JP2011034734A - Field emission electron source - Google Patents

Field emission electron source Download PDF

Info

Publication number
JP2011034734A
JP2011034734A JP2009178302A JP2009178302A JP2011034734A JP 2011034734 A JP2011034734 A JP 2011034734A JP 2009178302 A JP2009178302 A JP 2009178302A JP 2009178302 A JP2009178302 A JP 2009178302A JP 2011034734 A JP2011034734 A JP 2011034734A
Authority
JP
Japan
Prior art keywords
emitter
conductive material
target
field emission
electron source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009178302A
Other languages
Japanese (ja)
Inventor
Takahiro Matsumoto
貴裕 松本
Yoshihiro Onizuka
好弘 鬼塚
Tomonobu Nakamura
智宣 中村
Atsuo Sadatsuka
淳生 定塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ONIZUKA GLASS KK
Stanley Electric Co Ltd
Original Assignee
ONIZUKA GLASS KK
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ONIZUKA GLASS KK, Stanley Electric Co Ltd filed Critical ONIZUKA GLASS KK
Priority to JP2009178302A priority Critical patent/JP2011034734A/en
Publication of JP2011034734A publication Critical patent/JP2011034734A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve long life of a field emission electron source through restraint of deterioration of electron emission part thereof. <P>SOLUTION: In the field emission electron source emitting electrons with application of an electric field, a conductive material 4 is arranged around an emitter 1 emitting an electron flow to a target 3 so that a distance between the target 3 and the emitter 1 is to be shorter than that between the target 3 and the conductive material 4, and a voltage approximately same to one applied between the target 3 and the emitter 1 is applied between the target 3 and the conductive material 4. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電界が印加されることにより電子を放出する電界放出型電子源に関する。   The present invention relates to a field emission electron source that emits electrons when an electric field is applied.

従来、電子顕微鏡、電子線管、X線管等に用いられ、電界が印加されることにより電子を放出する電界放出型電子源が知られている。電界放出型電子源の冷陰極(エミッタ)から放出される電子の流れ(放出電流)Jは、電界の強さをF、仕事関数をφ、定数をA、Bとしたとき、次式(1)で表される。   2. Description of the Related Art Conventionally, field emission electron sources that are used in electron microscopes, electron beam tubes, X-ray tubes, and the like and emit electrons when an electric field is applied are known. An electron flow (emission current) J emitted from a cold cathode (emitter) of a field emission electron source is expressed by the following formula (1) where F is a field strength, φ is a work function, and A and B are constants. ).

J=A(F/φ)exp[−Bφ3/2/F] ・・・(1)
式(1)によれば、仕事関数φを低くすることにより大きな放出電流Jを得ることができる。
J = A (F 2 / φ) exp [−Bφ 3/2 / F] (1)
According to equation (1), a large emission current J can be obtained by lowering the work function φ.

上記の電界放出型電子源の使用例として、電界放出型X線管がある。これは、電界放出型電子材料からなるエミッタに強電界を印加して電子を放出させ、電子をX線発生ターゲットに照射することによってX線を発生させるものである。かかるX線管において、エミッタから電子を放出させるためには、X線発生ターゲットとエミッタとの間に高電圧を印加し、エミッタ先端から電子放出をさせるのに十分な電界強度を与えなければならない。   A field emission X-ray tube is an example of the use of the field emission electron source. This is to generate X-rays by applying a strong electric field to an emitter made of a field emission type electron material to emit electrons and irradiating the X-ray generation target with electrons. In such an X-ray tube, in order to emit electrons from the emitter, a high voltage must be applied between the X-ray generation target and the emitter to give a sufficient electric field strength to cause the emitter to emit electrons. .

このタイプのX線管は、図8に模式的に示すように、エミッタ1及び電圧源2を備えた電子源とX線ターゲット3とをガラス管内に封入し、その内部を高真空状態に保持するように構成される。このX線ターゲット3とエミッタ1との間に電圧源2から高電圧VETを印加すると共にエミッタ1の先端に強電界を印加することにより、エミッタ1から放出された電子がターゲット3に照射され、ターゲット3からX線が発生する。このとき、放出された電子がターゲット3に衝突すると、ターゲット3に付着したガスがイオン化し、イオン化ガスがエミッタ1に向かってくる。 In this type of X-ray tube, as schematically shown in FIG. 8, an electron source including an emitter 1 and a voltage source 2 and an X-ray target 3 are enclosed in a glass tube, and the inside is maintained in a high vacuum state. Configured to do. By applying a high voltage VET from the voltage source 2 between the X-ray target 3 and the emitter 1 and applying a strong electric field to the tip of the emitter 1, electrons emitted from the emitter 1 are irradiated onto the target 3. X-rays are generated from the target 3. At this time, when the emitted electrons collide with the target 3, the gas attached to the target 3 is ionized, and the ionized gas comes toward the emitter 1.

従来の電界放出型X線管では、その構成部材のうちエミッタに最も強い電界が印加されると共に、上記のように発生したイオンが高電圧で加速されてエミッタに衝突することによりエミッタの電子放出部が消失し、その電子放出能力が失われる。従って、エミッタの寿命を延ばすためには、イオンの衝突を回避することが必要である。   In the conventional field emission type X-ray tube, the strongest electric field is applied to the emitter among the constituent members, and ions generated as described above are accelerated at a high voltage and collide with the emitter, thereby emitting electrons from the emitter. The part disappears and its ability to emit electrons is lost. Therefore, in order to extend the lifetime of the emitter, it is necessary to avoid ion collision.

すなわち、上記のような電界放出型X線管の寿命は、イオンの衝突による電子放出部の消失の度合に依存する。図9に示すように、イオンは電気力線に沿って移行し、電気力線はエミッタ1の先端に集中するので、強電界が印加された電子放出部材に対するイオンの衝突頻度は、低電界が印加された部材よりも高くなる。このため、従来の電界放出部を形成する電子材料の寿命は短く、これがX線管などの長寿命化の障害となっていた。   That is, the lifetime of the field emission X-ray tube as described above depends on the degree of disappearance of the electron emission portion due to ion collision. As shown in FIG. 9, the ions move along the lines of electric force, and the electric lines of force are concentrated at the tip of the emitter 1. Therefore, the collision frequency of ions against the electron emitting member to which a strong electric field is applied is low. It becomes higher than the applied member. For this reason, the lifetime of the electronic material which forms the conventional field emission part is short, and this has become an obstacle to extending the lifetime of an X-ray tube or the like.

本発明は、上記のような電界放出型電子源における電子放出部の劣化を抑えることによって長寿命化を実現できる電界放出型電子源を提供することを目的とする。   An object of the present invention is to provide a field emission electron source capable of realizing a long life by suppressing deterioration of an electron emission portion in the field emission electron source as described above.

本発明の第1の態様(第1発明)は、電界が印加されることにより電子を放出する電界放出型電子源において、ターゲットに対し電子流を放出するエミッタの周囲に導電性材料を、ターゲットとエミッタとの間の距離よりもターゲットと導電性材料との間の距離が短くなるように配置し、ターゲットと導電性材料との間に、ターゲットとエミッタとの間に印加するのと同じ電圧を印加することを特徴とする。   According to a first aspect of the present invention (first invention), in a field emission electron source that emits electrons when an electric field is applied, a conductive material is disposed around an emitter that emits an electron current to the target. The distance between the target and the conductive material is shorter than the distance between the target and the conductive material, and the same voltage is applied between the target and the conductive material between the target and the emitter. Is applied.

第1発明によれば、導電性材料が、ターゲットとエミッタとの間の距離よりもターゲットと導電性材料との間の距離が短くなるように配置されるので、エミッタよりもそれを囲む導電性材料の電界強度が強く、X線発生ターゲットで発生したイオンは、エミッタに向かうより導電性材料に向かっていく。このため、エミッタの先端部におけるイオン衝撃頻度は従来の電界放出型電子源に比して圧倒的に小さくなる。これにより、電界放出型電子源の寿命を延ばし、実用に供し得る寿命を有するX線管等が得られる。   According to the first aspect of the invention, the conductive material is disposed so that the distance between the target and the conductive material is shorter than the distance between the target and the emitter. The electric field strength of the material is strong, and ions generated at the X-ray generation target are directed toward the conductive material rather than toward the emitter. For this reason, the ion bombardment frequency at the tip of the emitter is much smaller than that of a conventional field emission electron source. Thereby, the lifetime of the field emission electron source is extended, and an X-ray tube or the like having a lifetime that can be put to practical use is obtained.

本発明の第2の態様(第2発明)は、電界が印加されることにより電子を放出する電界放出型電子源において、ターゲットに対し電子流を放出するエミッタの周囲に導電性材料を、ターゲットとエミッタとの間の距離よりもターゲットと導電性材料との間の距離が短くなるように配置して、エミッタに印加される電界よりも導電性材料に印加される電界の強度が大きくなるように構成すると共に、エミッタと導電性材料との間に、前記電界の強度の関係が反転しない範囲で電圧を印加する調節用電源を備えたことを特徴とする。   According to a second aspect (second invention) of the present invention, in a field emission type electron source that emits electrons when an electric field is applied, a conductive material is disposed around an emitter that emits an electron current to the target. The distance between the target and the conductive material is shorter than the distance between the emitter and the emitter so that the electric field applied to the conductive material is larger than the electric field applied to the emitter. And an adjustment power source for applying a voltage between the emitter and the conductive material within a range in which the relationship between the electric field strengths is not reversed.

第2発明によれば、導電性材料が、ターゲットとエミッタとの間の距離よりもターゲットと導電性材料との間の距離が短くなるように配置されるので、エミッタよりもそれを囲む導電性材料の電界強度が強く、X線発生ターゲットで発生したイオンは、エミッタに向かうより導電性材料に向かっていく。このため、エミッタの先端部におけるイオン衝撃頻度は従来の電界放出型電子源に比して圧倒的に小さくなる。   According to the second invention, the conductive material is disposed so that the distance between the target and the conductive material is shorter than the distance between the target and the emitter. The electric field strength of the material is strong, and ions generated at the X-ray generation target are directed toward the conductive material rather than toward the emitter. For this reason, the ion bombardment frequency at the tip of the emitter is much smaller than that of a conventional field emission electron source.

また、エミッタと導電性材料との間に、前記電界の強度の関係が反転しない範囲で電圧を印加する調節用電源を備えたことにより、エミッタと導電性材料との電位差を微調整することができる、すなわち導電性材料の電位をエミッタの電位より低くする程度を調整することで、導電性材料へのイオンの引き込み量を調整することができ、ひいてはエミッタへのイオンの衝突を更に減少又は微調整することができる。これにより、電界放出型電子源の寿命を延ばし、実用に供し得る寿命を有するX線管等が得られる。   In addition, by providing an adjustment power source for applying a voltage between the emitter and the conductive material so that the relationship of the electric field strength is not reversed, the potential difference between the emitter and the conductive material can be finely adjusted. By adjusting the degree to which the potential of the conductive material is made lower than the potential of the emitter, the amount of ions drawn into the conductive material can be adjusted, thereby further reducing or minimizing the collision of ions with the emitter. Can be adjusted. Thereby, the lifetime of the field emission electron source is extended, and an X-ray tube or the like having a lifetime that can be put to practical use is obtained.

上記第1、第2発明の電界放出型電子源において、前記導電性材料はエミッタに比べて仕事関数の高い材料であることが好ましい。   In the field emission electron sources of the first and second inventions, the conductive material is preferably a material having a work function higher than that of the emitter.

本発明によれば、導電性材料の電界強度がエミッタに比して強いので、導電性材料の仕事関数が低いと、導電性材料からの電子放出がエミッタからの電子放出より優勢となる可能性があるが、前記導電性材料にエミッタに比べて仕事関数の高い材料を用いることで、導電性材料からの電子放出がエミッタからの電子放出より優勢となるのを防止できる。   According to the present invention, since the electric field strength of the conductive material is stronger than that of the emitter, if the work function of the conductive material is low, the electron emission from the conductive material may be superior to the electron emission from the emitter. However, by using a material having a work function higher than that of the emitter as the conductive material, it is possible to prevent electron emission from the conductive material from being dominant over electron emission from the emitter.

また、上記導電性材料は、イオン衝突によるスパッタを生じない材料が好適であり、原子番号の大きい材料或いは共有結合性の強い材料が好ましい。なぜなら、電界放出型電子源で生じるイオンは、数10keVのエネルギーを有しているため、スパッタが生じると更なるイオンの発生が起こり得るからである。   The conductive material is preferably a material that does not cause sputtering due to ion collision, and is preferably a material having a large atomic number or a material having strong covalent bonding. This is because the ions generated in the field emission electron source have energy of several tens of keV, so that further ions can be generated when sputtering occurs.

(A)は本発明の実施形態に係る電界放出型電子源の縦断面図、(B)はその平面図。(A) is a longitudinal cross-sectional view of the field emission electron source according to the embodiment of the present invention, and (B) is a plan view thereof. 図1の電界放出型電子源でエミッタ及び導電性材料とターゲットとの間に高電圧を印加する回路構成を示す図。The figure which shows the circuit structure which applies a high voltage between an emitter and an electroconductive material, and a target with the field emission type electron source of FIG. 図2の電界放出型電子源でエミッタと導電性材料に向かう電気力線によるイオンの流れを示す図。The figure which shows the flow of the ion by the electric force line which goes to an emitter and an electroconductive material with the field emission type electron source of FIG. 別実施形態のエミッタ及び導電性材料とターゲットとの間に高電圧を印加する回路構成を示す図。The figure which shows the circuit structure which applies a high voltage between the emitter and electroconductive material of another embodiment, and a target. 図2の電界放出型電子源でエミッタと導電性材料との間に調節用電源を設けた実施形態の回路構成を示す図。The figure which shows the circuit structure of embodiment which provided the power supply for adjustment between the emitter and the electroconductive material in the field emission type electron source of FIG. (A)は本発明の実施例として図2に示された電子源を用いたX線管の構成を示し、(B)は(A)と同形のX線管で導電性材料がない構成を示す図。(A) shows the configuration of an X-ray tube using the electron source shown in FIG. 2 as an embodiment of the present invention, and (B) is an X-ray tube having the same shape as (A) and has no conductive material. FIG. 図6(A)(B)に示した各X線管におけるターゲットからの放出電流の時間変化を示すグラフ。The graph which shows the time change of the emission current from the target in each X-ray tube shown to FIG. 6 (A) (B). 従来の電界放出型X線管の概略構成図。1 is a schematic configuration diagram of a conventional field emission X-ray tube. 図8の構造でエミッタに向かう電気力線によるイオンの流れを示す図。The figure which shows the flow of the ion by the electric force line which goes to an emitter with the structure of FIG.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図1は、本発明の実施形態に係る電界放出型電子源の構造を示す。これは、棒状のエミッタ1の上方に、円筒状の導電性材料4をエミッタ1と心合せして配置した構造である。すなわち、エミッタ1は、導電性材料4の中心部の円孔5の下方で同心位置に配置されている。そして、図2に示すように、導電性材料4は、ターゲット3とエミッタ1との間の距離よりもターゲット3と当該導電性材料4との間の距離が短くなるように配置されている。   FIG. 1 shows the structure of a field emission electron source according to an embodiment of the present invention. This is a structure in which a cylindrical conductive material 4 is arranged in alignment with the emitter 1 above the rod-shaped emitter 1. That is, the emitter 1 is disposed at a concentric position below the circular hole 5 at the center of the conductive material 4. As shown in FIG. 2, the conductive material 4 is disposed such that the distance between the target 3 and the conductive material 4 is shorter than the distance between the target 3 and the emitter 1.

この構造によれば、電界が図の矢印方向に印加されると、導電性材料4の電界強度はエミッタ1のそれよりも強くなる。すなわち、図1の電界放出型電子源においては、エミッタ1を導電性材料4で取り囲み、導電性材料4は、これに印加される電界強度がエミッタ1よりも強くなるように配置される。   According to this structure, when an electric field is applied in the direction of the arrow in the figure, the electric field strength of the conductive material 4 becomes stronger than that of the emitter 1. That is, in the field emission electron source of FIG. 1, the emitter 1 is surrounded by the conductive material 4, and the conductive material 4 is arranged so that the electric field strength applied to the emitter 1 is stronger than that of the emitter 1.

図2は、図1の電界放出型電子源において、エミッタ1及び導電性材料4とターゲット3との間に高電圧VETを印加するための回路構成を示す。ここで、エミッタ1と導電性材料4が同電位の状態でエミッタ‐ターゲット間に高電圧VETを印加すると、図3に示すように、電気力線がエミッタ1の先端部へ集中するのが緩和される。そして、より高い電界強度が印加された導電性部材4へイオンが流れるため、エミッタ1へのイオン流入量が少なくなる。 FIG. 2 shows a circuit configuration for applying a high voltage VET between the emitter 1 and the conductive material 4 and the target 3 in the field emission electron source of FIG. Here, when the high voltage VET is applied between the emitter and the target in a state where the emitter 1 and the conductive material 4 are at the same potential, the lines of electric force are concentrated on the tip of the emitter 1 as shown in FIG. Alleviated. Since ions flow to the conductive member 4 to which a higher electric field strength is applied, the amount of ions flowing into the emitter 1 is reduced.

なお、電気力線の数は、ターゲット・エミッタ間の距離、印加電圧、エミッタ1と導電性材料4の幾何学的位置関係等によって変動する。   The number of lines of electric force varies depending on the distance between the target and the emitter, the applied voltage, the geometrical positional relationship between the emitter 1 and the conductive material 4, and the like.

本発明にかかる電界放出型電子源では、エミッタを囲む導電性材料は、エミッタに比べて前記仕事関数φの高い材料が好ましい。本発明によれば、導電性材料の電界強度がエミッタに比して強いので、導電性材料の仕事関数が低いと、エミッタからの電子放出よりも導電性材料からの電子放出が優勢となる可能性があるが、導電性材料として、エミッタに比べて仕事関数の高い材料を用いることで、そのような可能性をなくすことができる。   In the field emission electron source according to the present invention, the conductive material surrounding the emitter is preferably a material having a higher work function φ than the emitter. According to the present invention, since the electric field strength of the conductive material is stronger than that of the emitter, if the work function of the conductive material is low, the electron emission from the conductive material can be dominant over the electron emission from the emitter. However, such a possibility can be eliminated by using a material having a work function higher than that of the emitter as the conductive material.

また、導電性材料は、イオン衝突によるスパッタを生じない材料が好適であり、原子番号の大きい材料或いは共有結合性の強い材料が好ましい。なぜなら、イオンは数10keVのエネルギーを有しているため、スパッタにより更なるイオンの発生が起こり得るからである。   The conductive material is preferably a material that does not cause sputtering due to ion collision, and is preferably a material having a large atomic number or a material having strong covalent bonding. This is because ions have energy of several tens of keV, so that further ions can be generated by sputtering.

本発明の電界放出型電子源は、図1の構造に限らず、図4に示すように、エミッタ1の上方周囲に針状の導電性材料4を複数配置した構造でもよい。この場合、エミッタ1は、その上方円周上に配置した導電性材料4からなる円の中心位置に配置されている。そして、導電性材料4は、ターゲット3とエミッタ1との間の距離よりもターゲット3と当該導電性材料4との間の距離が短くなるように配置されている。   The field emission electron source of the present invention is not limited to the structure of FIG. 1, and may have a structure in which a plurality of needle-like conductive materials 4 are arranged around the upper portion of the emitter 1 as shown in FIG. 4. In this case, the emitter 1 is arranged at the center position of a circle made of the conductive material 4 arranged on the upper circumference thereof. The conductive material 4 is disposed such that the distance between the target 3 and the conductive material 4 is shorter than the distance between the target 3 and the emitter 1.

従って、この構造の電界放出型電子源においても、電界が図の矢印方向に印加されると、導電性材料4の電界強度はエミッタ1のそれよりも強くなる。このため、より高い電界強度を印加された導電性材料4へイオンが流れるので、エミッタ1へのイオン流入量が少なくなり、エミッタ1における電子放出部の消滅が抑えられる。   Therefore, also in the field emission electron source having this structure, when the electric field is applied in the direction of the arrow in the figure, the electric field strength of the conductive material 4 becomes stronger than that of the emitter 1. For this reason, since ions flow to the conductive material 4 to which a higher electric field strength is applied, the amount of ions flowing into the emitter 1 is reduced, and the disappearance of the electron emission portion in the emitter 1 is suppressed.

以上のように、図2及び図4の電界放出型電子源においては、エミッタ1を導電性材料4で取り囲み、導電性材料4は、ターゲット3とエミッタ1との間の距離よりもターゲット3と導電性材料4との間の距離が短くなるように配置されることで、導電性材料4に印加される電界強度がエミッタ1に印加される電界よりも強くなる。このため、X線発生ターゲットで発生したイオンは、エミッタ1に向かうよりも多く導電性材料4に向かうので、エミッタ1の先端部におけるイオン衝撃頻度は従来の電界放出型X線管に比して圧倒的に小さくなる。これにより、実用に供し得る寿命を有する電界放出型X線管が得られる。   As described above, in the field emission electron source of FIGS. 2 and 4, the emitter 1 is surrounded by the conductive material 4, and the conductive material 4 is closer to the target 3 than the distance between the target 3 and the emitter 1. By arranging the distance between the conductive material 4 to be short, the electric field strength applied to the conductive material 4 becomes stronger than the electric field applied to the emitter 1. For this reason, ions generated at the X-ray generation target are directed to the conductive material 4 more than toward the emitter 1, so that the ion bombardment frequency at the tip of the emitter 1 is higher than that of a conventional field emission X-ray tube. Overwhelmingly smaller. Thereby, a field emission X-ray tube having a useful life can be obtained.

また、別の実施形態として、図2又は図4の電界放出型電子源において、エミッタへのイオン衝突の頻度に応じて、導電性材料へのイオンの引き込み量を調節可能とする。図5は、その構成例を示す。   As another embodiment, in the field emission electron source of FIG. 2 or FIG. 4, the amount of ions drawn into the conductive material can be adjusted according to the frequency of ion collision with the emitter. FIG. 5 shows an example of the configuration.

これは、図2及び図4のようにエミッタ1と導電性材料4を同電位とする構成においても、エミッタへのイオン衝突が問題となる場合に対処するものである。具体的には、例えば図2の電界放出型電子源において、エミッタ1と導電性材料4との間に、図5に示すようにエミッタ1と導電性材料4の間に電位差を設ける調節用可変電源6が接続される。   This is to cope with the case where ion collision with the emitter causes a problem even in the configuration in which the emitter 1 and the conductive material 4 have the same potential as shown in FIGS. Specifically, for example, in the field emission electron source of FIG. 2, a variable for adjustment that provides a potential difference between the emitter 1 and the conductive material 4 and between the emitter 1 and the conductive material 4 as shown in FIG. 5. A power source 6 is connected.

この電源6は、前述した導電性材料4に印加される電界強度がエミッタ1に印加される電界強度よりも強いという電界強度の関係が反転しない(すなわち、エミッタ1に印加される電界強度が、導電性材料4に印加される電界強度よりも強くならない)範囲で、電圧を印加するように調節される。こうして導電性材料4の電位をエミッタ1の電位より低くする程度を調整することで、導電性材料4へのイオンの引き込み量を調整することができ、ひいてはエミッタへのイオンの衝突を更に減少又は微調整することができる。   The power source 6 does not reverse the relationship of the electric field strength that the electric field strength applied to the conductive material 4 is stronger than the electric field strength applied to the emitter 1 (that is, the electric field strength applied to the emitter 1 is The voltage is adjusted to be applied within a range that does not become stronger than the electric field strength applied to the conductive material 4. By adjusting the degree to which the potential of the conductive material 4 is made lower than the potential of the emitter 1 in this way, the amount of ions drawn into the conductive material 4 can be adjusted, thereby further reducing the collision of ions with the emitter. Fine adjustments can be made.

図6(A)に示すように、図2の電界放出型電子源を用いたX線管でエミッタ1にカーボンナノ構造の電子放出素子を用い、導電体材料4としてステンレス鋼を用いた。筒状の導電体材料4の開口径は8mm、その上面からターゲット3、エミッタ1の先端までの距離はそれぞれ1mmとした。これらはガラス管6内に封入され、内部は高真空状態に保持された。また、比較のため、図6(B)に示すように導電性材料4を設置しないX線管も用意した。   As shown in FIG. 6A, an electron-emitting device having a carbon nanostructure was used for the emitter 1 in the X-ray tube using the field emission electron source shown in FIG. 2, and stainless steel was used as the conductor material 4. The opening diameter of the cylindrical conductor material 4 was 8 mm, and the distance from the upper surface to the tip of the target 3 and the emitter 1 was 1 mm. These were enclosed in the glass tube 6, and the inside was kept in a high vacuum state. For comparison, an X-ray tube not provided with the conductive material 4 as shown in FIG. 6B was also prepared.

図6(A)(B)の各X線管において、エミッタ1とターゲット3の間に10kVの電圧を印加して、各X線管におけるターゲットからの放出電流を測定した。その結果を図7に示す。   In each X-ray tube of FIGS. 6A and 6B, a voltage of 10 kV was applied between the emitter 1 and the target 3, and the emission current from the target in each X-ray tube was measured. The result is shown in FIG.

図7のグラフにおいて、放出電流が0.6から0.7[mA]の間でほぼ一定であるのは、図6(A)のX線管であり、放出電流がこれより小さい0.5[mA]から低下していくのは、図6(B)のX線管である。このグラフに示されるように、図6(A)の導電性材料4を配置したX線管の寿命は100時間を超えた(実際は2000時間以上可能である)のに対し、図6(B)に示したX線管(導電性材料を含まない)の寿命は、40〜50時間程度であった。   In the graph of FIG. 7, the emission current is substantially constant between 0.6 and 0.7 [mA] in the X-ray tube of FIG. 6 (A), and the emission current is smaller than 0.5. It is the X-ray tube in FIG. 6B that decreases from [mA]. As shown in this graph, the lifetime of the X-ray tube in which the conductive material 4 in FIG. 6A is arranged exceeds 100 hours (actually, 2000 hours or more is possible), whereas FIG. The life of the X-ray tube (not including the conductive material) shown in (4) was about 40 to 50 hours.

従って、図6(A)(B)のX線管における劣化の顕著な違いがわかる。すなわち、図6(A)のX線管では、導電性材料4を備えたことにより、図6(B)のX線管と比較して寿命が大幅に向上することが実証された。   Accordingly, it can be seen that there is a significant difference in deterioration in the X-ray tube shown in FIGS. That is, in the X-ray tube of FIG. 6 (A), it was demonstrated that the provision of the conductive material 4 significantly improves the lifetime as compared with the X-ray tube of FIG. 6 (B).

以上のように、実施形態としてX線管に用いた場合を説明したが、本発明は、電界放出電子源を利用する全ての装置、例えば、X線管のほかに電子線管の電子線源部、走査型電子顕微鏡及び透過型電子顕微鏡の電子源部、電子線励起型蛍光灯の電子源部、電子線マイクロプローブアナライザの電子線源部、カソードルミネッセンス装置の電子線源部等に、好適に用いられる。   As described above, the case where the present invention is used for an X-ray tube has been described. However, the present invention is applicable to all devices using a field emission electron source, for example, an electron beam source of an electron beam tube in addition to an X-ray tube. Suitable for electron source of scanning part, scanning electron microscope and transmission electron microscope, electron source part of electron beam excitation type fluorescent lamp, electron beam source part of electron beam microprobe analyzer, electron beam source part of cathode luminescence device, etc. Used for.

1…エミッタ、2…電圧源、3…ターゲット、4…導電性材料、5…孔、6…調節電源、7…ガラス管。   DESCRIPTION OF SYMBOLS 1 ... Emitter, 2 ... Voltage source, 3 ... Target, 4 ... Conductive material, 5 ... Hole, 6 ... Control power supply, 7 ... Glass tube.

Claims (4)

電界が印加されることにより電子を放出する電界放出型電子源において、
ターゲットに対し電子流を放出するエミッタの周囲に導電性材料を、前記ターゲットと前記エミッタとの間の距離よりも前記ターゲットと前記導電性材料との間の距離が短くなるように配置し、前記ターゲットと前記導電性材料との間に、前記ターゲットと前記エミッタとの間に印加するのと同じ電圧を印加することを特徴とする電界放出型電子源。
In a field emission electron source that emits electrons when an electric field is applied,
A conductive material is disposed around an emitter that emits an electron current to the target, such that a distance between the target and the conductive material is shorter than a distance between the target and the emitter, A field emission electron source, wherein the same voltage as that applied between the target and the emitter is applied between the target and the conductive material.
電界が印加されることにより電子を放出する電界放出型電子源において、
ターゲットに対し電子流を放出するエミッタの周囲に導電性材料を、前記ターゲットと前記エミッタとの間の距離よりも前記ターゲットと前記導電性材料との間の距離が短くなるように配置して、前記エミッタに印加される電界よりも前記導電性材料に印加される電界の強度が大きくなるように構成すると共に、前記エミッタと前記導電性材料との間に、前記電界の強度の関係が反転しない範囲で電圧を印加する調節用電源を備えたことを特徴とする電界放出型電子源。
In a field emission electron source that emits electrons when an electric field is applied,
A conductive material is disposed around an emitter that emits an electron current to the target, such that a distance between the target and the conductive material is shorter than a distance between the target and the emitter, The electric field applied to the conductive material is configured to be stronger than the electric field applied to the emitter, and the electric field strength relationship is not reversed between the emitter and the conductive material. A field emission electron source comprising an adjustment power source for applying a voltage in a range.
請求項1又は2に記載の電界放出型電子源において、前記導電性材料は、前記エミッタに比べて仕事関数の高い材料であることを特徴とする電界放出型電子源。   3. The field emission electron source according to claim 1, wherein the conductive material is a material having a work function higher than that of the emitter. 請求項1〜3のいずれか1項に記載の電界放出型電子源において、前記導電性材料は、イオン衝突によるスパッタを生じない材料であることを特徴とする電界放出型電子源。   4. The field emission electron source according to claim 1, wherein the conductive material is a material that does not cause sputtering due to ion collision.
JP2009178302A 2009-07-30 2009-07-30 Field emission electron source Pending JP2011034734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009178302A JP2011034734A (en) 2009-07-30 2009-07-30 Field emission electron source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009178302A JP2011034734A (en) 2009-07-30 2009-07-30 Field emission electron source

Publications (1)

Publication Number Publication Date
JP2011034734A true JP2011034734A (en) 2011-02-17

Family

ID=43763630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009178302A Pending JP2011034734A (en) 2009-07-30 2009-07-30 Field emission electron source

Country Status (1)

Country Link
JP (1) JP2011034734A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137400A (en) * 2011-11-30 2013-06-05 高砂热学工业株式会社 Field emission x-ray generating apparatus
JP2017510052A (en) * 2014-02-10 2017-04-06 ルクスブライト・アーベー Electron emitter for X-ray tube

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03159045A (en) * 1989-11-17 1991-07-09 Jeol Ltd Electric field emitting electron gun
JP2006086001A (en) * 2004-09-15 2006-03-30 Shimadzu Corp X-ray tube device
WO2008120412A1 (en) * 2007-03-29 2008-10-09 Advantest Corporation Electron gun and electron beam exposure system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03159045A (en) * 1989-11-17 1991-07-09 Jeol Ltd Electric field emitting electron gun
JP2006086001A (en) * 2004-09-15 2006-03-30 Shimadzu Corp X-ray tube device
WO2008120412A1 (en) * 2007-03-29 2008-10-09 Advantest Corporation Electron gun and electron beam exposure system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137400A (en) * 2011-11-30 2013-06-05 高砂热学工业株式会社 Field emission x-ray generating apparatus
KR20130061067A (en) * 2011-11-30 2013-06-10 다카사고네츠가쿠고오교 가부시키가이샤 Field emission x-ray generating apparatus
JP2013114964A (en) * 2011-11-30 2013-06-10 Takasago Thermal Eng Co Ltd Field emission type x ray generator
TWI570761B (en) * 2011-11-30 2017-02-11 Takasago Thermal Engineering Co Ltd Electric field release type X ray generator
CN103137400B (en) * 2011-11-30 2017-06-30 高砂热学工业株式会社 Electric field emission type X-ray generator
KR101970834B1 (en) * 2011-11-30 2019-04-19 다카사고네츠가쿠고오교 가부시키가이샤 Field emission x-ray generating apparatus
JP2017510052A (en) * 2014-02-10 2017-04-06 ルクスブライト・アーベー Electron emitter for X-ray tube

Similar Documents

Publication Publication Date Title
US10741353B2 (en) Electron emitting construct configured with ion bombardment resistant
US8300769B2 (en) Microminiature X-ray tube with triode structure using a nano emitter
US20010019601A1 (en) X-ray generator
JP2019021606A (en) X-ray tube for improving electron focusing
US10453643B2 (en) Shielded, transmission-target, x-ray tube
EP2869327B1 (en) X-ray tube
JP2007095689A (en) X-ray generator by cold electron source
US11183357B2 (en) MBFEX tube
JP2007522622A (en) Cathode head with focus control
KR101689361B1 (en) Power supplying device for triode electron gun in medical electron accelerator
JP2011034734A (en) Field emission electron source
KR101776476B1 (en) X-ray ionizer
JP2011134498A (en) X-ray tube
US20080067421A1 (en) Electron Beam Etching Apparatus and Method for the same
RU2581833C1 (en) Source of electrons with auto electronic emitter and x-ray tube with said electron source
JP2005243331A (en) X-ray tube
KR100665881B1 (en) Carbon nanotube based electron beam emitting cathode module of x-ray tube
KR20110045937A (en) Apparatus on generating X-ray using CNT yarn
KR102027407B1 (en) Field emitter and cold cathod structure using cnt yarns
KR101615337B1 (en) X-ray source comprising cnt yarn and x-ray emitting apparatus using the same
CN111328176B (en) Suspended grid cathode structure, electron gun, electron accelerator and irradiation device
KR101324480B1 (en) Micro focus x-ray tube
KR101675470B1 (en) Xray source comprising cnt yarn for brachy therapy and xray emitting apparatus using the same
KR101214404B1 (en) gate-focusing electrodes integrated electrodes structure for X-ray tube based on nano-structured material
RU2581835C1 (en) Controlled emitting unit of electronic devices with autoelectronic emission and x-ray tube with said unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131126