
The device prepared above was allowed to stand under high-temperature and high-humidity conditions of 60 ° C. and 90% RH for 500 hours. The energy conversion efficiency of this device was determined in the same manner as described above, the retention rate was determined according to Equation 2, and Table 1 It was shown to.

(式2)保持率(%)=高温高湿放置後の変換効率/放置前の変換効率×100
上記各種評価結果を表1にまとめて示す。
(Formula 2) Retention rate (%) = conversion efficiency after leaving at high temperature and high humidity / conversion efficiency before leaving x100
The various evaluation results are summarized in Table 1.

Figure 2010161270
Figure 2010161270

表1から明らかなように、本発明の実施によって、エネルギー変換効率と高温高湿条件での耐久性を向上させた有機光電変換素子及びその製造方法を提供できることが示された。   As is apparent from Table 1, it was shown that by implementing the present invention, an organic photoelectric conversion element having improved energy conversion efficiency and durability under high temperature and high humidity conditions and a method for producing the same can be provided.

詳しくは、SC−101でTiイソプロポキシドを塗布後、自然乾燥に続いて、空気中の水分との反応を促進させることで酸化チタンの層を形成させた素子に対し、SC−102以降では、例としてマイクロ波を素子に照射し、表中に示すマイクロ波吸収エリア/物質がマイクロ波を吸収することで発熱し、その熱を受ける形で電荷輸送層前駆体材料が正孔輸送層または電子輸送層の組成物に変換するといった構成により、高いエネルギー変換効率と熱湿耐久性を示す結果となった。   Specifically, after applying Ti isopropoxide with SC-101, the element having a titanium oxide layer formed by accelerating the reaction with moisture in the air following natural drying, SC-102 and later As an example, the device is irradiated with microwaves, the microwave absorption areas / substances shown in the table generate heat by absorbing the microwaves, and the charge transport layer precursor material receives the heat to form the hole transport layer or By the structure which converts into the composition of an electron carrying layer, it became the result which showed high energy conversion efficiency and thermal-humidity durability.

更には、SC−103〜SC−105において、In、Ga(Al)、Znといった3元素以上の金属元素からなる金属酸化物層を電子輸送層として用いると、更に高いエネルギー変換効率と耐久性を示すことがわかる。これは、3種類以上の元素を用いることで、より低い温度で電子輸送性に優れる薄膜が形成できるためと推察される。   Furthermore, in SC-103 to SC-105, when a metal oxide layer composed of three or more metal elements such as In, Ga (Al), and Zn is used as an electron transport layer, higher energy conversion efficiency and durability can be obtained. You can see that This is presumably because a thin film having excellent electron transport properties can be formed at a lower temperature by using three or more elements.

SC−106では、有機物からなる材料を用い、同様に熱変換させて正孔輸送層の組成物を形成させた例であり、有機物の薄膜においても同様な効果が得られたことが示された。   SC-106 is an example in which a material composed of an organic material is used and heat-converted in the same manner to form a composition of a hole transport layer, and it was shown that the same effect was obtained even in an organic material thin film. .

SC−107〜108では、新たにマイクロ波吸収エリア/物質を付与し、そこから発せられる熱によって熱変換を起こさせる構成であり、特にマイクロ波吸収物質を、熱変換材料を含む層に混在させると、高いエネルギー変換効率を示すことが明らかになった。   In SC-107 to 108, a microwave absorption area / substance is newly provided, and heat conversion is caused by heat generated from the area, and in particular, the microwave absorption substance is mixed in a layer including the heat conversion material. It became clear that it showed high energy conversion efficiency.

10 有機光電変換素子
11 基板
12 第1電極
13 第1の電荷輸送層
14 光電変換層
15 第2の電荷輸送層
16 第2電極
DESCRIPTION OF SYMBOLS 10 Organic photoelectric conversion element 11 Board | substrate 12 1st electrode 13 1st charge transport layer 14 Photoelectric conversion layer 15 2nd charge transport layer 16 2nd electrode

Claims (15)

第1の電極と第2の電極との間に少なくとも光電変換層と正孔輸送層または電子輸送層とを積層してなる有機光電変換素子であって、当該正孔輸送層または電子輸送層が熱変換材料からなり、当該熱変換材料が熱により正孔輸送層または電子輸送層の組成物に変換されたことを特徴とする有機光電変換素子。   An organic photoelectric conversion element in which at least a photoelectric conversion layer and a hole transport layer or an electron transport layer are laminated between a first electrode and a second electrode, wherein the hole transport layer or the electron transport layer is An organic photoelectric conversion element comprising a heat conversion material, wherein the heat conversion material is converted into a composition of a hole transport layer or an electron transport layer by heat. 前記正孔輸送層または電子輸送層の少なくとも一部に、(i)熱変換材料または熱変換材料を含むエリアと、(ii)前記熱変換材料または熱変換材料を含むエリアに隣接もしくは近接して、電磁波吸収能を持つ物質または電磁波吸収能を持つ物質を含むエリアとが、配置され、電磁波が照射された際に、当該電磁波吸収能を持つ物質が発生する熱により、当該熱変換材料が正孔輸送層または電子輸送層の組成物に変換されたことを特徴とする請求項1に記載の有機光電変換素子。   At least a part of the hole transport layer or the electron transport layer includes (i) an area containing a heat conversion material or a heat conversion material, and (ii) adjacent to or close to the area containing the heat conversion material or the heat conversion material. When an electromagnetic wave absorbing substance or an area containing an electromagnetic wave absorbing substance is disposed and the electromagnetic wave is irradiated, the heat conversion material is corrected by heat generated by the electromagnetic wave absorbing substance. 2. The organic photoelectric conversion element according to claim 1, wherein the organic photoelectric conversion element is converted into a composition of a hole transport layer or an electron transport layer. 前記正孔輸送層または電子輸送層の少なくとも一部に、熱変換材料と電磁波吸収能を持つ物質を含むエリアとが配置され、電磁波が照射された際に、当該電磁波吸収能を持つ物質が発生する熱により、当該熱変換材料が正孔輸送層または電子輸送層の組成物に変換されたことを特徴とする請求項1に記載の有機光電変換素子。   At least a part of the hole transport layer or the electron transport layer is provided with a heat conversion material and an area containing a substance having an electromagnetic wave absorbing ability, and when the electromagnetic wave is irradiated, the substance having the electromagnetic wave absorbing ability is generated. The organic photoelectric conversion element according to claim 1, wherein the heat conversion material is converted into a composition of a hole transport layer or an electron transport layer by heat to be generated. 前記電磁波吸収能を持つ物質が、導電性の金属酸化物であることを特徴とする請求項2又は請求項3に記載の有機光電変換素子。   The organic photoelectric conversion element according to claim 2 or 3, wherein the substance having electromagnetic wave absorbing ability is a conductive metal oxide. 前記熱変換材料が、少なくとも3種類以上の金属元素を含む無機半導体前駆体であり、無機半導体に変換されたことを特徴とする請求項1から請求項4のいずれか一項に記載の有機光電変換素子。   The organic photoelectric device according to any one of claims 1 to 4, wherein the heat conversion material is an inorganic semiconductor precursor containing at least three or more kinds of metal elements, and has been converted into an inorganic semiconductor. Conversion element. 前記無機半導体が、少なくとも、In、Zn、Snのいずれかの元素を含むことを特徴とする請求項5に記載の有機光電変換素子。   The organic photoelectric conversion element according to claim 5, wherein the inorganic semiconductor includes at least one of In, Zn, and Sn. 前記無機半導体が、Ga、Alのいずれかを含むことを特徴とする請求項4から請求項6のいずれか一項に記載の有機光電変換素子。   The organic photoelectric conversion element according to any one of claims 4 to 6, wherein the inorganic semiconductor contains Ga or Al. 前記無機半導体が、金属酸化物半導体であることを特徴とする請求項5から請求項7のいずれか一項に記載の有機光電変換素子。   The organic photoelectric conversion element according to any one of claims 5 to 7, wherein the inorganic semiconductor is a metal oxide semiconductor. 前記熱変換材料が、有機半導体前駆体であり、有機半導体に変換されたことを特徴とする請求項1から請求項4のいずれか一項に記載の有機光電変換素子。   The organic photoelectric conversion element according to any one of claims 1 to 4, wherein the heat conversion material is an organic semiconductor precursor and is converted into an organic semiconductor. 請求項1から請求項9のいずれか一項に記載の有機光電変換素子を製造する有機光電変換素子の製造方法であって、正孔輸送層または電子輸送層の少なくとも一部に、(i)熱変換材料または熱変換材料を含むエリアと、(ii)前記熱変換材料または熱変換材料を含むエリアに隣接もしくは近接して電磁波吸収能を持つ物質又は電磁波吸収能を持つ物質を含むエリアとを、配置し、電磁波を照射して、当該電磁波吸収能を持つ物質が発生する熱により、当該熱変換材料を正孔輸送層または電子輸送層の組成物に変換することを特徴とする有機光電変換素子の製造方法。   It is a manufacturing method of the organic photoelectric conversion element which manufactures the organic photoelectric conversion element as described in any one of Claims 1-9, Comprising: At least one part of a positive hole transport layer or an electron transport layer, (i) A heat conversion material or an area containing a heat conversion material; and (ii) an area containing an electromagnetic wave absorbing substance or a substance having an electromagnetic wave absorbing ability adjacent to or close to the heat conversion material or the area containing the heat conversion material. An organic photoelectric conversion characterized in that the heat conversion material is converted into a composition of a hole transport layer or an electron transport layer by heat generated by a substance having an electromagnetic wave absorption ability, disposed and irradiated with an electromagnetic wave Device manufacturing method. 請求項1から請求項9のいずれか一項に記載の有機光電変換素子を製造する有機光電変換素子の製造方法であって、正孔輸送層または電子輸送層の少なくとも一部に、熱変換材料と電磁波吸収能を持つ物質を含むエリアを配置し、電磁波を照射して、当該電磁波吸収能を持つ物質が発生する熱により、当該熱変換材料を正孔輸送層または電子輸送層の組成物に変換することを特徴とする有機光電変換素子の製造方法。   It is a manufacturing method of the organic photoelectric conversion element which manufactures the organic photoelectric conversion element as described in any one of Claims 1-9, Comprising: At least one part of a positive hole transport layer or an electron transport layer is a heat conversion material. And an area containing a substance having an electromagnetic wave absorption ability, irradiating an electromagnetic wave, and heat generated from the substance having the electromagnetic wave absorption ability, the heat conversion material is made into a composition of a hole transport layer or an electron transport layer. A method for producing an organic photoelectric conversion element, characterized by performing conversion. 基板の一方の面に形成した電磁波吸収能を持つ電極層上に、熱変換材料を含む層を塗布形成し、電磁波照射することによって、当該電極から発生する熱により、当該熱変換材料を含む層を正孔輸送層または電子輸送層に変換することを特徴とする請求項10に記載の有機光電変換素子の製造方法。   A layer containing the heat conversion material is formed by coating and forming a layer containing a heat conversion material on an electrode layer having electromagnetic wave absorption ability formed on one surface of the substrate, and irradiating the electromagnetic wave. The method for producing an organic photoelectric conversion element according to claim 10, wherein the compound is converted into a hole transport layer or an electron transport layer. 電磁波吸収能を持つ基板の一方の面に形成した電極層上に、熱変換材料を含む層を塗布形成し、電磁波照射することによって、当該基板から発生する熱により、当該熱変換材料を含む層を正孔輸送層または電子輸送層に変換することを特徴とする請求項10に記載の有機光電変換素子の製造方法。   A layer containing the heat conversion material is formed by applying a layer containing a heat conversion material on the electrode layer formed on one surface of the substrate having electromagnetic wave absorption ability and irradiating the electromagnetic wave, thereby generating heat from the substrate. The method for producing an organic photoelectric conversion element according to claim 10, wherein the compound is converted into a hole transport layer or an electron transport layer. 基板の一方の面に形成した電極層上に、熱変換材料と電磁波吸収能を持つ物質を含む層を塗布形成し、電磁波照射することによって、当該電磁波吸収能を持つ物質から発生する熱により、当該熱変換材料を含む層を正孔輸送層または電子輸送層に変換することを特徴とする請求項11に記載の有機光電変換素子の製造方法。   On the electrode layer formed on one surface of the substrate, a layer containing a heat conversion material and a substance having an electromagnetic wave absorbing ability is applied and formed by irradiating the electromagnetic wave, thereby generating heat from the substance having the electromagnetic wave absorbing ability, The method for producing an organic photoelectric conversion element according to claim 11, wherein the layer containing the heat conversion material is converted into a hole transport layer or an electron transport layer. 前記電磁波が、マイクロ波であることを特徴とする請求項10から請求項14のいずれか一項に記載の有機光電変換素子の製造方法。   The method for producing an organic photoelectric conversion element according to any one of claims 10 to 14, wherein the electromagnetic wave is a microwave.
JP2009003342A 2009-01-09 2009-01-09 Organic photoelectric conversion element and manufacturing method therefor Pending JP2010161270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009003342A JP2010161270A (en) 2009-01-09 2009-01-09 Organic photoelectric conversion element and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009003342A JP2010161270A (en) 2009-01-09 2009-01-09 Organic photoelectric conversion element and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2010161270A true JP2010161270A (en) 2010-07-22

Family

ID=42578229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009003342A Pending JP2010161270A (en) 2009-01-09 2009-01-09 Organic photoelectric conversion element and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2010161270A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115108A1 (en) * 2011-02-25 2012-08-30 東京エレクトロン株式会社 Wiring formation method and device
JP2013041758A (en) * 2011-08-17 2013-02-28 Konica Minolta Business Technologies Inc Solar battery and method for manufacturing the same
JP2013222750A (en) * 2012-04-13 2013-10-28 Kuraray Co Ltd Photoelectric conversion element, method for manufacturing the same, and solar cell
JP2014120616A (en) * 2012-12-17 2014-06-30 Nippon Hoso Kyokai <Nhk> Organic photoelectric conversion element, laminated organic image sensor and laminated organic solar cell each including the same, and method of manufacturing organic photoelectric conversion element
US11004617B2 (en) 2016-07-29 2021-05-11 Lg Chem, Ltd. Method for manufacturing organic-inorganic hybrid solar cell
US11031566B2 (en) 2016-07-22 2021-06-08 Lg Chem, Ltd. Method for manufacturing laminate for organic-inorganic hybrid solar cell and method for manufacturing organic-inorganic hybrid solar cell
WO2023142776A1 (en) * 2022-01-26 2023-08-03 Tcl科技集团股份有限公司 Preparation method for photoelectric device, and photoelectric device and display apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115108A1 (en) * 2011-02-25 2012-08-30 東京エレクトロン株式会社 Wiring formation method and device
JP2013041758A (en) * 2011-08-17 2013-02-28 Konica Minolta Business Technologies Inc Solar battery and method for manufacturing the same
JP2013222750A (en) * 2012-04-13 2013-10-28 Kuraray Co Ltd Photoelectric conversion element, method for manufacturing the same, and solar cell
JP2014120616A (en) * 2012-12-17 2014-06-30 Nippon Hoso Kyokai <Nhk> Organic photoelectric conversion element, laminated organic image sensor and laminated organic solar cell each including the same, and method of manufacturing organic photoelectric conversion element
US11031566B2 (en) 2016-07-22 2021-06-08 Lg Chem, Ltd. Method for manufacturing laminate for organic-inorganic hybrid solar cell and method for manufacturing organic-inorganic hybrid solar cell
US11004617B2 (en) 2016-07-29 2021-05-11 Lg Chem, Ltd. Method for manufacturing organic-inorganic hybrid solar cell
WO2023142776A1 (en) * 2022-01-26 2023-08-03 Tcl科技集团股份有限公司 Preparation method for photoelectric device, and photoelectric device and display apparatus

Similar Documents

Publication Publication Date Title
JP5300903B2 (en) Polymer, solar cell and solar power generation system using the same
JP5573066B2 (en) Organic photoelectric conversion element, solar cell and optical sensor array using the same
JP2006245073A (en) Organic thin-film solar cell
JP2012255098A (en) Conjugated polymer, and organic photoelectric converter using the same
JP2010161270A (en) Organic photoelectric conversion element and manufacturing method therefor
JP5515598B2 (en) Method for producing organic photoelectric conversion element and organic photoelectric conversion element
JP5098957B2 (en) Organic photoelectric conversion element
JP5862189B2 (en) Organic photoelectric conversion device and solar cell using the same
Sasajima et al. Flexible inverted polymer solar cells containing an amorphous titanium oxide electron collection electrode
Sun et al. Enhanced pin type perovskite solar cells by doping AuAg@ AuAg core-shell alloy nanocrystals into PEDOT: PSS layer
JP5444743B2 (en) Organic photoelectric conversion element
JP5585066B2 (en) Organic thin film solar cell and method for manufacturing the same
JP2010251592A (en) Organic photoelectric conversion element and manufacturing method thereof
Yu et al. Copper oxide hole transport materials for heterojunction solar cell applications
JP2012099592A (en) Organic photoelectric conversion element, solar cell and method for manufacturing the same
JP2010245146A (en) Organic photoelectric conversion element, and method of manufacturing organic photoelectric conversion element
JPWO2010090123A1 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP5375066B2 (en) Method for producing organic photoelectric conversion element, and organic photoelectric conversion element
JP2012124297A (en) Organic photoelectric conversion element and solar cell
JP5304448B2 (en) Organic photoelectric conversion element
JP5098956B2 (en) Manufacturing method of organic photoelectric conversion element
JP2010093099A (en) Organic photoelectric converting element and method of manufacturing the same
JP2013026483A (en) Organic photoelectric conversion element, method for manufacturing the same, and solar cell
JP5691810B2 (en) Conjugated polymer and organic photoelectric conversion device using the same
JP5413055B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array