JP2011031405A - Woody material processing composition, method for processing woody material, and woody material processed by the method - Google Patents

Woody material processing composition, method for processing woody material, and woody material processed by the method Download PDF

Info

Publication number
JP2011031405A
JP2011031405A JP2009177132A JP2009177132A JP2011031405A JP 2011031405 A JP2011031405 A JP 2011031405A JP 2009177132 A JP2009177132 A JP 2009177132A JP 2009177132 A JP2009177132 A JP 2009177132A JP 2011031405 A JP2011031405 A JP 2011031405A
Authority
JP
Japan
Prior art keywords
wood
mol
wood material
treatment composition
woody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2009177132A
Other languages
Japanese (ja)
Inventor
Shoji Hori
昭二 堀
Yasuaki Honda
安明 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FOREST BLUE Inc
Original Assignee
FOREST BLUE Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FOREST BLUE Inc filed Critical FOREST BLUE Inc
Priority to JP2009177132A priority Critical patent/JP2011031405A/en
Publication of JP2011031405A publication Critical patent/JP2011031405A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a woody material processing composition which improves the flame retardancy etc., of woody materials such as wood, and prevents the occurrence of the efflorescence problem of the processed woody materials, a method for processing the woody materials using the composition, and the woody materials processed by the method. <P>SOLUTION: The woody material processing composition is prepared by adding a silicic acid compound in an amount of 0.05-0.5 mol in terms of the number of silicon atoms into 1 L of an aqueous solution containing 1.2-3 mol/L of phosphoric acid or phosphate ions, 0.15-0.5 mol/L of alkaline earth metal ions, 0.04-0.4 mol/L of alkaline metal ions, and 1.0-2.0 mol/L of ammonium ions. The method for processing the woody materials includes a process for impregnating the composition. The woody materials are obtained by being processed by the method. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、木質材料処理組成物、木質材料の処理方法及びそれにより処理された木質材料に関する。 The present invention relates to a wood material treatment composition, a wood material treatment method, and a wood material treated thereby.

木質材料は、古来より建築材料として広く用いられており、建築様式の変化にかかわらず、独特の風合いを有する建築材料として、現在においても、構造材のみならず、外装材及び内装材としても広く用いられている。しかし、木質系材料には、腐朽性、可燃性等の問題があり、わが国において最も広く用いられているヒノキ、スギ等の針葉樹においては、早材部分の硬度の低さに起因する傷の付きやすさ、経年収縮による凹凸の発生(いわゆる「目やせ」)等の問題も有している。 Woody materials have been widely used as building materials since ancient times, and as a building material with a unique texture regardless of changes in architectural style, it is still widely used not only as structural materials but also as exterior materials and interior materials. It is used. However, wood-based materials have problems such as decay and flammability, and conifers such as Japanese cypress and cedar that are most widely used in Japan have scratches due to low hardness of the early wood parts. There are also problems such as ease, generation of irregularities due to aging shrinkage (so-called “eye loss”), and the like.

上述のような、木質材料における腐朽性及び可燃性の低減、硬度及び寸法安定性の向上等のために、処理剤を表面に塗布し、又は内部に含浸させることが広く行われており、種々の処理剤及び処理方法が提案されている。
例えば、有機又は無機ハロゲン系難燃剤が、古くから用いられている。また、ピロリン酸メラミン等の窒素系難燃剤も用いられている(例えば、特許文献1参照)。
As described above, in order to reduce decay and flammability in wood materials, improve hardness and dimensional stability, etc., it is widely performed to apply a treatment agent to the surface or impregnate the inside. A treatment agent and a treatment method have been proposed.
For example, organic or inorganic halogen flame retardants have been used for a long time. Moreover, nitrogen-type flame retardants, such as melamine pyrophosphate, are also used (for example, refer patent document 1).

また、特許文献2には、原料木材に含浸した2種以上の水溶性化合物の反応生成物である不溶性不燃性化合物が定着し、2個以上のアルデヒド基を有する化合物で原料木材の水酸基間を架橋した変性木材をホルムアルデヒド誘導体の蒸気雰囲気中でかつ酸触媒の存在下で加熱してホルマール化することにより、難燃性を保持しかつ寸法安定性を改善した改質木材の製法が開示されている。
特許文献3には、難燃性金属塩と、アクリル系重合体が木質内に含浸され、硬化したアクリル系重合体が木質内で難燃性物質を包囲しており、火炎に対する抵抗力を有し、寸法が安定し生活環境にも悪影響を与えない難燃性重合体含浸木材が開示されている。
In Patent Document 2, an insoluble incombustible compound, which is a reaction product of two or more water-soluble compounds impregnated in raw wood, is fixed, and a compound having two or more aldehyde groups is used between the hydroxyl groups of the raw wood. Disclosed is a method for producing modified wood that retains flame retardancy and improves dimensional stability by heating the crosslinked modified wood in a steam atmosphere of formaldehyde derivatives and in the presence of an acid catalyst for formalization. Yes.
In Patent Document 3, a flame-retardant metal salt and an acrylic polymer are impregnated in wood, and the cured acrylic polymer surrounds the flame-retardant material in the wood and has resistance to flame. However, a flame-retardant polymer-impregnated wood that is stable in dimensions and does not adversely affect the living environment is disclosed.

特許文献4及び5には、木質系材料の発煙燃焼及び赤熱燃焼の抑制効果を有するホウ酸塩を防火剤として利用した、防火、耐火、不燃材料、及び不燃木材板がそれぞれ開示されている。 Patent Documents 4 and 5 each disclose a fireproof, fireproof, noncombustible material, and a noncombustible wood board using a borate having an effect of suppressing smoke combustion and red heat combustion of a wood-based material as a fireproofing agent.

特開平6−218708号公報JP-A-6-218708 特開平6−143209号公報JP-A-6-143209 特開2000−141318号公報JP 2000-141318 A 特開2005−112700号公報JP 2005-112700 A 特開2006−182024号公報JP 2006-182024 A

しかしながら、ハロゲン系難燃剤や特許文献1記載の窒素系難燃剤は、燃焼時に有害ガスを発生し、また変色の原因となるという問題点を有している。
特許文献2記載の改質木材の製法においては、木材内部に残留するホルムアルデヒドが、いわゆるシックハウス症候群や、環境への悪影響の原因となるおそれがある。
特許文献3記載の難燃性重合体含浸木材においては、含浸させたアクリル系重合体の前駆体の重合が完全に進行しない場合があり、寸法安定性の低下等の問題が生じうる。
特許文献4記載の防火、耐火、不燃材料、及び特許文献5記載の不燃木材板においては、木材の吸脱湿に伴い、水溶性のホウ酸化合物が溶脱し、表面で析出して表面が白くなる白華現象を起こすという欠点がある。処理コスト低減を目的とするホウ酸の水溶性の向上のためにアルカリ類を添加する場合が多いが、このような場合、アルカリ類の吸湿性によりホウ酸の溶脱が促進され、白華現象の発生がより顕著になるおそれがある。
However, halogen-based flame retardants and nitrogen-based flame retardants described in Patent Document 1 have problems in that harmful gases are generated during combustion and cause discoloration.
In the method for producing modified wood described in Patent Document 2, formaldehyde remaining in the wood may cause so-called sick house syndrome and adverse environmental effects.
In the flame-retardant polymer-impregnated wood described in Patent Document 3, the polymerization of the impregnated acrylic polymer precursor may not proceed completely, and problems such as a decrease in dimensional stability may occur.
In the fireproof, fireproof, incombustible material described in Patent Document 4, and the incombustible wood board described in Patent Document 5, the water-soluble boric acid compound is leached and precipitated on the surface as the wood is absorbed and desorbed, and the surface becomes white. There is a disadvantage of causing the white flower phenomenon. Alkalis are often added to improve the water solubility of boric acid for the purpose of reducing processing costs, but in such cases, the leaching of boric acid is promoted by the hygroscopicity of alkalis, and Occurrence may be more noticeable.

内外壁用の木材等において、このような白華現象が発生すると、その価値が低下してしまうと共に、これらの材料においては、処理後に、反りやねじれ等の変形を生じやすく、寸法及び形状安定性に乏しいという欠点も存在する。また、白華現象が起こると、塗料との親和性が低下するので、市販の塗料を用いることができず、塗装コストの増大という問題も生じる。 When such white flower phenomenon occurs in wood for inner and outer walls, the value is reduced, and in these materials, deformation such as warping and twisting is likely to occur after processing, and dimensional and shape stability There is also the disadvantage of poor nature. In addition, when the white flower phenomenon occurs, the affinity with the paint decreases, so that a commercially available paint cannot be used, and there is a problem that the coating cost increases.

更に、特許文献4記載の防火、耐火、不燃材料、及び特許文献5記載の不燃木材板に使用されているホウ酸は毒性を有しており、成人の場合、1〜3g摂取すると中毒症状が発症し、10〜20gが致死量であると言われている。したがって、ホウ酸に代わる難燃剤を含む木質材料処理組成物が求められている。ホウ酸と共に広く用いられている無機難燃剤としてリン酸塩が挙げられるが、リン酸塩の場合にも、白華現象の発生が知られており、難燃性の向上と白華現象の抑制とは、この場合においてもトレードオフの関係にある。 Furthermore, boric acid used in the fireproof, fireproof, incombustible material described in Patent Document 4 and the incombustible wood board described in Patent Document 5 is toxic. It is said that 10-20g is a lethal dose. Therefore, there is a need for a woody material treatment composition that includes a flame retardant instead of boric acid. Phosphate is mentioned as an inorganic flame retardant widely used with boric acid, but the occurrence of white flower phenomenon is also known in the case of phosphate, improving flame retardancy and suppressing white flower phenomenon In this case, there is a trade-off relationship.

本発明はかかる事情に鑑みてなされたもので、木材等の木質材料の難燃性等を向上させると共に、処理後の木質材料の白華の問題の生じにくい木質材料処理組成物、それを用いた木質材料の処理方法、及びそれにより処理された、木質材料を提供することを目的とする。
なお、本発明における「木質材料」には、樹木より得られるいわゆる「木材」の他に、草本類の茎、葉等より得られ、セルロース及びリグニンを主な成分とする材料が含まれるものとする。
The present invention has been made in view of such circumstances, and improves the flame retardancy and the like of wood materials such as wood, and uses the wood material treatment composition that is less prone to white matter problems after treatment. It is an object of the present invention to provide a method for treating a wood material, and a wood material treated thereby.
The “woody material” in the present invention includes, in addition to so-called “wood” obtained from trees, materials obtained from herbaceous stems, leaves, etc., and materials mainly composed of cellulose and lignin. To do.

本発明の第1の態様は、1.2〜3mol/Lのリン酸又はリン酸イオンと、0.15〜0.5mol/Lのアルカリ土類金属イオンと、0.04〜0.4mol/Lのアルカリ金属イオンと、1.0〜2.0mol/Lのアンモニウムイオンとを含む水溶液に、前記水溶液1Lあたり、ケイ素原子数換算で0.05〜0.5molとなる量のケイ酸化合物を添加することにより得られることを特徴とする木質材料処理組成物を提供することにより、上記課題を解決するものである。 The first aspect of the present invention includes 1.2 to 3 mol / L phosphoric acid or phosphate ions, 0.15 to 0.5 mol / L alkaline earth metal ions, and 0.04 to 0.4 mol / L. An aqueous solution containing L alkali metal ions and 1.0 to 2.0 mol / L ammonium ions is added with an amount of 0.05 to 0.5 mol of a silicate compound in terms of the number of silicon atoms per 1 L of the aqueous solution. The above-mentioned problems are solved by providing a woody material treatment composition characterized by being obtained by adding.

木質材料処理組成物に含まれるリン酸又はリン酸イオンは、それを含浸させた木質材料の燃焼時にいわゆる炭火層を形成してその内部への酸素の供給を遮断することにより、燃焼防止効果を発揮できる。そのため、ホウ酸を用いることなく、木質材料に高い難燃性を付与することができる。木質材料処理組成物に含まれるアルカリ金属イオン、アルカリ土類金属イオン及びアンモニウムイオンは、高温下で吸熱反応を起こして熱分解するため、燃焼熱を吸収して燃焼の進行を阻害する効果を有している。また、木質材料処理組成物に含まれるケイ酸化合物が木質材料の内部に浸透後重合し、ポリシロキサンを形成することにより、木質材料処理組成物に含まれるリン酸塩の溶脱及びそれに伴う白華現象を抑制できる。また、本態様に係る木質材料処理組成物は合成樹脂を含まないため、これにより処理された木質材料において廃棄時の処理の問題が生じないと共に、ホウ酸を用いていないため、過度の吸湿性を有しない。 Phosphoric acid or phosphate ion contained in the woody material treatment composition forms a so-called charcoal fire layer during the combustion of the woody material impregnated with it, and blocks the supply of oxygen to the inside, thereby preventing the combustion prevention effect. Can demonstrate. Therefore, high flame retardancy can be imparted to the wood material without using boric acid. Alkali metal ions, alkaline earth metal ions, and ammonium ions contained in the woody material treatment composition cause an endothermic reaction at high temperatures and are thermally decomposed, so they have the effect of absorbing combustion heat and inhibiting the progress of combustion. is doing. In addition, the silicate compound contained in the wood material treatment composition is polymerized after penetrating into the wood material to form polysiloxane, thereby leaching the phosphate contained in the wood material treatment composition and the associated white flower. The phenomenon can be suppressed. Moreover, since the woody material treatment composition according to the present embodiment does not contain a synthetic resin, the woody material treated thereby does not cause a problem of disposal at the time of disposal, and since boric acid is not used, excessive hygroscopicity. Does not have.

木質材料処理組成物を上記のような組成にすることにより、木質材料に高い難燃性を付与でき、かつ処理後の木質材料における白華現象及び変色の発生を抑制することができる。更に、ハロゲン系難燃剤や窒素系難燃材を含まないため、燃焼時に有害な又は刺激性のガスを発生しない。 By making the woody material treatment composition as described above, high flame retardancy can be imparted to the woody material, and the occurrence of the white flower phenomenon and discoloration in the woody material after treatment can be suppressed. Furthermore, since it does not contain halogen-based flame retardants or nitrogen-based flame retardants, no harmful or irritating gases are generated during combustion.

この場合において、前記アルカリ土類金属がカルシウムであることが好ましく、前記アルカリ金属がカリウムであることが好ましい。
これらの金属イオンを用いることにより、木質材料に高い不燃性能を付与できる木質材料処理組成物を低コストで得ることができる。
In this case, the alkaline earth metal is preferably calcium, and the alkali metal is preferably potassium.
By using these metal ions, a wood material treatment composition capable of imparting high incombustibility to a wood material can be obtained at low cost.

また、本発明の第1の態様において、前記水溶液1Lあたり、0.2〜0.4molのリン酸二水素アルカリ土類金属塩と、0.04〜0.3molのリン酸二水素アルカリ金属塩と、0.6〜0.95molのリン酸水素アンモニウム塩とを、所定量のリン酸を含むリン酸水溶液に溶解することにより木質材料処理組成物を得てもよい。
強塩基性で取り扱いに注意が必要なアルカリ金属の水酸化物、水に溶けにくいアルカリ土類金属の水酸化物、リン酸酸性水溶液に溶解すると二酸化炭素が発生し発泡するアルカリ金属及びアルカリ土類金属の炭酸塩等を用いる場合に比べ、原料の管理及び取り扱いが容易で、製造時の発泡や有害なガスの発生も抑制できる。
In the first aspect of the present invention, 0.2 to 0.4 mol of alkaline earth metal dihydrogen phosphate and 0.04 to 0.3 mol of alkali metal dihydrogen phosphate per 1 L of the aqueous solution. Further, a woody material treatment composition may be obtained by dissolving 0.6 to 0.95 mol of ammonium hydrogenphosphate in a phosphoric acid aqueous solution containing a predetermined amount of phosphoric acid.
Alkali metal hydroxides that are strongly basic and require careful handling, alkaline earth metal hydroxides that are difficult to dissolve in water, and alkali metals and alkaline earths that generate carbon dioxide when dissolved in an aqueous phosphoric acid solution and foam Compared to the case of using a metal carbonate or the like, the raw material can be easily managed and handled, and foaming during production and generation of harmful gases can be suppressed.

本発明の第2の態様は、本発明の第1の態様に係る木質材料処理組成物を木質材料に含浸させることを特徴とする木質材料の処理方法を提供することにより、上記課題を解決するものである。 A second aspect of the present invention solves the above problems by providing a method for treating a wooden material, characterized by impregnating the wooden material with the wooden material treatment composition according to the first aspect of the present invention. Is.

この場合において、減圧下で所定時間放置した木質材料を木質材料処理組成物に浸漬し、加圧下で該木質材料処理組成物を木質材料に含浸させることが好ましい。 In this case, it is preferable that the wood material left for a predetermined time under reduced pressure is immersed in the wood material treatment composition and the wood material treatment composition is impregnated with the wood material treatment under pressure.

また、この場合において、前記木質材料処理組成物の含浸前後の前記木質材料の質量変化を前記木質材料の各々について測定し、単位体積あたりの含浸量が所定値以下のものについては再度前記木質材料処理組成物の含浸を行うことが好ましい。 Further, in this case, the change in mass of the wood material before and after the impregnation of the wood material treatment composition is measured for each of the wood materials, and when the amount of impregnation per unit volume is a predetermined value or less, the wood material is again measured. It is preferred to impregnate the treatment composition.

本発明の第3の態様は、本発明の第2の態様に係る木質材料の処理方法で処理することを特徴とする木質材料を提供することにより上記課題を解決するものである。
このようにして得られる木質材料は、未処理の木質材料に比べ難燃性が向上しており、白華現象の発生による意匠性の低下等の問題が生じにくいため、内装材及び外装材として好適に用いることができる。また、経時変化による変形及び変色が発生しにくいため、耐久性にも優れている。
According to a third aspect of the present invention, there is provided a wooden material characterized by being processed by the method for processing a wooden material according to the second aspect of the present invention.
The wood material obtained in this way has improved flame retardancy compared to untreated wood material, and it is less likely to cause problems such as deterioration in design due to the occurrence of white flower phenomenon. It can be used suitably. Further, since deformation and discoloration due to changes with time are less likely to occur, the durability is also excellent.

この場合において、木質材料は、建築基準法施行令(昭和二十五年十一月十六日政令第三百三十八号)第1条第5号の準不燃材料、同条第6号の難燃材料、及び建築基準法(昭和二十五年五月二十四日法律第二百一号)第2条第9号の不燃材料のいずれかの基準に適合するものであることが好ましい。 In this case, the wooden material shall be the quasi-incombustible material of Article 1, Item 5 of the Building Standards Act Enforcement Ordinance (December 16, 1983). It must conform to any of the standards for non-combustible materials in Article 2, Item 9 of the Incombustible Materials and Building Standards Act (Act No. 211 of May 24, 1947) preferable.

なお、「建築基準法施行令第1条第5号の準不燃材料」とは、通常の火災による火熱が加えられた場合に、加熱開始後10分間、次の(1)〜(3)(建築物の外部の仕上げに用いるものにあっては、(1)及び(2)。以下同じ)に掲げる要件を満たしている建築材料をいい、「同条第6号の難燃材料」とは、通常の火災による火熱が加えられた場合に、加熱開始後5分間、次の(1)〜(3)に掲げる要件(建築基準法施行令第108条の2各号)を満たしている建築材料をいい、「建築基準法第2条第9号の不燃材料」とは、通常の火災による火熱が加えられた場合に、加熱開始後20分間、次の(1)〜(3)に掲げる要件を満たしている建築材料をいう。
(1)燃焼しないものであること。
(2)防火上有害な変形、溶融、き裂その他の損傷を生じないものであること。
(3)避難上有害な煙又はガスを発生しないものであること。
In addition, "the quasi-incombustible material of Building Standard Law enforcement order Article 1 item 5" means the following (1) to (3) (10 minutes after the start of heating, when the heat from a normal fire is applied: In thing to use for exterior finishing of building, we say building materials which meet requirements to raise in (1) and (2). The same applies hereafter, and "flame retardant material of the same article sixth" Buildings that meet the requirements listed in (1) to (3) below (Article 108-2 of the Building Standards Law Enforcement Ordinance) for 5 minutes after the start of heating when fire heat from a normal fire is applied The material refers to the “non-combustible material of Article 2-9 of the Building Standards Law”. When fire heat is applied by a normal fire, it is listed in the following (1) to (3) for 20 minutes after the start of heating. A building material that meets the requirements.
(1) It must not burn.
(2) It shall not cause deformation, melting, cracking or other damage harmful to fire prevention.
(3) Do not generate smoke or gas harmful to evacuation.

以上述べたように、本発明によれば、木質材料の難燃性等を向上させると共に、白華の問題の生じにくい木質材料処理組成物が得られる。また、本発明によれば、木質材料処理組成物を用いた木質材料の処理方法、及びそれにより処理された、木質材料が得られる。 As described above, according to the present invention, it is possible to obtain a wood material treatment composition that improves the flame retardancy and the like of wood materials and is less prone to white matter problems. Moreover, according to this invention, the processing method of the wooden material using a wooden material processing composition, and the wooden material processed by it are obtained.

実施例7で難燃処理を行ったスギ材における木質材料処理組成物の固着量と10分間の総発熱量との関係を示すグラフである。It is a graph which shows the relationship between the sticking amount of the woody material processing composition in the cedar material which performed the flame-retardant process in Example 7, and the total calorific value for 10 minutes. 実施例7におけるスギ材への木質材料処理組成物の固着量と20分間の総発熱量との関係を示すグラフである。It is a graph which shows the relationship between the adhering amount of the woody material processing composition to a cedar material in Example 7, and the total calorific value for 20 minutes. 実施例7で難燃処理を行ったスギ材における総発熱量及び燃焼速度の時間変化をプロットしたグラフである。It is the graph which plotted the time change of the total calorific value and combustion rate in the cedar material which performed the flame-retardant process in Example 7. FIG. 実施例7で難燃処理を行ったスギ材における総発熱量及び燃焼速度の時間変化をプロットしたグラフである。It is the graph which plotted the time change of the total calorific value and combustion rate in the cedar material which performed the flame-retardant process in Example 7. FIG. 実施例7で難燃処理を行ったスギ材における総発熱量及び燃焼速度の時間変化をプロットしたグラフである。It is the graph which plotted the time change of the total calorific value and combustion rate in the cedar material which performed the flame-retardant process in Example 7. FIG. 実施例7で難燃処理を行ったスギ材における総発熱量及び燃焼速度の時間変化をプロットしたグラフである。It is the graph which plotted the time change of the total calorific value and combustion rate in the cedar material which performed the flame-retardant process in Example 7. FIG.

本発明の第1の実施形態に係る木質材料処理組成物は、1.2〜3mol/Lのリン酸又はリン酸イオンと、0.15〜0.5mol/Lのアルカリ土類金属イオンと、0.04〜0.4mol/Lのアルカリ金属イオンと、1.0〜2.0mol/Lのアンモニウムイオンとを含む水溶液に、水溶液1Lあたりケイ素原子数換算で0.05〜0.5molとなる量のケイ酸化合物を添加することにより得られる水溶液状の組成物であり、塗布又は加圧注入により木質材料に含浸させることができる。 The woody material treatment composition according to the first embodiment of the present invention includes 1.2 to 3 mol / L phosphoric acid or phosphate ions, 0.15 to 0.5 mol / L alkaline earth metal ions, In an aqueous solution containing 0.04 to 0.4 mol / L alkali metal ions and 1.0 to 2.0 mol / L ammonium ions, the amount is 0.05 to 0.5 mol in terms of silicon atoms per liter of the aqueous solution. An aqueous composition obtained by adding an amount of a silicic acid compound, and can be impregnated into a woody material by coating or pressure injection.

各成分の組成は、上記範囲内で、pH、含浸後のケイ酸化合物の重合速度等を調節するために適宜調節することができる。例えば、木質材料処理組成物のpHを中性付近にするためには、リン酸の添加量を減少させ、アンモニウム塩の添加量を増大させる。 The composition of each component can be appropriately adjusted within the above range in order to adjust the pH, the polymerization rate of the silicic acid compound after impregnation, and the like. For example, in order to make the pH of the woody material treatment composition near neutral, the amount of phosphoric acid added is decreased and the amount of ammonium salt added is increased.

アルカリ金属イオン及びアルカリ土類金属イオンを含む金属塩としては、これらの属に属する任意の金属塩を用いることができる。すなわち、アルカリ金属塩としては、リチウム、ナトリウム、カリウム、ルビジウム及びセシウム塩を、アルカリ土類金属塩としては、マグネシウム、カルシウム、ストロンチウム及びバリウム塩をそれぞれ用いることができる。これらのうち、アルカリ金属塩としてはカリウム塩、アルカリ土類金属塩としてはカルシウム塩が特に好ましく用いられる。これらの金属塩及びアンモニウム塩の陰イオンは、水酸化物、ハロゲン化物、炭酸イオン(炭酸水素イオンHCO 及び炭酸イオンCO 2−の両者を含む。)、硝酸イオン、硫酸イオン(硫酸水素イオンHSO 及び硫酸イオンSO 2−の両者を含む。)、カルボン酸イオン、スルホン酸イオン、リン酸イオン(リン酸二水素イオンHPO 、リン酸水素イオンHPO 2−及びリン酸イオンPO 3−の三者を含む。)、過塩素酸イオン等のいずれであってもよいが、好ましくはリン酸イオンである。 As a metal salt containing an alkali metal ion and an alkaline earth metal ion, any metal salt belonging to these genera can be used. That is, lithium, sodium, potassium, rubidium and cesium salts can be used as the alkali metal salt, and magnesium, calcium, strontium and barium salts can be used as the alkaline earth metal salt. Of these, potassium salts are particularly preferably used as alkali metal salts, and calcium salts are particularly preferably used as alkaline earth metal salts. The anions of these metal salts and ammonium salts are hydroxides, halides, carbonate ions (including both bicarbonate ions HCO 3 and carbonate ions CO 3 2− ), nitrate ions, sulfate ions (hydrogen sulfate). Ion HSO 4 and sulfate ion SO 4 2− ), carboxylate ion, sulfonate ion, phosphate ion (dihydrogen phosphate ion H 2 PO 4 , hydrogen phosphate ion HPO 4 2− and Any one of phosphoric acid ions PO 4 3− ) and perchloric acid ions may be used, but phosphate ions are preferred.

リン酸イオンを含む金属塩としては、水に溶解してリン酸イオンを生じる任意のものを用いることができ、具体例としては、(オルト)リン酸塩、リン酸水素塩、リン酸二水素塩、二リン酸塩、トリポリリン酸塩、ポリリン酸塩等が挙げられる。木質材料処理組成物の製造に好ましく用いられる金属塩及びアンモニウム塩としては、リン酸二水素カリウム(KHPO)、リン酸二水素カルシウム(Ca(HPO)、リン酸二水素アンモニウム(NHPO)、リン酸水素カリウム(KHPO)、リン酸水素カルシウム(CaHPO)、リン酸水素アンモニウム((NHHPO)が挙げられる。 As the metal salt containing phosphate ions, any salt that dissolves in water to generate phosphate ions can be used. Specific examples include (ortho) phosphate, hydrogen phosphate, dihydrogen phosphate. Examples thereof include salts, diphosphates, tripolyphosphates, and polyphosphates. Examples of the metal salt and ammonium salt that are preferably used for the production of the woody material treatment composition include potassium dihydrogen phosphate (KH 2 PO 4 ), calcium dihydrogen phosphate (Ca (H 2 PO 4 ) 2 ), and diphosphate phosphate. Examples include ammonium hydrogen (NH 4 H 2 PO 4 ), potassium hydrogen phosphate (K 2 HPO 4 ), calcium hydrogen phosphate (CaHPO 4 ), and ammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ).

木質材料処理組成物は、水溶液1Lあたりケイ素原子数換算で0.05〜0.5molとなる量のケイ酸化合物を含んでいる。ケイ酸化合物は、水溶液に溶解していてもよく、コロイド等の状態で均一に分散した状態であってもよい。ケイ酸化合物としては、水溶液中で(オルト)ケイ酸イオン(SiO 4−)又は複数のケイ酸イオンが脱水縮合したポリケイ酸イオン又はポリシロキサンを生成できる任意のものであってよく、具体例としては、オルトケイ酸塩、メタケイ酸塩、無水シリカ、コロイド状シリカ、ポリアルコキシシラン等が挙げられる。 The woody material treatment composition contains a silicic acid compound in an amount of 0.05 to 0.5 mol in terms of the number of silicon atoms per liter of the aqueous solution. The silicic acid compound may be dissolved in an aqueous solution, or may be uniformly dispersed in a colloidal state or the like. The silicate compound may be an (ortho) silicate ion (SiO 4 4− ) or an arbitrary one capable of producing a polysilicate ion or polysiloxane obtained by dehydration condensation of a plurality of silicate ions in an aqueous solution. Examples thereof include orthosilicate, metasilicate, anhydrous silica, colloidal silica, and polyalkoxysilane.

木質材料処理組成物は、アルカリ土類金属塩、アルカリ金属塩、アンモニウム塩及びリン酸、及びケイ酸化合物を水に混合することにより調製される。それぞれの成分の量は、リン酸又はリン酸イオン、アルカリ土類金属イオン、アルカリ金属イオン、アンモニウムイオン及びケイ酸化合物が、それぞれ上記の範囲内の量となるように適宜調節される。木質材料処理組成物は、例えば、水溶液1Lあたり、0.2〜0.4molのリン酸二水素アルカリ土類金属塩と、0.04〜0.3molのリン酸二水素アルカリ金属塩と、0.6〜0.95molのリン酸水素アンモニウム塩とを、所定量のリン酸を含むリン酸水溶液に溶解後、水で所定量まで希釈し、得られた水溶液にケイ酸化合物を添加することにより調製することができる。 The woody material treatment composition is prepared by mixing alkaline earth metal salt, alkali metal salt, ammonium salt and phosphoric acid, and silicic acid compound in water. The amount of each component is appropriately adjusted so that phosphoric acid or phosphate ions, alkaline earth metal ions, alkali metal ions, ammonium ions, and silicate compounds are in amounts within the above ranges. The woody material treatment composition is, for example, 0.2 to 0.4 mol of alkaline earth metal dihydrogen phosphate, 0.04 to 0.3 mol of alkali metal dihydrogen phosphate, and 1 By dissolving 6 to 0.95 mol of ammonium hydrogenphosphate salt in a phosphoric acid aqueous solution containing a predetermined amount of phosphoric acid, diluting to a predetermined amount with water, and adding a silicate compound to the resulting aqueous solution Can be prepared.

なお、木質材料処理組成物に含まれるリン酸又はリン酸イオン、アルカリ土類金属イオン、アルカリ金属イオン、アンモニウムイオン及びケイ酸化合物の濃度の測定は、任意の公知の方法を用いて行うことができる。測定法の具体例としては、イオンクロマトグラフィー法、誘導結合プラズマ法(ICP)、原子吸光分析等の発光分析法、ケイ酸イオンに対するモリブデン酸比色法等が挙げられる。 The concentration of phosphoric acid or phosphate ion, alkaline earth metal ion, alkali metal ion, ammonium ion and silicate compound contained in the woody material treatment composition can be measured using any known method. it can. Specific examples of the measurement method include an ion chromatography method, an inductively coupled plasma method (ICP), an emission analysis method such as atomic absorption analysis, and a molybdic acid colorimetric method for silicate ions.

pHの調節及び難燃性の向上等のために、上記以外の他の成分を木質材料処理組成物に添加してもよい。添加することができる成分としては、アルカリ金属、アルカリ土類金属の炭酸塩、水酸化物、アルミニウム塩等が挙げられる。 In order to adjust pH and improve flame retardancy, other components than the above may be added to the woody material treatment composition. Examples of the component that can be added include carbonates, hydroxides, and aluminum salts of alkali metals and alkaline earth metals.

本発明の第2の実施形態に係る木質材料は、本発明の第1の実施形態に係る木質材料処理組成物を木質材料に含浸させる工程を有する木質材料の処理方法を用いて製造される。
木質材料の種類としては特に制限されず、任意の種類の樹木、草本類の茎、葉等より得られ、セルロース及びリグニンを主な成分とする材料を用いることができ、木材の場合、無垢材のみならず、合板や集成材を用いることもできる。また、形状及び寸法についても特に制限されない。
The wood material which concerns on the 2nd Embodiment of this invention is manufactured using the processing method of the wood material which has the process of making a wood material impregnate the wood material processing composition which concerns on the 1st Embodiment of this invention.
The type of wood material is not particularly limited, and materials obtained from any kind of tree, herbaceous stems, leaves, etc., and mainly composed of cellulose and lignin can be used. Not only plywood and laminated wood can be used. Also, the shape and dimensions are not particularly limited.

木質材料処理組成物の木質材料への含浸は、任意の公知の方法を用いて行うことができる。含浸の方法としては、木質材料の表面に木質材料処理組成物を塗布し浸透させる方法及び加圧注入する方法が挙げられるが、厚みの大きな板材、柱材等については、後者の方法がより好ましく、木質材料の防虫処理等において広く用いられている、JISA9002に準拠した加圧注入方法が特に好ましく用いられる。なお、木質材料処理組成物中への浸漬及び加圧を行う前に、木質材料に吸着された水分及び空気等の気体成分を除去し、含浸量を増大させるために、減圧下で所定時間木質材料を放置する減圧処理を行ってもよい。蒸煮処理の例としては、120℃程度の蒸気で加熱後減圧乾燥を行う蒸煮減圧処理が挙げられる。 The impregnation of the wood material with the wood material treatment composition can be performed using any known method. Examples of the impregnation method include a method of applying and infiltrating the wood material treatment composition onto the surface of the wood material and a method of injecting under pressure, but the latter method is more preferable for thick plate materials, pillar materials, etc. In particular, a pressure injection method based on JIS A9002, which is widely used in insect-proofing treatment of wooden materials, is particularly preferably used. In addition, before dipping in the woody material treatment composition and pressurization, in order to remove gas components such as moisture and air adsorbed on the woody material and increase the amount of impregnation, the woody material is used for a predetermined time under reduced pressure. You may perform the decompression process which leaves a material as it is. As an example of the steaming process, a steaming decompression process in which drying at a reduced pressure is performed after heating with steam at about 120 ° C.

より具体的には、圧力容器中で木質材料処理組成物中に浸漬した木質材料を所定の時間、所定の圧力で加圧することにより木質材料処理組成物の含浸(加圧注入)が行われる。加圧時の圧力及び加圧時間は、木質材料の強度、形状及び寸法、含浸させようとする物質の量等に応じて適宜調節される。加圧は、浸漬容器中の大気圧を増大させることによって行ってもよく、浸漬容器に注入した木質材料処理組成物の静水圧を増大させることによって行ってもよい。 More specifically, the wood material treatment composition is impregnated (pressure injection) by pressurizing the wood material immersed in the wood material treatment composition in a pressure vessel at a predetermined pressure for a predetermined time. The pressure at the time of pressurization and the pressurization time are appropriately adjusted according to the strength, shape and size of the wood material, the amount of the substance to be impregnated, and the like. The pressurization may be performed by increasing the atmospheric pressure in the immersion container, or may be performed by increasing the hydrostatic pressure of the wood material treatment composition injected into the immersion container.

処理後、圧力容器から取り出された木質材料は、表面に付着した木質材料処理組成物を除去するために水で洗浄され、乾燥される。乾燥は、自然乾燥及び熱風乾燥のいずれでもよい。熱風乾燥には、木質材料中に含浸させたケイ酸化合物の重合を早めることにより、木質材料の処理に要する時間を短縮できる効果もある。なお、含浸量を増大させるために、後述する質量変化の測定結果のいかんに関わらず、乾燥後の木質材料について上述の加圧注入処理を繰り返し行ってもよい。 After the treatment, the wood material taken out from the pressure vessel is washed with water and dried to remove the wood material treatment composition adhering to the surface. Drying may be either natural drying or hot air drying. Hot air drying also has the effect of shortening the time required for processing the wood material by speeding up the polymerization of the silicic acid compound impregnated in the wood material. In order to increase the amount of impregnation, the above-described pressure injection treatment may be repeatedly performed on the dried woody material regardless of the measurement result of mass change described later.

木質材料処理組成物の含浸前後の前記木質材料の質量変化を木質材料の各々について測定し、単位体積あたりの含浸量が所定値以下のものについては再度木質材料処理組成物の含浸を行うことが好ましい。再度含浸を行った木質材料についても、各々について含浸前後の質量変化を測定し、なおも単位体積あたりの含浸量が所定値に達しないものについては廃棄する。 The change in mass of the wood material before and after impregnation with the wood material treatment composition is measured for each wood material, and if the amount of impregnation per unit volume is less than a predetermined value, the wood material treatment composition is impregnated again. preferable. For the wood material that has been impregnated again, the mass change before and after the impregnation is measured, and those that do not reach the predetermined amount per unit volume are discarded.

更に、木質材料中に含浸させたケイ酸化合物の重合を早めるために、洗浄及び風乾後に加熱処理を行ってもよい。 Furthermore, in order to accelerate the polymerization of the silicic acid compound impregnated in the wood material, heat treatment may be performed after washing and air drying.

木質材料中に含浸させた各成分の濃度は、X線マイクロアナライザー(XPS)等の任意の放置の方法を用いて決定できる。 The concentration of each component impregnated in the woody material can be determined using an arbitrary leaving method such as an X-ray microanalyzer (XPS).

含浸処理後に含浸容器に残留した木質材料処理組成物は、必要ならば含有成分の分析(上述の方法を用いて行うことができる。)及び/又は不足する成分の補充を行った上で、再度含浸処理に用いることができる。この場合において、木質材料処理組成物に着色が見られる場合には、含浸により木質材料への着色が起こり、品質低下を起こすおそれがあるが、活性炭処理を行うことにより着色分を除去することが可能であり、再度含浸処理に使用しても木質材料の着色の問題は起こらないことが確認された。 The woody material treatment composition remaining in the impregnation container after the impregnation treatment is analyzed again if necessary, after analysis of the contained components (can be carried out using the above-mentioned method) and / or replenishment of the missing components. It can be used for impregnation treatment. In this case, when the wood material treatment composition is colored, the wood material may be colored by impregnation, and the quality may be deteriorated. However, the activated carbon treatment may remove the colored matter. It was confirmed that the problem of coloring the woody material did not occur even if it was used again for the impregnation treatment.

このようにして得られる木質材料は、建築基準法施行令第1条第5号の準不燃材料、同条第6号の難燃材料、又は建築基準法第2条第9号の不燃材料の基準に適合する。上述のこれらの基準に適合するか否かについては、これらの基準法で定める技術的基準に適合する任意の試験方法により確認することができるが、試験方法の具体例としては、ISO−5660に準拠するコーンカロリーメーター法による発熱性試験が挙げられる。 The wood material obtained in this way is the quasi-incombustible material of Article 1, Item 5 of the Building Standards Law Enforcement Order, the flame-retardant material of Article 6 of the same, or the incombustible material of Article 2, Item 9 of the Building Standards Act. Meets standards. Whether or not these standards are met can be confirmed by any test method that meets the technical standards defined by these standards. Specific examples of test methods are described in ISO-5660. The exothermic test by the corn calorimeter method to which it conforms is mentioned.

コーンカロリーメーターとは、大きさ10cm×10cmの試験片をコーン型ヒーターで加熱し、発生するガス中の酸素濃度を測定する装置である。試験片は、50kw/mで加熱し、電気スパークで着火させ、燃焼による減少する酸素濃度より、発熱量及び発熱速度が計算される。
このようにして求められる発熱速度が、所定時間(不燃材料:20分、準不燃材料:10分、難燃材料:5分)の合計発熱量が8MJ/m未満であり、かつ200kW/mを超える発熱速度が10秒以上継続しない場合、発熱性試験に合格したと判定される。
A cone calorimeter is a device that heats a test piece having a size of 10 cm × 10 cm with a cone heater and measures the oxygen concentration in the generated gas. The test piece is heated at 50 kw / m 2 , ignited by an electric spark, and the calorific value and the heat generation rate are calculated from the oxygen concentration decreased by combustion.
The heat generation rate thus obtained is less than 8 MJ / m 2 in total heat generation for a predetermined time (non-combustible material: 20 minutes, semi-incombustible material: 10 minutes, flame-retardant material: 5 minutes), and 200 kW / m When the heat generation rate exceeding 2 does not continue for 10 seconds or more, it is determined that the heat generation test has been passed.

このようにして得られる木質材料は、材質、大きさ、形状、不燃性能等に応じて任意の用途に用いることができる。必要に応じて、表面加工(サンドペーパー、カンナ等による表面研削、塗装等)等の加工を適宜行ってもよい。 The woody material thus obtained can be used for any application depending on the material, size, shape, noncombustibility, and the like. If necessary, processing such as surface processing (surface grinding, painting, etc. with sandpaper, canna) may be appropriately performed.

次に、本発明の作用効果を確認するために行った実施例について説明する。
実施例1:木質材料処理組成物の調製(1)
水温20〜25℃の水789.4gを容器に入れ、リン酸(85%)145.1gを加えて撹拌し、溶解させた。このリン酸水溶液にリン酸二水素カルシウム一水和物(Ca(HPO・HO)85.0gを加えて撹拌した。4〜5分間撹拌を続けると固体が全て溶解し、透明な溶液となった。次いで、この溶液にリン酸二水素カリウム(KHPO)14.2gを加えて撹拌した。2〜3分間撹拌を続けると固体が全て溶解し、透明な溶液となった。次いで、リン酸水素二アンモニウム((NHHPO)122.7gを加えて撹拌した。5〜6分間撹拌を続けると固体が全て溶解し、透明な溶液となった。次いで、得られた溶液に無水ケイ酸(30.5%)23.6gを加えて撹拌後、比重1.18、pH2.7の水溶液である木質材料処理組成物1L(1180g)を得た。
Next, examples carried out for confirming the effects of the present invention will be described.
Example 1: Preparation of woody material treatment composition (1)
789.4 g of water having a water temperature of 20 to 25 ° C. was put in a container, 145.1 g of phosphoric acid (85%) was added, and the mixture was stirred and dissolved. To this phosphoric acid aqueous solution, 85.0 g of calcium dihydrogen phosphate monohydrate (Ca (H 2 PO 4 ) 2 .H 2 O) was added and stirred. When stirring was continued for 4 to 5 minutes, all the solids were dissolved and a transparent solution was obtained. Next, 14.2 g of potassium dihydrogen phosphate (KH 2 PO 4 ) was added to this solution and stirred. When stirring was continued for 2 to 3 minutes, all solids were dissolved and a transparent solution was obtained. Next, 122.7 g of diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) was added and stirred. When stirring was continued for 5 to 6 minutes, all the solids were dissolved, and a transparent solution was obtained. Next, 23.6 g of anhydrous silicic acid (30.5%) was added to the resulting solution and stirred, to obtain 1 L (1180 g) of a wood material treatment composition, which is an aqueous solution having a specific gravity of 1.18 and a pH of 2.7.

実施例2:木質材料処理組成物の調製(2)
水温20〜25℃の水15,788gを容器に入れ、リン酸(85%)2241.2gを加えて撹拌し、溶解させた。このリン酸水溶液にリン酸二水素カルシウム一水和物(Ca(HPO・HO)1700gを加えて撹拌した。4〜5分間撹拌を続けると固体が全て溶解し、透明な溶液となった。次いで、この溶液にリン酸二水素カリウム(KHPO)284gを加えて撹拌した。2〜3分間撹拌を続けると固体が全て溶解し、透明な溶液となった。次いで、リン酸水素二アンモニウム((NHHPO)2454gを加えて撹拌した。5〜6分間撹拌を続けると固体が全て溶解し、透明な溶液となった。次いで、得られた溶液に無水ケイ酸(30.5%)472gを加えて撹拌後、比重1.18、pH2.7の水溶液である木質材料処理組成物20L(23,600g)を得た。
Example 2: Preparation of woody material treatment composition (2)
15,788 g of water having a water temperature of 20 to 25 ° C. was put in a container, 2241.2 g of phosphoric acid (85%) was added, and the mixture was stirred and dissolved. To this phosphoric acid aqueous solution, 1700 g of calcium dihydrogen phosphate monohydrate (Ca (H 2 PO 4 ) 2 .H 2 O) was added and stirred. When stirring was continued for 4 to 5 minutes, all the solids were dissolved and a transparent solution was obtained. Next, 284 g of potassium dihydrogen phosphate (KH 2 PO 4 ) was added to this solution and stirred. When stirring was continued for 2 to 3 minutes, all solids were dissolved and a transparent solution was obtained. Next, 2454 g of diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) was added and stirred. When stirring was continued for 5 to 6 minutes, all the solids were dissolved, and a transparent solution was obtained. Next, 472 g of silicic acid anhydride (30.5%) was added to the resulting solution and stirred, to obtain a wood material treatment composition 20L (23,600 g) which was an aqueous solution having a specific gravity of 1.18 and pH 2.7.

実施例3:難燃処理スギ材の調製
スギ製の壁材(本実加工品:以下、「スギ材」という)(W=115mm、L=2000mm、T=15mm、体積3.45×10−3、含水率15%以下)、及び実施例2において調製した木質材料処理組成物を用い、下記のようにして処理を行った。
加圧含浸装置のタンク内にスギ材を入れ、浮上防止処置を行った後に、タンク内圧を負圧度−0.1MPaに減圧後、1時間減圧処理を行った。減圧状態のタンク内に木質材料処理組成物(スギ材1m当たり385L)を速やかに加え、スギ材が浸漬された状態でタンク内を加圧して、タンク内圧1MPaで90分間保持後、45分かけて大気圧まで自然減圧した。タンクから取り出したスギ材を水洗後、4時間自然乾燥した。次に室温60℃前後の温風乾燥室中で47時間乾燥させた。乾燥後の含水率は15%以下であった。
Example 3: Preparation of flame-retardant treated cedar material Cedar wall material (actually processed product: hereinafter referred to as “cedar material”) (W = 115 mm, L = 2000 mm, T = 15 mm, volume 3.45 × 10 − 3 m 3 , moisture content of 15% or less) and the woody material treatment composition prepared in Example 2 were used for the treatment as follows.
After the cedar material was put in the tank of the pressure impregnation apparatus and the anti-floating treatment was performed, the tank internal pressure was reduced to a negative pressure of -0.1 MPa, and then the pressure reduction treatment was performed for 1 hour. Quickly added the woody material treatment composition into the tank under evacuation (Sugi 1 m 3 per 385L), the tank in a state in which cedar material is immersed pressurized, after 90 minute hold at tank pressure 1 MPa, 45 minutes The pressure was naturally reduced to atmospheric pressure. The cedar wood taken out from the tank was washed with water and then naturally dried for 4 hours. Next, it was dried in a warm air drying room at a room temperature of around 60 ° C. for 47 hours. The moisture content after drying was 15% or less.

1枚のスギ材を用いて、処理前後の質量の差から、単位体積当たり含浸された物質の量(以下「固着量」という。)を求めたところ、135kg/mであった。また、処理後長期間放置しても、反り、ねじれ等の変形、及びいわゆる「木焼け」と呼ばれる変色のいずれも見られなかった。リグニンの反応に起因する木焼けは、特に酸性の処理液を用いた場合に顕著に見られることが知られているが、興味深いことに、本実施例においては観測されなかった。 Using one cedar material, the amount of substance impregnated per unit volume (hereinafter referred to as “fixed amount”) was determined from the difference in mass before and after the treatment, and found to be 135 kg / m 3 . Further, even after being left for a long time after the treatment, none of deformation such as warping, twisting, or discoloration called “wood burn” was observed. It is known that woodburn caused by the reaction of lignin is noticeable particularly when an acidic treatment solution is used, but interestingly, it was not observed in this example.

実施例4:難燃処理スギ材の調製
スギ材(W=105mm、L=1920mm、T=15mm、体積3.024×10−3)、及び実施例2において調製した木質材料処理組成物を用い、木質材料処理組成物の注入量を増大(スギ材1m当たり570L)させ、タンク内圧1MPaで180分間保持後、60分かけて大気圧まで自然減圧しその後実施例3と同様の手順により、スギ材の含浸処理を行った。
2枚のスギ材を用いて、処理前後の質量の差から、単位体積当たり含浸された物質の量を求めたところ、それぞれ219.3kg/m、及び195kg/mであった。また、処理後長期間放置しても、反り、ねじれ等の変形、及びいわゆる「木焼け」と呼ばれる変色のいずれも見られなかった。
Example 4: Preparation of flame-retardant treated cedar wood Cedar wood (W = 105 mm, L = 1920 mm, T = 15 mm, volume 3.024 × 10 −3 m 3 ), and wood material treatment composition prepared in Example 2 the use, increasing the injection amount of wood material treatment composition was (Sugi 1 m 3 per 570L) is, after 180 minute hold at tank pressure 1 MPa, 60 minutes over a procedure similar to natural vacuum and then example 3 to atmospheric pressure The cedar wood was impregnated.
Using two cedar, from the difference between before and after the treatment by mass, it was determined the amount of per unit volume impregnated material were respectively 219.3kg / m 3, and 195 kg / m 3. Further, even after being left for a long time after the treatment, none of deformation such as warping, twisting, or discoloration called “wood burn” was observed.

実施例5:難燃処理スギ材の調製
スギ材(W=100mm、L=230mm、T=30mm、体積0.69×10−3)、及び実施例2において調製した木質材料処理組成物を用いて、実施例3と同様の方法を用いて、スギ材の処理を行った。
2枚のスギ材を用いて、処理前後の質量の差から、単位体積当たり含浸された物質の量を求めたところ、それぞれ140.5kg/m、及び111kg/mであった。
Example 5: Preparation of flame-retardant treated cedar wood Cedar wood (W = 100 mm, L = 230 mm, T = 30 mm, volume 0.69 × 10 −3 m 3 ), and wood material treatment composition prepared in Example 2 Using the same method as in Example 3, the cedar wood was processed.
Using two cedar, from the difference between before and after the treatment by mass, was determined the amount of per unit volume impregnated material were respectively 140.5kg / m 3, and 111 kg / m 3.

実施例6:不燃性能試験
発熱性試験は、ISO−5660に準拠したコーンカロリーメーターを用い、100mm×100mmの板材を用いて行った。輻射熱量50kw/mのバーナーで放射熱を供給しながら電気スパークで点火し、10分間、及び20分間の総発熱量を測定した。本試験において、10分間の総発熱量が8MJ/m以下であるが20分間の総発熱量が8MJ/mを超える場合には「準不燃材」、20分間の総発熱量も8MJ/m以下である場合には「不燃材」であると判定される。結果は、下記の表1に示すとおりであった。なお、総発熱量の欄において、「○」は8MJ/m以下であることを、「×」は8MJ/mを超えていることをそれぞれ表す。
Example 6: Nonflammability performance test The exothermic test was conducted using a cone calorimeter in accordance with ISO-5660 and using a plate material of 100 mm x 100 mm. While supplying radiant heat with a burner having a radiant heat of 50 kw / m 2 , ignition was performed with an electric spark, and the total calorific value for 10 minutes and 20 minutes was measured. In this test, if the total calorific value for 10 minutes is 8 MJ / m 2 or less but the total calorific value for 20 minutes exceeds 8 MJ / m 2 , it is “quasi-incombustible material”, and the total calorific value for 20 minutes is also 8 MJ / m 2. When it is m 2 or less, it is determined as “non-combustible material”. The results were as shown in Table 1 below. In the total calorific value column, “◯” represents 8 MJ / m 2 or less, and “X” represents that it exceeds 8 MJ / m 2 .

これらの結果より、実施例3及び実施例5において難燃処理したスギ材は、建築基準法施行令第1条第5号の準不燃材料の基準に適合していた。一方、実施例4において処理したスギ材は、建築基準法第2条第9号の不燃材料の基準に適合していることが確認された。 From these results, the cedar materials treated with flame retardant in Example 3 and Example 5 were in conformity with the standards for quasi-incombustible materials in Article 1, Item 5 of the Building Standards Law Enforcement Ordinance. On the other hand, it was confirmed that the cedar materials processed in Example 4 conformed to the standards for non-combustible materials in Article 2, Item 9 of the Building Standard Law.

Figure 2011031405
Figure 2011031405

実施例7:木質材料処理組成物の含浸量と不燃性能との関係
厚さ17mmのスギ材(W=110mm、L=1700mm)を用い、木質材料処理組成物の注入量を変化させた以外は実施例3と同様の手順で含浸処理を行った。このようにして得られた硬化難燃処理スギ材(含浸量がそれぞれ110kg/m、130kg/m、140kg/m及び150kg/mである4種類)を長手方向に15等分し、長さ100mmの試験片を15枚(スギ材1枚当たり20mmの切り代分の損失が存在する。)切り出し、硬化難燃処理前後の密度変化から固着量を求めた。その後、実施例6に記載の条件(ISO−5660)で10分間、及び20分間の総発熱量並びに発熱量の時間変化を測定した。結果は下記の表2に示すとおりであった。なお、表2において、試料番号に枝番「10」を付したものは、切断前のスギ材を長手方向に15等分した場合において一端側から数えて10番目の位置から切り出されたものを表し、枝番を付していないものは、切断前のスギ材を長手方向に15等分した場合においていずれかの端部から切り出されたものを表す。
Example 7: Relationship between the impregnation amount of the wood material treatment composition and the non-combustibility performance Using a cedar wood (W = 110 mm, L = 1700 mm) with a thickness of 17 mm, except that the injection amount of the wood material treatment composition was changed. The impregnation treatment was performed in the same procedure as in Example 3. The cured flame-retardant cedar materials thus obtained (four types with impregnation amounts of 110 kg / m 3 , 130 kg / m 3 , 140 kg / m 3 and 150 kg / m 3 ), respectively, are divided into 15 equal parts in the longitudinal direction. Then, 15 test pieces having a length of 100 mm were cut out (there was a loss of 20 mm per cedar material), and the amount of fixing was determined from the density change before and after the curing flame retardant treatment. Thereafter, the total calorific value and the temporal change of the calorific value for 10 minutes and 20 minutes were measured under the conditions described in Example 6 (ISO-5660). The results were as shown in Table 2 below. In Table 2, the sample number with the branch number “10” is the one cut out from the tenth position counted from one end when the cedar material before cutting is divided into 15 equal parts in the longitudinal direction. The one not represented by the branch number represents one that is cut out from one end when the cedar material before cutting is divided into 15 equal parts in the longitudinal direction.

表2の結果を基に、固着量と10分間、及び20分間の総発熱量との関係をプロットしたグラフを、それぞれ図1及び図2に示す。また、それぞれの試料(F11、F24、F35、F37)の総発熱量及び燃焼速度の時間変化をプロットしたグラフを、それぞれ、図3、4、5、6に示す。 Based on the result of Table 2, the graph which plotted the relationship between the fixed amount and the total calorific value for 10 minutes and 20 minutes is shown in FIG. 1 and FIG. 2, respectively. Moreover, the graph which plotted the time change of the total calorific value and combustion rate of each sample (F11, F24, F35, F37) is shown to FIG.

Figure 2011031405
Figure 2011031405

本試験において、10分間の総発熱量が8MJ/m以下であるが20分間の総発熱量が8MJ/mを超える場合には「準不燃材料」、20分間の総発熱量も8MJ/m以下である場合には「不燃材料」であると判定される。表2、図1及び図2の結果から明らかなように、全ての試料において「準不燃材料」の基準は達成されている。また、含浸量が0.15g/cmである試料番号F37とF11の試料については、「不燃材料」の基準が達成されていることがわかる。また、F24とF24−10、及びF35とF35−10との比較結果より、スギ材の位置による総発熱量及び燃焼速度に大きな差は見られないことがわかる。このことから、木質材料処理組成物は、スギ材の長手方向にわたってほぼ均一に含浸していることが示唆される。 In this test, if the total calorific value for 10 minutes is 8 MJ / m 2 or less but the total calorific value for 20 minutes exceeds 8 MJ / m 2 , it is “quasi-incombustible material”, and the total calorific value for 20 minutes is also 8 MJ / m 2. When m 2 or less, it is determined that the material is “non-combustible material”. As is apparent from the results in Table 2, FIG. 1 and FIG. 2, the “quasi-incombustible material” criterion is achieved in all samples. It can also be seen that the standard of “non-combustible material” is achieved for the samples of sample numbers F37 and F11 with an impregnation amount of 0.15 g / cm 3 . Moreover, it can be seen from the comparison results between F24 and F24-10, and F35 and F35-10 that there is no significant difference in the total calorific value and the burning rate depending on the position of the cedar material. This suggests that the woody material treatment composition is substantially uniformly impregnated along the longitudinal direction of the cedar wood.

更に、図1〜6より、いずれの試料についても発熱速度は常に200kW/mを大幅に下回っていた。これらの結果からも、全ての試料が準不燃材料及び不燃材料の基準を満たしていることが確認された。 Furthermore, from FIGS. 1 to 6, the heating rate was always significantly lower than 200 kW / m 2 for any sample. From these results, it was confirmed that all the samples satisfied the standards of the quasi-incombustible material and the incombustible material.

Claims (9)

1.2〜3mol/Lのリン酸又はリン酸イオンと、
0.15〜0.5mol/Lのアルカリ土類金属イオンと、
0.04〜0.4mol/Lのアルカリ金属イオンと、
1.0〜2.0mol/Lのアンモニウムイオンとを含む水溶液に、
前記水溶液1Lあたり、ケイ素原子数換算で0.05〜0.5molとなる量のケイ酸化合物を添加することにより得られることを特徴とする木質材料処理組成物。
1.2 to 3 mol / L of phosphoric acid or phosphate ions;
0.15 to 0.5 mol / L alkaline earth metal ions;
0.04 to 0.4 mol / L of alkali metal ions;
In an aqueous solution containing 1.0 to 2.0 mol / L of ammonium ions,
A woody material treatment composition obtained by adding a silicic acid compound in an amount of 0.05 to 0.5 mol in terms of the number of silicon atoms per liter of the aqueous solution.
前記アルカリ土類金属がカルシウムであることを特徴とする請求項1記載の木質材料処理組成物。 The woody material treatment composition according to claim 1, wherein the alkaline earth metal is calcium. 前記アルカリ金属がカリウムであることを特徴とする請求項1及び2のいずれか1項記載の木質材料処理組成物。 The woody material treatment composition according to any one of claims 1 and 2, wherein the alkali metal is potassium. 前記水溶液1Lあたり、
0.2〜0.4molのリン酸二水素アルカリ土類金属塩と、
0.04〜0.3molのリン酸二水素アルカリ金属塩と、
0.6〜0.95molのリン酸水素アンモニウム塩とを、
所定量のリン酸を含むリン酸水溶液に溶解して得られることを特徴とする請求項1から3のいずれか1項記載の木質材料処理組成物。
Per liter of the aqueous solution,
0.2 to 0.4 mol of alkaline earth metal dihydrogen phosphate,
0.04 to 0.3 mol of alkali metal dihydrogen phosphate,
0.6 to 0.95 mol of ammonium hydrogenphosphate salt,
The woody material treatment composition according to any one of claims 1 to 3, wherein the composition is obtained by dissolving in a phosphoric acid aqueous solution containing a predetermined amount of phosphoric acid.
請求項1〜4のいずれか1項記載の木質材料処理組成物を木質材料に含浸させることを特徴とする木質材料の処理方法。 A method for treating a wood material, comprising impregnating the wood material with the wood material treatment composition according to any one of claims 1 to 4. 減圧下で所定時間放置した木質材料を木質材料処理組成物に浸漬し、加圧下で該木質材料処理組成物を木質材料に含浸させることを特徴とする請求項5記載の木質材料の処理方法。 6. The method for treating a wood material according to claim 5, wherein the wood material left for a predetermined time under reduced pressure is immersed in the wood material treatment composition, and the wood material treatment composition is impregnated with the wood material treatment under pressure. 前記木質材料処理組成物の含浸前後の前記木質材料の質量変化を前記木質材料の各々について測定し、単位体積あたりの含浸量が所定値以下のものについては再度前記木質材料処理組成物の含浸を行うことを特徴とする請求項5及び6のいずれか1項記載の木質材料の処理方法。 The change in the mass of the wood material before and after impregnation with the wood material treatment composition is measured for each of the wood materials, and if the amount of impregnation per unit volume is a predetermined value or less, the wood material treatment composition is impregnated again. The method for treating a woody material according to any one of claims 5 and 6, wherein the method is performed. 請求項5から7のいずれか1項記載の木質材料の処理方法で処理することを特徴とする木質材料。 A wood material which is treated by the wood material treatment method according to any one of claims 5 to 7. 建築基準法施行令第1条第5号の準不燃材料、同条第6号の難燃材料、及び建築基準法第2条第9号の不燃材料の基準のいずれかに適合することを特徴とする請求項8記載の木質材料。 It conforms to any of the standards for quasi-incombustible materials in Article 1, Item 5 of the Building Standards Law Enforcement Ordinance, flame-retardant materials in Article 6 of the Article 6, and incombustible materials in Article 2, Item 9 of the Building Standards Act The woody material according to claim 8.
JP2009177132A 2009-07-29 2009-07-29 Woody material processing composition, method for processing woody material, and woody material processed by the method Ceased JP2011031405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009177132A JP2011031405A (en) 2009-07-29 2009-07-29 Woody material processing composition, method for processing woody material, and woody material processed by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009177132A JP2011031405A (en) 2009-07-29 2009-07-29 Woody material processing composition, method for processing woody material, and woody material processed by the method

Publications (1)

Publication Number Publication Date
JP2011031405A true JP2011031405A (en) 2011-02-17

Family

ID=43760979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009177132A Ceased JP2011031405A (en) 2009-07-29 2009-07-29 Woody material processing composition, method for processing woody material, and woody material processed by the method

Country Status (1)

Country Link
JP (1) JP2011031405A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144902A (en) * 1985-12-19 1987-06-29 松下電工株式会社 Manufacture of improved wood
JPH0251454A (en) * 1988-04-30 1990-02-21 Nippon Steel Chem Co Ltd Treatment of asbestos
JPH02258201A (en) * 1988-12-15 1990-10-19 Matsushita Electric Works Ltd Manufacture of modified wood
JPH02301401A (en) * 1989-05-17 1990-12-13 Koichi Nishimoto Flame-retarded veneer and its manufacture
JPH0825314A (en) * 1994-07-14 1996-01-30 Miyagi Pref Gov Manufacture of modified wood and modified wood
JPH09225903A (en) * 1996-02-27 1997-09-02 Sumitomo Chem Co Ltd Flame-retardant wooden material and manufacture thereof
JP2004090590A (en) * 2002-09-04 2004-03-25 Haruhiko Yamaguchi Multifunctional wood-based material and method for manufacturing the same
WO2005073343A1 (en) * 2004-01-28 2005-08-11 A. Y. Chemical Ltd. Fireproof agent, process for producing the same and method of fireproofing
JP2006346902A (en) * 2005-06-13 2006-12-28 Michio Kashima Manufacturing method of modified wood
JP2007204612A (en) * 2006-02-02 2007-08-16 Rispi 21 Kankyo Kaihatsu Kenkyusho:Kk Incombustible material, incombustible agent, and incombustible adhesive agent

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144902A (en) * 1985-12-19 1987-06-29 松下電工株式会社 Manufacture of improved wood
JPH0251454A (en) * 1988-04-30 1990-02-21 Nippon Steel Chem Co Ltd Treatment of asbestos
JPH02258201A (en) * 1988-12-15 1990-10-19 Matsushita Electric Works Ltd Manufacture of modified wood
JPH02301401A (en) * 1989-05-17 1990-12-13 Koichi Nishimoto Flame-retarded veneer and its manufacture
JPH0825314A (en) * 1994-07-14 1996-01-30 Miyagi Pref Gov Manufacture of modified wood and modified wood
JPH09225903A (en) * 1996-02-27 1997-09-02 Sumitomo Chem Co Ltd Flame-retardant wooden material and manufacture thereof
JP2004090590A (en) * 2002-09-04 2004-03-25 Haruhiko Yamaguchi Multifunctional wood-based material and method for manufacturing the same
WO2005073343A1 (en) * 2004-01-28 2005-08-11 A. Y. Chemical Ltd. Fireproof agent, process for producing the same and method of fireproofing
JP2006346902A (en) * 2005-06-13 2006-12-28 Michio Kashima Manufacturing method of modified wood
JP2007204612A (en) * 2006-02-02 2007-08-16 Rispi 21 Kankyo Kaihatsu Kenkyusho:Kk Incombustible material, incombustible agent, and incombustible adhesive agent

Similar Documents

Publication Publication Date Title
JP5079983B2 (en) Stable boron compound liquid composition, production method thereof and use thereof
CN103878847B (en) A kind of difficult firebrand material and its preparation method and application
US7955711B2 (en) Wood treatment solution and process
JPS61179242A (en) Fire retardant treatment of cellulosic material
JP2003211412A (en) Method for manufacturing incombustible lumber
EP3697585B1 (en) Improved flame retardancy of wood and other cellulose-based materials by in-situ mineralization
JP2007055271A (en) Manufacturing process of nonflammable wood plate and fire retardant solution
JP4221608B2 (en) Production method of non-combustible wood board
JP2011031405A (en) Woody material processing composition, method for processing woody material, and woody material processed by the method
JP4221599B2 (en) Production method of non-combustible wood board
JP2007160570A (en) Non-combusting/semi-non-combusting method of wood, non-combusting chemical liquid of wood and non-combusted/semi-non-combusted wood
JP2006231652A (en) Method for producing nonflammable wood
CN114012841B (en) Low-smoke antirust flame-retardant plywood and manufacturing method thereof
JP6894099B2 (en) Wood-based material treatment agent composition, treatment method of wood-based material and wood-based material treated by it
CN111070356B (en) Flame-retardant treatment process for wood plate for home decoration
KR101514899B1 (en) Composition and Manufacturing Method of self-exitinguishing fire-retardant wood by free carbon, metallic salts and micro-fibril by Modifide of Wood
JP2009234001A (en) Woody material treatment composition, woody material treatment method and woody material treated therewith
JP2678345B2 (en) Method for producing modified wood and modified wood
JPH0351104A (en) Manufacture of flame-retarded
JP5751691B2 (en) Incombustible agent for wood material, method for producing this incombustible agent for wood material, method for incombustible wood material using this incombustible agent for wood material, and incombustible wood material
JP2015155195A (en) Manufacturing method of fire-resistant lumber
JP2006082533A (en) Modified wood and its production method
JP7228823B2 (en) Composition for flame retardant treatment of wood material
JP5671435B2 (en) Incombustible composition
JPS62116106A (en) Improved wood

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120730

A521 Written amendment

Effective date: 20121107

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130613

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A045 Written measure of dismissal of application

Effective date: 20131029

Free format text: JAPANESE INTERMEDIATE CODE: A045