JP2011032269A - Treating or prophylactic agent of inflammatory bowel disease - Google Patents

Treating or prophylactic agent of inflammatory bowel disease Download PDF

Info

Publication number
JP2011032269A
JP2011032269A JP2010157491A JP2010157491A JP2011032269A JP 2011032269 A JP2011032269 A JP 2011032269A JP 2010157491 A JP2010157491 A JP 2010157491A JP 2010157491 A JP2010157491 A JP 2010157491A JP 2011032269 A JP2011032269 A JP 2011032269A
Authority
JP
Japan
Prior art keywords
oligonucleotide
derivative
decoy
prophylactic agent
therapeutic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010157491A
Other languages
Japanese (ja)
Other versions
JP5730508B2 (en
Inventor
Hiroshi Makino
寛史 牧野
Kazunari Ozaki
和成 尾崎
Ryuichi Morishita
竜一 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anges Inc
Original Assignee
Anges MG Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anges MG Inc filed Critical Anges MG Inc
Priority to JP2010157491A priority Critical patent/JP5730508B2/en
Publication of JP2011032269A publication Critical patent/JP2011032269A/en
Application granted granted Critical
Publication of JP5730508B2 publication Critical patent/JP5730508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new prophylactic or treating agent of inflammatory bowel diseases including a decoy oligonucleotide as an effective component, and efficacious even by intravenous administration. <P>SOLUTION: A hairpin type double-stranded oligonucleotide having a structure, in which an oligonucleotide having a specific base sequence and its complementary strand are linked together through a specific linker, exerts NF-κB binding affinity higher than that of heretofore known NF-κB decoy. The oligonucleotide having the specific structure, among such oligonucleotides, can prominently suppress inflammation in bowel tissue even by intravenous administration in a naked form, without necessitating special delivery technique such as virus envelope vector. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、炎症性腸疾患の治療又は予防剤に関する。   The present invention relates to an agent for treating or preventing inflammatory bowel disease.

NF-κB(nuclear factor kappa B)は、サイトカインや接着因子等、免疫反応に関する遺伝子の発現を調節する役割を持つ一群の転写因子の総称であり、NF-κBがゲノム遺伝子上の結合部位に結合すると、免疫反応に関する遺伝子が過剰に発現する。このため、NF-κBは、免疫反応が原因となるアトピー性皮膚炎や関節リウマチ等のアレルギー性疾患、自己免疫疾患、さらには心筋梗塞等の虚血性疾患や動脈硬化等の各種疾患に関与することが知られている。   NF-κB (nuclear factor kappa B) is a collective term for a group of transcription factors that regulate the expression of genes related to immune responses, such as cytokines and adhesion factors, and NF-κB binds to the binding site on the genomic gene. Then, genes related to immune responses are overexpressed. For this reason, NF-κB is involved in allergic diseases such as atopic dermatitis and rheumatoid arthritis caused by immune reactions, autoimmune diseases, ischemic diseases such as myocardial infarction, and various diseases such as arteriosclerosis. It is known.

NF-κBが関与する疾患の一つに炎症性腸疾患がある。炎症性腸疾患とは、潰瘍性大腸炎とクローン病を二大疾患とする慢性疾患であり、長期に下痢、血便が続く原因不明の難病である。通常の食中毒などと異なり、数日でよくなることはなく、長期にわたり(多くは一生涯)軽快と悪化を繰り返しながら症状が続く。命を落とすことはないが、生活が大きく病気のために犠牲になるのがこの病気の特徴であり、特に若い患者で深刻である。日本での患者数は10万人を超え、なお増加傾向にある。食生活の欧米化や自己免疫などとの関係が検討されているが、いまだに原因究明には至っていない。そのため根治が難しく、早期の緩解導入および長期の緩解維持を目的とした治療が中心となる。   One of the diseases involving NF-κB is inflammatory bowel disease. Inflammatory bowel disease is a chronic disease in which ulcerative colitis and Crohn's disease are the two major diseases, and is an intractable disease whose cause is unknown due to long-term diarrhea and bloody stool. Unlike normal food poisoning etc., it does not improve in a few days, and symptoms continue with remission and deterioration over a long period of time (many lifetimes). Although it does not kill lives, it is a characteristic of this disease that life is greatly sacrificed for the disease, especially in young patients. The number of patients in Japan exceeds 100,000 and is still increasing. The relationship with Western diet and autoimmunity has been studied, but the cause has not yet been investigated. For this reason, radical cure is difficult, and treatment is aimed at early remission introduction and long-term remission maintenance.

一方、転写因子に対するデコイを投与することにより、対象となる転写因子の活性を低下させ、該転写因子に起因して起きる疾患の治療や予防を行なうことが知られている。デコイ(decoy)とは、英語で「おとり」の意味であり、ある物質が本来結合あるいは作用すべきものと似せた構造を有するものをデコイと呼んでいる。転写因子のデコイとしては、主として転写因子のゲノム遺伝子上の結合領域と同じ塩基配列を有する二本鎖オリゴヌクレオチドが用いられている(特許文献1〜3)。このようなオリゴヌクレオチドから成るデコイの共存下では、転写因子の分子のうちの一部は、本来結合すべきゲノム遺伝子上の結合領域に結合せずに、デコイオリゴヌクレオチドに結合する。このため、本来結合すべきゲノム遺伝子上の結合領域に結合する転写因子の分子数が減少し、その結果、転写因子の活性が低下することになる。この場合、オリゴヌクレオチドは、本物のゲノム遺伝子上の結合領域の偽物(おとり)として機能して転写因子を結合するため、デコイと呼ばれる。NF-κBに対するデコイオリゴヌクレオチドも種々知られており、それらの薬理効果も種々知られている(特許文献4〜12)。   On the other hand, it is known to administer a decoy for a transcription factor to reduce the activity of the transcription factor to be treated and to treat or prevent a disease caused by the transcription factor. Decoy means “decoy” in English, and a substance having a structure resembling that which a substance should originally bind to or act on is called decoy. As a decoy of a transcription factor, a double-stranded oligonucleotide having the same base sequence as the binding region on the transcription factor genomic gene is mainly used (Patent Documents 1 to 3). In the coexistence of such an oligonucleotide decoy, a part of the transcription factor molecule binds to the decoy oligonucleotide without binding to the binding region on the genome gene to be originally bound. For this reason, the number of molecules of the transcription factor that binds to the binding region on the genomic gene to be originally bound decreases, and as a result, the activity of the transcription factor decreases. In this case, the oligonucleotide is called a decoy because it functions as a fake (bait) of the binding region on the real genomic gene and binds a transcription factor. Various decoy oligonucleotides for NF-κB are also known, and their pharmacological effects are also known (Patent Documents 4 to 12).

デコイオリゴヌクレオチドの医薬用途のうち、炎症性腸疾患(IBD)用途に関する報告としては、次のようなものがある。非特許文献11には、デキストラン硫酸ナトリウム投与により作成したマウスIBDモデルに、ウイルスエンベロープを用いず、二本鎖NF-κBデコイを結腸内(intracolonic)投与した効果が開示されている。非特許文献12には、マウスIBDモデルにNF-κB (p65)アンチセンスを結腸内投与した効果が開示されている。特許文献17には、2,4,6-Trinitrobenzene sulphonic acid (TNBS)で惹起したマウス大腸炎(colitis)モデルに、HVJ-Eエンベロープベクターに封入した二本鎖NF-κBデコイを、直腸内(intrarectal)または腹腔内投与した効果が開示されている。しかしながら、これらの文献には二本鎖デコイ以外のデコイに関する記載や示唆はない。また、いずれも結腸内投与や直腸内投与等の投与経路で投与されており、静脈内投与で効果を奏するとの記載や示唆もない。炎症性腸疾患は一度回復しても長期に亘り再発を繰り返す疾患であり、その都度患部に局部投与するのでは患者に対する負担が大き過ぎる。従って、炎症性腸疾患の治療に関しては静脈内投与可能な医薬が強く望まれている。   Among the medical uses of decoy oligonucleotides, the following are reports on the use of inflammatory bowel disease (IBD). Non-Patent Document 11 discloses the effect of intra-colonic administration of a double-chain NF-κB decoy without using a viral envelope in a mouse IBD model created by dextran sulfate sodium administration. Non-Patent Document 12 discloses the effect of intra-colonizing NF-κB (p65) antisense in a mouse IBD model. Patent Document 17 discloses that a mouse colitis model induced by 2,4,6-Trinitrobenzene sulphonic acid (TNBS) is mixed with a double-stranded NF-κB decoy encapsulated in an HVJ-E envelope vector in the rectum ( the effects of intrarectal) or intraperitoneal administration are disclosed. However, these documents do not describe or suggest decoys other than double-stranded decoys. Moreover, all are administered by administration routes, such as intracolonic and rectal administration, and there is no description or suggestion that they are effective when administered intravenously. Inflammatory bowel disease is a disease that repeats recurrence for a long time even if it recovers once, and it is too heavy for the patient to administer locally to the affected area each time. Therefore, a drug that can be administered intravenously is strongly desired for the treatment of inflammatory bowel disease.

特再表96/035430号公報No. 96/035430 gazette 特許3392143号公報Japanese Patent No. 3392143 国際公開公報WO 95/11687号公報International Publication No. WO 95/11687 特開2005-160464号公報JP 2005-160464 A 国際公開公報WO 96/35430International Publication WO 96/35430 国際公開公報WO 02/066070International Publication WO 02/066070 国際公開公報WO 03/043663International Publication WO 03/043663 国際公開公報WO 03/082331International Publication WO 03/082331 国際公開公報WO 03/099339International Publication WO 03/099339 国際公開公報WO 04/026342International Publication WO 04/026342 国際公開公報WO 05/004913International Publication WO 05/004913 国際公開公報WO 05/004914International Publication WO 05/004914 特表平08−501928号公報Japanese Translation of National Publication No. 08-501928 国際公開公報WO 93/06122International Publication WO 93/06122 米国特許第5,495,006号公報U.S. Patent No. 5,495,006 米国特許第5,556,752号公報U.S. Pat.No. 5,556,752 国際公開公報WO2006/122242International Publication WO2006 / 122242

Milliganら、J.Med.Chem.1993,36,1923Milligan et al. Med. Chem. 1993, 36, 1923 Marwick, C.,(1998) J. Am. Med. Assoc., 280, 871Marwick, C., (1998) J. Am. Med. Assoc., 280, 871 Stein & Cheng,Science 1993,261,1004Stein & Cheng, Science 1993, 261, 1004 Levinら、Biochem. Biophys. Acta, 1999, 1489, 69Levin et al., Biochem. Biophys. Acta, 1999, 1489, 69 Neish ASら、J. Exp. Med. 1992, Vol. 176, 1583-1593.Neish AS et al., J. Exp. Med. 1992, Vol. 176, 1583-1593. Leung Kら、Nature. 1988 Jun 23;333(6175):776-778.Leung K et al., Nature. 1988 Jun 23; 333 (6175): 776-778. Marina A.ら、The Journal of Biological Chemistry, 1995, Vol.270, Number 6, pp. 2620-2627Marina A. et al., The Journal of Biological Chemistry, 1995, Vol.270, Number 6, pp. 2620-2627 M. Durandら、Nucleic Acids Res., 1990,18(21),6353-6359M. Durand et al., Nucleic Acids Res., 1990, 18 (21), 6353-6359 P.E. VOROBJEVら、Biopolymers. 1993 Dec;33(12):1765-77P.E.VOROBJEV et al., Biopolymers. 1993 Dec; 33 (12): 1765-77 Squire Rumney, IVら、J.Am.Chem.Soc., 117(21),5635-5646,1995Squire Rumney, IV et al., J. Am. Chem. Soc., 117 (21), 5635-5646, 1995 Gut. 2007 Apr;56(4):524-33.Gut. 2007 Apr; 56 (4): 524-33. Clin Exp Immunol. 2000 Apr;120(1):51-8.Clin Exp Immunol. 2000 Apr; 120 (1): 51-8.

本発明の目的は、デコイオリゴヌクレオチドを有効成分とし、静脈内投与でも効果を奏する新規な炎症性腸疾患の予防又は治療剤を提供することである。   An object of the present invention is to provide a novel preventive or therapeutic agent for inflammatory bowel disease, which comprises a decoy oligonucleotide as an active ingredient and can be effective even by intravenous administration.

本願発明者らは、鋭意研究の結果、特定の塩基配列を有するオリゴヌクレオチドとその相補鎖とが特定のリンカーで結合された構造を有するヘアピン型の二本鎖オリゴヌクレオチドが、公知のNF-κBデコイよりも高いNF-κB結合親和性を発揮することを見出した。さらに、該オリゴヌクレオチドのうち、特定の構造を有するオリゴヌクレオチドが、ウイルスエンベロープベクター等の特別なデリバリー技術を必要とせず、ネイキッド形態で静脈内投与しても腸管組織炎症を顕著に抑制できることを見出し、本発明を完成した。   As a result of earnest research, the inventors of the present application have found that a hairpin type double-stranded oligonucleotide having a structure in which an oligonucleotide having a specific base sequence and its complementary strand are bound by a specific linker is a known NF-κB. It has been found that it exhibits higher NF-κB binding affinity than decoy. Furthermore, among the oligonucleotides, it has been found that oligonucleotides having a specific structure can remarkably suppress intestinal tissue inflammation even when intravenously administered in naked form without the need for special delivery techniques such as viral envelope vectors. The present invention has been completed.

すなわち、本発明は、一般式(I)で表されるオリゴヌクレオチド誘導体を有効成分として含有する炎症性腸疾患の治療又は予防剤を提供する。
5'-aggggatttcccc-(CH2CH2O)n-ggggaaatcccct-3' (I)
(ただし、ヌクレオチド間の結合及びヌクレオチドとエチレングリコール単位との間の結合のうちの少なくとも一部が耐ヌクレアーゼ修飾されていてよい。nは4ないし8の整数を表す。)
That is, the present invention provides a therapeutic or preventive agent for inflammatory bowel disease comprising an oligonucleotide derivative represented by the general formula (I) as an active ingredient.
5'-aggggatttcccc- (CH 2 CH 2 O) n -ggggaaatcccct-3 '(I)
(However, at least a part of the bond between nucleotides and the bond between nucleotides and ethylene glycol units may be nuclease-resistant modified. N represents an integer of 4 to 8.)

本発明により、NF-κBに対する結合親和性が高いオリゴヌクレオチド誘導体を有効成分とする新規な炎症性腸疾患の治療又は予防剤が提供された。本発明の治療又は予防剤は、静脈内投与でも顕著に症状を改善することができる。炎症性腸疾患は一度回復しても長期に亘り再発を繰り返す疾患であり、その都度患部に局部投与するのでは患者に対する負担が大き過ぎる。本発明の治療又は予防剤によれば、静脈内投与という簡便な投与経路で治療及び予防効果を発揮することができるため、患者の負担を軽減できる。また、本発明の治療又は予防剤は、ウイルスエンベロープ等の特別なデリバリー技術を必要とせず、ベクターを用いないネイキッドの形態でオリゴヌクレオチド誘導体を投与することができる。そのため製剤工程も簡略であり、製造コストも低減できる。   According to the present invention, a novel therapeutic or preventive agent for inflammatory bowel disease comprising an oligonucleotide derivative having a high binding affinity for NF-κB as an active ingredient has been provided. The therapeutic or prophylactic agent of the present invention can remarkably improve symptoms even when administered intravenously. Inflammatory bowel disease is a disease that repeats recurrence for a long time even if it recovers once, and it is too heavy for the patient to administer locally to the affected area each time. According to the therapeutic or prophylactic agent of the present invention, since a therapeutic and prophylactic effect can be exhibited by a simple administration route called intravenous administration, the burden on the patient can be reduced. Moreover, the therapeutic or prophylactic agent of the present invention does not require a special delivery technique such as a viral envelope, and can administer the oligonucleotide derivative in a naked form without using a vector. Therefore, the preparation process is simple and the manufacturing cost can be reduced.

本発明において有効成分として用いるオリゴヌクレオチド誘導体は、上記一般式(I)で表わされるように、5'-aggggatttcccc-3'(配列番号1)と5'-ggggaaatcccct-3'(配列番号2)がエチレングリコール単位の繰返しから成るリンカー(CH2CH2O)n(nは4〜8の整数)で連結された構造を有する。5'側のaggggatttccccと3'側のggggaaatcccctは互いに相補的であり、リンカーをループ部として二つ折りにした際に二本鎖を形成する。具体的には、下記式(II)に示されるような構造をとる(Lはリンカー(CH2CH2O)nを示す)。なお、このようにリンカーを介して末端が連結された2個の相補的オリゴヌクレオチドが二本鎖を形成している構造を、本明細書において便宜的に「ヘアピン型」と呼ぶことがある。該オリゴヌクレオチド誘導体がヘアピン型構造をとる(すなわち、オリゴヌクレオチド部分が二本鎖になる)ことは、下記実施例に具体的に示される融解温度やNF-κBとの結合活性から明らかである。 The oligonucleotide derivative used as an active ingredient in the present invention includes 5′-aggggatttcccc-3 ′ (SEQ ID NO: 1) and 5′-ggggaaatcccct-3 ′ (SEQ ID NO: 2) as represented by the general formula (I). It has a structure connected by a linker (CH 2 CH 2 O) n (n is an integer of 4 to 8) consisting of repeating ethylene glycol units. The 5'-side aggggatttcccc and the 3'-side ggggaaatcccct are complementary to each other, and form a double strand when the linker is folded in half as a loop part. Specifically, it has a structure represented by the following formula (II) (L represents a linker (CH 2 CH 2 O) n ). A structure in which two complementary oligonucleotides whose ends are linked via a linker in this way forms a double strand may be referred to as a “hairpin type” in this specification for convenience. It is clear from the melting temperature and the binding activity to NF-κB that are specifically shown in the following examples that the oligonucleotide derivative has a hairpin structure (that is, the oligonucleotide part becomes a double strand).

Figure 2011032269
Figure 2011032269

リンカー(CH2CH2O)nとしては、n=6のものが特に好ましい。 The linker (CH 2 CH 2 O) n is particularly preferably n = 6.

本発明で用いられるオリゴヌクレオチドにおいては、適切な生化学的安定性を与える目的で、ヌクレオチド間結合のすべてあるいは一部にホスホロチオエート化等の耐ヌクレアーゼ修飾を施してもよい。すなわち、該オリゴヌクレオチド誘導体中のオリゴヌクレオチド部分は、基本的にDNAであることが好ましいが、隣接する少なくとも2個のヌクレオチド間の結合(及び/又はリンカー部に隣接するヌクレオチドでは、該ヌクレオチドとリンカー部の間)を、耐ヌクレアーゼ修飾してヌクレアーゼに対する耐性を増大させてもよい。ここで、「耐ヌクレアーゼ修飾」とは、ヌクレアーゼによる分解を天然のDNAよりも受けにくくする修飾のことを意味し、このようなDNAの修飾自体は周知である。耐ヌクレアーゼ修飾の例としては、ホスホロチオエート化(本明細書において「S化」と呼ぶことがある)、ホスホロジチオエート化、ホスホロアミデート化等を挙げることができる。これらのうち、S化が好ましい。S化は、上記の通り、隣接するヌクレオチド間のリン酸ジエステル結合を構成するリン原子に結合している2個の非架橋酸素原子のうちの1個をイオウ原子に変換することを意味する。任意の隣接するヌクレオチド間の結合をS化する手法自体は周知であり、例えば、非特許文献7に記載された方法により行なうことができ、S化オリゴヌクレオチドは商業的にも合成されている。なお、本明細書及び特許請求の範囲において、単なる塩基配列は、そうでないことが文脈上明らかな場合を除き、ヌクレオチド間の結合及びリンカー部とヌクレオチド間の結合の一部又は全部がS化されているものも、全くS化されていないものをも包含する。ただし、1つの配列でS化の部位が明記されている場合には、S化が記載されていない部位はS化されていない。   In the oligonucleotide used in the present invention, nuclease resistance modification such as phosphorothioation may be applied to all or part of the internucleotide linkage for the purpose of providing appropriate biochemical stability. That is, it is preferable that the oligonucleotide part in the oligonucleotide derivative is basically DNA, but the bond between at least two adjacent nucleotides (and / or the nucleotide adjacent to the linker part, the nucleotide and the linker). May be modified with nuclease resistance to increase nuclease resistance. Here, “nuclease resistance modification” means a modification that makes degradation by nuclease more difficult than natural DNA, and such modification of DNA itself is well known. Examples of the nuclease resistance modification include phosphorothioation (sometimes referred to herein as “Sation”), phosphorodithioation, phosphoramidateation, and the like. Of these, S is preferred. As described above, conversion to S means that one of two non-bridging oxygen atoms bonded to a phosphorus atom constituting a phosphodiester bond between adjacent nucleotides is converted to a sulfur atom. The technique of converting the bond between any adjacent nucleotides to S is well known, and can be carried out, for example, by the method described in Non-Patent Document 7, and the S-modified oligonucleotide is also synthesized commercially. In the present specification and claims, a simple base sequence is S-modified in part or all of the bond between nucleotides and the bond between the linker part and the nucleotide unless the context clearly indicates otherwise. And those that are not S at all. However, when the S site is clearly described in one sequence, the site where S site is not described is not S site.

(I)の中でも、ヌクレオチド間の結合及びヌクレオチドとエチレングリコール単位との間の結合のうち少なくとも一部、好ましくは12箇所程度以上、より好ましくは15箇所程度がS化されているものが好ましい。そのような好ましい誘導体の具体例としては、以下の(a)〜(h)を挙げることができる。これらのうちでも特に(c)が好ましい。(c)のオリゴヌクレオチドは、下記実施例において誘導体5として調製されたものである。
(a) 5'-agsggsgasttstcsccsc-(CH2CH2O)6-ggsggsaasatsccsccst-3'
(b) 5'-agsggsgasttstcsccscs-(CH2CH2O)6-sggsggsaasatsccsccst-3'
(c) 5'-agsgsggsasttstsccscsc-(CH2CH2O)6-gggsgsaasastcscsccst-3'
(d) 5'-agsgsgsgastststcscscsc-(CH2CH2O)6-gggsgsasaastscsccscst-3'
(e) 5'-agsgsgsgastststcscscscs-(CH2CH2O)6-sgggsgsasaastscsccscst-3'
(f) 5'-asgsgsgsgsastststscscscsc-(CH2CH2O)6-gsgsgsgsasasastscscscscst-3'
(g) 5'-asgsgsgsgsastststscscscscs-(CH2CH2O)6-sgsgsgsgsasasastscscscscst-3'
(h) 5'-agsgsggsasttstsccscscs-(CH2CH2O)6-sgggsgsaasastcscsccst-3'
((a)〜(h)中、添え字sは、sの両隣のヌクレオチド同士又はsの両隣のヌクレオチドとエチレングリコール単位がホスホロチオエート結合していることを示す)。
Among (I), at least a part of the bond between nucleotides and the bond between nucleotides and ethylene glycol units, preferably about 12 or more, more preferably about 15 are S-modified. Specific examples of such preferable derivatives include the following (a) to (h). Among these, (c) is particularly preferable. The oligonucleotide (c) was prepared as derivative 5 in the following examples.
(a) 5'-ag s gg s ga s tt s tc s cc s c- (CH 2 CH 2 O) 6 -gg s gg s aa s at s cc s cc s t-3 '
(b) 5'-ag s gg s ga s tt s tc s cc s c s- (CH 2 CH 2 O) 6 - s gg s gg s aa s at s cc s cc s t-3 '
(c) 5'-ag s g s gg s a s tt s t s cc s c s c- (CH 2 CH 2 O) 6 -ggg s g s aa s a s tc s c s cc s t-3 '
(d) 5'-ag s g s g s ga s t s t s tc s c s c s c- (CH 2 CH 2 O) 6 -ggg s g s a s aa s t s c s cc s c s t-3 '
(e) 5'-ag s g s g s ga s t s t s tc s c s c s c s- (CH 2 CH 2 O) 6 - s ggg s g s a s aa s t s c s cc s c s t-3 '
(f) 5'-a s g s g s g s g s a s t s t s t s c s c s c s c- (CH 2 CH 2 O) 6 -g s g s g s g s a s a s a s t s c s c s c s c s t-3 '
(g) 5'-a s g s g s g s g s a s t s t s t s c s c s c s c s- (CH 2 CH 2 O) 6 - s g s g s g s g s a s a s a s t s c s c s c s c s t-3 '
(h) 5'-ag s g s gg s a s tt s t s cc s c s c s- (CH 2 CH 2 O) 6 - s ggg s g s aa s a s tc s c s cc s t -3 '
(In (a) to (h), the subscript s indicates that the nucleotides on both sides of s or the nucleotides on both sides of s and the ethylene glycol unit are linked by phosphorothioate).

本発明で用いられるオリゴヌクレオチド誘導体は、先ず、その5'末端にリンカーが結合される方の一本鎖オリゴヌクレオチド(すなわちggggaaatcccct)を常法により合成し、その5'末端にリンカーを結合し、さらに、リンカーの他端に5'-aggggatttcccc-3'が連結されるように、リンカーの他端にシトシンの3'位を結合し、さらにこのシトシンに続けて常法により所定のオリゴヌクレオチドを5'側に1個ずつ結合させていくことにより合成することができる。本発明で規定されるこのようなリンカー自体は公知であり、このようなリンカーで相補的なオリゴヌクレオチドの末端同士を連結し、オリゴヌクレオチド部分を二本鎖オリゴヌクレオチドとすることも公知である(非特許文献8、非特許文献9、非特許文献10、特許文献14、特許文献15)。また、ヘアピン型の二本鎖オリゴヌクレオチドを調製するための、エチレングリコール単位の繰返しから成るリンカーを導入するための試薬(リンカーの誘導体)が市販されているので、これらの市販のリンカー試薬を用い、その指示書に従って容易にヘアピン型の二本鎖オリゴヌクレオチドを調製することができる。下記実施例にも調製方法の1例が具体的に記載されている。   The oligonucleotide derivative used in the present invention first synthesizes a single-stranded oligonucleotide (that is, ggggaaatcccct) whose linker is bound to its 5 ′ end by a conventional method, and a linker is bound to its 5 ′ end, Furthermore, the 3′-position of cytosine is linked to the other end of the linker so that 5′-aggggatttcccc-3 ′ is linked to the other end of the linker, and a predetermined oligonucleotide 5 It can be synthesized by connecting them one by one. Such linkers as defined in the present invention are known per se, and it is also known that the ends of complementary oligonucleotides are linked with such linkers to make the oligonucleotide part a double-stranded oligonucleotide ( Non-patent document 8, Non-patent document 9, Non-patent document 10, Patent document 14, Patent document 15). In addition, since a reagent (linker derivative) for introducing a linker composed of repeating ethylene glycol units for preparing a hairpin type double-stranded oligonucleotide is commercially available, these commercially available linker reagents are used. According to the instructions, a hairpin type double-stranded oligonucleotide can be easily prepared. One example of the preparation method is also specifically described in the following examples.

ヘアピン型二本鎖オリゴヌクレオチドを調製するために利用できる、本発明で規定されるエチレングリコール単位の繰返しから成るリンカーを導入するための試薬として市販されているものとして、以下のものを挙げることができる。   Examples of commercially available reagents for introducing a linker consisting of repeating ethylene glycol units as defined in the present invention that can be used to prepare hairpin double-stranded oligonucleotides include the following: it can.

(1) 18-O-ジメトキシトリチルヘキサエチレングリコール,1-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイト{18-O-Dimethoxytritylhexaethyleneglycol,1-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite}
(商品名:Spacer Phosphoramidite 18、米国Glen Research社)
(エチレングリコール単位6個から成るリンカー部を結合)
(2) 9-O-ジメトキシトリチルトリエチレングリコール,1-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイト
{9-O-Dimethoxytrityl-triethylene glycol,1-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite}
(商品名:Spacer Phosphoramidite 9、米国Glen Research社)
(エチレングリコール単位3個から成るリンカー部を結合)
(3) 12-O-ジメトキシトリチルテトラエチレングリコール,1-[(2-シアノエチル)-(N,N-ジイソプロピル)]ホスホロアミダイト
12-O-Dimethoxytrityl-tetraethyleneglycol,1-[(2-cyanoethyl)-(N,N-diisopropyl)]phosphoramidite
(商品名:Spacer 12、米国ChemGenes社)
(エチレングリコール単位4個から成るリンカー部を結合)
(1) 18-O-Dimethoxytritylhexaethyleneglycol, 1-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoramidite {18-O-Dimethoxytritylhexaethyleneglycol, 1-[(2-cyanoethyl)- (N, N-diisopropyl)]-phosphoramidite}
(Product name: Spacer Phosphoramidite 18, Glen Research, USA)
(Links a linker part consisting of 6 ethylene glycol units)
(2) 9-O-dimethoxytrityltriethylene glycol, 1-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoramidite
{9-O-Dimethoxytrityl-triethylene glycol, 1-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoramidite}
(Product name: Spacer Phosphoramidite 9, Glen Research, USA)
(Links a linker part consisting of 3 ethylene glycol units)
(3) 12-O-dimethoxytrityltetraethylene glycol, 1-[(2-cyanoethyl)-(N, N-diisopropyl)] phosphoramidite
12-O-Dimethoxytrityl-tetraethyleneglycol, 1-[(2-cyanoethyl)-(N, N-diisopropyl)] phosphoramidite
(Product name: Spacer 12, USA ChemGenes)
(Linker unit consisting of 4 ethylene glycol units is connected)

本発明の治療又は予防剤が対象とする疾患は炎症性腸疾患であり、具体例を挙げると潰瘍性大腸炎及びクローン病が包含される。炎症性腸疾患の治療及び予防には、NF-κBデコイが有効成分として用いられる医薬が有効であることがこの分野において認められている。従って、高いNF-κB転写因子結合阻害活性を有する上記ヘアピン型構造のオリゴヌクレオチド誘導体は、いずれも炎症性腸疾患の治療及び予防に有効である。本発明の有効成分であるオリゴヌクレオチド誘導体は、5'側の配列中のggatttccがNF-κBのコンセンサス配列になっているため、NF-κBデコイとして機能するものである。これらの誘導体が、ヘアピン型構造を有しない公知のNF-κBデコイ(下記比較例1)よりもNF-κB阻害作用が高く、約20〜500倍のポテンシャルを有することは、下記実施例に具体的に示される通りである。   The disease targeted by the therapeutic or prophylactic agent of the present invention is inflammatory bowel disease, and specific examples include ulcerative colitis and Crohn's disease. It is recognized in this field that a medicine using NF-κB decoy as an active ingredient is effective for the treatment and prevention of inflammatory bowel disease. Therefore, any of the above hairpin type oligonucleotide derivatives having high NF-κB transcription factor binding inhibitory activity is effective in the treatment and prevention of inflammatory bowel disease. The oligonucleotide derivative which is an active ingredient of the present invention functions as an NF-κB decoy because ggattttcc in the 5′-side sequence is a consensus sequence of NF-κB. The following examples show that these derivatives have a higher NF-κB inhibitory action and a potential of about 20 to 500 times that of known NF-κB decoys that do not have a hairpin structure (Comparative Example 1 below). As shown.

投与経路は、特に限定されないが、静脈内投与、筋肉内投与、皮下投与、経皮投与、対象臓器ないしは組織への直接投与等の非経口投与が好ましい。特に、本発明の治療又は予防剤は、静脈内投与においてもマウス腸炎モデルの腸管組織炎症を有意に抑制できる。また、投与の際には、ウイルスエンベロープ等の特別なデリバリー技術を必要としない。すなわち、上記オリゴヌクレオチド誘導体は、ベクターに組み込むことなくネイキッド形態で製剤して投与することができる。製剤は、常法により行なうことができ、例えば、注射剤の場合には、生理食塩水中に本発明のオリゴヌクレオチドをネイキッドのまま溶解した溶液の形態とすることができる。製剤中には、保存剤、緩衝剤、溶解補助剤、乳化剤、希釈剤、等張化剤などの、製剤分野で常用される添加剤が適宜混合されていてもよい。また、他の薬効成分を含んでいてもよい。   The route of administration is not particularly limited, but parenteral administration such as intravenous administration, intramuscular administration, subcutaneous administration, transdermal administration, direct administration to the target organ or tissue is preferred. In particular, the therapeutic or prophylactic agent of the present invention can significantly suppress intestinal tissue inflammation in a mouse enteritis model even when administered intravenously. In addition, no special delivery technology such as a viral envelope is required for administration. That is, the oligonucleotide derivative can be formulated and administered in naked form without being incorporated into a vector. The preparation can be performed by a conventional method. For example, in the case of an injection, it can be in the form of a solution in which the oligonucleotide of the present invention is dissolved in physiological saline. In the preparation, additives commonly used in the field of preparation, such as preservatives, buffers, solubilizers, emulsifiers, diluents, and isotonic agents, may be appropriately mixed. Moreover, the other medicinal component may be included.

投与量は、患者の症状、投与経路等により適宜設定されるが、通常、成人1日当たり2.5 mg/kg体重以上、より好ましくは5.0 mg/kg体重以上を投与することができる。投与量の上限は特に限定されないが、通常10.0 g/kg体重程度である。   The dose is appropriately set according to the patient's symptoms, administration route, etc., but usually 2.5 mg / kg body weight or more per day for an adult, more preferably 5.0 mg / kg body weight or more can be administered. The upper limit of the dose is not particularly limited, but is usually about 10.0 g / kg body weight.

下記実施例に具体的に示されるように、本発明の有効成分であるオリゴヌクレオチド誘導体は、公知のNF-κBデコイよりもNF-κBに対する結合親和性が一層高いので、従来のNF-κBデコイを有効成分として含有する炎症性腸疾患の治療又は予防剤よりも優れた薬効を発揮する。特に、公知のNF-κBデコイよりも小さい分子構造を有し、より高い結合活性を有するので、投与量が少なくて済み、製造コストも低くなる。また、下記実施例に具体的に記載されるように、本発明の有効成分であるオリゴヌクレオチド誘導体は、公知のNF-κBデコイよりも細胞毒性が低い。さらに、該オリゴヌクレオチド誘導体は、二本鎖オリゴヌクレオチドの末端同士がリンカーにより結合されたヘアピン型の構造をとるため、融解温度が通常の二本鎖オリゴヌクレオチドよりも遥かに高く、製剤工程、保存時及び生体内における安定性が高い。これらの特長に加え、本発明にかかるオリゴヌクレオチド誘導体は優れた耐ヌクレアーゼ特性も合わせ持つため、静脈注射等の全身投与によってもその効果を発揮することができる。   As specifically shown in the Examples below, the oligonucleotide derivative that is the active ingredient of the present invention has a higher binding affinity for NF-κB than the known NF-κB decoy, and therefore, the conventional NF-κB decoy It exhibits a medicinal effect superior to the therapeutic or prophylactic agent for inflammatory bowel disease containing as an active ingredient. In particular, it has a smaller molecular structure than the known NF-κB decoy and has a higher binding activity, so that a small dose is required and the production cost is low. Moreover, as specifically described in the following Examples, the oligonucleotide derivative which is an active ingredient of the present invention has lower cytotoxicity than the known NF-κB decoy. Furthermore, since the oligonucleotide derivative has a hairpin type structure in which the ends of double-stranded oligonucleotides are linked by a linker, the melting temperature is much higher than that of ordinary double-stranded oligonucleotides. High stability in time and in vivo. In addition to these features, the oligonucleotide derivative according to the present invention also has excellent nuclease resistance, so that the effect can be exerted even by systemic administration such as intravenous injection.

以下、本発明を実施例、比較例及び参考例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。各例の説明に先立ち、各特性の測定方法及び評価方法について説明する。   Hereinafter, the present invention will be described more specifically based on examples, comparative examples, and reference examples. However, the present invention is not limited to the following examples. Prior to the description of each example, a measurement method and an evaluation method for each characteristic will be described.

1.融解温度(Tm値)測定試験(デコイの二本鎖としての安定性を測定)
Tm解析システム(UV-1650PC/TMSPC-8:SHIMADZU社製)を使用して、PBS溶液中における各デコイの吸光度を1℃〜99℃の範囲で、複数回測定し、各温度における二本鎖の解離をモニターした。温度−吸光度曲線から、微分法で各Tm値(℃)を算出した。
1. Melting temperature (Tm value) measurement test (measures decoy stability as a double strand)
Using a Tm analysis system (UV-1650PC / TMSPC-8: manufactured by SHIMADZU), the absorbance of each decoy in PBS solution was measured multiple times in the range of 1 ° C to 99 ° C, and double-stranded at each temperature. The dissociation of was monitored. Each Tm value (° C.) was calculated from the temperature-absorbance curve by a differential method.

2.結合活性試験(マウス血漿に対するデコイの活性安定性を、無細胞系実験で測定)
各デコイ溶液にマウス血漿を添加し(核酸の終濃度10μmol/L、マウス血漿90%)、37℃で0〜24時間反応させた。反応後、市販の転写因子アッセイキット(TransAM(商品名)NF-κB p65:Cat.No.40096:Active Motif, Inc社)を用い、NF-κBコンセンサス配列が固相化されているプレートへ上記核酸反応液と、Jurkat 細胞(ヒトTリンパ腫由来)核抽出液を添加し反応(室温、1時間)させた。洗浄後、一次抗体(抗NF-κB p65抗体)と二次抗体(HRP-抗IgG抗体)をキット説明書に従って添加、洗浄し、化学発光法を用いて測定した。
2. Binding activity test (decoy activity stability against mouse plasma measured by cell-free experiment)
Mouse plasma was added to each decoy solution (final nucleic acid concentration 10 μmol / L, mouse plasma 90%), and reacted at 37 ° C. for 0-24 hours. After the reaction, using a commercially available transcription factor assay kit (TransAM (trade name) NF-κB p65: Cat. No. 40096: Active Motif, Inc), the above plate was placed on the plate on which the NF-κB consensus sequence was immobilized. Nucleic acid reaction solution and Jurkat cell (human T lymphoma derived) nuclear extract were added and reacted (room temperature, 1 hour). After washing, a primary antibody (anti-NF-κB p65 antibody) and a secondary antibody (HRP-anti-IgG antibody) were added according to the kit instructions, washed, and measured using a chemiluminescence method.

評価方法
各デコイ溶液の濃度値を対数に変換し、横軸を対数に変換した濃度値(0.005〜167nmol/Lの濃度内で5〜10点)、縦軸に各群のパーセンテージ値をプロットし、近似曲線を作成し、各反応時間におけるIC50(inhibition concentration 50%)を算出した。
Evaluation method The concentration value of each decoy solution is converted to logarithm, the horizontal axis is converted to logarithm (5 to 10 points within the concentration of 0.005 to 167 nmol / L), and the vertical value is plotted as the percentage value of each group. Then, an approximate curve was prepared, and IC 50 (inhibition concentration 50%) at each reaction time was calculated.

3.変性ポリアクリルアミドゲル電気泳動試験(マウス血漿に対するデコイの構造安定性を、ゲル電気泳動を用いて測定)
各デコイ溶液にマウス血漿を添加し(核酸の終濃度10μmol/L、マウス血漿90%)、37℃で0〜24時間反応させた。反応後、20%非変性ポリアクリルアミドゲル電気泳動で、100V、100分間分離した。2.5μg/mLエチジウムブロマイド水溶液で20分間染色した後、脱イオン水で15分間脱染色し、UVトランスイルミネーターで蛍光バンドとして可視化した。得られたゲルの画像を、画像解析装置(LAS-3000 UVmini:FUJI FILM社)で撮影すると共に、可視化された完全長のデコイ核酸化合物を装置付属のソウトウェアで定量した。
3. Denaturing polyacrylamide gel electrophoresis test (determining the structural stability of decoy against mouse plasma using gel electrophoresis)
Mouse plasma was added to each decoy solution (final nucleic acid concentration 10 μmol / L, mouse plasma 90%), and reacted at 37 ° C. for 0-24 hours. After the reaction, separation was performed at 100 V for 100 minutes by 20% non-denaturing polyacrylamide gel electrophoresis. After staining with 2.5 μg / mL ethidium bromide aqueous solution for 20 minutes, it was destained with deionized water for 15 minutes and visualized as a fluorescent band with a UV transilluminator. The obtained gel image was photographed with an image analyzer (LAS-3000 UVmini: FUJI FILM), and the visualized full-length decoy nucleic acid compound was quantified with software attached to the device.

4.細胞内結合活性試験(デコイのNF-κB転写因子結合阻害活性を細胞を用いた実験系で測定)
マウスマクロファージ由来RAW264.7細胞を播種(6ウェルプレート: 6.0〜9.0×105細胞/ウェル/2mL)し、37℃、5%CO2で24時間培養(10%FBS含有RPMI1640)した。各デコイ核酸(最終濃度は比較例1の二本鎖DNA:0.12〜4μmol/L、その他のデコイ:0.00012〜1.2μmol/L)を、DMRIE-C遺伝子導入用試薬(Invitrogen社)により細胞に導入した(4Hr、24Hrともに4時間導入)。24Hrの場合は4時間導入後に洗浄し、RPMI1640培養液で20時間培養した。その後細胞を洗浄し、LPS刺激(100ng/mL、1時間)を加えた。細胞洗浄の後、細胞の核抽出液を調製し、市販の転写因子アッセイキット(TransAM(商品名)NF-κB p65:Cat.No.40096:Active Motif, Inc社)を利用して、各核抽出サンプルにおける結合阻害活性を測定した。(上記結合活性試験参照)
4). Intracellular binding activity test (decoy NF-κB transcription factor binding inhibitory activity measured in an experimental system using cells)
Mouse macrophage-derived RAW264.7 cells were seeded (6 well plate: 6.0 to 9.0 × 10 5 cells / well / 2 mL) and cultured at 37 ° C. and 5% CO 2 for 24 hours (RPMI 1640 containing 10% FBS). Each decoy nucleic acid (final concentration: double-stranded DNA of Comparative Example 1: 0.12 to 4 μmol / L, other decoy: 0.00012 to 1.2 μmol / L) is introduced into the cells using a DMRIE-C gene introduction reagent (Invitrogen) (4 hours and 24 hours were introduced for 4 hours). In the case of 24Hr, it was washed after introduction for 4 hours and cultured in RPMI1640 culture solution for 20 hours. Cells were then washed and LPS stimulation (100 ng / mL, 1 hour) was applied. After cell washing, a nuclear extract of cells is prepared, and each nucleus is prepared using a commercially available transcription factor assay kit (TransAM (trade name) NF-κB p65: Cat. No. 40096: Active Motif, Inc). The binding inhibitory activity in the extracted sample was measured. (See the binding activity test above)

評価方法
演算はMicrosoft Excel 2002(商品名、Microsoft社)を使用した。平均値はExcelの関数AVERAGE、標準偏差(S.D.)は関数STDEVを用いて演算した。データは3例の平均値±標準偏差として表した。
Evaluation method The calculation used Microsoft Excel 2002 (trade name, Microsoft Corporation). The average value was calculated using the Excel function AVERAGE, and the standard deviation (SD) was calculated using the function STDEV. Data were expressed as the mean ± standard deviation of 3 cases.

5.細胞毒性試験
HeLa細胞をTrypsin-EDTA処置により一度剥離させ、播種(96well plate: 1.0×104 細胞/ウェル/50μL、10%FBS含有RPMI1640)した。次に、10%FBS MEM培地で調製した6,20,60および200μmol/Lの各デコイを50μLずつ添加し、37℃、5%CO2で24時間培養した後、WST-1法より生細胞のミトコンドリア代謝活性を指標に、細胞増殖を測った。
5). Cytotoxicity test
HeLa cells were detached once by Trypsin-EDTA treatment and seeded (96 well plate: 1.0 × 10 4 cells / well / 50 μL, RPMI1640 containing 10% FBS). Next, 50 μL of each 6, 20, 60 and 200 μmol / L decoy prepared in 10% FBS MEM medium was added, cultured at 37 ° C. and 5% CO 2 for 24 hours, and then live cells were measured by the WST-1 method. Cell proliferation was measured using mitochondrial metabolic activity as an index.

評価方法
横軸に各デコイの濃度値(3、10、30、100μmol/L)、縦軸に各濃度における無処置群の測定値を100%にした時のパーセンテージ値をプロットし、50%を挟む二点より LC50(半数致死濃度)を算出し、各群のLC50値と比較例1のLC50値との比を求めた。
Evaluation method Concentration values (3, 10, 30, 100 μmol / L) of each decoy are plotted on the horizontal axis, and the percentage value when the measured value of the untreated group at each concentration is 100% is plotted on the vertical axis. calculating the LC 50 from two points sandwiching (median lethal concentration) was determined the ratio between the 50 value LC of Comparative example 1 and LC 50 values of each group.

6.紫外吸光分析
NanoDrop ND-1000 Spectrophotometer (商品名、NanoDrop Technologies, LLC)を用い、各サンプルのUV(水)λmaxを測定した。
7.HPLC保持時間
各サンプルを下記条件の逆相イオン対HPLCにて分析し、保持時間を測定した。
装置:SHIMADZU prominence(商品名、島津製作所)
カラム:Waters Xbridge C18(商品名、日本ウォーターズ、2.5μm、4.6×75mm)
カラム温度:50℃
A液:5%アセトニトリル, 0.1Mトリエチルアミン酢酸緩衝液(pH7.0)
B液:90%アセトニトリル, 0.1Mトリエチルアミン酢酸緩衝液(pH7.0)
グラジエントB液濃度:0%-30%(30min)
流速:1mL/min
検出波長:260nm
6). UV absorption analysis
Using a NanoDrop ND-1000 Spectrophotometer (trade name, NanoDrop Technologies, LLC), the UV (water) λmax of each sample was measured.
7). HPLC retention time Each sample was analyzed by reversed-phase ion-pair HPLC under the following conditions, and the retention time was measured.
Device: SHIMADZU prominence (trade name, Shimadzu Corporation)
Column: Waters Xbridge C18 (trade name, Nihon Waters, 2.5μm, 4.6 x 75mm)
Column temperature: 50 ° C
Solution A: 5% acetonitrile, 0.1M triethylamine acetate buffer (pH 7.0)
Solution B: 90% acetonitrile, 0.1M triethylamine acetate buffer (pH 7.0)
Gradient B concentration: 0% -30% (30min)
Flow rate: 1mL / min
Detection wavelength: 260nm

実施例1 オリゴヌクレオチド誘導体の合成
以下の構造を有する30種類のオリゴヌクレオチド誘導体を後記方法並びに合成例に従って調製した。なお、下記誘導体1〜30のうち、誘導体1、3、5、8、10、12、13及び16が本発明の有効成分に該当する誘導体であり、その他はヘアピン型構造の安定性等を示すための参考例である。
(1) 5'-agsggsgasttstcsccsc-(CH2CH2O)6-ggsggsaasatsccsccst-3'(誘導体1)
(2) 5'-ggsggsaasatsccsccst-(CH2CH2O)6-agsggsgasttstcsccsc-3'(誘導体2)
(3) 5'-agsggsgasttstcsccscs-(CH2CH2O)6-sggsggsaasatsccsccst-3'(誘導体3)
(4) 5'-ggsggsaasatsccsccsts-(CH2CH2O)6-sagsggsgasttstcsccsc-3'(誘導体4)
(5) 5'-agsgsggsasttstsccscsc-(CH2CH2O)6-gggsgsaasastcscsccst-3'(誘導体5)
(6) 5'-gggsgsaasastcscsccst-(CH2CH2O)6-agsgsggsasttstsccscsc-3'(誘導体6)
(7) 5'-gggsgsaasastcscsccsts-(CH2CH2O)6-sagsgsggsasttstsccscsc-3'(誘導体7)
(8) 5'-agsgsgsgastststcscscsc-(CH2CH2O)6-gggsgsasaastscsccscst-3'(誘導体8)
(9) 5'-gggsgsasaastscsccscst-(CH2CH2O)6-agsgsgsgastststcscscsc-3'(誘導体9)
(10) 5'-agsgsgsgastststcscscscs-(CH2CH2O)6-sgggsgsasaastscsccscst-3'(誘導体10)
(11) 5'-gggsgsasaastscsccscsts-(CH2CH2O)6-sagsgsgsgastststcscscsc-3'(誘導体11)
(12) 5'-asgsgsgsgsastststscscscsc-(CH2CH2O)6-gsgsgsgsasasastscscscscst-3'(誘導体12)
(13) 5'-asgsgsgsgsastststscscscscs-(CH2CH2O)6-sgsgsgsgsasasastscscscscst-3'(誘導体13)
(14) 5'-gsgsgsgsasasastscscscscst-(CH2CH2O)6-asgsgsgsgsastststscscscsc-3'(誘導体14)
(15) 5'-gsgsgsgsasasastscscscscsts-(CH2CH2O)6-sasgsgsgsgsastststscscscsc-3'(誘導体15)
(16) 5'-agsgsggsasttstsccscscs-(CH2CH2O)6-sgggsgsaasastcscsccst-3' (誘導体16)
(17) 5'-gsggsgasttstcsccsc-(CH2CH2O)6-ggsggsaasatsccscc-3' (誘導体17)
(18) 5'-ggsggsaasatsccscc-(CH2CH2O)6-gsggsgasttstcsccsc-3' (誘導体18)
(19) 5'-gsggsgasttstcsccscs-(CH2CH2O)6-sggsggsaasatsccscc-3' (誘導体19)
(20) 5'-ggsggsaasatsccsccs-(CH2CH2O)6-sgsggsgasttstcsccsc-3' (誘導体20)
(21) 5'-gsgsggsasttstsccscsc-(CH2CH2O)6-gggsgsaasastcscscc-3' (誘導体21)
(22) 5'-ggsggsasttstsccscsc-(CH2CH2O)6-gggsgsaasastcscscsc-3' (誘導体22)
(23) 5'-gggsgsaasastcscscc-(CH2CH2O)6-gsgsggsasttstsccscsc-3' (誘導体23)
(24) 5'-gsgsggsasttstsccscscs-(CH2CH2O)6-sgggsgsaasastcscscc-3' (誘導体24)
(25) 5'-gggsgsaasastcscsccs-(CH2CH2O)6-sgsgsggsasttstsccscsc-3' (誘導体25)
(26) 5'-gsgsgsgastststcscscsc-(CH2CH2O)6-gggsgsasaastscsccsc-3' (誘導体26)
(27) 5'-gggsgsasaastscsccsc-(CH2CH2O)6-gsgsgsgastststcscscsc-3' (誘導体27)
(28) 5'-gsgsgsgastststcscscscs-(CH2CH2O)6-sgggsgsasaastscsccsc-3' (誘導体28)
(29) 5'-gggsgsasaastscsccscs-(CH2CH2O)6-sgsgsgsgastststcscscsc-3' (誘導体29)
(30) 5'-gsggsasttstsccsc-(CH2CH2O)6-ggsgsaasastcscsc-3' (誘導体30)
((1)〜(30)中、添え字sは、sの両隣のヌクレオチド同士又はsの両隣のヌクレオチドとエチレングリコール単位がホスホロチオエート結合していることを示す)。
Example 1 Synthesis of Oligonucleotide Derivatives Thirty kinds of oligonucleotide derivatives having the following structures were prepared according to the following method and synthesis examples. Of the following derivatives 1-30, derivatives 1, 3, 5, 8, 10, 12, 13 and 16 are derivatives corresponding to the active ingredients of the present invention, and the others show the stability of the hairpin structure, etc. This is a reference example.
(1) 5'-ag s gg s ga s tt s tc s cc s c- (CH 2 CH 2 O) 6 -gg s gg s aa s at s cc s cc s t-3 '(derivative 1)
(2) 5'-gg s gg s aa s at s cc s cc s t- (CH 2 CH 2 O) 6 -ag s gg s ga s tt s tc s cc s c-3 '(derivative 2)
(3) 5'-ag s gg s ga s tt s tc s cc s c s- (CH 2 CH 2 O) 6 - s gg s gg s aa s at s cc s cc s t-3 '(derivative 3 )
(4) 5'-gg s gg s aa s at s cc s cc s t s- (CH 2 CH 2 O) 6 - s ag s gg s ga s tt s tc s cc s c-3 '(derivative 4 )
(5) 5'-ag s g s gg s a s tt s t s cc s c s c- (CH 2 CH 2 O) 6 -ggg s g s aa s a s tc s c s cc s t-3 '(Derivative 5)
(6) 5'-ggg s g s aa s a s tc s c s cc s t- (CH 2 CH 2 O) 6 -ag s g s gg s a s tt s t s cc s c s c-3 '(Derivative 6)
(7) 5'-ggg s g s aa s a s tc s c s cc s t s- (CH 2 CH 2 O) 6 - s ag s g s gg s a s tt s t s cc s c s c -3 '(derivative 7)
(8) 5'-ag s g s g s ga s t s t s tc s c s c s c- (CH 2 CH 2 O) 6 -ggg s g s a s aa s t s c s cc s c s t-3 '(derivative 8)
(9) 5'-ggg s g s a s aa s t s c s cc s c s t- (CH 2 CH 2 O) 6 -ag s g s g s ga s t s t s tc s c s c s c-3 '(derivative 9)
(10) 5'-ag s g s g s ga s t s t s tc s c s c s c s- (CH 2 CH 2 O) 6 - s ggg s g s a s aa s t s c s cc s c s t-3 '(derivative 10)
(11) 5'-ggg s g s a s aa s t s c s cc s c s t s- (CH 2 CH 2 O) 6 - s ag s g s g s ga s t s t s tc s c s c s c-3 '(derivative 11)
(12) 5'-a s g s g s g s g s a s t s t s t s c s c s c s c- (CH 2 CH 2 O) 6 -g s g s g s g s a s a s a s t s c s c s c s c s t-3 '(derivative 12)
(13) 5'-a s g s g s g s g s a s t s t s t s c s c s c s c s- (CH 2 CH 2 O) 6 - s g s g s g s g s a s a s a s t s c s c s c s c s t-3 '(derivative 13)
(14) 5'-g s g s g s g s a s a s a s t s c s c s c s c s t- (CH 2 CH 2 O) 6 -a s g s g s g s g s a s t s t s t s c s c s c s c-3 '(derivative 14)
(15) 5'-g s g s g s g s a s a s a s t s c s c s c s c s t s- (CH 2 CH 2 O) 6 - s a s g s g s g s g s a s t s t s t s c s s c s c s c-3 '(derivative 15)
(16) 5'-ag s g s gg s a s tt s t s cc s c s c s- (CH 2 CH 2 O) 6 - s ggg s g s aa s a s tc s c s cc s t -3 '(derivative 16)
(17) 5'-g s gg s ga s tt s tc s cc s c- (CH 2 CH 2 O) 6 -gg s gg s aa s at s cc s cc -3 '(derivative 17)
(18) 5'-gg s gg s aa s at s cc s cc- (CH 2 CH 2 O) 6 -g s gg s ga s tt s tc s cc s c-3 '(derivative 18)
(19) 5'-g s gg s ga s tt s tc s cc s c s- (CH 2 CH 2 O) 6 - s gg s gg s aa s at s cc s cc -3 '(derivative 19)
(20) 5'-gg s gg s aa s at s cc s cc s- (CH 2 CH 2 O) 6 - s g s gg s ga s tt s tc s cc s c-3 '(derivative 20)
(21) 5'-g s g s gg s a s tt s t s cc s c s c- (CH 2 CH 2 O) 6 -ggg s g s aa s a s tc s c s cc-3 '( Derivative 21)
(22) 5'-gg s gg s a s tt s t s cc s c s c- (CH 2 CH 2 O) 6 -ggg s g s aa s a s tc s c s c s c-3 '( Derivative 22)
(23) 5'-ggg s g s aa s a s tc s c s cc- (CH 2 CH 2 O) 6 -g s g s gg s a s tt s t s cc s c s c-3 '( Derivative 23)
(24) 5'-g s g s gg s a s tt s t s cc s c s c s- (CH 2 CH 2 O) 6 - s ggg s g s aa s a s tc s c s cc-3 '(Derivative 24)
(25) 5'-ggg s g s aa s a s tc s c s cc s- (CH 2 CH 2 O) 6 - s g s g s gg s a s tt s t s cc s c s c-3 '(Derivative 25)
(26) 5'-g s g s g s ga s t s t s tc s c s c s c- (CH 2 CH 2 O) 6 -ggg s g s a s aa s t s c s cc s c -3 '(derivative 26)
(27) 5'-ggg s g s a s aa s t s c s cc s c- (CH 2 CH 2 O) 6 -g s g s g s ga s t s t s tc s c s c s c -3 '(derivative 27)
(28) 5'-g s g s g s ga s t s t s tc s c s c s c s- (CH 2 CH 2 O) 6 - s ggg s g s a s aa s t s c s cc s c-3 '(derivative 28)
(29) 5'-ggg s g s a s aa s t s c s cc s c s- (CH 2 CH 2 O) 6 - s g s g s g s ga s t s t s tc s c s c s c-3 '(derivative 29)
(30) 5'-g s gg s a s tt s t s cc s c- (CH 2 CH 2 O) 6 -gg s g s aa s a s tc s c s c-3 '(derivative 30)
(In (1) to (30), the subscript s indicates that the nucleotides on both sides of s or the nucleotides on both sides of s and the ethylene glycol unit are phosphorothioate-bonded).

上記各オリゴヌクレオチド誘導体は、基本的に、市販のDNA合成用固相支持体、DNAシアノエチルホスホロアミダイト、及び適切な反応/修飾試薬を用い、リン酸ジエステル結合を全部又は部分的にホスホロチオエート化修飾を施したオリゴヌクレオチドをDNA自動合成機(商品名:ABI394、米国Applied Biosystems社製)で3'→5'方向に合成した。ポリエチレングリコール鎖を導入したヘアピン型NF-κBデコイの製造に当たっては、まず、3'側配列(その5'末端にリンカーが結合される方の配列)を3'→5'方向に合成し、その5'末端に続けて、18-O-ジメトキシトリチルヘキサエチレングリコール,1-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイト(商品名:Spacer Phosphoramidite 18、米国Glen Research社) 1分子をカップリングさせ、さらに、5'側配列(その3'末端にリンカーが結合される方の配列)を3'→5'方向に引き続き合成することで、3'側配列と5'側配列がヘキサエチレングリコールで連結されたオリゴヌクレオチド誘導体を得た。それを加熱、急冷により分子内アニーリングさせて製造した。   Each of the above-mentioned oligonucleotide derivatives basically uses a commercially available solid phase support for DNA synthesis, DNA cyanoethyl phosphoramidite, and an appropriate reaction / modification reagent, and all or partly phosphorothioate-modifies the phosphodiester bond. The oligonucleotide subjected to was synthesized in the 3 ′ → 5 ′ direction with an automatic DNA synthesizer (trade name: ABI394, manufactured by Applied Biosystems, USA). In producing a hairpin type NF-κB decoy into which a polyethylene glycol chain has been introduced, firstly, a 3 ′ side sequence (a sequence to which a linker is bonded to the 5 ′ end) is synthesized in the 3 ′ → 5 ′ direction. Following the 5 ′ end, 18-O-dimethoxytritylhexaethylene glycol, 1-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoramidite (trade name: Spacer Phosphoramidite 18, Glen Research, USA) ) 1 molecule is coupled, and then the 5 ′ side sequence (the one to which the linker is bound to the 3 ′ end) is synthesized in the 3 ′ → 5 ′ direction, so that the 3 ′ side sequence and the 5 ′ side are synthesized. An oligonucleotide derivative having a side sequence linked with hexaethylene glycol was obtained. It was manufactured by intramolecular annealing by heating and rapid cooling.

より具体的には、上記合成は次のように行なった。DMT-デオキシアデノシン(bz)β-シアノエチルホスホロアミダイト、DMT-デオキシシチジン(bz)β-シアノエチルホスホロアミダイト、DMT-デオキシグアノシン(bz)β-シアノエチルホスホロアミダイトおよびDMT-デオキシチミジンβ-シアノエチルホスホロアミダイトをSigma-Aldrich社から、Spacer18 phosphoramidite(商品名)、S化試薬(CPRII、3H-1,2-ベンゾジチオール-3-オン-1,1-ジオキシド)および合成用カラムをGlen Research社から、オリゴDNA合成用の脱保護溶液、活性化溶液、酸化溶液およびキャッピング溶液(CapA溶液およびCapB溶液)を和光純薬からそれぞれ購入した。(bzはベンゾイル基を意味する。)   More specifically, the above synthesis was performed as follows. DMT-deoxyadenosine (bz) β-cyanoethyl phosphoramidite, DMT-deoxycytidine (bz) β-cyanoethyl phosphoramidite, DMT-deoxyguanosine (bz) β-cyanoethyl phosphoramidite and DMT-deoxythymidine β-cyanoethylphosphomid Loamidite from Sigma-Aldrich, Spacer18 phosphoramidite (trade name), S-reagent (CPRII, 3H-1,2-benzodithiol-3-one-1,1-dioxide) and synthesis column from Glen Research A deprotection solution, an activation solution, an oxidation solution, and a capping solution (CapA solution and CapB solution) for oligo DNA synthesis were purchased from Wako Pure Chemical, respectively. (Bz means a benzoyl group.)

合成例1(誘導体1の合成)
DNA自動合成装置ABI394(Applied Biosystems社製)を用いて、ホスホロアミダイト法により、固相支持体上に所望のオリゴヌクレオチドを以下のように合成した。合成装置に、保護された3’末端ヌクレオチド(dT)を予め結合した多孔性ガラス(Controlled Pore Glass: CPG)を含む合成用カラムを装着し、脱保護溶液、活性化溶液および3'末端の隣に隣接するヌクレオチド(dC)のβ-シアノエチルホスホロアミダイト(アセトニトリル溶液)、酸化溶液、キャッピング溶液(CapA溶液とCapB溶液との1:1混合液)の順に反応溶液を合成用カラムに通し、ヌクレオチド間ホスホジエステル結合を形成させた。ヌクレオチド間連結がホスホロチオエートの場合、酸化溶液の代わりに無水アセトニトリルに溶解したS化試薬を使用した。各試薬の濃度および使用量は、製造元の指示書に従った。以下同様にして、3'→5'方向に順次1塩基ずつ延長合成した。Spacer 18 phosphoramidite(商品名)を、該商品に添付の指示書に従い、合成したオリゴヌクレオチドの5'末端に結合し、次いで、前記と同様に、Spacer 18 phosphoramidite(商品名)の他端側に結合するオリゴヌクレオチドを3'→5'方向に順次1塩基ずつ延長合成した。
Synthesis Example 1 (Synthesis of Derivative 1)
Using an automatic DNA synthesizer ABI394 (Applied Biosystems), a desired oligonucleotide was synthesized on a solid support by the phosphoramidite method as follows. The synthesizer is equipped with a synthesis column containing porous glass (Controlled Pore Glass: CPG) pre-bound with a protected 3 'terminal nucleotide (dT), next to the deprotection solution, activation solution and 3' end. Β-cyanoethyl phosphoramidite (acetonitrile solution) of nucleotide (dC) adjacent to, oxidation solution, capping solution (1: 1 mixture of CapA solution and CapB solution) are passed through the synthesis column in this order. An inter-phosphodiester bond was formed. When the internucleotide linkage was phosphorothioate, an S reagent dissolved in anhydrous acetonitrile was used instead of the oxidizing solution. The concentration and amount of each reagent were in accordance with the manufacturer's instructions. In the same manner, the bases were sequentially extended one by one in the 3 ′ → 5 ′ direction. Spacer 18 phosphoramidite (trade name) is bound to the 5 ′ end of the synthesized oligonucleotide according to the instructions attached to the product, and then bound to the other end of Spacer 18 phosphoramidite (trade name) as described above. The oligonucleotides to be synthesized were extended and synthesized one base at a time in the 3 ′ → 5 ′ direction.

固相担体からの切り出しおよび脱保護
28%アンモニア水溶液で室温、2時間処理し、オリゴヌクレオチド誘導体をCPGより切り出した。さらに、その溶液を65℃、6時間処理し、塩基部分の保護基およびリン酸部分の保護基を脱離させた。
Cutting out and deprotecting from solid support
The oligonucleotide derivative was cut out from CPG by treatment with 28% aqueous ammonia at room temperature for 2 hours. Further, the solution was treated at 65 ° C. for 6 hours to remove the protecting group for the base moiety and the protecting group for the phosphoric acid moiety.

カートリッジ精製
Oligo R3担体(Applied Biosystems社製)を充填した固相抽出カラムに0.1Mトリエチルアミン酢酸緩衝液(pH7.0)を加えて平衡化し、そこに精製前のオリゴヌクレオチドを入れて吸着させ、0.1Mトリエチルアミン酢酸緩衝液(pH7.0):アセトニトリル(9:1)を添加して不完全なオリゴヌクレオチドを洗い出した後、2%トリフルオロ酢酸水溶液の添加によって完全長のオリゴヌクレオチドから5'末端のジメトキシトリチル基を脱離させ、水を通して1回洗浄した。次に、20%アセトニトリルを添加してオリゴヌクレオチドを溶出させた。次いで、その溶出液から凍結乾燥により溶媒を蒸発させ、オリゴヌクレオチド誘導体を得た。
Cartridge purification
0.1M triethylamine acetate buffer (pH 7.0) is added to a solid-phase extraction column packed with Oligo R3 support (Applied Biosystems), equilibrated, and then the oligonucleotide before purification is added and adsorbed to it. Acetate buffer (pH 7.0): Acetonitrile (9: 1) was added to wash out incomplete oligonucleotides, and then 5% dimethoxytrityl was removed from the full-length oligonucleotide by adding 2% aqueous trifluoroacetic acid. The group was removed and washed once with water. Next, 20% acetonitrile was added to elute the oligonucleotide. Subsequently, the solvent was evaporated from the eluate by lyophilization to obtain an oligonucleotide derivative.

比較例1
以下の構造を有する、S化された通常の二本鎖DNAを常法により合成した(塩基配列は配列番号3に示す。)
Comparative Example 1
S-modified normal double-stranded DNA having the following structure was synthesized by a conventional method (the base sequence is shown in SEQ ID NO: 3).

5'-CsCsTsTsGsAsAsGsGsGsAsTsTsTsCsCsCsTsCsC-3'
3'-GsGsAsAsCsTsTsCsCsCsTsAsAsAsGsGsGsAsGsG-5'
(添え字sは、sの両隣のヌクレオチド同士がホスホロチオエート結合していることを示す)。
5'-CsCsTsTsGsAsAsGsGsGsAsTsTsTsCsCsCsTsCsC-3 '
3'-GsGsAsAsCsTsTsCsCsCsTsAsAsAsGsGsGsAsGsG-5 '
(The subscript s indicates that the nucleotides on both sides of s are phosphorothioate-bonded).

実施例2
実施例で調製したオリゴヌクレオチド誘導体(誘導体1〜30)及び比較例1の二本鎖DNAについて、上記した測定方法、又は測定方法を先に記載していない特性については常法により、各種特性を測定した。結果を下記表1−1及び表1−2に示す。
Example 2
For the oligonucleotide derivatives (derivatives 1 to 30) prepared in the examples and the double-stranded DNA of Comparative Example 1, the above-described measurement methods or the properties that have not been described in the measurement method are variously measured according to conventional methods. It was measured. The results are shown in Table 1-1 and Table 1-2 below.

Figure 2011032269
Figure 2011032269

Figure 2011032269
Figure 2011032269

表1−1及び表1−2に示されている各特性の薬理学的な意味を以下に説明する。   The pharmacological meaning of each characteristic shown in Table 1-1 and Table 1-2 will be described below.

(1) 結合活性
(i) 0Hr
無細胞系(セルフリー系)での、マウス血漿90%存在下で反応時間0Hr(0時間、以下同様)における、各化合物のNF-κB結合に対するIC50値である。実際には、各デコイ溶液にマウス血漿を添加後、3秒以内に測定した値を便宜上0Hrの値とした。
(1) Binding activity
(i) 0Hr
IC 50 value for NF-κB binding of each compound in a cell-free system (cell-free system) in the presence of 90% of mouse plasma at a reaction time of 0 hr (0 hr, the same applies hereinafter). Actually, the value measured within 3 seconds after adding mouse plasma to each decoy solution was taken as 0Hr for convenience.

(ii) 24Hr 、24Hrs/0Hr 比
無細胞系での、マウス血漿90%存在下で反応時間24Hrにおける、各化合物のNF-κB結合に対するIC50値である。比較例1のIC50値が0Hrと24Hrの間で殆ど変わらないのに対し、誘導体1〜16、21および23〜25の各化合物では24HrのIC50が増加している。これは各化合物がマウス血漿により分解されていることを示す。上記で合成したオリゴヌクレオチド誘導体は生体に適用するのが目的であり、血漿成分に対する耐性と同時に、副作用を考慮すると適度に代謝を受けることも望ましい。生体では、生理活性を有する天然の物質は、いずれも分解と生合成のバランスにより適切な濃度に維持され、生体の恒常性が保たれるようになっている。オリゴヌクレオチド誘導体1〜30は、比較例1と比較し代謝されやすい特長を有することが明らかである。
(ii) 24Hr, 24Hrs / 0Hr ratio IC 50 value for NF-κB binding of each compound at a reaction time of 24Hr in the presence of 90% mouse plasma in a cell-free system. The IC 50 values of Comparative Example 1 whereas almost no change between 0Hr and 24Hr, in each compound derivatives 1~16,21 and 23-25 has been an increase in the IC 50 of 24Hr. This indicates that each compound is degraded by mouse plasma. The oligonucleotide derivative synthesized above is intended to be applied to a living body, and it is also desirable to undergo moderate metabolism in consideration of side effects as well as resistance to plasma components. In the living body, any natural substance having physiological activity is maintained at an appropriate concentration by the balance between decomposition and biosynthesis, and the homeostasis of the living body is maintained. It is clear that the oligonucleotide derivatives 1 to 30 have characteristics that are easily metabolized as compared with Comparative Example 1.

(2) 50%残存時間
同じく無細胞系における上記オリゴヌクレオチド誘導体の核酸としての血漿に対する生化学的安定性を示すデータである。
(2) 50% remaining time It is data showing the biochemical stability of the above oligonucleotide derivative to nucleic acid as a nucleic acid in a cell-free system.

(3) 細胞内結合活性
(i) 4Hrs
培養細胞系でのNF-κB阻害作用を示すデータであり、各化合物の細胞内・外耐性、細胞膜透過性を含んだ値である。上記オリゴヌクレオチド誘導体は、比較例1の二本鎖DNAと比較し約20〜500倍のポテンシャルを有することが明らかである。
(3) Intracellular binding activity
(i) 4Hrs
This data shows the NF-κB inhibitory action in cultured cell lines, and includes the intracellular / external resistance and cell membrane permeability of each compound. It is clear that the oligonucleotide derivative has a potential of about 20 to 500 times that of the double-stranded DNA of Comparative Example 1.

(ii) 24Hrs
前述のように、上記オリゴヌクレオチド誘導体は比較例1の二本鎖DNAと比較し分解されやすい特長を有するが、24時間後においても、なお比較例1の二本鎖DNAより3〜14倍のポテンシャルを有することが明らかである。
(ii) 24Hrs
As described above, the oligonucleotide derivative has a feature that it is more easily decomposed than the double-stranded DNA of Comparative Example 1, but it is still 3 to 14 times more than the double-stranded DNA of Comparative Example 1 after 24 hours. It is clear that it has potential.

(4) 細胞毒性
上記オリゴヌクレオチド誘導体は、比較例1の二本鎖DNAと比較して、LC50が約1.5〜3.8倍高く優れていた。
(4) Cytotoxicity The oligonucleotide derivative was superior to the double-stranded DNA of Comparative Example 1 in that the LC 50 was about 1.5 to 3.8 times higher.

(5) Tm値
オリゴヌクレオチド誘導体の物理学的(熱力学的)安定性を示すデータである。比較例1の二本鎖DNAは、ヒトを始めとするほ乳類の体温より若干高い程度の熱力学的安定性しか有さず、例えば軟膏等の製剤化工程においてほとんど加熱することができないが、上記オリゴヌクレオチド誘導体は一般的製剤工程における温度条件であれば安定である。
(5) Tm value This data shows the physical (thermodynamic) stability of oligonucleotide derivatives. The double-stranded DNA of Comparative Example 1 has only a thermodynamic stability that is slightly higher than the body temperature of mammals including humans, and can hardly be heated in a formulation step such as an ointment. Oligonucleotide derivatives are stable under temperature conditions in a general pharmaceutical process.

(6) UV λmaxおよびHPLC保持時間
各化合物の物性値データである。
(6) UV λmax and HPLC retention time Physical property value data of each compound.

表1−1及び表1−2に示される通り、上記オリゴヌクレオチド誘導体は、その結合活性が比較例1の二本鎖DNAよりも遥かに高く(0Hrの結合活性)、細胞内での代謝性は比較例1の二本鎖DNAよりも遥かに高いが(24Hrs/0Hr比)、24時間後でもなおオリゴヌクレオチド誘導体の方が結合活性が高い。また、細胞毒性は、オリゴヌクレオチド誘導体の方が低い。特に、全てのヌクレオチド間結合がS化されている誘導体15と比較例1を比較した場合、S化に起因する毒性を等しくして比較することができるが、オリゴヌクレオチド誘導体の細胞毒性は、比較例1の二本鎖DNAの細胞毒性の約57%であった。   As shown in Table 1-1 and Table 1-2, the oligonucleotide derivative has a binding activity much higher than that of the double-stranded DNA of Comparative Example 1 (0Hr binding activity), and is metabolic in cells. Is much higher than the double-stranded DNA of Comparative Example 1 (24Hrs / 0Hr ratio), but the oligonucleotide derivative still has higher binding activity after 24 hours. In addition, the cytotoxicity of the oligonucleotide derivative is lower. In particular, when the derivative 15 in which all internucleotide linkages are converted to S is compared with Comparative Example 1, the toxicity resulting from the conversion to S can be compared equally, but the cytotoxicity of the oligonucleotide derivative is compared. About 57% of the cytotoxicity of the double-stranded DNA of Example 1.

実施例3 炎症性腸疾患モデルに対するオリゴヌクレオチド誘導体の薬理効果
上記で調製したオリゴヌクレオチド誘導体の炎症性腸疾患に対する薬理効果について、マウスモデルを用いて以下の通り検討した。
Example 3 Pharmacological Effect of Oligonucleotide Derivative on Inflammatory Bowel Disease Model The pharmacological effect of the oligonucleotide derivative prepared above on inflammatory bowel disease was examined as follows using a mouse model.

(炎症性腸疾患モデルの作成)
C57BL/6マウス8週齢を用い、デキストラン硫酸ナトリウム(Dextran sulfate sodium; DSS)を飲水内に混入し5%濃度としたものを自由飲水させ、10日間飼育することによって炎症性腸疾患モデルを作製した。
(Creation of inflammatory bowel disease model)
Using C57BL / 6 mice 8 weeks old, dextran sulfate sodium (DSS) mixed in the drinking water to give a 5% concentration, and allowed to drink freely and cultivate inflammatory bowel disease model for 10 days did.

(被験物質の投与)
投与物質;実施例のオリゴヌクレオチド誘導体(誘導体5)若しくは比較例1の二本鎖DNAを生理食塩水100μLに溶解させたもの、または対照として生理食塩水。
投与経路;静脈内投与
投与時期・頻度;炎症惹起(DSS投与開始)の直前。単回投与。
投与方法;27G注射針つきシリンジを用いて覚醒下でマウスの尾静脈より投与した。
(Test substance administration)
Substance administered: oligonucleotide derivative (derivative 5) of Example or double-stranded DNA of Comparative Example 1 dissolved in 100 μL of physiological saline, or physiological saline as a control.
Route of administration; timing and frequency of intravenous administration; immediately before inflammation (DSS administration started). Single dose.
Administration method: Administered from the caudal vein of mice under awakening using a syringe with a 27G needle.

(実験動物群)
1 無処置群(通常水を飲水させる。健常ラットモデル)n=10
2 DSS群(腸炎モデル群)n=9
3 DSS+実施例の誘導体5(5.0mg/kg体重)群n=6
4 DSS+比較例1の二本鎖DNA(5.0mg/kg体重)群n=6
(Experimental animal group)
1 Untreated group (normally drinking water. Healthy rat model) n = 10
2 DSS group (enteritis model group) n = 9
3 DSS + Example derivative 5 (5.0 mg / kg body weight) group n = 6
4 DSS + double stranded DNA of Comparative Example 1 (5.0 mg / kg body weight) group n = 6

(評価項目)
疾患改善の評価として、DNA投与3,7,10日後の体重の変化率、疾患活動度Disease activity index (DAI)を検討した。
(i) 体重変化率は、炎症惹起直前の体重を100%として計算した。
(ii) DAIは、Clin Exp Immunol. 2000 Apr;120(1):51-8.に従い、以下の項目の点数を合計しスコアを算出した(体重減少率スコア+便性状スコア+血便スコア、最低0〜最大12)。
(Evaluation item)
As an evaluation of disease improvement, the rate of change in body weight and disease activity index (DAI) after 3, 7, and 10 days after DNA administration were examined.
(i) The rate of change in body weight was calculated assuming that the body weight just before inflammation was induced was 100%.
(ii) DAI was calculated in accordance with Clin Exp Immunol. 2000 Apr; 120 (1): 51-8. The score was calculated by adding the scores of the following items (weight loss rate score + fecal property score + blood stool score, lowest 0 to max 12).

Figure 2011032269
Figure 2011032269

(結果)
体重変化とDAI変化の結果を下記表3及び表4に示す。実施例のオリゴヌクレオチド誘導体5は、静脈投与により、腸炎モデルマウスの体重の減少とDAIの上昇を顕著に抑制した。
(result)
The results of changes in weight and DAI are shown in Tables 3 and 4 below. The oligonucleotide derivative 5 of the example markedly suppressed the decrease in body weight and the increase in DAI of enteritis model mice by intravenous administration.

Figure 2011032269
Figure 2011032269

Figure 2011032269
Figure 2011032269

(組織鏡検)
day10に動物を屠殺し、大腸組織切片の光学顕微鏡検査を行った(撮影倍率:40倍、100倍)。その結果、DSS群においては、杯細胞の消失及び炎症性細胞の浸潤が認められた。一方で、実施例のオリゴヌクレオチド誘導体を投与したDSS+誘導体5群では、大腸組織はほぼ正常構造を保っていた。比較例の二本鎖DNAを投与したDSS+比較例1群では、杯細胞の一部消失及び炎症性細胞の浸潤が認められた。
(Histological examination)
On day 10, the animals were sacrificed, and light microscopy of colon tissue sections was performed (magnification: 40x, 100x). As a result, disappearance of goblet cells and infiltration of inflammatory cells were observed in the DSS group. On the other hand, in the group 5 of DSS + derivatives administered with the oligonucleotide derivative of the example, the colon tissue maintained almost normal structure. In DSS + Comparative Example 1 group to which the double-stranded DNA of Comparative Example was administered, partial disappearance of goblet cells and infiltration of inflammatory cells were observed.

以上の結果は、実施例で合成したオリゴヌクレオチド誘導体5が静注投与で腸管組織炎症を抑制できることを示している。   The above result has shown that the oligonucleotide derivative 5 synthesize | combined in the Example can suppress intestinal tissue inflammation by intravenous administration.

Claims (7)

下記一般式(I)で表されるオリゴヌクレオチド誘導体を有効成分として含有する炎症性腸疾患の治療又は予防剤。
5'-aggggatttcccc-(CH2CH2O)n-ggggaaatcccct-3' (I)
(ただし、ヌクレオチド間の結合及びヌクレオチドとエチレングリコール単位との間の結合のうちの少なくとも一部が耐ヌクレアーゼ修飾されていてよい。nは4ないし8の整数を表す。)
A therapeutic or prophylactic agent for inflammatory bowel disease comprising an oligonucleotide derivative represented by the following general formula (I) as an active ingredient.
5'-aggggatttcccc- (CH 2 CH 2 O) n -ggggaaatcccct-3 '(I)
(However, at least a part of the bond between nucleotides and the bond between nucleotides and ethylene glycol units may be nuclease-resistant modified. N represents an integer of 4 to 8.)
前記オリゴヌクレオチド誘導体が下記(a)〜(h)から成る群より選ばれる構造を有する請求項1記載の治療又は予防剤。
(a) 5'-agsggsgasttstcsccsc-(CH2CH2O)6-ggsggsaasatsccsccst-3'
(b) 5'-agsggsgasttstcsccscs-(CH2CH2O)6-sggsggsaasatsccsccst-3'
(c) 5'-agsgsggsasttstsccscsc-(CH2CH2O)6-gggsgsaasastcscsccst-3'
(d) 5'-agsgsgsgastststcscscsc-(CH2CH2O)6-gggsgsasaastscsccscst-3'
(e) 5'-agsgsgsgastststcscscscs-(CH2CH2O)6-sgggsgsasaastscsccscst-3'
(f) 5'-asgsgsgsgsastststscscscsc-(CH2CH2O)6-gsgsgsgsasasastscscscscst-3'
(g) 5'-asgsgsgsgsastststscscscscs-(CH2CH2O)6-sgsgsgsgsasasastscscscscst-3'
(h) 5'-agsgsggsasttstsccscscs-(CH2CH2O)6-sgggsgsaasastcscsccst-3'
((a)〜(h)中、添え字sは、sの両隣のヌクレオチド同士又はsの両隣のヌクレオチドとエチレングリコール単位がホスホロチオエート結合していることを示す)。
The therapeutic or prophylactic agent according to claim 1, wherein the oligonucleotide derivative has a structure selected from the group consisting of the following (a) to (h).
(a) 5'-ag s gg s ga s tt s tc s cc s c- (CH 2 CH 2 O) 6 -gg s gg s aa s at s cc s cc s t-3 '
(b) 5'-ag s gg s ga s tt s tc s cc s c s- (CH 2 CH 2 O) 6 - s gg s gg s aa s at s cc s cc s t-3 '
(c) 5'-ag s g s gg s a s tt s t s cc s c s c- (CH 2 CH 2 O) 6 -ggg s g s aa s a s tc s c s cc s t-3 '
(d) 5'-ag s g s g s ga s t s t s tc s c s c s c- (CH 2 CH 2 O) 6 -ggg s g s a s aa s t s c s cc s c s t-3 '
(e) 5'-ag s g s g s ga s t s t s tc s c s c s c s- (CH 2 CH 2 O) 6 - s ggg s g s a s aa s t s c s cc s c s t-3 '
(f) 5'-a s g s g s g s g s a s t s t s t s c s c s c s c- (CH 2 CH 2 O) 6 -g s g s g s g s a s a s a s t s c s c s c s c s t-3 '
(g) 5'-a s g s g s g s g s a s t s t s t s c s c s c s c s- (CH 2 CH 2 O) 6 - s g s g s g s g s a s a s a s t s c s c s c s c s t-3 '
(h) 5'-ag s g s gg s a s tt s t s cc s c s c s- (CH 2 CH 2 O) 6 - s ggg s g s aa s a s tc s c s cc s t -3 '
(In (a) to (h), the subscript s indicates that the nucleotides on both sides of s or the nucleotides on both sides of s and the ethylene glycol unit are linked by phosphorothioate).
前記(c)に示される構造を有する請求項2記載の治療又は予防剤。   The therapeutic or prophylactic agent according to claim 2, which has the structure shown in (c). 静脈内投与用である請求項1ないし3のいずれか1項に記載の治療又は予防剤。   The therapeutic or prophylactic agent according to any one of claims 1 to 3, which is for intravenous administration. 前記炎症性腸疾患がクローン病又は潰瘍性大腸炎である請求項1ないし4のいずれか1項に記載の治療又は予防剤。   The therapeutic or prophylactic agent according to any one of claims 1 to 4, wherein the inflammatory bowel disease is Crohn's disease or ulcerative colitis. 前記オリゴヌクレオチド誘導体がネイキッドである請求項1ないし5のいずれか1項に記載の治療又は予防剤。   The therapeutic or prophylactic agent according to any one of claims 1 to 5, wherein the oligonucleotide derivative is naked. 投与量が前記オリゴヌクレオチド誘導体量として5.0 mg/kg以上である請求項1ないし6のいずれか1項に記載の治療又は予防剤。   The therapeutic or prophylactic agent according to any one of claims 1 to 6, wherein the dosage is 5.0 mg / kg or more as the amount of the oligonucleotide derivative.
JP2010157491A 2009-07-10 2010-07-12 Treatment or prevention agent for inflammatory bowel disease Active JP5730508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010157491A JP5730508B2 (en) 2009-07-10 2010-07-12 Treatment or prevention agent for inflammatory bowel disease

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009164039 2009-07-10
JP2009164039 2009-07-10
JP2010157491A JP5730508B2 (en) 2009-07-10 2010-07-12 Treatment or prevention agent for inflammatory bowel disease

Publications (2)

Publication Number Publication Date
JP2011032269A true JP2011032269A (en) 2011-02-17
JP5730508B2 JP5730508B2 (en) 2015-06-10

Family

ID=43761691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010157491A Active JP5730508B2 (en) 2009-07-10 2010-07-12 Treatment or prevention agent for inflammatory bowel disease

Country Status (1)

Country Link
JP (1) JP5730508B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043639A1 (en) * 2015-09-09 2017-03-16 アンジェスMg株式会社 Chimeric decoy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132204A1 (en) * 2005-06-06 2006-12-14 Anges Mg, Inc. Transcription factor decoy
JP2009504190A (en) * 2005-08-17 2009-02-05 サーナ・セラピューティクス・インコーポレイテッド Chemically modified small interfering nucleic acid molecules that mediate RNA interference
JP2009520039A (en) * 2005-12-19 2009-05-21 サーナ・セラピューティクス・インコーポレイテッド Inhibition of hepatitis C virus (HCV) gene expression mediated by RNA interference using small interfering nucleic acids (siNA)
JP2009142295A (en) * 2009-03-25 2009-07-02 Anges Mg Inc Cyclic dumbbell decoy oligodeoxynucleotide (cdodn) containing transcribed dna-bound site

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132204A1 (en) * 2005-06-06 2006-12-14 Anges Mg, Inc. Transcription factor decoy
JP2009504190A (en) * 2005-08-17 2009-02-05 サーナ・セラピューティクス・インコーポレイテッド Chemically modified small interfering nucleic acid molecules that mediate RNA interference
JP2009520039A (en) * 2005-12-19 2009-05-21 サーナ・セラピューティクス・インコーポレイテッド Inhibition of hepatitis C virus (HCV) gene expression mediated by RNA interference using small interfering nucleic acids (siNA)
JP2009142295A (en) * 2009-03-25 2009-07-02 Anges Mg Inc Cyclic dumbbell decoy oligodeoxynucleotide (cdodn) containing transcribed dna-bound site

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013053181; El-Sagheer et al: CHEMBIOCHEM 2008, No. 9, 20071130, p. 50-52 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043639A1 (en) * 2015-09-09 2017-03-16 アンジェスMg株式会社 Chimeric decoy
JPWO2017043639A1 (en) * 2015-09-09 2018-06-21 アンジェス株式会社 Chimera decoy
JP6993230B2 (en) 2015-09-09 2022-01-13 アンジェス株式会社 Chimera decoy
US11453880B2 (en) 2015-09-09 2022-09-27 Anges, Inc. Chimeric decoy

Also Published As

Publication number Publication date
JP5730508B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP6638923B2 (en) Chimeric double-stranded nucleic acid
JP4718541B2 (en) Improved coagulation factor regulator
ES2471978T3 (en) Compounds and procedures to modulate ApoB expression
TW201642874A (en) Compositions and methods for inhibiting gene expression of factor XII
US20180282728A1 (en) Organic compositions to treat beta-catenin-related diseases
JP7291418B2 (en) Antisense nucleic acid targeting PCSK9
JP2018516595A (en) Composition and method for inhibiting gene expression of Hif2α
JP2022534069A (en) Nucleic acids, drug compositions and conjugates and methods of preparation and uses
WO2011087804A2 (en) Peptide-polynucleotide compositions, and methods for transfecting a cell with dna and treatment of neurodegenerative disease
KR101715228B1 (en) Dengue virus-specific sirna, double helix oligo-rna structure comprising sirna, and composition for suppressing proliferation of dengue virus comprising rna structure
JP6993230B2 (en) Chimera decoy
US9492470B2 (en) Use of HMGA-targeted phosphorothioate DNA aptamers to suppress carcinogenic activity and increase sensitivity to chemotherapy agents in human cancer cells
JP5730508B2 (en) Treatment or prevention agent for inflammatory bowel disease
JP2022545101A (en) Oligonucleotide conjugate compositions and methods of use
WO2007058323A1 (en) Method for production of nucleic acid homopolymer-bound functional nucleic acid medicine
WO2007072909A1 (en) NOVEL OLIGONUCLEOTIDE AND NF-κB DECOY COMPRISING THE SAME
JP5601777B2 (en) Novel oligonucleotide derivative and NF-κB decoy comprising the same
JP5777240B2 (en) Novel oligonucleotide derivative and NF-κB decoy comprising the same
JP7360170B2 (en) Ischemic lesion site-specific gene therapy
CN108251421A (en) Inhibit siRNA, the composition comprising it and its application of COL1A1 gene expressions in humans and animals
JPWO2007058323A1 (en) Method for producing nucleic acid homopolymer-binding functional nucleic acid pharmaceutical
WO2023230478A2 (en) Treatment of sos2 related diseases and disorders
KR20240034185A (en) Treatment of MTRES1-related diseases and disorders
WO2023245118A2 (en) Treatment of ms4a4e related diseases and disorders
JP2010130900A (en) NOVEL CYCLIC STAPLE-TYPE OLIGONUCLEOTIDE, AND NF-kappaB DECOY COMPRISING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130708

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150408

R150 Certificate of patent or registration of utility model

Ref document number: 5730508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250