JP2011032651A - Bridge reinforcing structure and bridge reinforcing method - Google Patents

Bridge reinforcing structure and bridge reinforcing method Download PDF

Info

Publication number
JP2011032651A
JP2011032651A JP2009177238A JP2009177238A JP2011032651A JP 2011032651 A JP2011032651 A JP 2011032651A JP 2009177238 A JP2009177238 A JP 2009177238A JP 2009177238 A JP2009177238 A JP 2009177238A JP 2011032651 A JP2011032651 A JP 2011032651A
Authority
JP
Japan
Prior art keywords
bridge
cable
tower
ground
forming member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009177238A
Other languages
Japanese (ja)
Other versions
JP5388318B2 (en
Inventor
Eiichi Sasaki
栄一 佐々木
Hitoshi Yamada
山田  均
Hiroshi Katsuchi
弘 勝地
Yuta Kaito
悠太 皆藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2009177238A priority Critical patent/JP5388318B2/en
Publication of JP2011032651A publication Critical patent/JP2011032651A/en
Application granted granted Critical
Publication of JP5388318B2 publication Critical patent/JP5388318B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bridge reinforcing structure and a bridge reinforcing method in an outside cable method preventing excessive axial force from being introduced to a bridge girder and effectively reducing stress applied to the bridge girder by a live load. <P>SOLUTION: The bridge reinforcing structure includes a cable 13 stretched in the bridge length direction of a bridge 1, and a fulcrum forming member 12 turning the cable. An upward force is applied to the fulcrum forming member by a vertical component F2 of tension F applied to the cable to reduce bending stress of the bridge girder 3. The bridge reinforcing structure includes towers 11 erected on structures 2, 6 outside the bridge girder or on the ground to transmit the tension of the cable to the structures or the ground, and a cable anchoring means 14 anchoring the cable having passed the towers, to the structures or the ground or anchoring the cable to the towers. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、橋梁の補強構造及び補強方法に関するものであり、より詳細には、既設鋼道路橋等の既設橋梁の耐荷力向上及び耐久性向上のために橋桁に沿ってケーブル構造を付設する外ケーブル工法の橋梁補強構造及び橋梁補強方法に関するものである。   The present invention relates to a bridge reinforcement structure and a reinforcement method, and more particularly, to an external cable structure along a bridge girder in order to improve load resistance and durability of an existing bridge such as an existing steel road bridge. The present invention relates to a bridge reinforcement structure and a bridge reinforcement method of a cable method.

既設橋梁の高齢化の急増、道路構造令の設計自動車荷重の改正による車両大型化及び交通量の増大等により、近年の鋼道路橋の耐荷力不足及び耐久性低下等の問題が指摘されている。この問題の一般的な解決策として、既設橋の架け替えが考えられるが、既設橋の架け替えは経済的・社会的に困難な場合が多い。そこで、ライフサイクルコストの低減等を目的とした構造物の長寿命化に資する適切な予防保全対策が必要であると考えられる。   Due to the rapid increase in the aging of existing bridges, the increase in vehicle size and the increase in traffic volume due to the revision of the design of automobile roads and the increase in traffic volume, problems such as insufficient load bearing capacity and reduced durability have been pointed out in recent years. . As a general solution to this problem, replacement of existing bridges can be considered, but replacement of existing bridges is often difficult economically and socially. Therefore, it is considered necessary to take appropriate preventive maintenance measures that contribute to extending the life of structures for the purpose of reducing life cycle costs.

このような問題を抱える既設橋梁の補強対策として、鋼板補強工法、添接板高力ボルト締め工法、外ケーブル工法等の種々の工法が提案されている。例えば、鋼板補強工法は,既設部材に補強部材を添接し、既設部材の剛性を向上させる工法であり、比較的多くの施工実績が知られている。しかし、補強部材を溶接で取付けること自体は比較的簡易ではあるが、溶接に伴う比較的多額のコスト、疲労強度の低下等の不利が生じる。また、高力ボルトを用いる添接板高力ボルト締め工法は、補強部材を取付ける際、既設部材に多数の孔を孔明加工する必要があり、既設部材の耐荷力が一時的に低下する。鋼板補強工法は又、橋梁の局所的補強に適応し得るにすぎない。   Various methods such as a steel plate reinforcement method, a connecting plate high-strength bolt fastening method, and an external cable method have been proposed as reinforcement measures for existing bridges having such problems. For example, the steel plate reinforcing method is a method for improving the rigidity of an existing member by attaching a reinforcing member to the existing member, and a relatively large number of construction results are known. However, although it is relatively simple to attach the reinforcing member by welding, there are disadvantages such as a relatively large cost associated with welding and a decrease in fatigue strength. In addition, the attachment plate high-strength bolt tightening method using a high-strength bolt needs to drill a large number of holes in the existing member when attaching the reinforcing member, and the load resistance of the existing member temporarily decreases. The steel plate reinforcement method can also only be adapted to local reinforcement of bridges.

他方、外ケーブル工法は、近年注目されている工法であり、定着金具、偏向金具等を既設橋梁構成部材に取付けてケーブルを付設するとともに、ケーブルにプレストレスを導入し、死荷重等によって既設部材に作用する曲げモーメントを打ち消す方向の曲げモーメントを発生させる工法として知られている。   On the other hand, the outer cable construction method is a method that has been attracting attention in recent years, and is equipped with fixing brackets, deflecting brackets, etc., on existing bridge components and installing cables. It is known as a construction method that generates a bending moment in a direction that cancels the bending moment acting on the surface.

外ケーブル工法は、特開2003-221809号公報、特開2001-64912号公報及び特開2003-293323号公報に記載される如く、ケーブルの端部を定着金具等によって橋桁の端部に連結し、サドル部、枕材、油圧ジャッキ、中間ブラケット等の偏向・緊張手段によってケーブルを橋脚間に緊張状態に張設し、橋桁に橋長方向内方の軸力を加えて橋梁の耐荷力を増大するように構成された工法である。   As described in Japanese Patent Laid-Open No. 2003-221809, Japanese Patent Laid-Open No. 2001-64912, and Japanese Patent Laid-Open No. 2003-293323, the outer cable construction method connects the end of the cable to the end of the bridge girder by a fixing bracket or the like. The cable is stretched between the piers by deflection / tensioning means such as saddle, pillow, hydraulic jack, intermediate bracket, etc., and the axial load force in the bridge length direction is applied to the bridge girder to increase the load bearing capacity of the bridge It is a construction method configured to do.

特開2003-221809号公報Japanese Patent Laid-Open No. 2003-221809 特開2001-64912号公報JP 2001-64912 A 特開2003-293323号公報Japanese Patent Laid-Open No. 2003-293323

外ケーブル工法では、死荷重等によって橋桁に作用する曲げモーメントを打ち消す曲げモーメントをケーブルのプレストレスによって発生させることから、橋長方向の軸力が圧縮力として橋桁に持続的に作用する。このように付加的な軸力を橋桁に常時作用せしめる工法を採用した場合、老朽化した橋梁にとって望ましくない常時負荷が橋桁に課せられることが懸念される。   In the outer cable construction method, the bending moment that cancels the bending moment acting on the bridge girder due to dead load or the like is generated by the prestress of the cable, so the axial force in the bridge length direction acts on the bridge girder as a compressive force continuously. When the construction method in which an additional axial force is always applied to the bridge girder is employed in this way, there is a concern that an undesired constant load is imposed on the bridge girder for an aged bridge.

また、外ケーブル工法は、死荷重によって橋桁に作用する応力を低減するための既設橋梁補強対策としては有効な工法であるが、従来の外ケーブル工法によっては、活荷重によって橋桁に作用する応力を効果的に低減することは困難であると考えられる。しかし、車両大型化や交通量増大等の近年の傾向を考慮すると、このようなケーブル補強構造の付設によって活荷重応力をも効果的に低減することができる既設橋梁補強工法の開発が望まれる。   The outer cable method is an effective method for reinforcing existing bridges in order to reduce the stress acting on the bridge girder due to dead load, but depending on the conventional outer cable method, the stress acting on the bridge girder due to live load can be reduced. It is considered difficult to reduce effectively. However, in view of recent trends such as an increase in the size of vehicles and an increase in traffic volume, it is desired to develop an existing bridge reinforcement method that can effectively reduce the live load stress by providing such a cable reinforcement structure.

本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、過剰な軸力が橋桁に導入されるのを防止するとともに、活荷重によって橋桁に作用する応力を効果的に低減することができる外ケーブル工法の橋梁補強構造及び橋梁補強方法を提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is to prevent an excessive axial force from being introduced into the bridge girder and to effect the stress acting on the bridge girder by a live load. It is an object of the present invention to provide a bridge reinforcement structure and a bridge reinforcement method for an outer cable method that can be reduced in an economical manner.

本発明は、上記目的を達成すべく、橋梁の橋長方向に張設されたケーブルと、橋桁に一体化し且つ前記ケーブルに接触して該ケーブルを転向する支点形成部材とを備え、前記ケーブルに作用する張力の鉛直成分によって前記支点形成部材に上向きの力を与えて前記橋桁の曲げ応力を低減する橋梁補強構造において、
前記ケーブルの張力を橋桁外の構造体又は地盤に伝達すべく前記構造体又は地盤に立設した塔と、
前記ケーブルに作用する張力の水平成分を橋桁外の構造体又は地盤に伝達すべく、前記塔の上部及び前記支点形成部材において転向した前記ケーブルを前記構造体又は地盤に係留し、或いは、前記支点形成部材において転向した前記ケーブルを前記塔に係留するケーブル係留手段とを有することを特徴とする橋梁補強構造を提供する。
In order to achieve the above object, the present invention includes a cable stretched in a bridge length direction of a bridge, and a fulcrum forming member that is integrated with a bridge girder and that contacts the cable and turns the cable. In the bridge reinforcement structure that reduces the bending stress of the bridge girder by applying an upward force to the fulcrum forming member by the vertical component of the acting tension,
A tower erected on the structure or ground to transmit the tension of the cable to the structure or ground outside the bridge girder;
In order to transmit the horizontal component of the tension acting on the cable to the structure or ground outside the bridge girder, the cable turned in the upper part of the tower and the fulcrum forming member is moored to the structure or ground, or the fulcrum There is provided a bridge reinforcing structure comprising cable anchoring means for anchoring the cable turned in the forming member to the tower.

本発明は又、橋梁の橋長方向にケーブルを張設し、橋桁に一体化した支点形成部材に前記ケーブルを接触させて該ケーブルを転向させ、該ケーブルに作用する張力の鉛直成分によって前記支点形成部材に上向きの力を与えて前記橋桁の曲げ応力を低減する橋梁補強方法において、
橋桁外の構造体又は地盤に立設した塔の上部と、前記支点形成部材とによって転向した前記ケーブルを橋桁外の構造体又は地盤に係留し、或いは、前記支点形成部材で転向した前記ケーブルを前記塔に係留し、これにより、前記ケーブルに作用する張力の水平成分を前記構造体又は地盤の反力によって支持することを特徴とする橋梁補強方法を提供する。
The present invention also provides a cable extending in the bridge length direction of the bridge, bringing the cable into contact with a fulcrum forming member integrated with the bridge girder and turning the cable, and the fulcrum by the vertical component of the tension acting on the cable. In the bridge reinforcement method for reducing the bending stress of the bridge girder by applying an upward force to the forming member,
The cable turned by the upper part of the tower standing on the structure or ground outside the bridge girder and the fulcrum forming member is moored to the structure or ground outside the bridge girder, or the cable turned by the fulcrum forming member is There is provided a method for reinforcing a bridge which is moored to the tower and thereby supports a horizontal component of tension acting on the cable by a reaction force of the structure or the ground.

本発明の上記構成によれば、ケーブルの張力は、塔を介して橋桁外の構造体又は地盤に伝達し、或いは、橋桁外の構造体又は地盤に直に伝達し、橋桁外の構造体又は地盤の反力によって支持される。ケーブルに作用する張力の鉛直成分は、支点形成部材に上向きの力を与えて橋桁の曲げ応力を低減するように働き、予めケーブルに加えられた予張力の水平成分、或いは、活荷重によってケーブルに作用する張力の水平成分は、橋桁外の構造体又は地盤の反力によって支持される。即ち、本発明によれば、ケーブルに作用する張力の水平成分は実質的に橋桁に伝達せず、従って、過剰な軸力が橋桁に導入されるのを確実に防止することができる。また、本発明によれば、橋桁に作用する活荷重はケーブルの張力として作用し、橋桁外の構造体又は地盤の反力によって支持されるので、活荷重によって橋桁に作用する曲げ応力を効果的に低減することができる。   According to the above configuration of the present invention, the tension of the cable is transmitted to the structure or the ground outside the bridge girder via the tower, or directly transmitted to the structure or the ground outside the bridge girder, and the structure outside the bridge girder or Supported by the ground reaction force. The vertical component of the tension acting on the cable acts to reduce the bending stress of the bridge girder by applying an upward force to the fulcrum forming member. The horizontal component of the pretension applied to the cable in advance or the live load causes the cable to The horizontal component of the acting tension is supported by the reaction force of the structure or ground outside the bridge girder. That is, according to the present invention, the horizontal component of the tension acting on the cable is not substantially transmitted to the bridge girder, and therefore it is possible to reliably prevent excessive axial force from being introduced into the bridge girder. Further, according to the present invention, the live load acting on the bridge girder acts as cable tension and is supported by the reaction force of the structure outside the bridge girder or the ground, so that the bending stress acting on the bridge girder by the live load is effective. Can be reduced.

本発明の橋梁補強構造及び橋梁補強方法によれば、外ケーブル工法の利点を損なうことなく、過剰な軸力が橋桁に導入されるのを防止するとともに、活荷重によって橋桁に作用する応力を効果的に低減することができる。   According to the bridge reinforcing structure and the bridge reinforcing method of the present invention, it is possible to prevent an excessive axial force from being introduced into the bridge girder without impairing the advantages of the outer cable construction method, and to effect the stress acting on the bridge girder by a live load. Can be reduced.

図1(A)は、本発明の第1実施例に係る橋梁補強構造を示す橋梁の概略側面図であり、図1(B)は、図1(A)に示す橋梁補強構造の変形例を示す概略側面図である。FIG. 1A is a schematic side view of a bridge showing a bridge reinforcement structure according to a first embodiment of the present invention, and FIG. 1B is a modification of the bridge reinforcement structure shown in FIG. It is a schematic side view shown. 図2は、本発明の第2実施例に係る橋梁補強構造を示す橋梁の概略側面図である。FIG. 2 is a schematic side view of a bridge showing a bridge reinforcing structure according to a second embodiment of the present invention. 図3は、本発明の第3実施例に係る橋梁補強構造を示す橋梁の概略側面図である。FIG. 3 is a schematic side view of a bridge showing a bridge reinforcing structure according to a third embodiment of the present invention. 図4は、本発明の第4実施例に係る橋梁補強構造を示す橋梁の概略側面図である。FIG. 4 is a schematic side view of a bridge showing a bridge reinforcing structure according to a fourth embodiment of the present invention. 図5は、図4に示す橋梁の構造を概略的に示す部分斜視図である。FIG. 5 is a partial perspective view schematically showing the structure of the bridge shown in FIG. 図6は、橋梁補強装置の設置前及び設置後における既設橋梁の死荷重応力(最大主応力)の変化を示す線図である。FIG. 6 is a diagram showing changes in the dead load stress (maximum principal stress) of the existing bridge before and after the installation of the bridge reinforcing device. 図7は、中央径間の鋼床版トラフリブに関し、ケーブル構造補強前後の死荷重応力の変化を示す線図である。FIG. 7 is a diagram showing a change in the dead load stress before and after reinforcing the cable structure with respect to the steel deck slab truffle of the central span. 図8は、箱桁部の下フランジに関し、ケーブル構造補強前後の活荷重応力(最大主応力)の変化を示す線図である。FIG. 8 is a diagram showing changes in the live load stress (maximum principal stress) before and after reinforcing the cable structure with respect to the lower flange of the box girder. 図9は、中央径間の鋼床版トラフリブに作用する活荷重応力の変化を橋軸方向位置と関連して示す線図である。FIG. 9 is a diagram showing the change in the live load stress acting on the steel deck slab truffles between the center spans in relation to the position in the bridge axis direction. 図10は、塔の高さの相違と関連した活荷重応力性状の相違を示す線図である。FIG. 10 is a diagram showing the difference in the live load stress properties associated with the difference in tower height. 図11は、図10に示す第1モデル及び第2モデルの構成を概略的に示す側面図である。FIG. 11 is a side view schematically showing configurations of the first model and the second model shown in FIG.

本発明の好適な実施形態によれば、塔は、橋梁の橋台又は橋脚に立設される。好ましくは、支点形成部材は、ケーブルに摺接又は転接する橋梁用サドル又は支承部材を有し、橋桁の下部に突設される。   According to a preferred embodiment of the invention, the tower is erected on a bridge abutment or pier. Preferably, the fulcrum forming member has a bridge saddle or a supporting member that slides or rolls on the cable, and projects from a lower portion of the bridge girder.

本発明の或る好適な実施形態においては、ケーブル係留手段は、ケーブルの端部を塔の上部に係留する係留具を含み、係留具は、支点形成部材によって上方に転向したケーブルを塔に係留する。好ましくは、塔は、橋梁の橋台又は橋脚に立設され、ケーブルは、塔の塔頂部に係留される。支点形成部材によって上方に転向したケーブルは、塔の塔頂部に係留され、ケーブルに作用する張力の水平成分は、塔を介して橋台又は橋脚に伝達し、橋台又は橋脚の反力によって支持される。   In a preferred embodiment of the present invention, the cable mooring means includes a mooring device for mooring the end of the cable to the upper portion of the tower, and the mooring device moors the cable turned upward by the fulcrum forming member to the tower. To do. Preferably, the tower is erected on the abutment or pier of the bridge, and the cable is moored at the top of the tower. The cable turned upward by the fulcrum forming member is moored at the top of the tower, and the horizontal component of the tension acting on the cable is transmitted to the abutment or pier via the tower and supported by the reaction force of the abutment or pier. .

本発明の他の好適な実施形態においては、塔は、ケーブルに摺接又は転接する橋梁用サドル又は支承部材を有し、この橋梁用サドル又は支承部材は、支点形成部材によって上方に転向したケーブルを下方に転向する。ケーブル係留手段は、塔の橋梁用サドル又は支承部材と、支点形成部材とによって上下方向に転向したケーブルの端部を橋桁外の構造体又は地盤に係留する係留具を含む。好ましくは、塔は、橋梁の橋台又は橋脚に立設され、橋梁用サドル又は支承部材は、塔の塔頂部に配置される。支点形成部材によって上方に転向したケーブルは、塔の塔頂部で下方に転向するとともに、橋台又は橋脚に係留される。ケーブルに作用する張力の水平成分は、橋台又は橋脚に伝達して、橋台又は橋脚の反力によって支持される。   In another preferred embodiment of the present invention, the tower has a bridge saddle or bearing member that slides or rolls on the cable, and the bridge saddle or bearing member is turned upward by a fulcrum forming member. Turn down. The cable mooring means includes a mooring tool for mooring the end of the cable turned in the vertical direction by the saddle or supporting member for the bridge of the tower and the fulcrum forming member to the structure or the ground outside the bridge girder. Preferably, the tower is erected on the abutment or pier of the bridge, and the bridge saddle or the supporting member is disposed at the top of the tower. The cable turned upward by the fulcrum forming member turns downward at the top of the tower and is anchored to the abutment or pier. The horizontal component of the tension acting on the cable is transmitted to the abutment or pier and supported by the reaction force of the abutment or pier.

塔を地盤、或いは、橋台又は橋脚以外の適当な構造体(橋桁を除く)に立設しても良く、また、ケーブルを地盤、或いは、橋台又は橋脚以外の適当な構造体(橋桁を除く)に係留しても良い。   The tower may be erected on the ground or an appropriate structure other than the abutment or pier (excluding the bridge girder), and the cable may be installed on the ground or an appropriate structure other than the abutment or pier (excluding the bridge girder). May be moored at.

本発明の橋梁補強構造及び橋梁補強方法を実施する上で、塔の高さは、その経済性及び施工性に大きく影響すると考えられる。本発明者の知見によれば、ケーブルに加える予張力を倍増すれば、塔高を半減したとしても、実質的に同じ橋梁補強効果が得られる。即ち、ケーブルの予張力と、塔高とは実質的に反比例する。従って、本発明の好適な実施形態においては、塔の高さを低減するためにケーブルの初期張力が付加され又は増大される。   In carrying out the bridge reinforcing structure and the bridge reinforcing method of the present invention, the height of the tower is considered to greatly affect the economic efficiency and workability. According to the knowledge of the present inventor, if the pretension applied to the cable is doubled, substantially the same bridge reinforcing effect can be obtained even if the tower height is halved. That is, the pre-tension of the cable and the tower height are substantially inversely proportional. Thus, in a preferred embodiment of the present invention, the initial tension of the cable is added or increased to reduce the tower height.

以下、添付図面を参照して本発明の好適な実施例について詳細に説明する。
図1(A)は、本発明の実施例に係る橋梁補強構造を示す1径間鋼床版箱桁橋1の概略側面図であり、図1(B)は、図1(A)に示す橋梁補強構造の変形例を示す概略側面図である。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 (A) is a schematic side view of a 1 span steel floor slab box girder bridge 1 showing a bridge reinforcing structure according to an embodiment of the present invention, and FIG. 1 (B) is shown in FIG. 1 (A). It is a schematic side view which shows the modification of a bridge reinforcement structure.

図1(A)に示す1径間鋼床版箱桁橋1は、一対の橋台2の間に架設された橋桁3を有する。橋桁3の両端部は、ローラー支承4及びピン支承5によって両橋台2に支持される。橋梁補強装置10を構成する垂直な塔11が一方の橋台2に垂直に立設される。塔11の頂部には、サドル部15が設けられる。ケーブル13の両端部を係留可能なケーブル係留装置14が両側の橋台2に夫々取付けられるとともに、サドル部12を有するサポートビーム19が橋桁3の径間中央部に配設される。サドル部12は橋軸直角方向且つ水平に橋桁3の下端部(下部フランジ)に突設される。サポートビーム19の先端部に配置されたサドル部12は、ケーブル13が摺接する下側摺接面を有する。サドル部12、15として、ケーブル13を摺動可能に支持し又は挿通せしめてケーブル変曲点を形成するように構成された公知構造の橋梁用サドルを使用し得る。   A 1-span steel floor box girder bridge 1 shown in FIG. 1 (A) has a bridge girder 3 installed between a pair of abutments 2. Both ends of the bridge girder 3 are supported by both abutments 2 by roller bearings 4 and pin bearings 5. A vertical tower 11 constituting the bridge reinforcing device 10 is erected vertically on one abutment 2. A saddle portion 15 is provided at the top of the tower 11. A cable mooring device 14 capable of mooring both ends of the cable 13 is attached to each of the abutments 2 on both sides, and a support beam 19 having a saddle portion 12 is disposed at the center of the span of the bridge girder 3. The saddle portion 12 protrudes from the lower end portion (lower flange) of the bridge girder 3 in a direction perpendicular to the bridge axis and horizontally. The saddle portion 12 disposed at the distal end portion of the support beam 19 has a lower slidable contact surface with which the cable 13 is slidably contacted. As the saddle portions 12 and 15, a bridge saddle having a known structure configured to slidably support or insert the cable 13 to form a cable inflection point may be used.

ケーブル係留装置14によって左右の橋台2に係留されたケーブル13は、図1(A)において左側に示す橋台2のケーブル係留装置14から橋桁3の側部に沿って概ね水平に延び、サドル部12の下側摺接面に摺接して上方に転向して塔11の頂部に延びる。ケーブル13は更に、塔11の頂部に配置されたサドル部15の上側摺接面に摺接して下方に転向し、図1(A)において右側に示す橋台2のケーブル係留装置14に延び、ケーブル係留装置14は、ケーブル13の端部を橋台2に係留する。   The cable 13 moored by the cable mooring device 14 on the left and right abutments 2 extends substantially horizontally along the side of the bridge girder 3 from the cable mooring device 14 of the abutment 2 shown on the left side in FIG. Slidably contact the lower slidable contact surface and turn upward to extend to the top of the tower 11. The cable 13 is further slidably contacted with the upper slidable contact surface of the saddle portion 15 disposed at the top of the tower 11 and turned downward, and extends to the cable anchoring device 14 of the abutment 2 shown on the right side in FIG. The mooring device 14 moores the end of the cable 13 to the abutment 2.

かくして、ケーブル13の両端部は、ケーブル係留装置14によって両側の橋台2に係留され、サドル部12は、ケーブル13に作用する張力Fの鉛直成分F2によってケーブル13に支承される支点形成部材を構成する。   Thus, both ends of the cable 13 are anchored to the abutment 2 on both sides by the cable anchoring device 14, and the saddle portion 12 constitutes a fulcrum forming member that is supported on the cable 13 by the vertical component F2 of the tension F acting on the cable 13. To do.

図1(A)に示す塔11、サドル部12、15、ケーブル13及びケーブル係留装置14から構成された橋梁補強装置10は、橋桁3の両側(両サイド)に対をなして配設される。ケーブル13は、橋桁3の主桁側面から所定間隔を隔てて配置される。例えば、ケーブル13は、側デッキ(側床版)の外側において側デッキ縁部に近接して延在し、或いは、側デッキ部分に配置される歩道又は路面を貫通して橋長方向に延在する。この場合、サポートビーム19は、概ね橋梁の幅員程度の範囲内で主桁側面から橋幅方向に張り出すように主桁に突設される。また、サポートビーム19を橋梁内部に配設することも可能である。例えば、橋桁3の橋幅方向中央部に中央分離帯等を設ける場合には、ケーブル13を橋桁3の中央帯域に沿って延在せしめるように橋梁補強装置10を配置しても良い。   A bridge reinforcing device 10 including a tower 11, saddle portions 12 and 15, a cable 13, and a cable mooring device 14 shown in FIG. 1 (A) is arranged in pairs on both sides (both sides) of the bridge girder 3. . The cable 13 is disposed at a predetermined interval from the main girder side surface of the bridge girder 3. For example, the cable 13 extends near the edge of the side deck on the outside of the side deck (side floor slab), or extends in the bridge length direction through a sidewalk or road surface arranged in the side deck portion. To do. In this case, the support beam 19 protrudes from the main girder so as to protrude from the side surface of the main girder in the bridge width direction within a range of about the width of the bridge. It is also possible to dispose the support beam 19 inside the bridge. For example, when providing a median strip or the like at the center of the bridge girder 3 in the width direction of the bridge, the bridge reinforcing device 10 may be arranged so that the cable 13 extends along the center band of the bridge girder 3.

一対のケーブル係留装置14の間に延びるケーブル13には、油圧ジャッキ等(図示せず)によって初期張力F(破線矢印で示す)が予張力として付与され、ケーブル13は緊張状態に張設される。図1(A)には、初期張力Fの水平成分F1及び鉛直成分F2が示されている。初期張力Fは、ケーブル係留装置14を介して両側の橋台2に伝達し、橋台2の水平反力R1、R3及び鉛直反力R2によって支持される。サドル部12に作用する左右の水平成分F1は互いに釣り合うので、橋桁3には軸力(圧縮力又は引張力)は作用しない。サドル部12に作用する鉛直成分F2は、橋桁3の中央部に作用する鉛直荷重を打ち消し、橋桁中央部の曲げモーメントを軽減するように働く。初期張力Fが限りなくゼロに近いと仮定すると、橋桁3に作用する活荷重L(破線矢印で示す)を支持する反力として張力F(鉛直成分F2)がケーブル13に作用すると考えることができる。   An initial tension F (shown by a broken line arrow) is applied as a pretension to the cable 13 extending between the pair of cable mooring devices 14 by a hydraulic jack or the like (not shown), and the cable 13 is tensioned. . In FIG. 1A, a horizontal component F1 and a vertical component F2 of the initial tension F are shown. The initial tension F is transmitted to the abutments 2 on both sides via the cable mooring device 14 and is supported by the horizontal reaction forces R1 and R3 and the vertical reaction force R2 of the abutment 2. Since the left and right horizontal components F1 acting on the saddle portion 12 are balanced with each other, no axial force (compression force or tensile force) acts on the bridge girder 3. The vertical component F2 acting on the saddle portion 12 acts to cancel the vertical load acting on the center portion of the bridge girder 3 and reduce the bending moment at the center portion of the bridge girder. Assuming that the initial tension F is as close to zero as possible, it can be considered that the tension F (vertical component F2) acts on the cable 13 as a reaction force that supports the live load L (shown by the broken arrow) acting on the bridge girder 3. .

ケーブル13として、導入張力又は予張力に適合した断面寸法を有する公知のPC(Prestressed Concrete)鋼撚り線を好ましく使用し得る。また、サドル部12として、ケーブル13を摺動可能に支持し又は挿通せしめてケーブル変曲点を形成するように構成された公知構造の橋梁用サドルを使用することができる。   As the cable 13, a known PC (Prestressed Concrete) steel stranded wire having a cross-sectional dimension adapted to the introduction tension or pre-tension can be preferably used. Further, as the saddle portion 12, a bridge saddle having a known structure configured to slidably support or insert the cable 13 to form a cable inflection point can be used.

図1(B)には、図1(A)に示す橋梁補強装置10の変形例が示されている。図1(B)に示す実施例では、橋台2に立設された塔11は、サドル部12の反対側に所定角度θをなして傾斜して上方に延びる。塔11の上端部には、ケーブル13の他端部を係留可能なケーブル係留装置14が配設される。ケーブル13が一方の塔11の上端部から斜め下方に延び、サドル部12の下側摺接面に摺接して概ね水平に延び、図1(B)において左側に示す橋台2のケーブル係留装置14に延びる。ケーブル係留装置14は、ケーブル13の端部を橋台2に係留する。図1(B)に示す実施例によれば、ケーブル13の初期張力Fは、ケーブル係留装置14及び塔11を介して橋台2に伝達し、橋台2の水平反力R1、R3及び鉛直反力R2によって支持される。   FIG. 1B shows a modification of the bridge reinforcing device 10 shown in FIG. In the embodiment shown in FIG. 1B, the tower 11 erected on the abutment 2 is inclined upward at a predetermined angle θ on the opposite side of the saddle portion 12 and extends upward. A cable mooring device 14 capable of mooring the other end of the cable 13 is disposed at the upper end of the tower 11. The cable 13 extends obliquely downward from the upper end of one tower 11, slidably contacts the lower sliding surface of the saddle portion 12, and extends substantially horizontally. The cable mooring device 14 of the abutment 2 shown on the left side in FIG. Extend to. The cable anchoring device 14 anchors the end of the cable 13 to the abutment 2. 1B, the initial tension F of the cable 13 is transmitted to the abutment 2 through the cable mooring device 14 and the tower 11, and the horizontal reaction forces R1, R3 and the vertical reaction force of the abutment 2 are transmitted. Supported by R2.

図2は、本発明の他の実施例に係る橋梁補強構造を示す橋梁の概略側面図である。   FIG. 2 is a schematic side view of a bridge showing a bridge reinforcing structure according to another embodiment of the present invention.

前述の実施例と同じく、1径間鋼床版箱桁橋1は、一対の橋台2の間に架設された橋桁3を有する。橋桁3の両端部は、ローラー支承4及びピン支承5によって両橋台2に支持される。橋梁補強装置10は、塔11、サドル部12、ケーブル13及びケーブル係留装置14から構成される。ケーブル13は、塔11の頂部に設けられたサドル部15の上側摺接面に摺接して下方に転向し、ケーブル係留装置14に延びる。ケーブル係留装置14は、ケーブル13の端部を橋台2に係留する。サドル部15として、ケーブル13を摺動可能に支持し又は挿通せしめてケーブル変曲点を形成するように構成された公知構造の橋梁用サドルを使用し得る。   Similar to the above-described embodiment, the one-diameter steel floor slab box girder bridge 1 has a bridge girder 3 installed between a pair of abutments 2. Both ends of the bridge girder 3 are supported by both abutments 2 by roller bearings 4 and pin bearings 5. The bridge reinforcing device 10 includes a tower 11, a saddle portion 12, a cable 13, and a cable mooring device 14. The cable 13 is in sliding contact with the upper sliding contact surface of the saddle portion 15 provided at the top of the tower 11, turns downward, and extends to the cable mooring device 14. The cable anchoring device 14 anchors the end of the cable 13 to the abutment 2. As the saddle portion 15, a bridge saddle having a known structure configured to slidably support or insert the cable 13 to form a cable inflection point may be used.

ケーブル係留装置14からサドル部15を経由してサドル部12に延びるケーブル13には、油圧ジャッキ等(図示せず)によって初期張力F(破線矢印で示す)が予張力として付与され、前述の実施例と同じく、ケーブル13は緊張状態に張設される。図2には、初期張力Fの水平成分F1及び鉛直成分F2が示されている。初期張力Fは、橋台2の水平反力R1及び鉛直反力R2によって支持される。前述の実施例と同じく、サドル部12に作用する左右の水平成分F1は互いに釣り合うので、橋桁3には軸力(圧縮力又は引張力)は作用しない。サドル部12に作用する鉛直成分F2は、橋桁3の中央部に作用する鉛直荷重を打ち消し、橋桁中央部の曲げモーメントを軽減するように働く。初期張力Fが限りなくゼロに近いと仮定すると、橋桁3に作用する活荷重Lを打ち消す反力として張力F(鉛直成分F2)がケーブル13に作用すると考えることができる。   The cable 13 extending from the cable mooring device 14 to the saddle portion 12 via the saddle portion 15 is given an initial tension F (shown by a broken arrow) as a pretension by a hydraulic jack or the like (not shown), and the above-described implementation. As in the example, the cable 13 is tensioned. FIG. 2 shows a horizontal component F1 and a vertical component F2 of the initial tension F. The initial tension F is supported by the horizontal reaction force R1 and the vertical reaction force R2 of the abutment 2. As in the previous embodiment, since the left and right horizontal components F1 acting on the saddle portion 12 are balanced with each other, no axial force (compressive force or tensile force) acts on the bridge girder 3. The vertical component F2 acting on the saddle portion 12 acts to cancel the vertical load acting on the center portion of the bridge girder 3 and reduce the bending moment at the center portion of the bridge girder. Assuming that the initial tension F is as close to zero as possible, it can be considered that the tension F (vertical component F2) acts on the cable 13 as a reaction force that cancels the live load L acting on the bridge girder 3.

図3及び図4は、本発明の更に他の実施例に係る橋梁補強構造を示す橋梁の概略側面図である。図5は、図4に示す橋梁の構造を概略的に示す部分斜視図である。図3には、2径間連続鋼床版箱桁橋1が示されており、図4及び図5には、3径間連続鋼床版箱桁橋1が示されている。   3 and 4 are schematic side views of a bridge showing a bridge reinforcing structure according to still another embodiment of the present invention. FIG. 5 is a partial perspective view schematically showing the structure of the bridge shown in FIG. FIG. 3 shows a two-diameter continuous steel floor slab box girder bridge 1, and FIGS. 4 and 5 show a three-diameter continuous steel floor slab box girder bridge 1. FIG.

図3及び図4に示す如く複数径間連続に施工される鋼床版箱桁橋1においては、橋桁3は、橋台2及び橋脚6によって支持される。橋台2及び橋脚6は、等間隔を隔てて配置される。橋桁3の一端は、ピン支承5によって橋台2に支持され、橋桁3の他端及び中間部は、ローラー支承4、7によって橋台2及び橋脚6に支持される。   As shown in FIGS. 3 and 4, in the steel deck slab bridge 1 constructed continuously in a plurality of spans, the bridge girder 3 is supported by the abutment 2 and the pier 6. The abutment 2 and the pier 6 are arranged at equal intervals. One end of the bridge girder 3 is supported on the abutment 2 by a pin support 5, and the other end and the middle part of the bridge girder 3 are supported on the abutment 2 and the pier 6 by roller supports 4 and 7.

図3に示す橋梁補強装置10は、サドル部12、17、塔11、ケーブル13及びケーブル係留装置14から構成される。塔11は、橋桁3の中間部に配置された橋脚6に垂直に立設される。サドル部17は、塔11の頂部に設けられ、ケーブル13を下方に転向する上側摺接面を備える。   The bridge reinforcing device 10 shown in FIG. 3 includes saddle portions 12 and 17, a tower 11, a cable 13, and a cable mooring device 14. The tower 11 is erected vertically on the bridge pier 6 disposed in the middle part of the bridge girder 3. The saddle portion 17 is provided at the top of the tower 11 and includes an upper sliding contact surface that turns the cable 13 downward.

前述の実施例と同じく、ケーブル係留装置14は、ケーブル13の各端部を各橋台2に固定するように左右の橋台2に夫々配設され、サドル部12は径間中央部に配設される。ケーブル係留装置14によって左右の橋台2に係留されたケーブル13は、橋桁3の側部に沿って概ね水平に延び、サドル部12の下側摺接面に摺接して上方に転向して塔11の頂部に延び、サドル部17の上側摺接面に摺接して下方に転向する。   As in the previous embodiment, the cable mooring device 14 is disposed on each of the left and right abutments 2 so as to fix each end of the cable 13 to each abutment 2, and the saddle portion 12 is disposed in the center portion of the span. The The cable 13 moored to the left and right abutments 2 by the cable mooring device 14 extends substantially horizontally along the side portion of the bridge girder 3, slidably contacts the lower slidable contact surface of the saddle portion 12, and is turned upward to be tower 11. Extending to the top of the saddle, and slidably contacts the upper sliding surface of the saddle portion 17 and turns downward.

図4及び図5に示す3径間連続鋼床版箱桁橋1においては、二本の塔11の間にサドル部18が更に配設される。サドル部18は、サドル部12と実質的に同一の構造を有するケーブル転向手段である。一方の塔11のサドル部17によって下方に転向したケーブル13は、2本の塔11の間(中央径間)のサドル部18によって上方に転向し、他方の塔11のサドル部17に延び、サドル部17によって下方に転向する。   In the three-diameter continuous steel deck box girder bridge 1 shown in FIGS. 4 and 5, a saddle portion 18 is further disposed between the two towers 11. The saddle portion 18 is cable turning means having substantially the same structure as the saddle portion 12. The cable 13 turned downward by the saddle portion 17 of the one tower 11 is turned upward by the saddle portion 18 between the two towers 11 (between the central diameters), and extends to the saddle portion 17 of the other tower 11. The saddle portion 17 turns downward.

なお、鋼床版箱桁橋1は、図5に示す如く、橋軸方向に延びる多数のトラフリブ9を鋼床版の下面に配設した構造を有する。また、4径間以上の多径間に亘って連続的に施工される多径間連続鋼床版箱桁橋においては、橋脚6の数に相応して、図4及び図5に示す塔11、サドル部17、18が増設されるが、橋梁補強装置10は、図4及び図5に示す3径間連続鋼床版箱桁橋1と実質的に同じ基本構成を有する。   The steel deck slab girder bridge 1 has a structure in which a number of truffles 9 extending in the bridge axis direction are disposed on the lower surface of the steel deck as shown in FIG. In a multi-span continuous steel floor slab box girder bridge constructed continuously over multiple spans of 4 spans or more, the tower 11 shown in FIGS. 4 and 5 corresponds to the number of piers 6. Although the saddle portions 17 and 18 are added, the bridge reinforcing device 10 has substantially the same basic configuration as the three-diameter continuous steel deck box girder bridge 1 shown in FIGS.

前述の実施例と同様、図3及び図4に示す橋梁補強装置10においても、ケーブル13には、油圧ジャッキ等(図示せず)によって初期張力F(破線矢印で示す)が予張力として付与され、ケーブル13は緊張状態に張設される。図3及び図4には、初期張力Fの水平成分F1及び鉛直成分F2が示されている。初期張力Fは、橋台2の水平反力R3と、橋台6の鉛直反力R4とによって支持される。前述の実施例と同じく、サドル部12、18に作用する左右の水平成分F1は互いに釣り合うので、橋桁3には軸力(圧縮力又は引張力)は作用しない。サドル部12、18に作用する鉛直成分F2は、橋桁3の中央部に作用する鉛直荷重を打ち消し、橋桁中央部の曲げモーメントを軽減するように働く。初期張力Fが限りなくゼロに近いと仮定すると、橋桁3に作用する活荷重Lを打ち消す反力として張力F(鉛直成分F2)がケーブル13に作用すると考えることができる。   As in the above-described embodiment, in the bridge reinforcing device 10 shown in FIGS. 3 and 4, the cable 13 is given an initial tension F (indicated by a dashed arrow) as a pretension by a hydraulic jack or the like (not shown). The cable 13 is tensioned. 3 and 4 show the horizontal component F1 and the vertical component F2 of the initial tension F. FIG. The initial tension F is supported by the horizontal reaction force R3 of the abutment 2 and the vertical reaction force R4 of the abutment 6. As in the previous embodiment, the left and right horizontal components F1 acting on the saddle portions 12 and 18 balance each other, so that no axial force (compressive force or tensile force) acts on the bridge beam 3. The vertical component F2 acting on the saddle portions 12 and 18 acts to cancel the vertical load acting on the center portion of the bridge girder 3 and reduce the bending moment at the center portion of the bridge girder. Assuming that the initial tension F is as close to zero as possible, it can be considered that the tension F (vertical component F2) acts on the cable 13 as a reaction force that cancels the live load L acting on the bridge girder 3.

図6〜図10は、三次元FEM解析によって求められた橋梁補強装置10の作用を示す線図であり、橋梁補強装置10の設置前及び設置後における既設橋梁の曲げ応力(最大主応力)の変化が示されている。図6及び図7には、死荷重応力の変化が示され、図8〜図10には、活荷重応力の変化が示されている。なお、活荷重は、日本道路協会・道路橋示方書において積載荷重として規定されたL荷重(B荷重)である。   6 to 10 are diagrams showing the action of the bridge reinforcement device 10 obtained by the three-dimensional FEM analysis, and show the bending stress (maximum principal stress) of the existing bridge before and after the bridge reinforcement device 10 is installed. Changes are shown. 6 and 7 show changes in dead load stress, and FIGS. 8 to 10 show changes in live load stress. The live load is an L load (B load) defined as a loaded load in the Japan Road Association / Road Bridge Specification.

各図において、横軸は橋軸方向位置を示し、縦軸は最大主応力を示す。各図の上部には、横軸と対応する橋梁の概略形状が参考として示されている。なお、FEM解析の解析対象は、1径間に7パネルを有する全長約180mの3径間連続鋼床版箱桁橋1であり、各々のケーブル13に対して所定の初期張力(500kN)を導入した条件で解析が行われた。   In each figure, the horizontal axis indicates the position in the bridge axis direction, and the vertical axis indicates the maximum principal stress. At the top of each figure, the schematic shape of the bridge corresponding to the horizontal axis is shown for reference. The analysis target of the FEM analysis is a three-diameter continuous steel floor slab box girder bridge 1 having a total length of about 180 m having seven panels between one diameter, and a predetermined initial tension (500 kN) is applied to each cable 13. Analysis was performed under the introduced conditions.

図6には、3径間連続鋼床版箱桁橋1の下フランジ部の死荷重応力と橋軸方向位置との関係が示されている。図6に示されるように、橋梁全体の応力性状の傾向には大きな変化は認められない。しかしながら、サドル部12、18の近傍においては、最大主応力の顕著な低減が認められる。橋梁全体の応力低減率は平均22%であり、中央径間及び側径間のいずれの径間においても、応力低減効果が認められた。従って、橋梁補強装置10の設置によって桁全体の耐荷力向上を図ることができると判明した。なお、橋軸方向に特定間隔を隔てて応力性状が10N/mm2程度立ち上がる傾向が、図6の線図に顕れている。これは、各パネル間に設けられた横リブ(図示せず)によって橋桁3の下フランジの変形が拘束されているために生じた現象である。 FIG. 6 shows the relationship between the dead load stress of the lower flange portion of the 3-span continuous steel slab box girder bridge 1 and the position in the bridge axis direction. As shown in FIG. 6, there is no significant change in the tendency of stress properties of the entire bridge. However, in the vicinity of the saddle portions 12 and 18, a significant reduction in the maximum principal stress is observed. The stress reduction rate of the entire bridge was 22% on average, and a stress reduction effect was observed in any span between the center span and the side span. Therefore, it was found that the load carrying capacity of the entire girder can be improved by installing the bridge reinforcing device 10. In addition, the tendency of the stress property to rise by about 10 N / mm 2 at a specific interval in the bridge axis direction appears in the diagram of FIG. This is a phenomenon that occurs because the deformation of the lower flange of the bridge girder 3 is constrained by a lateral rib (not shown) provided between the panels.

図7には、中央径間の鋼床版トラフリブ9(図5)に関し、ケーブル構造補強前後の死荷重応力の変化が示されている。   FIG. 7 shows a change in the dead load stress before and after reinforcing the cable structure with respect to the steel deck slab truffle 9 between the center spans (FIG. 5).

図7に示されるように、中央径間の中央部近傍の3つのパネルの範囲では、鋼床版トラフリブ9に作用する最大主応力がケーブル構造補強後に増大している。これは、初期張力Fによる橋桁3の吊り上げ作用に依るものである。   As shown in FIG. 7, in the range of the three panels in the vicinity of the center portion between the center diameters, the maximum principal stress acting on the steel deck slab truffle 9 increases after the cable structure reinforcement. This is due to the lifting action of the bridge girder 3 by the initial tension F.

図8には、ケーブル構造補強前後の橋梁全体の箱桁部下フランジの活荷重応力が示されている。   FIG. 8 shows the live load stress of the box girder lower flange of the entire bridge before and after reinforcing the cable structure.

橋梁全体の応力性状の傾向には、ケーブル構造補強の前後で大きな変化は認められないが、補強後の橋梁において補強前よりも応力度が増大する箇所は生じていない。補強前後の応力低減率を橋軸方向範囲毎に検討すると、橋梁全体では平均23%,中央径間では34%,側径間では13%,桁端部では71%の活荷重応力の低減が生じている。従って、本発明の橋梁補強装置10は、橋桁全体に亘って活荷重応力の低減に寄与することが判明した。   There is no significant change in the stress properties of the entire bridge before and after the reinforcement of the cable structure, but there are no places where the degree of stress increases in the bridge after reinforcement than before reinforcement. When the stress reduction rate before and after reinforcement is examined for each range in the direction of the bridge axis, the active load stress is reduced by an average of 23% for the entire bridge, 34% for the center diameter, 13% for the side diameter, and 71% for the girder end. Has occurred. Therefore, it has been found that the bridge reinforcing device 10 of the present invention contributes to the reduction of the live load stress over the entire bridge girder.

また、中央径間の中央領域と、中央径間の桁端近傍領域、そして、側径間の桁端近傍領域は、ケーブル構造補強前に特に高い応力度を示していたが、ケーブル構造補強後には、中央径間の中央領域において約30%、そして、中央径間及び側径間の桁端近傍領域において約65%応力度が低減しており、本発明の橋梁補強装置10による活荷重応力の低減効果は、これらの領域に顕著に顕れている。   In addition, the central region between the central diameters, the region near the beam ends between the central diameters, and the region near the beam ends between the side diameters showed a particularly high degree of stress before reinforcing the cable structure. Is reduced by about 30% in the central region between the central spans, and by about 65% in the region near the beam ends between the central spans and the side spans, and the active load stress by the bridge reinforcing device 10 of the present invention is reduced. The effect of reducing this is noticeable in these regions.

図9には、中央径間の鋼床版トラフリブ9(図5)に作用する活荷重応力が橋軸方向位置と関連して示されている。ケーブル構造補強による鋼床版トラフリブ9の応力低減率は、中央径間において約6%であった。また、中央径間の中央領域では、ケーブル構造補強の前には、約25N/mm2の応力が作用していたが、ケーブル構造補強後は、約2N/mm2に大きく低減した。従って、ケーブル構造補強は、橋梁に作用する一次応力の低減だけでなく、鋼床版トラフリブ9の活荷重応力の低減(即ち、設計では考慮し得ない二次応力の低減)をも可能にすることが判明した。 In FIG. 9, the live load stress acting on the steel deck slab truffle 9 (FIG. 5) between the center spans is shown in relation to the bridge axial position. The stress reduction rate of the steel deck slab truffle 9 by reinforcing the cable structure was about 6% between the center diameters. Further, in the central region of the center span, before the cable structure reinforcement, the stress of about 25 N / mm 2 had been applied, after the cable structure reinforcement it was greatly reduced to about 2N / mm 2. Therefore, the cable structural reinforcement not only reduces the primary stress acting on the bridge, but also enables the reduction of the live load stress of the steel deck slab truffle 9 (that is, the reduction of the secondary stress that cannot be considered in the design). It has been found.

従って、本発明の上記実施例によれば、以下の効果が具体的に得られると判明した。
(1)本発明のケーブル構造補強により死荷重応力を橋梁全体で平均22%低減し、橋桁全体の耐荷力向上を図ることができる。
Therefore, according to the above embodiment of the present invention, it has been found that the following effects can be obtained specifically.
(1) By reinforcing the cable structure of the present invention, the dead load stress can be reduced by an average of 22% over the entire bridge, and the load bearing capacity of the entire bridge girder can be improved.

(2)本発明のケーブル構造補強により活荷重応力を橋梁全体で平均23%低減し、従来の補強工法では得られなかった活荷重応力低減効果を達成することができる。 (2) By reinforcing the cable structure of the present invention, the active load stress can be reduced by an average of 23% over the entire bridge, and the effect of reducing the active load stress that cannot be obtained by the conventional reinforcement method can be achieved.

(3)サポートビーム19の直上近傍では、鋼床版トラフリブ9の活荷重応力を大きく低減することができ、橋梁に作用する二次応力の低減を図ることができる。 (3) In the vicinity immediately above the support beam 19, the live load stress of the steel deck slab truffle 9 can be greatly reduced, and the secondary stress acting on the bridge can be reduced.

かくして、本発明の橋梁補強装置10によれば、既設鋼道路橋の桁全体の応力を抜本的に低減し、従来の補強工法では得られない橋梁全体の補強効果を達成するとともに、死荷重応力の低減のみならず、従来の補強工法では実現し得なかった活荷重応力の低減をも可能にし、従って、既設鋼道路橋の耐荷力向上及び耐久性向上を図ることができる。   Thus, according to the bridge reinforcing device 10 of the present invention, the stress of the existing steel road bridge as a whole is drastically reduced, the effect of reinforcing the entire bridge that cannot be obtained by the conventional reinforcement method, and the dead load stress. It is possible to reduce the live load stress that could not be realized by the conventional reinforcement method as well as the reduction of the load, and therefore the load resistance and durability of the existing steel road bridge can be improved.

図10には、塔11の高さhの相違に伴う橋梁補強装置10の活荷重応力低減効果の変化が示されており、図11には、図10に示す第1モデル及び第2モデルに係る3径間連続鋼床版箱桁橋1の構成が概略的に示されている。   FIG. 10 shows a change in the active load stress reduction effect of the bridge reinforcing device 10 due to the difference in the height h of the tower 11, and FIG. 11 shows the first model and the second model shown in FIG. The structure of the 3 span continuous steel deck box girder bridge 1 is shown schematically.

図11(A)には、塔高hを支間長L/5に設定した第1モデルが示され、図11(B)には、塔高hを支間長L/10に設定した第2モデルが示されている。第2モデルは、第1モデルに比べ、塔高hが半減しているため、初期張力Fの鉛直成分F2(図4)が半減する。ケーブル構造補強においては、桁の応力低減をもたらす主要因の一つは、初期張力Fの鉛直成分F2であると考えられる。このため、本発明者は、第1モデルと同等の鉛直成分F2を確保すべく、第2モデルにおいて初期張力Fを約2倍に設定してFEM解析を実行した。   11A shows a first model in which the tower height h is set to the span length L / 5, and FIG. 11B shows a second model in which the tower height h is set to the span length L / 10. It is shown. In the second model, since the tower height h is halved compared to the first model, the vertical component F2 (FIG. 4) of the initial tension F is halved. In the cable structure reinforcement, it is considered that one of the main factors for reducing the stress of the girder is the vertical component F2 of the initial tension F. For this reason, the present inventor performed the FEM analysis with the initial tension F set to about twice in the second model in order to ensure the vertical component F2 equivalent to the first model.

図10には、第1モデル及び第2モデルのFEM解析結果が示されている。図10に示されるとおり、第1モデルと第2モデルの発生応力は概ね同一であり、両者の実質的な差は認められない。即ち、本発明の橋梁補強装置10においては、初期張力Fを増大することよって塔高hを低減することができる。これは、橋梁補強装置10の補強効果と、その経済性及び施工性とを両立させる設計を本発明に従って採用し得ることを意味する。   FIG. 10 shows the FEM analysis results of the first model and the second model. As shown in FIG. 10, the generated stresses of the first model and the second model are substantially the same, and no substantial difference between them is recognized. That is, in the bridge reinforcing device 10 of the present invention, the tower height h can be reduced by increasing the initial tension F. This means that a design that achieves both the reinforcing effect of the bridge reinforcing device 10 and its economy and workability can be adopted according to the present invention.

以上、本発明の好適な実施例について詳細に説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能である。   The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the above-described embodiments, and various modifications or changes can be made within the scope of the present invention described in the claims. Is possible.

例えば、上記実施例2〜4の橋梁補強構造では、ケーブルを塔頂サドル部で下方に転向しているが、各塔の頂部にケーブル係留装置を配設してケーブルを各塔頂部で分断し、各ケーブルの端部を各塔の塔頂部に係留しても良い。   For example, in the bridge reinforcing structures of Examples 2 to 4 above, the cables are turned downward at the tower top saddle, but a cable mooring device is provided at the top of each tower to divide the cables at each tower top. The end of each cable may be moored at the top of each tower.

また、塔の断面(横断面)は、正方形、円形、楕円形、長方形、菱形等の任意の形態に設計することができる。   Further, the cross section (transverse section) of the tower can be designed in any form such as a square, a circle, an ellipse, a rectangle, and a rhombus.

更に、上記各実施例では、橋桁のサドル部を径間の中央部に配置しているが、径間の片側に偏在した位置にサドル部を配置し、或いは、複数のサドル部を径間に配設することも可能である。   Further, in each of the above embodiments, the saddle portion of the bridge girder is arranged at the center portion of the span, but the saddle portion is disposed at a position unevenly distributed on one side of the span, or a plurality of saddle portions are spanned between the spans. It is also possible to arrange.

本発明の橋梁補強構造及び橋梁補強方法は、既設鋼道路橋等の既設橋梁の耐荷力向上及び耐久性向上のために橋桁に沿ってケーブル構造を付設する外ケーブル工法に適用される。本発明は殊に、鋼床版箱桁橋の補強構造及び補強方法として有利に使用し得る構成を有する。本発明の橋梁補強構造及び橋梁補強方法によれば、過剰な軸力が橋桁に導入されるのを防止するとともに、活荷重によって橋桁に作用する応力を効果的に低減することができる。本発明の橋梁補強構造及び橋梁補強方法は又、橋梁全体の活荷重応力低減を達成し得る補強工法として、既設橋の架け替えに近い補強効果を発揮するであろうと考えられ、その実用的効果は顕著である。   The bridge reinforcing structure and the bridge reinforcing method of the present invention are applied to an external cable method for attaching a cable structure along a bridge girder in order to improve the load bearing capacity and durability of an existing bridge such as an existing steel road bridge. In particular, the present invention has a structure that can be advantageously used as a reinforcing structure and a reinforcing method for a steel floor slab box girder bridge. According to the bridge reinforcement structure and the bridge reinforcement method of the present invention, it is possible to prevent excessive axial force from being introduced into the bridge girder and to effectively reduce the stress acting on the bridge girder due to a live load. It is considered that the bridge reinforcement structure and the bridge reinforcement method of the present invention will exhibit a reinforcement effect close to the replacement of an existing bridge as a reinforcement method capable of achieving a reduction in the active load stress of the entire bridge, and its practical effect. Is remarkable.

1 鋼床版箱桁橋
2 橋台
3 橋桁
4、7 ローラー支承
5 ピン支承
6 橋脚
9 鋼床版トラフリブ
10 橋梁補強装置
11 塔
12、15、17、18 サドル部
13 ケーブル
14 ケーブル係留装置
19 サポートビーム
F 初期張力
F1 水平成分
F2 鉛直成分
R1 水平反力
R2 鉛直反力
DESCRIPTION OF SYMBOLS 1 Steel deck box girder bridge 2 Abutment 3 Bridge girder 4, 7 Roller bearing 5 Pin bearing 6 Bridge pier 9 Steel deck slab truffle 10 Bridge reinforcement device 11 Tower 12, 15, 17, 18 Saddle part 13 Cable 14 Cable mooring device 19 Support beam F Initial tension F1 Horizontal component F2 Vertical component R1 Horizontal reaction force R2 Vertical reaction force

Claims (10)

橋梁の橋長方向に張設されたケーブルと、橋桁に一体化し且つ前記ケーブルに接触して該ケーブルを転向する支点形成部材とを備え、前記ケーブルに作用する張力の鉛直成分によって前記支点形成部材に上向きの力を与えて前記橋桁の曲げ応力を低減する橋梁補強構造において、
前記ケーブルの張力を橋桁外の構造体又は地盤に伝達すべく前記構造体又は地盤に立設した塔と、
前記ケーブルに作用する張力の水平成分を橋桁外の構造体又は地盤に伝達すべく、前記塔の上部及び前記支点形成部材において転向した前記ケーブルを前記構造体又は地盤に係留し、或いは、前記支点形成部材において転向した前記ケーブルを前記塔に係留するケーブル係留手段とを有することを特徴とする橋梁補強構造。
A cable stretched in the bridge length direction of the bridge; and a fulcrum forming member that is integrated with the bridge girder and that contacts the cable and turns the cable, and the fulcrum forming member is formed by a vertical component of tension acting on the cable. In the bridge reinforcement structure that reduces the bending stress of the bridge girder by applying upward force to
A tower erected on the structure or ground to transmit the tension of the cable to the structure or ground outside the bridge girder;
In order to transmit the horizontal component of the tension acting on the cable to the structure or the ground outside the bridge girder, the cable turned in the upper part of the tower and the fulcrum forming member is moored to the structure or the ground, or the fulcrum A bridge reinforcing structure comprising cable mooring means for mooring the cable turned in the forming member to the tower.
前記塔は、前記橋梁の橋台又は橋脚に立設されることを特徴とする請求項1に記載の橋梁補強構造。   The bridge reinforcing structure according to claim 1, wherein the tower is erected on an abutment or a pier of the bridge. 前記支点形成部材は、前記橋桁の下部に突設され、前記ケーブルに摺接又は転接する橋梁用サドル又は支承部材を有することを特徴とする請求項1又は2に記載の橋梁補強構造。   3. The bridge reinforcing structure according to claim 1, wherein the fulcrum forming member includes a saddle for a bridge or a support member that protrudes from a lower portion of the bridge girder and is slidably contacted or rolled. 前記ケーブル係留手段は、前記ケーブルの端部を前記塔の上部に係留する係留具を有し、該係留具は、前記支点形成部材によって上方に転向した前記ケーブルを前記塔に係留することを特徴とする請求項1乃至3のいずれか1項に記載の橋梁補強構造。   The cable mooring means has a mooring device for mooring an end portion of the cable to the upper portion of the tower, and the mooring device moors the cable turned upward by the fulcrum forming member to the tower. The bridge reinforcing structure according to any one of claims 1 to 3. 前記塔は、前記ケーブルに摺接又は転接する橋梁用サドル又は支承部材を有し、該橋梁用サドル又は支承部材は、前記支点形成部材によって上方に転向した前記ケーブルを下方に転向することを特徴とする請求項1乃至3のいずれか1項に記載の橋梁補強構造。   The tower includes a bridge saddle or a support member that slides or rolls on the cable, and the bridge saddle or support member turns the cable turned upward by the fulcrum forming member downward. The bridge reinforcing structure according to any one of claims 1 to 3. 前記ケーブル係留手段は、前記塔に設けられた前記橋梁用サドル又は支承部材と、前記支点形成部材とによって上下方向に転向したケーブルを前記構造体又は地盤に係留する係留具を有することを特徴とする請求項5に記載の橋梁補強構造。   The cable mooring means has a mooring tool for mooring a cable turned up and down by the bridge saddle or supporting member provided in the tower and the fulcrum forming member to the structure or the ground. The bridge reinforcing structure according to claim 5. 橋梁の橋長方向にケーブルを張設し、橋桁に一体化した支点形成部材に前記ケーブルを接触させて該ケーブルを転向させ、該ケーブルに作用する張力の鉛直成分によって前記支点形成部材に上向きの力を与えて前記橋桁の曲げ応力を低減する橋梁補強方法において、
橋桁外の構造体又は地盤に立設した塔の上部と、前記支点形成部材とによって転向した前記ケーブルを橋桁外の構造体又は地盤に係留し、或いは、前記支点形成部材で転向した前記ケーブルを前記塔に係留し、これにより、前記ケーブルに作用する張力の水平成分を前記構造体又は地盤の反力によって支持することを特徴とする橋梁補強方法。
A cable is stretched in the bridge length direction of the bridge, the cable is brought into contact with the fulcrum forming member integrated with the bridge girder, the cable is turned, and the vertical component of the tension acting on the cable is directed upward to the fulcrum forming member. In the bridge reinforcement method for reducing the bending stress of the bridge girder by applying force,
The cable turned by the upper part of the tower standing on the structure or ground outside the bridge girder and the fulcrum forming member is moored to the structure or ground outside the bridge girder, or the cable turned by the fulcrum forming member is A bridge reinforcing method, characterized in that the horizontal component of tension acting on the cable is supported by the reaction force of the structure or the ground.
前記塔の高さを低減するために前記ケーブルの初期張力を付加することを特徴とする請求項7に記載の橋梁補強方法。   The bridge reinforcing method according to claim 7, wherein an initial tension of the cable is applied in order to reduce the height of the tower. 前記塔を前記橋梁の橋台又は橋脚、或いは、地盤に立設し、前記支点形成部材によって上方に転向した前記ケーブルを前記塔の塔頂部に係留し、前記ケーブルに作用する張力の水平成分を前記塔によって前記橋台、橋脚又は地盤に伝達して、該橋台、橋脚又は地盤の反力によって支持することを特徴とする請求項7又は8に記載の橋梁補強方法。   The tower is erected on the abutment or pier of the bridge, or the ground, the cable turned upward by the fulcrum forming member is moored at the tower top of the tower, and the horizontal component of the tension acting on the cable is The bridge reinforcement method according to claim 7 or 8, wherein the bridge is transmitted to the abutment, pier or ground by a tower and supported by a reaction force of the abutment, pier or ground. 前記塔を前記橋梁の橋台又は橋脚、或いは、地盤に立設し、前記支点形成部材によって上方に転向した前記ケーブルを前記塔の塔頂部で下方に転向するとともに、前記ケーブルを前記橋台、橋脚又は地盤に係留し、前記ケーブルに作用する張力の水平成分を前記橋台、橋脚又は地盤に伝達して、該橋台、橋脚又は地盤の反力によって支持することを特徴とする請求項7又は8に記載の橋梁補強方法。   The tower is erected on the abutment or pier of the bridge, or on the ground, and the cable turned upward by the fulcrum forming member is turned downward at the tower top of the tower, and the cable is turned to the abutment, pier or The moored to the ground, the horizontal component of the tension acting on the cable is transmitted to the abutment, pier or ground, and supported by the reaction force of the abutment, pier or ground. Bridge reinforcement method.
JP2009177238A 2009-07-30 2009-07-30 Bridge reinforcement structure and bridge reinforcement method Expired - Fee Related JP5388318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009177238A JP5388318B2 (en) 2009-07-30 2009-07-30 Bridge reinforcement structure and bridge reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009177238A JP5388318B2 (en) 2009-07-30 2009-07-30 Bridge reinforcement structure and bridge reinforcement method

Publications (2)

Publication Number Publication Date
JP2011032651A true JP2011032651A (en) 2011-02-17
JP5388318B2 JP5388318B2 (en) 2014-01-15

Family

ID=43761997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009177238A Expired - Fee Related JP5388318B2 (en) 2009-07-30 2009-07-30 Bridge reinforcement structure and bridge reinforcement method

Country Status (1)

Country Link
JP (1) JP5388318B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2490018A2 (en) 2011-02-17 2012-08-22 NGK Spark Plug Co., Ltd. NOx concentration detection apparatus and nox concentration detection method
CN103266574A (en) * 2013-05-02 2013-08-28 浙江大学 Simply-supported box girder bridge strengthening method with oblique cables
CN105603890A (en) * 2015-11-16 2016-05-25 上海应用技术学院 Extradosed type external cable reinforced girder bridge
JP2016118008A (en) * 2014-12-19 2016-06-30 西日本高速道路株式会社 Structural vibration control device, method for removing residual displacement of superstructure using the same and bridge reinforcement method
JP2016211238A (en) * 2015-05-11 2016-12-15 東日本旅客鉄道株式会社 Girder deflection reduction device
CN107100095A (en) * 2017-06-14 2017-08-29 沈阳建筑大学 A kind of T-shaped rigid frame bridge oblique pull ruggedized construction and its construction method
CN107151987A (en) * 2017-06-14 2017-09-12 沈阳建筑大学 A kind of the oblique pull ruggedized construction and its construction method of the T-shaped rigid frame bridge of double width
CN109537470A (en) * 2019-01-03 2019-03-29 中铁北京工程局集团第二工程有限公司 The Y structure construction bracket structure of battered leg stress can be adjusted in real time

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064912A (en) * 1999-08-31 2001-03-13 Shimizu Corp Prestressed concrete continuous through girder bridge
JP2002250005A (en) * 2001-02-26 2002-09-06 Univ Saitama Method and device for stretching outer cable for outer cable truss pc bridge
JP2004116081A (en) * 2002-09-25 2004-04-15 Nippon Steel Corp Reinforcing construction of existing structure and reinforcing method
JP2004270176A (en) * 2003-03-05 2004-09-30 Shigeru Une Bridge reinforcing construction method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064912A (en) * 1999-08-31 2001-03-13 Shimizu Corp Prestressed concrete continuous through girder bridge
JP2002250005A (en) * 2001-02-26 2002-09-06 Univ Saitama Method and device for stretching outer cable for outer cable truss pc bridge
JP2004116081A (en) * 2002-09-25 2004-04-15 Nippon Steel Corp Reinforcing construction of existing structure and reinforcing method
JP2004270176A (en) * 2003-03-05 2004-09-30 Shigeru Une Bridge reinforcing construction method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2490018A2 (en) 2011-02-17 2012-08-22 NGK Spark Plug Co., Ltd. NOx concentration detection apparatus and nox concentration detection method
CN103266574A (en) * 2013-05-02 2013-08-28 浙江大学 Simply-supported box girder bridge strengthening method with oblique cables
CN103266574B (en) * 2013-05-02 2015-06-03 浙江大学 Simply-supported box girder bridge strengthening method with oblique cables
JP2016118008A (en) * 2014-12-19 2016-06-30 西日本高速道路株式会社 Structural vibration control device, method for removing residual displacement of superstructure using the same and bridge reinforcement method
JP2016211238A (en) * 2015-05-11 2016-12-15 東日本旅客鉄道株式会社 Girder deflection reduction device
CN105603890A (en) * 2015-11-16 2016-05-25 上海应用技术学院 Extradosed type external cable reinforced girder bridge
CN107100095A (en) * 2017-06-14 2017-08-29 沈阳建筑大学 A kind of T-shaped rigid frame bridge oblique pull ruggedized construction and its construction method
CN107151987A (en) * 2017-06-14 2017-09-12 沈阳建筑大学 A kind of the oblique pull ruggedized construction and its construction method of the T-shaped rigid frame bridge of double width
CN109537470A (en) * 2019-01-03 2019-03-29 中铁北京工程局集团第二工程有限公司 The Y structure construction bracket structure of battered leg stress can be adjusted in real time

Also Published As

Publication number Publication date
JP5388318B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5388318B2 (en) Bridge reinforcement structure and bridge reinforcement method
KR101171039B1 (en) Partially and fully earth-anchored cable-stayed bridge using main span prestressing appratus and construction method for the same
KR100989586B1 (en) Girder for rahmen structure, the making method and bridge construction method using girder for rahmen structure
KR100755946B1 (en) Composite temporary bridge
KR101354641B1 (en) Partially earth-anchored cable-stayed bridge construction method using main span prestressing appratus and anchoring box
KR100357332B1 (en) Method and its devices to strengthen a girder of bridge by external prestressing method using multiple anchorage system
JPH11158819A (en) Cable reinforcing construction of structure
KR20140105147A (en) Prestressed concrete girder with reinforced rigidity between positive moment zone and negative moment zone
JP3847604B2 (en) Floor slab replacement method
KR101103556B1 (en) Composite beam making method and bridge construction method using tendon for tensile force to steel beam
KR101168911B1 (en) The fixing structre using girder for rahmen bridge
CN210049106U (en) Self-anchored suspension bridge catwalk bearing cable steering structure
KR100436747B1 (en) Apparatus and method for repairing and reinforcing bridge by using truss members
CN107460833A (en) For improving the system of continuous beam bridge bearing capacity and bridge containing the system
KR20060053030A (en) Net type external prestress strengthening apparatus and method for slab bridges
KR101168916B1 (en) The precast beam reinforcement device
KR100569226B1 (en) Bottom plate reinforcement method of continuous bridge by inclined tension material
KR101352956B1 (en) Cable-stayed bridge construction method
KR101167152B1 (en) girder
KR200351452Y1 (en) Apparatus for decreasing negative moment and forming multiple supporting points with installed at the supporting point of Rahmen-type steel bridge
KR200281077Y1 (en) A temporaty bridge for continuous type long span
KR100682629B1 (en) Steel girder
CN109914258B (en) Self-anchored suspension bridge catwalk bearing cable steering structure
KR20050024804A (en) Section increasing and reinforcing apparatus for reinforcing section of the lower part of slab between girder and cross beam in girder bridge and installing method thereof
CN108342996B (en) A kind of highway bridge prestress strengthening method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees