JP2011032519A - Steel member for high-heat input welding - Google Patents
Steel member for high-heat input welding Download PDFInfo
- Publication number
- JP2011032519A JP2011032519A JP2009178795A JP2009178795A JP2011032519A JP 2011032519 A JP2011032519 A JP 2011032519A JP 2009178795 A JP2009178795 A JP 2009178795A JP 2009178795 A JP2009178795 A JP 2009178795A JP 2011032519 A JP2011032519 A JP 2011032519A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- heat input
- toughness
- less
- welding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 56
- 239000010959 steel Substances 0.000 title claims abstract description 56
- 238000003466 welding Methods 0.000 title claims abstract description 52
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 35
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims description 40
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- 229910045601 alloy Inorganic materials 0.000 abstract description 4
- 239000000956 alloy Substances 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 24
- 238000000034 method Methods 0.000 description 15
- 229910000859 α-Fe Inorganic materials 0.000 description 13
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 11
- 230000009467 reduction Effects 0.000 description 9
- 230000009466 transformation Effects 0.000 description 9
- 229910001566 austenite Inorganic materials 0.000 description 7
- 230000002411 adverse Effects 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 239000010953 base metal Substances 0.000 description 3
- 229910001567 cementite Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、船舶や建築・土木等の分野における各種鋼構造物に使用される鋼材、特に降伏応力が460MPa以上の高強度で、しかも溶接入熱量が300kJ/cmを超える大入熱溶接に適した鋼材に関するものである。 The present invention is suitable for steel materials used for various steel structures in the fields of ships, construction, civil engineering, etc., especially for high heat input welding with high strength of yield stress of 460 MPa or more and welding heat input exceeding 300 kJ / cm. This is related to steel materials.
船舶や建築・土木等の分野で使用される鋼材は、溶接接合により所望の形状の構造物に仕上げられるのが普通である。したがって、これらの構造物には、安全性を確保する観点から、使用される鋼材の母材靱性はもちろんのこと、溶接部の靱性にも優れていることが要請されている。 Steel materials used in the fields of ships, construction, civil engineering, etc. are usually finished in a desired shape by welding. Therefore, these structures are required to be excellent in the toughness of the welded portion as well as the base material toughness of the steel material used from the viewpoint of ensuring safety.
さらに、近年では、上記船舶や鋼構造物はますます大型化し、使用される鋼材も高強度化や厚肉化が積極的に進められている。それに伴い、溶接施工には、サブマージアーク溶接やエレクトロガス溶接、エレクトロスラグ溶接などの大入熱で高能率の溶接方法が適用されるようになってきている。したがって、大入熱溶接によって溶接施工したときでも、溶接部の靱性に優れる鋼材が必要となってきている。 Furthermore, in recent years, the ships and steel structures have become increasingly larger, and the steel materials used have been actively promoted to increase strength and thickness. Accordingly, high-efficiency and high-efficiency welding methods such as submerged arc welding, electrogas welding, and electroslag welding have come to be applied to welding construction. Therefore, even when welding is performed by high heat input welding, a steel material that is excellent in the toughness of the welded portion has become necessary.
ここで、図1は、溶接部断面のマクロ組織写真であり、溶接部の中央には、溶融した母材および溶接材料から生成した溶着金属の両者が溶融状態でほぼ均一に混合し、凝固した溶接金属部分が存在しており、その両側には、溶接時に投入された熱によって影響を受け、母材の組織と特性が変質した熱影響部(Heat Affected Zone;HAZ)が存在し、さらにその両側には、母材が存在している状態を示したものである。上記溶接金属と熱影響部の境界部(図中の破線部)は、一般に「ボンド部」と称されている。 Here, FIG. 1 is a macro-structure photograph of a cross section of the welded portion, and in the center of the welded portion, both the molten base material and the weld metal generated from the welding material are almost uniformly mixed and solidified. There are weld metal parts, and on both sides there are heat affected zones (HAZ) that are affected by the heat input during welding, and the structure and properties of the base metal are altered. On both sides, the base material is present. The boundary portion (broken line portion in the figure) between the weld metal and the heat affected zone is generally referred to as a “bond portion”.
上記ボンド部近傍に位置する熱影響部(HAZ)は、熱影響部の中で、最も高い融点付近の温度まで加熱され、その後、急冷されるという熱サイクルを受けるため、溶接時の入熱量が大きくなると、結晶粒が粗大化し、靱性が著しく低下することが知られている。このような大入熱溶接に伴うHAZの靱性低下に対しては、これまでにも多くの対策が検討されてきた。例えば、TiNを鋼中に微細分散させて、オーステナイト粒の粗大化を抑制したり、フェライト変態核として利用したりする技術が既に実用化されている。また、Tiの酸化物を分散させることで、上記と同様の効果を狙った技術も開発されている(例えば、特許文献1参照)。 The heat affected zone (HAZ) located in the vicinity of the bond portion is heated to a temperature near the highest melting point in the heat affected zone, and then subjected to a thermal cycle of rapid cooling, so that the heat input during welding is low. It is known that when it becomes large, the crystal grains become coarse and the toughness is remarkably lowered. Many countermeasures have been studied for the reduction in the toughness of HAZ accompanying such high heat input welding. For example, a technique for finely dispersing TiN in steel to suppress coarsening of austenite grains or to use it as a ferrite transformation nucleus has already been put into practical use. Further, a technique aiming at the same effect as described above by dispersing an oxide of Ti has been developed (for example, see Patent Document 1).
しかし、TiNを活用する上記技術は、大入熱溶接を受けた際、溶接熱影響部がTiNの溶解温度域まで加熱され、TiNが分解して再溶解してしまうため、上記分散効果が消失したり、さらに、TiNの分解により生成した固溶Tiおよび固溶Nの増加によって鋼が脆化し、靱性が著しく低下したりするという問題を抱えている。また、Ti酸化物を活用する技術は、酸化物を均一微細に分散させることが難しいという問題がある。 However, the above-described technology using TiN loses the dispersion effect because the heat affected zone is heated to the melting temperature range of TiN and TiN decomposes and re-dissolves when subjected to high heat input welding. In addition, there is a problem that steel is embrittled due to an increase in solid solution Ti and solid solution N generated by decomposition of TiN, and the toughness is significantly reduced. Moreover, the technique using Ti oxide has a problem that it is difficult to disperse the oxide uniformly and finely.
このような問題に対する技術として、例えば、特許文献2には、300kJ/cmを超える大入熱溶接した溶接熱影響部の靱性を向上させるため、硫化物の形態制御のために添加しているCaの量を適正化して、CaSを晶出させ、これをフェライト変態核として有効に活用する技術が開示されている。このCaSは、酸化物に比べて低温で晶出するため、鋼中に微細分散させることが可能であり、さらに、冷却中に、これを核として、MnSやTiN,BN等のフェライト変態生成核が微細に分散析出するので、溶接熱影響部の組織を微細なフェライトパーライト組織とすることができ、高靱性化を達成することができる。 As a technique for such a problem, for example, in Patent Document 2, in order to improve the toughness of a weld heat affected zone subjected to high heat input welding exceeding 300 kJ / cm, Ca added for controlling the form of sulfide is added. A technique is disclosed in which CaS is crystallized by optimizing the amount of Cu and effectively used as ferrite transformation nuclei. Since this CaS crystallizes at a lower temperature than the oxide, it can be finely dispersed in the steel. Furthermore, during cooling, this is used as a nucleus for ferrite transformation formation nuclei such as MnS, TiN, and BN. Is finely dispersed and precipitated, the structure of the weld heat-affected zone can be a fine ferrite pearlite structure, and high toughness can be achieved.
しかし、特許文献2の技術をもってしても、降伏応力が460MPa以上で、比較的多量のCや合金元素が添加された鋼では、溶接入熱量が300kJ/cmを超える大入熱溶接を施したときに、ボンド部近傍の熱影響部に島状マルテンサイト(MA)と呼ばれる硬質の脆化組織が面積分率で数%形成され、これが溶接部の靭性のさらなる改善を阻んでいることが問題となっている。従って、このような高強度鋼材における大入熱溶接部の靭性改善には、フェライト変態核の微細分散や固溶N、固溶Bの低減に加えてさらに、上記ボンド部近傍の熱影響部における島状マルテンサイトの生成を抑制する必要がある。 However, even with the technique of Patent Document 2, the steel with a yield stress of 460 MPa or more and a relatively large amount of C and alloy elements added was subjected to high heat input welding with a heat input of welding exceeding 300 kJ / cm. Sometimes, a hard embrittlement structure called island martensite (MA) is formed in the heat affected zone near the bond part by several percent in area fraction, which prevents further improvement of the toughness of the weld. It has become. Therefore, in order to improve the toughness of the high heat input weld in such high strength steel, in addition to the fine dispersion of ferrite transformation nuclei and the reduction of solute N and solute B, in the heat affected zone in the vicinity of the bond part. It is necessary to suppress the formation of island martensite.
上記島状マルテンサイトを低減する技術については、例えば、特許文献3には、C量を低減すると同時に、Mn量を増やして変態開始温度を低下させることで、Cの未変態オーステナイト中への分配を低減し、島状マルテンサイトの生成を抑制する技術が開示されている。また、特許文献4には、C,Siの含有量の低減の他に、Pの含有量の低減が、大入熱溶接したHAZ部の島状マルテンサイトの低減に対して有効であることが開示されている。 Regarding the technique for reducing the island-shaped martensite, for example, Patent Document 3 discloses that distribution of C into untransformed austenite is achieved by decreasing the amount of C and simultaneously decreasing the transformation start temperature by increasing the amount of Mn. A technology for reducing the generation of island-like martensite is disclosed. Further, in Patent Document 4, in addition to the reduction of the contents of C and Si, the reduction of the content of P is effective for the reduction of the island-like martensite in the HAZ part subjected to high heat input welding. It is disclosed.
特許文献3の技術によれば、島状マルテンサイトの量を低減することはできる。しかし、C低減による強度低下を補償するために、Nbを0.03mass%以上添加することを必要としており、これによる島状マルテンサイトの生成が懸念される。さらに、この技術は、変態生成核としてTi酸化物を利用しているため、それを微細分散させるという技術的課題が残されている。また、特許文献4の技術では、やはり、島状マルテンサイトの量の低減が可能で、かつ、Caを適正量添加することで、フェライト変態核を微細に分散させることが可能である。しかし、高価なNiの添加を必須としているため、合金コストが高くなるという問題がある。 According to the technique of Patent Document 3, the amount of island martensite can be reduced. However, it is necessary to add 0.03 mass% or more of Nb in order to compensate for the strength reduction due to C reduction, and there is a concern about the generation of island martensite due to this. Furthermore, since this technique uses Ti oxide as the transformation nuclei, the technical problem of finely dispersing it remains. Further, according to the technique of Patent Document 4, it is possible to reduce the amount of island martensite and finely disperse ferrite transformation nuclei by adding an appropriate amount of Ca. However, since it is essential to add expensive Ni, there is a problem that the alloy cost is increased.
そこで、本発明の目的は、高価な合金元素の添加を行うことなく溶接熱影響部における島状マルテンサイトの生成を抑制し、高強度でかつ溶接部の靭性に優れる大入熱溶接用鋼材を提供することにある。 Accordingly, an object of the present invention is to provide a steel material for high heat input welding that suppresses the formation of island martensite in the weld heat affected zone without adding an expensive alloy element and has high strength and excellent weld toughness. It is to provide.
発明者らは、降伏応力が460MPa以上の高強度鋼材に対して、溶接入熱量が300kJ/cmを超える大入熱溶接を施したときにボンド部近傍の熱影響部に生成する島状マルテンナイトの量を低減するべく鋭意検討した。その結果、島状マルテンサイトを極力生成させずに強度を高めることが可能な元素であるMnを積極的に添加するとともに、不純物元素であるPの含有量を0.008mass%以下にまで低減することによって、大入熱溶接後の冷却中に生成する島状の未変態オーステナイトがセメンタイトに分解しやすくなり、島状マルテンサイトの生成をほぼ抑制することができることを見出し、本発明を完成させた。 The inventors of the present invention have developed an island-like martensite produced in a heat-affected zone in the vicinity of a bond portion when a high heat input welding with a heat input exceeding 300 kJ / cm is applied to a high-strength steel material having a yield stress of 460 MPa or more. We have intensively studied to reduce the amount. As a result, Mn, which is an element that can increase the strength without generating island martensite as much as possible, is positively added, and the content of P, which is an impurity element, is reduced to 0.008 mass% or less. It has been found that the island-like untransformed austenite generated during cooling after high heat input welding is easily decomposed into cementite, and the formation of island martensite can be substantially suppressed, and the present invention has been completed. .
すなわち、本発明は、C:0.01〜0.03mass%、Si:0.01〜0.15mass%、Mn:2.6〜3.5mass%、P:0.008mass%以下、S:0.0005〜0.0040mass%、Al:0.005mass%超0.1mass%未満、Ti:0.003〜0.03mass%、N:0.0025〜0.0070mass%、B:0.0003〜0.0025mass%を含有し、溶接入熱量が300kJ/cmを超える大入熱溶接を施したときのボンド近傍の熱影響部組織における島状マルテンサイト面積分率が1%以下であることを特徴とする大入熱溶接用鋼材である。 That is, the present invention is C: 0.01-0.03 mass%, Si: 0.01-0.15 mass%, Mn: 2.6-3.5 mass%, P: 0.008 mass% or less, S: 0 .0005 to 0.0040 mass%, Al: more than 0.005 mass% and less than 0.1 mass%, Ti: 0.003 to 0.03 mass%, N: 0.0025 to 0.0070 mass%, B: 0.0003 to 0 .0025 mass%, and the island-shaped martensite area fraction in the heat-affected zone structure near the bond when high heat input welding with a welding heat input exceeding 300 kJ / cm is performed is 1% or less. It is a steel material for large heat input welding.
本発明の大入熱溶接用鋼材は、上記成分組成に加えてさらに、V:0.2mass%以下を含有することを特徴とする。 The steel material for large heat input welding of the present invention is characterized by further containing V: 0.2 mass% or less in addition to the above component composition.
また、本発明の大入熱溶接用鋼材は、上記成分組成に加えてさらに、Cu:1.0mass%以下、Ni:1.0mass%以下、Cr:0.4mass%以下、Mo:0.4mass%以下およびNb:0.04mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする。 Moreover, in addition to the said component composition, the steel material for large heat input welding of this invention is further Cu: 1.0 mass% or less, Ni: 1.0 mass% or less, Cr: 0.4 mass% or less, Mo: 0.4 mass % Or less and Nb: 0.04 mass% or less.
また、本発明の大入熱溶接用鋼材は、上記成分組成に加えてさらに、Ca:0.0005〜0.0050mass%、Mg:0.0005〜0.0050mass%、Zr:0.001〜0.02mass%、REM:0.001〜0.02mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。 Moreover, in addition to the said component composition, the steel materials for large heat input welding of this invention are further Ca: 0.0005-0.0050mass%, Mg: 0.0005-0.0050mass%, Zr: 0.001-0. 0.02 mass%, REM: It contains 1 type, or 2 or more types chosen from 0.001-0.02 mass%, It is characterized by the above-mentioned.
本発明によれば、300kJ/cmを超える大入熱溶接を行っても、優れた溶接熱影響部靭性を有する高強度の鋼材を安価に提供することができる。したがって、本発明は、サブマージアーク溶接、エレクトロガス溶接、エレクトロスラグ溶接などの大入熱溶接により施工される大型鋼構造物の品質向上や低コスト化に大きく寄与する。 According to the present invention, even if high heat input welding exceeding 300 kJ / cm is performed, a high-strength steel material having excellent weld heat affected zone toughness can be provided at low cost. Therefore, the present invention greatly contributes to quality improvement and cost reduction of large steel structures constructed by high heat input welding such as submerged arc welding, electrogas welding, and electroslag welding.
先ず、本発明の鋼材における溶接熱影響部(HAZ)の組織について説明する。
本発明は、溶接部の熱影響部(HAZ)、中でも最も高温に曝され、オーステナイトが粗大化しやすいボンド部近傍の熱影響部における島状マルテンサイトの生成を抑制することによって、大入熱溶接部の靭性向上を図るところに技術的特徴がある。斯かる効果を得るためには、上記ボンド部近傍の熱影響部における島状マルテンサイトを、面積分率で1%以下に低減することが必要である。
First, the structure of the weld heat affected zone (HAZ) in the steel material of the present invention will be described.
The present invention suppresses the generation of island martensite in the heat affected zone (HAZ) of the weld zone, particularly the heat affected zone in the vicinity of the bond zone that is exposed to the highest temperature and austenite is likely to be coarsened. There is a technical feature in improving the toughness of the part. In order to obtain such an effect, it is necessary to reduce the island-like martensite in the heat affected zone near the bond portion to 1% or less in terms of area fraction.
ここで、上記ボンド部近傍の熱影響部とは、ボンド部から500μm以内の範囲の熱影響部を指す。また、ボンド部近傍の熱影響部における島状マルテンサイトは、溶接部の断面を研摩し、エッチングし、SEMで観察することで確認することができる。なお、ボンド部近傍の熱影響部の組織は、上記島状マルテンサイトの外は、アシキュラーフェライトやベイナイトを主とし、フェライトやパーライトなどを含むものである。 Here, the heat-affected zone in the vicinity of the bond portion refers to a heat-affected zone in a range within 500 μm from the bond portion. Moreover, the island-like martensite in the heat affected zone near the bond portion can be confirmed by polishing the cross section of the welded portion, etching, and observing with a SEM. The structure of the heat-affected zone in the vicinity of the bond portion is mainly composed of acicular ferrite or bainite, and includes ferrite, pearlite, etc., outside the island martensite.
次に、本発明の鋼材が、島状マルテンサイトを低減して溶接部を高靭性化すると共に、母材の高強度化を図るのに必要な成分組成について説明する。
C:0.01〜0.03mass%
Cは、鋼材強度を高める元素であり、構造用鋼として必要な強度を確保するには、0.01mass%以上含有させる必要がある。しかし、Cが0.03mass%を超えると、島状マルテンサイトが生成し易くなるため、上限は0.03mass%とする。
Next, the component composition necessary for the steel material of the present invention to reduce the island-like martensite and increase the toughness of the welded portion and to increase the strength of the base material will be described.
C: 0.01-0.03 mass%
C is an element that increases the strength of the steel material, and in order to ensure the strength necessary for structural steel, it is necessary to contain 0.01% by mass or more. However, if C exceeds 0.03 mass%, island-shaped martensite is likely to be generated, so the upper limit is made 0.03 mass%.
Si:0.01〜0.15mass%
Siは、脱酸剤として添加される元素であり、0.01mass%以上の添加が必要である。しかし、0.15mass%を超えると、母材の靱性が低下するほか、大入熱溶接した熱影響部に島状マルテンサイトが生成し、靱性の低下を招きやすくなる。よって、Siは0.01〜0.15mass%の範囲とする。
Si: 0.01-0.15 mass%
Si is an element added as a deoxidizer, and it is necessary to add 0.01 mass% or more. However, if it exceeds 0.15 mass%, the toughness of the base material is reduced, and island martensite is generated in the heat-affected zone subjected to high heat input welding, which tends to cause a reduction in toughness. Therefore, Si is set to a range of 0.01 to 0.15 mass%.
Mn:2.6〜3.5mass%
Mnは、大入熱溶接後の冷却中にボンド部近傍のHAZに生成する島状の未変態オーステナイトをセメンタイトに分解しやすくし、無害化する効果があるので、島状マルテンサイトを生成させずに強度をあげることができる重要な元素である。上記効果を得るには、2.6mass%以上の添加が必要である。しかし、3.5mass%を超えて添加すると、島状マルテンサイトが多量に生成し、溶接部の靱性を低下させる。よって、Mnは2.6〜3.5mass%の範囲とする。好ましくは、2.7〜3.0mass%の範囲である。
Mn: 2.6-3.5 mass%
Mn has the effect of making the island-like untransformed austenite produced in the HAZ near the bond part during cooling after high heat input welding easier to decompose into cementite and detoxify it, so that it does not produce island martensite. It is an important element that can increase strength. In order to acquire the said effect, addition of 2.6 mass% or more is required. However, when it is added exceeding 3.5 mass%, a large amount of island martensite is generated, and the toughness of the welded portion is lowered. Therefore, Mn is set to a range of 2.6 to 3.5 mass%. Preferably, it is in the range of 2.7 to 3.0 mass%.
P:0.008mass%以下
Pは、大入熱溶接後の冷却中にボンド部近傍のHAZに生成する島状の未変態オーステナイトをセメンタイトに分解し難くし、靭性を低下させるので、本発明においては制限すべき重要な元素である。特に、0.008mass%を超える含有は、上記悪影響が著しくなる。よって、本発明では、上記弊害を抑制するため、Pは0.008mass%以下に制限する。好ましくは、0.006mass%以下である。
P: 0.008 mass% or less P is not easily decomposed into cementite of the island-like untransformed austenite generated in the HAZ near the bond portion during cooling after high heat input welding, and decreases toughness. Is an important element to be restricted. In particular, when the content exceeds 0.008 mass%, the above-described adverse effect becomes remarkable. Therefore, in the present invention, P is limited to 0.008 mass% or less in order to suppress the above-described adverse effects. Preferably, it is 0.006 mass% or less.
S:0.0005〜0.0040mass%
Sは、フェライトの核生成サイトを形成するMnSあるいはCaSを生成するために必要な元素であり、斯かる効果を得るためには、0.0005mass%以上含有させる必要がある。しかし、0.0040mass%を超えると、母材の靱性が却って低下する。よって、Sは0.0005〜0.0040mass%の範囲とする。
S: 0.0005-0.0040 mass%
S is an element necessary for producing MnS or CaS that forms a nucleation site of ferrite. In order to obtain such an effect, it is necessary to contain 0.0005 mass% or more. However, if it exceeds 0.0040 mass%, the toughness of the base material is lowered. Therefore, S is set to a range of 0.0005 to 0.0040 mass%.
Al:0.005mass%超0.1mass%未満
Alは、鋼の脱酸のために添加される元素であり、0.005mass%超え含有させる必要がある。しかし、0.1mass%以上添加すると、母材の靱性のみならず、溶接金属の靱性をも低下させる。よって、Alは0.005mass%超0.1mass%未満の範囲とする。
Al: more than 0.005 mass% and less than 0.1 mass% Al is an element added for deoxidation of steel, and needs to be contained in excess of 0.005 mass%. However, when 0.1 mass% or more is added, not only the toughness of the base metal but also the toughness of the weld metal is lowered. Therefore, Al is taken as the range of more than 0.005 mass% and less than 0.1 mass%.
Ti:0.003〜0.03mass%
Tiは、凝固時にTiNとなって析出し、溶接熱影響部でのオーステナイトの粗大化を抑制し、また、フェライト変態核となって、溶接熱影響部の靭性向上に寄与する。斯かる効果を得るには、0.003mass%以上の添加が必要である。一方、0.03mass%を超えて添加すると、析出したTiNが粗大化し、上記効果が得られなくなる。よって、Tiは、0.003〜0.03mass%の範囲とする。
Ti: 0.003-0.03 mass%
Ti precipitates as TiN during solidification, suppresses austenite coarsening in the weld heat affected zone, and contributes to improving the toughness of the weld heat affected zone as a ferrite transformation nucleus. In order to obtain such an effect, addition of 0.003 mass% or more is necessary. On the other hand, if added over 0.03 mass%, the precipitated TiN becomes coarse and the above effect cannot be obtained. Therefore, Ti is set to a range of 0.003 to 0.03 mass%.
N:0.0025〜0.0070mass%
Nは、TiNの生成に必要な元素であり、必要量のTiNを確保するには、0.0025mass%以上含有させる必要がある。しかし、0.0070mass%を超えて添加すると、溶接熱サイクルによってTiNが再溶解する領域では、固溶N量が増加し、溶接部の靱性が著しく低下するようになる。よって、Nは、0.0025〜0.0070mass%の範囲とする。
N: 0.0025 to 0.0070 mass%
N is an element necessary for the generation of TiN, and in order to secure a necessary amount of TiN, it is necessary to contain 0.0025 mass% or more. However, if added over 0.0070 mass%, in the region where TiN is re-dissolved by the welding heat cycle, the amount of solute N increases, and the toughness of the welded portion significantly decreases. Therefore, N is set to a range of 0.0025 to 0.0070 mass%.
B:0.0003〜0.0025mass%
Bは、溶接熱影響部でBNを形成して固溶Nを低減するとともに、フェライト変態核として作用するので、溶接熱影響部の高靭性化にとって有用な元素である。このような効果を得るには0.0003mass%以上添加する必要がある。しかし、0.0025mass%を超えて添加すると、焼入れ性が増して、却って靭性の低下を招く。よって、Bは、0.0003〜0.0025mass%の範囲とする。
B: 0.0003 to 0.0025 mass%
B is a useful element for increasing the toughness of the weld heat affected zone because it forms BN in the weld heat affected zone to reduce solid solution N and acts as a ferrite transformation nucleus. In order to obtain such an effect, it is necessary to add 0.0003 mass% or more. However, if added over 0.0025 mass%, the hardenability is increased and the toughness is reduced. Therefore, B is in the range of 0.0003 to 0.0025 mass%.
本発明の鋼材は、上記成分に加えてさらに、フェライト生成核として作用するVを下記の範囲で添加することができる。
V:0.2mass%以下
Vは、VNとして析出し、母材の強度・靱性の向上に寄与すると共に、フェライト生成核としても作用するので、必要に応じて添加することができる。これらの効果を得るためには0.01mass%以上含有させることが好ましい。しかし、過剰の添加は、却って靱性の低下を招くので、上限は0.2mass%とするのが好ましい。
In the steel material of the present invention, in addition to the above components, V acting as a ferrite forming nucleus can be added in the following range.
V: 0.2 mass% or less V precipitates as VN, contributes to the improvement of the strength and toughness of the base material, and also acts as a ferrite nuclei. Therefore, V can be added as necessary. In order to acquire these effects, it is preferable to make it contain 0.01 mass% or more. However, excessive addition causes a decrease in toughness, so the upper limit is preferably 0.2 mass%.
また、本発明の鋼材は、上記成分に加えてさらに、母材の高強度化に有効なCu,Ni,Cr,MoおよびNbから選ばれる1種または2種以上を下記の範囲で添加することができる。
Cu:1.0mass%以下
Cuは、母材の高強度化に有効な元素であり、その効果を得るためには0.05mass%以上含有させることが好ましい。しかし、多量に添加し過ぎると、靱性に悪影響を及ぼすため、添加する場合には、1.0mass%以下とするのが望ましい。
In addition to the above-mentioned components, the steel material of the present invention should further contain one or more selected from Cu, Ni, Cr, Mo and Nb effective for increasing the strength of the base material in the following range. Can do.
Cu: 1.0 mass% or less Cu is an element effective for increasing the strength of the base material, and in order to obtain the effect, it is preferable to contain 0.05 mass% or more. However, if too much is added, the toughness is adversely affected. Therefore, when added, it is desirable that the amount be 1.0 mass% or less.
Ni:1.0mass%以下
Niは、母材の高強度化に有効な元素であり、その効果を得るためには0.05mass%以上含有させることが好ましい。しかし、多量に添加し過ぎると、靱性に悪影響を及ぼすため、添加する場合には、1.0mass%以下とするのが望ましい。
Ni: 1.0 mass% or less Ni is an element effective for increasing the strength of the base material. In order to obtain the effect, Ni is preferably contained in an amount of 0.05 mass% or more. However, if too much is added, the toughness is adversely affected. Therefore, when added, it is desirable that the amount be 1.0 mass% or less.
Cr:0.4mass%以下
Crは、母材の高強度化に有効な元素であり、その効果を得るためには0.02mass%以上含有させることが好ましい。しかし、多量に添加すると、靭性に悪影響を及ぼすようになるため、添加する場合には、上限を0.4mass%とするのが好ましい。
Cr: 0.4 mass% or less Cr is an element effective for increasing the strength of the base material, and it is preferable to contain 0.02 mass% or more in order to obtain the effect. However, if added in a large amount, the toughness is adversely affected. Therefore, when added, the upper limit is preferably set to 0.4 mass%.
Mo:0.4mass%以下
Moは、母材の高強度化に有効な元素であり、その効果を得るためには0.02mass%以上含有させることが好ましい。しかし、多量に添加すると、靭性に悪影響を及ぼすようになるため、添加する場合には、上限を0.4mass%とするのが好ましい。大入熱溶接部靱性をより安定して確保する観点からは、0.1mass%未満とするのがより好ましい。
Mo: 0.4 mass% or less Mo is an element effective for increasing the strength of the base material, and in order to obtain the effect, it is preferable to contain 0.02 mass% or more. However, if added in a large amount, the toughness is adversely affected. Therefore, when added, the upper limit is preferably set to 0.4 mass%. From the viewpoint of securing the high heat input weld toughness more stably, it is more preferably less than 0.1 mass%.
Nb:0.04mass%以下
Nbは、母材の強度・靭性および溶接継手の強度を確保するのに有効な元素であり、その効果を得るためには0.004mass%以上含有させることが好ましい。しかし、0.04mass%を超えて添加すると、溶接熱影響部に島状マルテンサイトが生成して靭性が低下するようになる。よって、添加する場合には、上限を0.04mass%とするのが好ましい。
Nb: 0.04 mass% or less Nb is an element effective for securing the strength and toughness of the base metal and the strength of the welded joint. In order to obtain the effect, Nb is preferably contained in an amount of 0.004 mass% or more. However, if added in excess of 0.04 mass%, island martensite is generated in the weld heat affected zone and the toughness is lowered. Therefore, when adding, it is preferable to make an upper limit into 0.04 mass%.
また、本発明の鋼材は、上記成分に加えてさらに、Ca,Mg,ZrおよびREMから選ばれる1種または2種以上を下記の範囲で添加してもよい。
Ca:0.0005〜0.0050mass%
Caは、Sの固定や、酸化物、硫化物の分散により靱性改善効果を有する元素であり、必要に応じて添加することができる。上記効果を得るには、少なくとも0.0005mass%含有させることが好ましい。しかし、0.0050mass%を超えて添加しても、上記効果は飽和する。よって、Caを添加する場合は、0.0005〜0.0050mass%の範囲とするのが好ましい。
Moreover, in addition to the said component, the steel material of this invention may add 1 type (s) or 2 or more types chosen from Ca, Mg, Zr, and REM in the following range.
Ca: 0.0005 to 0.0050 mass%
Ca is an element having an effect of improving toughness by fixing S or dispersing oxides and sulfides, and can be added as necessary. In order to acquire the said effect, it is preferable to contain at least 0.0005 mass%. However, even if added over 0.0050 mass%, the above effect is saturated. Therefore, when adding Ca, it is preferable to set it as the range of 0.0005-0.0050 mass%.
Mg:0.0005〜0.0050mass%、Zr:0.001〜0.02mass%、REM:0.001〜0.02mass%
Mg,ZrおよびREMはいずれも、酸化物の分散による靱性改善効果を有する元素である。このような効果を得るには、Mgは0.0005mass%以上、ZrおよびREMは0.001mass%以上含有させることが好ましい。一方、Mgは0.0050mass%超え、ZrおよびREMは0.02mass%超え添加しても、その効果は飽和するだけである。よって、これらの元素を添加する場合は、上記範囲とするのが好ましい。
Mg: 0.0005-0.0050 mass%, Zr: 0.001-0.02 mass%, REM: 0.001-0.02 mass%
Mg, Zr, and REM are all elements having an effect of improving toughness due to oxide dispersion. In order to obtain such an effect, it is preferable that Mg is contained in an amount of 0.0005 mass% or more, and Zr and REM are contained in an amount of 0.001 mass% or more. On the other hand, even if Mg exceeds 0.0050 mass% and Zr and REM exceed 0.02 mass%, the effect is only saturated. Therefore, when adding these elements, it is preferable to set it as the said range.
本発明の鋼材における上記成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の作用効果を害さない範囲であれば、上記以外の元素の含有を拒むものではない。 The balance other than the above components in the steel material of the present invention is Fe and inevitable impurities. However, the content of elements other than those described above is not rejected as long as the effects of the present invention are not impaired.
なお、本発明の鋼材は、従来公知の方法で製造することができ、特に、製造条件に制限はない。例えば、溶銑を転炉等で溶鋼とした後、RH脱ガス等で鋼成分を上記適正範囲に調整した後、連続鋳造または造塊−分塊工程を経て鋼片とする。次いで、上記鋼片を再加熱し、熱間圧延して所望の寸法の鋼材とした後、放冷するか、あるいは、上記熱間圧延後、加速冷却、直接焼入れ−焼戻し、再加熱焼入れ−焼戻し、再加熱焼準−焼戻しなどの工程を経て製造することができる。 In addition, the steel material of this invention can be manufactured by a conventionally well-known method, and there is no restriction | limiting in particular in manufacturing conditions. For example, after the hot metal is made into molten steel with a converter or the like, the steel components are adjusted to the appropriate range by RH degassing or the like, and then the steel piece is made through a continuous casting or ingot-bundling process. Next, the steel slab is reheated and hot-rolled to obtain a steel material having a desired size and then allowed to cool, or after the hot-rolling, accelerated cooling, direct quenching-tempering, reheating quenching-tempering It can be manufactured through a process such as reheating normalization-tempering.
表1に示した成分組成を有するNo.1〜22の鋼を150kg高周波溶解炉にて溶製し、熱間圧延して厚さ70mmの鋼片とした。この鋼片を1150℃で2時間加熱した後、さらに熱間圧延して板厚18mmの鋼板とし、放冷した。次いで、これらの鋼板についての溶接熱サイクル後の靭性を評価するため、上記鋼板のそれぞれから幅80mm×長さ80mm×厚さ15mmの試験片を採取し、1450℃に加熱後、800から500℃の範囲を270secで冷却する熱処理を施した。この熱処理は、入熱量400kJ/cmのエレクトロガス溶接を行った際、溶接熱影響部が受ける溶接熱サイクルに相当するものである。 No. having the component composition shown in Table 1. Steels 1 to 22 were melted in a 150 kg high-frequency melting furnace and hot-rolled to obtain steel pieces having a thickness of 70 mm. This steel slab was heated at 1150 ° C. for 2 hours, and then further hot-rolled to obtain a steel plate having a thickness of 18 mm, which was allowed to cool. Next, in order to evaluate the toughness after welding heat cycle for these steel plates, test pieces of width 80 mm × length 80 mm × thickness 15 mm were collected from each of the steel plates, heated to 1450 ° C., and then 800 to 500 ° C. A heat treatment was performed to cool the range of 270 seconds at 270 seconds. This heat treatment corresponds to a welding heat cycle that the welding heat affected zone receives when electrogas welding with a heat input of 400 kJ / cm is performed.
次いで、上記熱処理後の鋼板から組織観察用の試験片を採取し、断面を研摩後、2段エッチング法で島状マルテンサイトを現出したのち、SEMを用いて2000倍で5視野の組織写真を撮影し、得られた組織写真5枚をトレースしたのち画像解析し、島状マルテンサイトの平均面積分率を求め、これをボンド部近傍の熱影響部(HAZ)のMA分率とした。
また、上記熱処理後の鋼板から、試験片長手方向が圧延方向と一致するようにして2mmVノッチシャルピー試験片を採取し、−100〜40℃の温度範囲でシャルピー衝撃試験を行い、延性破面率50%となる破面遷移温度vTrsを求め、靭性を評価した。
Next, a specimen for structure observation was collected from the steel plate after the heat treatment, and after polishing the cross section, island-like martensite was revealed by a two-step etching method, and then a structure photograph of 5 fields of view using a SEM at 2000 times magnification. The five structural photographs obtained were traced and image analysis was performed to determine the average area fraction of the island martensite, which was taken as the MA fraction of the heat affected zone (HAZ) near the bond.
Further, a 2 mm V notch Charpy test piece was collected from the steel plate after the heat treatment so that the longitudinal direction of the test piece coincided with the rolling direction, and a Charpy impact test was conducted in a temperature range of −100 to 40 ° C. The fracture surface transition temperature vTrs, which is 50%, was determined, and toughness was evaluated.
表2に、各々の鋼板の島状マルテンサイトの面積分率と溶接熱影響部の靭性の測定結果を示した。表2から、本発明例のNo.1〜12の鋼板は、いずれも島状マルテンサイトの面積分率が1%以下で、vTrsで−50℃以下という良好な溶接熱影響部靭性が得られているのがわかる。これに対して、C,Mn,P等の化学成分のいずれかが本発明の範囲から外れているNo.13〜22の比較例の鋼板は、いずれも島状マルテンサイトの面積分率が1%を超えることによって、溶接熱影響部の靭性が、vTrsで−10℃以上と低下している。また、No.23の比較例の鋼板は、N含有量が低過ぎたため、ボンド部近傍の固溶Bが過剰となり、焼入性が高くなって島状マルテンサイトの分率が増加した例、No.24の比較例の鋼板は、逆にN含有量が高過ぎたため、島状マルテンサイトの分率は1%未満であるが、固溶Nが増加して靱性が低下した例である。 Table 2 shows the measurement results of the area fraction of island martensite and the toughness of the weld heat affected zone of each steel plate. From Table 2, No. of the present invention example. It can be seen that all of the steel sheets 1 to 12 have an island martensite area fraction of 1% or less and a good weld heat affected zone toughness of −50 ° C. or less in vTrs. On the other hand, any of chemical components such as C, Mn, and P deviates from the scope of the present invention. In all the steel plates of Comparative Examples 13 to 22, the toughness of the weld heat affected zone is lowered to −10 ° C. or more by vTrs when the area fraction of island martensite exceeds 1%. No. In the steel plate of Comparative Example No. 23, since the N content was too low, the solid solution B in the vicinity of the bond portion was excessive, the hardenability was increased, and the fraction of island martensite was increased. On the other hand, the steel sheet of Comparative Example 24 was an example in which the N content was too high, so that the fraction of island martensite was less than 1%, but the solid solution N increased and the toughness decreased.
Claims (4)
In addition to the above component composition, Ca: 0.0005-0.0050 mass%, Mg: 0.0005-0.0050 mass%, Zr: 0.001-0.02 mass%, REM: 0.001-0.02 mass The steel material for high heat input welding according to any one of claims 1 to 3, wherein the steel material contains one or more selected from%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009178795A JP5493557B2 (en) | 2009-07-31 | 2009-07-31 | Steel material for large heat input welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009178795A JP5493557B2 (en) | 2009-07-31 | 2009-07-31 | Steel material for large heat input welding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011032519A true JP2011032519A (en) | 2011-02-17 |
JP5493557B2 JP5493557B2 (en) | 2014-05-14 |
Family
ID=43761883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009178795A Active JP5493557B2 (en) | 2009-07-31 | 2009-07-31 | Steel material for large heat input welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5493557B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150057998A (en) | 2013-11-19 | 2015-05-28 | 신닛테츠스미킨 카부시키카이샤 | Steel sheet |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006124759A (en) * | 2004-10-27 | 2006-05-18 | Kobe Steel Ltd | Thick steel plate having excellent high heat input welded joint toughness |
JP2007224404A (en) * | 2006-02-27 | 2007-09-06 | Nippon Steel Corp | High tensile strength steel plate having excellent strength and low temperature toughness, and method for producing high tensile strength steel plate |
JP2008163446A (en) * | 2006-12-06 | 2008-07-17 | Jfe Steel Kk | Steel member for high heat input welding |
-
2009
- 2009-07-31 JP JP2009178795A patent/JP5493557B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006124759A (en) * | 2004-10-27 | 2006-05-18 | Kobe Steel Ltd | Thick steel plate having excellent high heat input welded joint toughness |
JP2007224404A (en) * | 2006-02-27 | 2007-09-06 | Nippon Steel Corp | High tensile strength steel plate having excellent strength and low temperature toughness, and method for producing high tensile strength steel plate |
JP2008163446A (en) * | 2006-12-06 | 2008-07-17 | Jfe Steel Kk | Steel member for high heat input welding |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150057998A (en) | 2013-11-19 | 2015-05-28 | 신닛테츠스미킨 카부시키카이샤 | Steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP5493557B2 (en) | 2014-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5604842B2 (en) | Steel material for large heat input welding | |
JP5076658B2 (en) | Steel material for large heat input welding | |
JP5842314B2 (en) | High heat input welding steel | |
JP5796636B2 (en) | Steel material for large heat input welding | |
JP6128276B2 (en) | Steel for welding | |
JP6418418B2 (en) | Steel material for large heat input welding | |
JP5849892B2 (en) | Steel material for large heat input welding | |
WO2016009595A1 (en) | Method of manufacturing steel plate for high-heat input welding | |
JP4276576B2 (en) | Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness | |
JP5233365B2 (en) | Steel material for large heat input welding | |
JP5233364B2 (en) | Steel material for large heat input welding | |
JP2005213534A (en) | Method for producing steel material excellent in toughness at welding heat affected zone | |
JP5493658B2 (en) | A method for producing non-tempered thick high-strength steel with high heat input heat-affected zone toughness. | |
JP5493557B2 (en) | Steel material for large heat input welding | |
JP5126375B2 (en) | Steel material for large heat input welding | |
WO2013128650A1 (en) | Steel material for high-heat-input welding | |
JP7272471B2 (en) | steel plate | |
JP5659949B2 (en) | Thick steel plate excellent in toughness of weld heat affected zone and method for producing the same | |
JP5857693B2 (en) | Steel plate for large heat input and manufacturing method thereof | |
JP2005002476A (en) | Weld joint | |
TWI551387B (en) | Large heat into the welding steel | |
JP2013053368A (en) | Steel product for high heat input welding | |
KR20240141190A (en) | Steel plate for high heat input welding and its manufacturing method | |
JP2013036102A (en) | Steel material for heavy heat input welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120423 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140217 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5493557 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |