JP2011031267A - Resistance welding apparatus, resistance welding method, and electrode used therefor - Google Patents

Resistance welding apparatus, resistance welding method, and electrode used therefor Download PDF

Info

Publication number
JP2011031267A
JP2011031267A JP2009179224A JP2009179224A JP2011031267A JP 2011031267 A JP2011031267 A JP 2011031267A JP 2009179224 A JP2009179224 A JP 2009179224A JP 2009179224 A JP2009179224 A JP 2009179224A JP 2011031267 A JP2011031267 A JP 2011031267A
Authority
JP
Japan
Prior art keywords
electrode
workpiece
outer electrode
contact
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009179224A
Other languages
Japanese (ja)
Inventor
Hideyo Takeuchi
英世 竹内
Takashi Shinmyo
高史 新明
Takehiro Izumi
武宏 和泉
Koji Sugano
考司 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Obara Corp
Original Assignee
Daihatsu Motor Co Ltd
Obara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd, Obara Corp filed Critical Daihatsu Motor Co Ltd
Priority to JP2009179224A priority Critical patent/JP2011031267A/en
Publication of JP2011031267A publication Critical patent/JP2011031267A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reliably perform joining without causing any crack even with a high-hardness material by reliably bringing the outer electrode of a coaxial electrode into contact with a workpiece. <P>SOLUTION: The tip end 11 of an outer electrode 10 is made to be bitten in the workpiece W by gradually reducing the wall thickness of the tip end 11 of the outer electrode 10 toward the tip end side. Thus, a space to be formed between the workpiece W and the outer electrode 10 is absorbed, and the tip end 11 of the outer electrode 10 can be reliably brought into contact with the workpiece. Further, since the area of the tip end 11 of the outer electrode 10 is reduced, the contact pressure in the contact part of the outer electrode 10 with the workpiece W can be increased, and thus, force for pressing the electrode against the workpiece W can be reduced, and deformation of the workpiece W can be prevented. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、抵抗溶接装置、抵抗溶接方法、及びこれらに用いる電極に関する。   The present invention relates to a resistance welding apparatus, a resistance welding method, and an electrode used for these.

抵抗溶接方法として、例えば図15(a)に示すように、2枚の金属板を重ねたワークWの一方の面に2本の電極101・102を接触させて通電する、いわゆる片側スポット溶接が知られている。この場合、電極101・102間には図15(b)に点線で示すような経路で電流が流れるため、各電極101・102とワークWとの接触部のうち、相手電極側部分の電流密度が高くなって高温となり(高温部をS1で示す)、その反対側の電流密度が低くなって低温となる(低温部をS2で示す)。ワークの温度が高くなりすぎると、ワーク表面が部分的に溶融してワーク表面に割れが発生する恐れがあり、ワークの温度が低すぎると、ワークが十分に軟化せず、接合されない恐れがある。このため、電極に流す電流値は、前記接触部の高温部S1で割れが発生しないように、且つ、前記接触部の低温部S2でワークが十分に接合されるように設定する必要がある。   As a resistance welding method, for example, as shown in FIG. 15 (a), so-called one-side spot welding is performed in which two electrodes 101 and 102 are brought into contact with one surface of a workpiece W on which two metal plates are stacked and energized. Are known. In this case, a current flows between the electrodes 101 and 102 along a path indicated by a dotted line in FIG. 15B, and therefore, the current density of the counterpart electrode side portion of the contact portion between each electrode 101 and 102 and the workpiece W. Becomes higher and the temperature becomes higher (the high temperature portion is indicated by S1), and the current density on the opposite side becomes lower and the temperature becomes lower (the low temperature portion is indicated by S2). If the temperature of the workpiece becomes too high, the workpiece surface may partially melt and cracks may occur on the workpiece surface. If the workpiece temperature is too low, the workpiece may not be sufficiently softened and bonded. . For this reason, it is necessary to set the value of the current flowing through the electrodes so that cracks do not occur in the high temperature portion S1 of the contact portion and the workpiece is sufficiently joined in the low temperature portion S2 of the contact portion.

しかし、高張力鋼(ハイテン鋼)のように融点の高い材料を溶接する場合は、温度を少なくとも1000℃以上まで高める必要がある。このため、前記接触部の低温部S2が1000℃以上となるように電流値を大きくすると、高温部S1で割れが発生し、高温部S1で割れが発生しないように電流値を抑えると、低温部S2でワークが接合されないというジレンマが生じ、電流値を適切に設定することが極めて困難であった。   However, when welding a material having a high melting point such as high-tensile steel (high-tensile steel), it is necessary to increase the temperature to at least 1000 ° C. or higher. For this reason, when the current value is increased so that the low temperature portion S2 of the contact portion is 1000 ° C. or higher, cracking occurs in the high temperature portion S1, and if the current value is suppressed so that cracking does not occur in the high temperature portion S1, There was a dilemma that the workpieces were not joined at the part S2, and it was extremely difficult to set the current value appropriately.

例えば特許文献1には、図16(a)に示すように、筒状の外側電極201(第2の部分9)の内周に絶縁体202(電気的絶縁体8)を介して内側電極203(第1中央円筒形部分7)が同軸状に設けられた電極(以下、同軸電極と言う。)を有する溶接装置が示されている。このような同軸電極によれば、図16(b)に示すように、外側電極201と内側電極203との間における電流密度を周方向で均等に分布させることができるため、電極とワークとの接触部において、上記の高温部S1及び低温部S2のように温度差は形成されず、温度を均一化できる。従って、高張力鋼のような材料を溶接する場合であっても、ワークに割れを生じさせず、且つ、ワークを確実に接合することができる電流値を、比較的容易に設定することが可能となる。   For example, in Patent Document 1, as shown in FIG. 16A, an inner electrode 203 is disposed on an inner periphery of a cylindrical outer electrode 201 (second portion 9) via an insulator 202 (electrical insulator 8). A welding apparatus having an electrode (hereinafter referred to as a coaxial electrode) in which the (first central cylindrical portion 7) is provided coaxially is shown. According to such a coaxial electrode, the current density between the outer electrode 201 and the inner electrode 203 can be evenly distributed in the circumferential direction as shown in FIG. In the contact portion, a temperature difference is not formed unlike the high temperature portion S1 and the low temperature portion S2, and the temperature can be made uniform. Therefore, even when welding materials such as high-strength steel, it is possible to set the current value that does not cause cracks in the workpiece and that can reliably join the workpiece relatively easily. It becomes.

特開平4−284980号公報JP-A-4-284980 特開昭51−142453号公報JP 51-142453 A

上記特許文献1の構成において、内側電極203と外側電極201との間で電流密度を周方向で均一にするためには、内側電極203及び外側電極201の先端部を確実にワークに接触させる必要がある。しかし、例えば内側電極203と外側電極201との先端部がずれていると、図17に示すように内側電極203がワークWから浮いたり、図18に示すように外側電極201がワークWから浮いたりする恐れがある。また、図19に示すようにワークWに微小な凹部Pがあったり、外側電極201の先端部に微小な凹部が形成されたり(図示省略)すると、外側電極201の先端部の一部がワークに接触しない恐れがある。   In the configuration of Patent Document 1 above, in order to make the current density uniform between the inner electrode 203 and the outer electrode 201 in the circumferential direction, it is necessary to ensure that the tip portions of the inner electrode 203 and the outer electrode 201 are in contact with the workpiece. There is. However, if the tips of the inner electrode 203 and the outer electrode 201 are displaced, for example, the inner electrode 203 floats from the workpiece W as shown in FIG. 17, or the outer electrode 201 floats from the workpiece W as shown in FIG. There is a risk that. Further, as shown in FIG. 19, when the work W has a minute recess P or a minute recess is formed at the tip of the outer electrode 201 (not shown), a part of the tip of the outer electrode 201 becomes part of the workpiece. There is a risk of not touching.

また、同軸電極を用いて溶接を行う際には、同軸電極を所定の圧力でワークに押し付ける必要があるが、外側電極は通常の電極(図15参照)と比べて大径となるため、所定の面圧を確保するためには強い力でワークに押し付ける必要がある。このように電極をワークに強く押し付けると、ワークが撓んで、電極の先端部の一部がワークと非接触となる恐れがある。   Further, when welding is performed using the coaxial electrode, it is necessary to press the coaxial electrode against the workpiece with a predetermined pressure. However, since the outer electrode has a larger diameter than a normal electrode (see FIG. 15), a predetermined diameter is required. It is necessary to press against the work with a strong force in order to ensure the surface pressure. When the electrode is strongly pressed against the workpiece in this way, the workpiece is bent, and there is a possibility that a part of the tip portion of the electrode is not in contact with the workpiece.

以上のように、各電極とワークとの接触状態が悪化すると、各電極間の電流密度が不均一となり、同軸電極を採用したメリットが没却されることとなる。   As described above, when the contact state between each electrode and the workpiece deteriorates, the current density between the electrodes becomes non-uniform, and the merit of using the coaxial electrode is lost.

例えば、特許文献2に示されている溶接装置では、外側電極を内側電極に対して摺動自在とし、それぞれ別個に昇降可能とした構成が示されている。この溶接装置によれば、図17や図18に示すような場合には、内側電極と外側電極とを相対的に昇降させることで各電極をワークに接触させることができる。しかし、図19に示すように、外側電極の先端部の一部がワークに接触しないような場合には対応することができない。   For example, the welding apparatus shown in Patent Document 2 shows a configuration in which the outer electrode is slidable with respect to the inner electrode and can be moved up and down separately. According to this welding apparatus, in the case shown in FIGS. 17 and 18, each electrode can be brought into contact with the workpiece by relatively moving the inner electrode and the outer electrode up and down. However, as shown in FIG. 19, it is not possible to cope with a case where a part of the tip of the outer electrode does not contact the workpiece.

本発明の解決すべき課題は、同軸電極を用いた抵抗溶接において、各電極(特に外側電極)の先端部をワークに確実に接触させることにより、高硬度材料であっても、割れを発生させることなく、且つ、確実に接合することにある。   The problem to be solved by the present invention is that, in resistance welding using a coaxial electrode, the tip of each electrode (especially the outer electrode) is reliably brought into contact with the workpiece, thereby causing cracks even in a high-hardness material. It is to join without fail.

前記課題を解決するために、本発明は、筒状に形成された外側電極と、外側電極の内周に同軸状に配され、外側電極に対して中心軸方向に相対移動可能な内側電極とを備え、内側電極及び外側電極の先端部をワークに接触させて通電することでワークの溶接を行う抵抗溶接装置であって、外側電極の先端部の肉厚を先端側へ向けて徐々に小さくしたことを特徴とするものである。   In order to solve the above-described problems, the present invention provides an outer electrode formed in a cylindrical shape, an inner electrode that is coaxially arranged on the inner periphery of the outer electrode, and is relatively movable in the central axis direction with respect to the outer electrode. A resistance welding apparatus that welds the work by bringing the inner electrode and outer electrode tip portions into contact with the workpiece and energizing the workpiece, and gradually reducing the thickness of the outer electrode tip portion toward the tip side. It is characterized by that.

このように、外側電極の先端部の肉厚を先端側へ向けて徐々に小さくすることで、外側電極の先端部の面積が小さくなるため、ワークとの当接部における面圧を高めることができ、外側電極の先端部をワークに食い込ませることが可能となる。これにより、ワークの表面や外側電極の先端部に微小な凹部が形成されている場合でも、外側電極をワークに食い込ませることによりその凹部が吸収され、外側電極の先端部を確実にワークに接触させることができる。また、外側電極の先端部の面積が小さくなることで、外側電極とワークとの接触部における面圧を高めることができるため、電極をワークに押し付ける力を小さくすることができる。これにより、電極の押し付け力でワークが変形することで電極の先端部の一部がワークと非接触となる事態を回避できる。   In this way, by gradually reducing the thickness of the tip portion of the outer electrode toward the tip side, the area of the tip portion of the outer electrode is reduced, so that the surface pressure at the contact portion with the workpiece can be increased. This makes it possible to bite the tip of the outer electrode into the workpiece. As a result, even when a minute recess is formed on the surface of the workpiece or the tip of the outer electrode, the recess is absorbed by biting the outer electrode into the workpiece, and the tip of the outer electrode is securely in contact with the workpiece. Can be made. Moreover, since the surface pressure in the contact part of an outer electrode and a workpiece | work can be raised because the area of the front-end | tip part of an outer electrode becomes small, the force which presses an electrode to a workpiece | work can be made small. Accordingly, it is possible to avoid a situation in which a part of the tip of the electrode is not in contact with the work due to the work being deformed by the pressing force of the electrode.

すなわち、本発明は、筒状に形成された外側電極と、外側電極の内周に同軸状に配され、外側電極に対して中心軸方向に相対移動可能な内側電極とを有する抵抗溶接装置で溶接を行う方法であって、外側電極の先端部をワークに当接させて食い込ませると共に、内側電極の先端部をワークに当接させ、この状態で内側電極と外側電極との間で通電することにより溶接を行う溶接方法として特徴づけることもできる。   That is, the present invention is a resistance welding apparatus having an outer electrode formed in a cylindrical shape and an inner electrode that is coaxially arranged on the inner periphery of the outer electrode and is relatively movable in the central axis direction with respect to the outer electrode. In this method, welding is performed by bringing the tip of the outer electrode into contact with the work and causing the tip of the inner electrode to come into contact with the work. In this state, electricity is passed between the inner electrode and the outer electrode. Thus, it can be characterized as a welding method for performing welding.

また、上記の抵抗溶接装置において、筒状の外側電極の先端部に、ワークと接触しない非接触部を積極的に設ければ、外側電極とワークとの接触面積をさらに小さくすることができ、外側電極をより一層ワークに食い込みやすくすることができる。このとき、外側電極とワークとが接触する接触部と、両者が接触しない非接触部とを周方向等間隔に設けることで、内側電極と外側電極との間における電流密度を周方向で均等に分布させることができる。   In the resistance welding apparatus, if the non-contact portion that does not contact the workpiece is positively provided at the tip of the cylindrical outer electrode, the contact area between the outer electrode and the workpiece can be further reduced. The outer electrode can be further easily bite into the workpiece. At this time, by providing a contact portion where the outer electrode and the workpiece are in contact with each other and a non-contact portion where they are not in contact with each other at equal intervals in the circumferential direction, the current density between the inner electrode and the outer electrode is equalized in the circumferential direction Can be distributed.

以上のように、本発明によれば、外側電極の全面をワークに確実に接触させることができるため、高硬度材料であっても、割れを発生させることなく、且つ、確実に溶接することができる。   As described above, according to the present invention, since the entire surface of the outer electrode can be reliably brought into contact with the workpiece, even a high-hardness material can be reliably welded without causing cracks. it can.

溶接装置の断面図である。It is sectional drawing of a welding apparatus. 同軸電極の断面図である。It is sectional drawing of a coaxial electrode. 同軸電極の正面図である。It is a front view of a coaxial electrode. 同軸電極の下面図である。It is a bottom view of a coaxial electrode. 内側電極の先端部の断面図である。It is sectional drawing of the front-end | tip part of an inner side electrode. 同軸電極をワークに当接させる手順を示す断面図である。It is sectional drawing which shows the procedure which makes a coaxial electrode contact | abut to a workpiece | work. 同軸電極をワークに当接させる手順を示す断面図である。It is sectional drawing which shows the procedure which makes a coaxial electrode contact | abut to a workpiece | work. 外側電極とワークとの当接部を拡大して示す断面図である。It is sectional drawing which expands and shows the contact part of an outer side electrode and a workpiece | work. 外側電極をワークに食い込ませた状態を示す断面図である。It is sectional drawing which shows the state which made the outer side electrode dig into a workpiece | work. 第2実施形態に係る溶接装置の同軸電極をワークに当接させる手順を示す断面図である。It is sectional drawing which shows the procedure which contact | abuts the coaxial electrode of the welding apparatus which concerns on 2nd Embodiment to a workpiece | work. 第2実施形態に係る溶接装置の同軸電極をワークに当接させる手順を示す断面図である。It is sectional drawing which shows the procedure which contact | abuts the coaxial electrode of the welding apparatus which concerns on 2nd Embodiment to a workpiece | work. 第3実施形態に係る溶接装置の同軸電極をワークに当接させる手順を示す断面図である。It is sectional drawing which shows the procedure which contact | abuts the coaxial electrode of the welding apparatus which concerns on 3rd Embodiment to a workpiece | work. 第3実施形態に係る溶接装置の同軸電極をワークに当接させる手順を示す断面図である。It is sectional drawing which shows the procedure which contact | abuts the coaxial electrode of the welding apparatus which concerns on 3rd Embodiment to a workpiece | work. 第3実施形態に係る溶接装置の同軸電極をワークに当接させる手順を示す断面図である。It is sectional drawing which shows the procedure which contact | abuts the coaxial electrode of the welding apparatus which concerns on 3rd Embodiment to a workpiece | work. (a)は、従来の電極による抵抗溶接の様子を示す断面図であり、(b)は、ワーク表面における電流密度の分布を示す平面図である。(A) is sectional drawing which shows the mode of the resistance welding by the conventional electrode, (b) is a top view which shows distribution of the current density in the workpiece | work surface. (a)は、従来の同軸電極による抵抗溶接の様子を示す断面図であり、(b)は、ワーク表面における電流密度の分布を示す平面図である。(A) is sectional drawing which shows the mode of the resistance welding by the conventional coaxial electrode, (b) is a top view which shows distribution of the current density in the workpiece | work surface. 従来の同軸電極をワークに当接させた状態を示す断面図である。It is sectional drawing which shows the state which made the conventional coaxial electrode contact | abutted to the workpiece | work. 従来の同軸電極をワークに当接させた状態を示す断面図である。It is sectional drawing which shows the state which made the conventional coaxial electrode contact | abutted to the workpiece | work. 従来の同軸電極をワークに当接させた状態を示す断面図である。It is sectional drawing which shows the state which made the conventional coaxial electrode contact | abutted to the workpiece | work.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の第1実施形態に係る抵抗溶接装置は、図1に示すように、筒状の外側電極10、及び外側電極10の内周に配された内側電極20を有する同軸電極30と、同軸電極30を支持する支持部40と、支持部40に対して外側電極10を軸方向に移動させるための外側電極移動手段(本実施形態ではスプリング50)と、支持部40に対して内側電極20を軸方向に移動させるための内側電極移動手段(本実施形態ではシリンダ60)と、支持部40を介して同軸電極30全体を中心軸方向に移動させる同軸電極移動手段(本実施形態では昇降機70)とを備える。外側電極10及び内側電極20は、図2に示すように、コイル81を介して電源80に接続される。外側電極10と内側電極20との径方向間には、円筒状の絶縁部材90が配される。尚、本実施形態では、同軸電極30の中心軸方向を鉛直方向とし、同軸電極30を降下させて外側電極10及び内側電極20の先端部をワークWの上面に当接させる場合を示す。   As shown in FIG. 1, the resistance welding apparatus according to the first embodiment of the present invention is coaxial with a cylindrical outer electrode 10 and a coaxial electrode 30 having an inner electrode 20 disposed on the inner periphery of the outer electrode 10. A support portion 40 that supports the electrode 30, an outer electrode moving means (a spring 50 in this embodiment) for moving the outer electrode 10 in the axial direction with respect to the support portion 40, and an inner electrode 20 with respect to the support portion 40 The inner electrode moving means (cylinder 60 in the present embodiment) for moving the electrode in the axial direction and the coaxial electrode moving means (the elevator 70 in the present embodiment) for moving the entire coaxial electrode 30 in the central axis direction via the support portion 40. ). The outer electrode 10 and the inner electrode 20 are connected to a power source 80 via a coil 81 as shown in FIG. A cylindrical insulating member 90 is disposed between the outer electrode 10 and the inner electrode 20 in the radial direction. In the present embodiment, the center axis direction of the coaxial electrode 30 is a vertical direction, and the coaxial electrode 30 is lowered to bring the outer electrode 10 and the tip of the inner electrode 20 into contact with the upper surface of the workpiece W.

外側電極10は、金属材料(例えばCr−Cu合金)で略円筒形状に形成され、先端部を下方に向けて配される。外側電極10の先端部11は、図2に示すように、先端側(下方)へ向けて徐々に肉厚が小さくなっており、本実施形態では軸方向断面で下向きに膨らんだ円弧状を成している。外側電極10には、図3及び図4に示すように、先端部11から基端側(上方)に延びた切り欠き部12が、円周方向等間隔の複数箇所(図示例では6箇所)に形成される。本実施形態では、切り欠き部12の円周方向幅L1は、隣り合う切り欠き部12間の円周方向間隔L2よりも小さくなるように設定される(図4参照)。 The outer electrode 10 is made of a metal material (for example, Cr—Cu alloy) in a substantially cylindrical shape, and is arranged with the tip portion directed downward. As shown in FIG. 2, the distal end portion 11 of the outer electrode 10 gradually decreases in thickness toward the distal end side (downward). In this embodiment, the distal end portion 11 forms an arc shape that swells downward in the axial section. is doing. As shown in FIGS. 3 and 4, the outer electrode 10 has notch portions 12 extending from the distal end portion 11 to the proximal end side (upward) at a plurality of locations at equal intervals in the circumferential direction (six locations in the illustrated example). Formed. In the present embodiment, the circumferential width L 1 of the notch 12 is set to be smaller than the circumferential interval L 2 between the adjacent notches 12 (see FIG. 4).

外側電極移動手段としてのスプリング50は、図2に示すように、外側電極10の上端部と支持部40との軸方向間に圧縮状態で配され、これにより外側電極10が常に下向きに付勢される。また、外側電極10の下方への移動は、支持部40に設けられた保持部41で規制される。具体的には、外側電極10の上端部に外径へ突出した係止部13が形成され、保持部41の下端部に内径向きの突出部42が形成され、これらの係止部13と突出部42とが軸方向で係合することで、この係合部より下方への外側電極10の移動が規制される。   As shown in FIG. 2, the spring 50 as the outer electrode moving means is arranged in a compressed state between the upper end portion of the outer electrode 10 and the support portion 40, so that the outer electrode 10 is always biased downward. Is done. Further, the downward movement of the outer electrode 10 is restricted by a holding portion 41 provided in the support portion 40. Specifically, a locking portion 13 protruding to the outer diameter is formed at the upper end portion of the outer electrode 10, and a protruding portion 42 facing the inner diameter is formed at the lower end portion of the holding portion 41. By engaging the portion 42 in the axial direction, the movement of the outer electrode 10 downward from the engaging portion is restricted.

内側電極20は、金属材料(例えばCr−Cu合金)で中実に形成され、外側電極10の内周面に固定された円筒形状の絶縁部材90の内周に挿入される。内側電極20は外側電極10に対して軸方向に相対移動可能に設けられ、本実施形態では、内側電極20は絶縁部材90に対して摺動可能に設けられる。内側電極20の先端部(下端部)21は、図5に示すように先細り形状とされ、詳しくは、先端部に形成された平坦面22と、平坦面22から上方へ向けて外径を徐々に大きくした円すい面23とが形成される。円すい面23の頂角αは100〜170度の範囲内に設定され、例えば140度に設定される。   The inner electrode 20 is formed of a metal material (for example, Cr—Cu alloy) and is inserted into the inner periphery of a cylindrical insulating member 90 fixed to the inner peripheral surface of the outer electrode 10. The inner electrode 20 is provided so as to be movable relative to the outer electrode 10 in the axial direction. In this embodiment, the inner electrode 20 is provided so as to be slidable with respect to the insulating member 90. The tip (lower end) 21 of the inner electrode 20 has a tapered shape as shown in FIG. 5, and specifically, a flat surface 22 formed at the tip and the outer diameter gradually from the flat surface 22 upward. And a conical surface 23 which is enlarged. The apex angle α of the conical surface 23 is set within a range of 100 to 170 degrees, for example, 140 degrees.

内側電極移動手段としてのシリンダ60は、図1に示すように支持部40に取付けられ、シリンダ60内の圧力を高めると、支持部40に対して内側電極20が下方に押し出される。   The cylinder 60 as the inner electrode moving means is attached to the support portion 40 as shown in FIG. 1, and when the pressure in the cylinder 60 is increased, the inner electrode 20 is pushed downward with respect to the support portion 40.

以下、上記構成の抵抗溶接装置による溶接方法の一例を説明する。   Hereinafter, an example of a welding method using the resistance welding apparatus having the above configuration will be described.

まず、図1に示すように、内側電極20の先端部を外側電極10の先端部よりも下方に突出させた状態とし、この状態で同軸電極30全体を昇降機70により降下させ、図6に示すように、内側電極20の先端部21をワークWの上面に当接させる。続けて同軸電極30を降下させると、内側電極20がシリンダ60内部の圧力に抗して相対的に後退する(実際は、内側電極20がワークWに当接して静止した状態で、シリンダ60等が降下する)。このとき、内側電極20の先端部21はシリンダ60内部の圧力によりワークWに押し付けられている。   First, as shown in FIG. 1, the tip of the inner electrode 20 is protruded downward from the tip of the outer electrode 10, and the entire coaxial electrode 30 is lowered by the elevator 70 in this state, and shown in FIG. In this way, the tip 21 of the inner electrode 20 is brought into contact with the upper surface of the workpiece W. When the coaxial electrode 30 is continuously lowered, the inner electrode 20 moves backward relatively against the pressure in the cylinder 60 (actually, the cylinder 60 or the like is in a state where the inner electrode 20 is in contact with the workpiece W and is stationary). Descent). At this time, the tip 21 of the inner electrode 20 is pressed against the workpiece W by the pressure inside the cylinder 60.

さらに同軸電極30を降下させると、図7に示すように、外側電極10の先端部11がワークWに当接し、スプリング50の弾性力に抗して外側電極10が支持部40に近づく側に相対的に移動する(実際は、外側電極10及び内側電極20がワークWに当接して静止した状態で、支持部40等が降下する)。   When the coaxial electrode 30 is further lowered, as shown in FIG. 7, the distal end portion 11 of the outer electrode 10 comes into contact with the work W, and the outer electrode 10 approaches the support portion 40 against the elastic force of the spring 50. Move relative to each other (actually, the support portion 40 and the like are lowered while the outer electrode 10 and the inner electrode 20 are in contact with the workpiece W and are stationary).

このとき、外側電極10をワークWに押し付ける力は、スプリング50が圧縮されるにつれて、スプリング50の弾性係数に従って大きくなる。上記のように、外側電極10の先端部11の肉厚が下方に向けて小さくなっているため、外側電極10とワークWとの当接部における接触面積を小さくすることができる。特に、本実施形態のように、先端部11を断面円弧状に形成すれば、図8に示すように、外側電極10とワークWとを軸方向断面で点接触(接触点をTで示す)させることができるため、両者の接触面積が非常に小さくなる。さらに、本実施形態では、外側電極10の先端部11に切り欠き部12を設けているため(図2参照)、外側電極10とワークWとの接触面積がより一層小さくなる。このように、外側電極10とワークWとの接触面積を小さくすることにより、両者の接触部における面圧が高まる。このため、外側電極10がスプリング50の弾性反力でワークWに押し付けられると、図9に示すように、外側電極10の先端部11をワークWに僅かに食い込ませることが可能となる。従って、ワークWの表面や外側電極10の先端部11に微妙な凹部が形成されている場合でも、外側電極10をワークWへ食い込ませることにより凹部を吸収して、外側電極10とワークWとを確実に接触させることができる。また、外側電極10とワークWとの面圧が高まることにより、外側電極10を下方に押し込む力(本実施形態ではスプリング50の弾性反力)が比較的小さくても足りるため、外側電極10の押し付け力によるワークWの変形を防止できる。   At this time, the force pressing the outer electrode 10 against the workpiece W increases in accordance with the elastic coefficient of the spring 50 as the spring 50 is compressed. As described above, since the thickness of the distal end portion 11 of the outer electrode 10 decreases downward, the contact area at the contact portion between the outer electrode 10 and the workpiece W can be reduced. In particular, if the tip portion 11 is formed in a circular arc shape as in the present embodiment, as shown in FIG. 8, the outer electrode 10 and the workpiece W are in point contact in the axial cross section (the contact point is indicated by T). Therefore, the contact area between the two becomes very small. Furthermore, in this embodiment, since the notch part 12 is provided in the front-end | tip part 11 of the outer side electrode 10 (refer FIG. 2), the contact area of the outer side electrode 10 and the workpiece | work W becomes still smaller. Thus, by reducing the contact area between the outer electrode 10 and the workpiece W, the surface pressure at the contact portion between the two is increased. For this reason, when the outer electrode 10 is pressed against the workpiece W by the elastic reaction force of the spring 50, the tip 11 of the outer electrode 10 can be slightly bited into the workpiece W as shown in FIG. Therefore, even when a delicate recess is formed on the surface of the workpiece W or the tip 11 of the outer electrode 10, the outer electrode 10 and the workpiece W are absorbed by biting the outer electrode 10 into the workpiece W. Can be reliably contacted. Further, since the surface pressure between the outer electrode 10 and the workpiece W increases, a force for pushing the outer electrode 10 downward (in this embodiment, the elastic reaction force of the spring 50) may be relatively small. Deformation of the workpiece W due to the pressing force can be prevented.

以上により、外側電極10及び内側電極20のワークWへの当接が完了する。このとき、外側電極10はスプリング50の弾性反力によりワークWに押し付けられ、内側電極20はシリンダ60内の圧力によりワークWに押し付けられている。   Thus, the contact of the outer electrode 10 and the inner electrode 20 with the workpiece W is completed. At this time, the outer electrode 10 is pressed against the workpiece W by the elastic reaction force of the spring 50, and the inner electrode 20 is pressed against the workpiece W by the pressure in the cylinder 60.

この状態で外側電極10と内側電極20との間に通電することにより、溶接が行われる。上記のように、外側電極10及び内側電極20が確実にワークWに当接しているため、電流密度を周方向で均一化することができる。本実施形態では、外側電極10とワークWとの面圧を高めるために外側電極10に切り欠き部12を設けているが、この切り欠き部12を周方向等間隔に設けているため、すなわち、外側電極10の先端部に、ワークに接触する接触部(断面円弧状曲面)とワークに接触しない非接触部(切り欠き部12)とを周方向等間隔に設けているため、電流密度を周方向で均等に分布させることができる。   In this state, welding is performed by energizing between the outer electrode 10 and the inner electrode 20. As described above, since the outer electrode 10 and the inner electrode 20 are reliably in contact with the workpiece W, the current density can be made uniform in the circumferential direction. In this embodiment, in order to increase the surface pressure between the outer electrode 10 and the workpiece W, the outer electrode 10 is provided with the notches 12, but since the notches 12 are provided at equal intervals in the circumferential direction, that is, Since the contact portion (curved cross-section curved surface) that contacts the workpiece and the non-contact portion (notch portion 12) that does not contact the workpiece are provided at the front end portion of the outer electrode 10 at equal intervals in the circumferential direction, It can be evenly distributed in the circumferential direction.

ところで、同軸電極30を用いて溶接すると、内側電極20とワークWとの接触部でスパッタが発生することがある。このスパッタが外側電極10の内周面に付着し、溶接中にワークW上に落下すると、通電を阻害する恐れがある。本実施形態では、外側電極10に切り欠き部12を形成しているため、外側電極10の内周で発生したスパッタが切り欠き部12を抜けて外部に抜けるため、外側電極10の内周面に付着するスパッタの量が低減され、通電を阻害する恐れを減じることができる。   By the way, when welding is performed using the coaxial electrode 30, spatter may occur at the contact portion between the inner electrode 20 and the workpiece W. If this spatter adheres to the inner peripheral surface of the outer electrode 10 and falls onto the workpiece W during welding, there is a possibility that energization is hindered. In the present embodiment, since the notch 12 is formed in the outer electrode 10, the sputter generated at the inner periphery of the outer electrode 10 passes through the notch 12 and escapes to the outside, so the inner peripheral surface of the outer electrode 10. The amount of spatter adhering to the substrate can be reduced, and the risk of hindering energization can be reduced.

本発明は、上記の実施形態に限られない。以下、本発明の他の実施形態を示す。   The present invention is not limited to the above embodiment. Hereinafter, other embodiments of the present invention will be described.

上記の第1実施形態では、昇降機70により同軸電極30を降下させて内側電極20をワークWに当接させているが、これに限られない。例えば、下記の第2実施形態に示すように、シリンダ60の押し出しにより内側電極20をワークWに当接させてもよい。   In the first embodiment described above, the coaxial electrode 30 is lowered by the elevator 70 to bring the inner electrode 20 into contact with the workpiece W. However, the present invention is not limited to this. For example, as shown in the following second embodiment, the inner electrode 20 may be brought into contact with the workpiece W by pushing out the cylinder 60.

具体的には、まず、図10に示すように、シリンダ60を後退させて内側電極20の先端部21を外側電極10の先端部11よりも上方に配置した状態で、昇降機70により同軸電極30を降下させる。そして、図11に示すように、外側電極10の先端部11をワークWに当接させ、スプリング50の弾性反力により先端部11をワークWに食い込ませる(図9参照)。その後、昇降機70を停止させ、シリンダ60で内側電極20を下方に押し出すことにより、内側電極20の先端部21をワークWに当接させる(図7参照)。   Specifically, first, as shown in FIG. 10, the coaxial electrode 30 is moved by the elevator 70 in a state where the cylinder 60 is retracted and the distal end portion 21 of the inner electrode 20 is disposed above the distal end portion 11 of the outer electrode 10. Descent. Then, as shown in FIG. 11, the tip 11 of the outer electrode 10 is brought into contact with the workpiece W, and the tip 11 is bitten into the workpiece W by the elastic reaction force of the spring 50 (see FIG. 9). Thereafter, the elevator 70 is stopped, and the inner electrode 20 is pushed downward by the cylinder 60, thereby bringing the tip 21 of the inner electrode 20 into contact with the workpiece W (see FIG. 7).

第1実施形態(図5〜図7参照)のように、昇降機70の降下により内側電極20をワークWに当接させると、昇降機70をゆっくり降下させることで、内側電極20をワークWにソフトに当接させることができる。これにより、内側電極20が当接する際にワークWに加わる衝撃が低減されるため、通電開始前におけるワークWの変形を抑えることができ、外観不良を回避されと共に、通電状態を良好にして溶接品質の向上を図ることができる。   As in the first embodiment (see FIGS. 5 to 7), when the inner electrode 20 is brought into contact with the workpiece W by the lowering of the elevator 70, the inner electrode 20 is softened to the workpiece W by slowly lowering the elevator 70. It can be made to contact. As a result, the impact applied to the workpiece W when the inner electrode 20 abuts is reduced, so that deformation of the workpiece W before the start of energization can be suppressed, appearance defects can be avoided, and the energized state can be improved and welding can be performed. The quality can be improved.

一方、第2実施形態(図10〜図11参照)のように、シリンダ60の押し出しで内側電極20をワークWに当接させる場合は、内側電極20がシリンダ60の圧力で一気に押し出されるため、ワークWが分厚い場合など、ワークWの変形の恐れが少ない場合に採用することができる。この場合、シリンダ60の押し出しによる内側電極20の衝撃により、ワークWを構成する2枚の金属板の間に形成された隙間を詰めることも考えられる。   On the other hand, as in the second embodiment (see FIGS. 10 to 11), when the inner electrode 20 is brought into contact with the workpiece W by pushing out the cylinder 60, the inner electrode 20 is pushed out at a stretch by the pressure of the cylinder 60. This can be employed when there is little risk of deformation of the workpiece W, such as when the workpiece W is thick. In this case, it is conceivable that the gap formed between the two metal plates constituting the workpiece W is closed by the impact of the inner electrode 20 due to the extrusion of the cylinder 60.

また、ワークWの金属板の間に隙間が形成されている場合、以下のような第3実施形態を採用することも可能である。すなわち、図12に示すように、内側電極20を外側電極10よりも上方に後退させた状態とし、この状態で同軸電極30を降下させ、外側電極10をワークWに当接させる。そして、さらに同軸電極30を降下させると、図13に示すようにスプリング50が圧縮され、このスプリング50の弾性反力により外側電極10が下方に付勢され、上側の板W1を押し下げる。これにより、上側の板W1と下側の板W2との間の隙間を埋めて両者が接触する。その後、図14に示すように、内側電極20をシリンダ(図示省略)で下方に押し出してワークWに当接させ、電極間に通電して溶接を行う。このように、外側電極10でワークWに形成されている隙間を埋めることで、溶接が行われる内側電極20の直下でワークWの板W1・W2を平面同士で接触させることができるため、良好な状態で溶接を行うことができる。尚、内側電極20のワークWへの当接方法は、上記のようにシリンダの押し出しにより行っても良いし、あるいは、スプリング50の圧縮により内側電極20を外側電極10に対して相対的に降下させることで行ってもよい。   Moreover, when the clearance gap is formed between the metal plates of the workpiece | work W, it is also possible to employ | adopt the following 3rd Embodiment. That is, as shown in FIG. 12, the inner electrode 20 is made to recede upward from the outer electrode 10, the coaxial electrode 30 is lowered in this state, and the outer electrode 10 is brought into contact with the workpiece W. When the coaxial electrode 30 is further lowered, the spring 50 is compressed as shown in FIG. 13, the outer electrode 10 is urged downward by the elastic reaction force of the spring 50, and the upper plate W1 is pushed down. As a result, the gap between the upper plate W1 and the lower plate W2 is filled and the two come into contact with each other. Thereafter, as shown in FIG. 14, the inner electrode 20 is pushed downward by a cylinder (not shown) and brought into contact with the workpiece W, and welding is performed by energizing the electrodes. In this way, by filling the gap formed in the workpiece W with the outer electrode 10, the plates W 1 and W 2 of the workpiece W can be brought into contact with each other directly below the inner electrode 20 to be welded. Welding can be performed in a stable state. The inner electrode 20 may be brought into contact with the workpiece W by pushing out the cylinder as described above, or the inner electrode 20 is lowered relative to the outer electrode 10 by compression of the spring 50. You may go by doing.

上記の第1〜第3実施形態の何れを採用するかは、昇降機70の降下やシリンダ60の押し出しのタイミングを設定することで簡単に変更することができるため、ワークWの材質や溶接品の用途に応じて、適宜使い分けを行えばよい。   Which one of the first to third embodiments is adopted can be easily changed by setting the lowering of the elevator 70 and the timing of pushing out the cylinder 60. What is necessary is just to use suitably according to a use.

また、上記の実施形態では、外側電極10の先端部11の形状が、軸方向断面で半円弧形状を成している場合を示しているが、肉厚が先端側へ向けて徐々に小さくなってさえいればこれに限定されず、例えば楕円弧状や台形状の軸方向断面を有する形状としてもよい(図示省略)。   Moreover, although the shape of the front-end | tip part 11 of the outer side electrode 10 has comprised the semicircular arc shape in the axial direction cross section in said embodiment, thickness becomes small gradually toward the front end side. However, the shape is not limited to this as long as it is, for example, an elliptical arc shape or a trapezoidal shape having an axial cross section (not shown) may be used.

また、上記では、外側電極移動手段としてスプリング50が設けられ、内側電極移動手段としてシリンダ60が設けられているが、これに限らず、例えば、外側電極移動手段としてシリンダを設けても良い。この場合、シリンダ内の圧力を調整することで、外側電極10のワークWへの当接圧力を調整することができる。   In the above description, the spring 50 is provided as the outer electrode moving means and the cylinder 60 is provided as the inner electrode moving means. However, the present invention is not limited to this. For example, a cylinder may be provided as the outer electrode moving means. In this case, the contact pressure of the outer electrode 10 on the work W can be adjusted by adjusting the pressure in the cylinder.

10 外側電極
11 先端部
12 切り欠き部
20 内側電極
30 同軸電極
40 支持部
50 スプリング
60 シリンダ
70 昇降機
80 電源
90 絶縁部材
DESCRIPTION OF SYMBOLS 10 Outer electrode 11 Tip part 12 Notch part 20 Inner electrode 30 Coaxial electrode 40 Support part 50 Spring 60 Cylinder 70 Elevator 80 Power supply 90 Insulation member

Claims (4)

筒状に形成された外側電極と、外側電極の内周に同軸状に配され、外側電極に対して中心軸方向に相対移動可能な内側電極とを備え、内側電極及び外側電極の先端部をワークに接触させて通電することで溶接を行う抵抗溶接装置であって、
外側電極の先端部の肉厚を、先端側へ向けて徐々に小さくしたことを特徴とする抵抗溶接装置。
A cylindrical outer electrode and an inner electrode coaxially arranged on the inner periphery of the outer electrode and movable relative to the outer electrode in the central axis direction. A resistance welding device that performs welding by contacting a work and energizing,
A resistance welding apparatus characterized in that the thickness of the tip of the outer electrode is gradually reduced toward the tip.
筒状の外側電極の先端部に、ワークと接触する接触部と、ワークと接触しない非接触部とを、周方向等間隔に設けた請求項1記載の抵抗溶接装置。   The resistance welding apparatus according to claim 1, wherein a contact portion that contacts the workpiece and a non-contact portion that does not contact the workpiece are provided at equal intervals in the circumferential direction at a tip portion of the cylindrical outer electrode. 筒状に形成された外側電極と、外側電極の内周に同軸状に配され、外側電極に対して中心軸方向に相対移動可能な内側電極とを有する抵抗溶接装置で溶接を行う方法であって、
外側電極の先端部をワークに当接させて食い込ませると共に、内側電極の先端部をワークに当接させ、この状態で内側電極と外側電極との間で通電することにより溶接を行う抵抗溶接方法。
This is a method of welding with a resistance welding apparatus having a cylindrical outer electrode and an inner electrode coaxially arranged on the inner periphery of the outer electrode and movable relative to the outer electrode in the central axis direction. And
A resistance welding method for performing welding by bringing the tip of the outer electrode into contact with the work and causing the tip of the inner electrode to come into contact with the work and energizing the inner electrode and the outer electrode in this state. .
筒状に形成された外側電極であって、先端部をワークに接触させ、内周に同軸状に配した内側電極との間で通電することによりワークの溶接を行う外側電極において、
先端部の肉厚を、先端側へ向けて徐々に小さくしたことを特徴とする外側電極。
In the outer electrode formed in a cylindrical shape, the tip is brought into contact with the workpiece, and the workpiece is welded by energizing between the inner electrode arranged coaxially on the inner periphery,
An outer electrode, wherein the thickness of the tip is gradually reduced toward the tip.
JP2009179224A 2009-07-31 2009-07-31 Resistance welding apparatus, resistance welding method, and electrode used therefor Pending JP2011031267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009179224A JP2011031267A (en) 2009-07-31 2009-07-31 Resistance welding apparatus, resistance welding method, and electrode used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009179224A JP2011031267A (en) 2009-07-31 2009-07-31 Resistance welding apparatus, resistance welding method, and electrode used therefor

Publications (1)

Publication Number Publication Date
JP2011031267A true JP2011031267A (en) 2011-02-17

Family

ID=43760862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009179224A Pending JP2011031267A (en) 2009-07-31 2009-07-31 Resistance welding apparatus, resistance welding method, and electrode used therefor

Country Status (1)

Country Link
JP (1) JP2011031267A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6255523B1 (en) * 2017-06-01 2017-12-27 電元社トーア株式会社 Metal resin bonding equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163392A (en) * 1984-08-20 1986-04-01 フイアツト・アウト・ソシエタ・ペル・アチオーニ Method and device for welding sheet metal
JPH11104846A (en) * 1997-10-03 1999-04-20 Toyota Motor Corp Coated conductive member joining device
JP2004223603A (en) * 2003-01-27 2004-08-12 Murata Mfg Co Ltd Resistance welding method, device therefor, and method of producing electronic component
JP2004276087A (en) * 2003-03-18 2004-10-07 Origin Electric Co Ltd Resistance welding apparatus
JP2004298880A (en) * 2003-03-28 2004-10-28 Origin Electric Co Ltd Resistance welding device
JP2006198676A (en) * 2004-12-24 2006-08-03 Daihatsu Motor Co Ltd Electrode for resistance welding and series spot welding equipment or indirect spot welding equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163392A (en) * 1984-08-20 1986-04-01 フイアツト・アウト・ソシエタ・ペル・アチオーニ Method and device for welding sheet metal
JPH11104846A (en) * 1997-10-03 1999-04-20 Toyota Motor Corp Coated conductive member joining device
JP2004223603A (en) * 2003-01-27 2004-08-12 Murata Mfg Co Ltd Resistance welding method, device therefor, and method of producing electronic component
JP2004276087A (en) * 2003-03-18 2004-10-07 Origin Electric Co Ltd Resistance welding apparatus
JP2004298880A (en) * 2003-03-28 2004-10-28 Origin Electric Co Ltd Resistance welding device
JP2006198676A (en) * 2004-12-24 2006-08-03 Daihatsu Motor Co Ltd Electrode for resistance welding and series spot welding equipment or indirect spot welding equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6255523B1 (en) * 2017-06-01 2017-12-27 電元社トーア株式会社 Metal resin bonding equipment
WO2018220892A1 (en) * 2017-06-01 2018-12-06 電元社トーア株式会社 Metal resin joining apparatus
JP2018202692A (en) * 2017-06-01 2018-12-27 電元社トーア株式会社 Metal resin joint device
US10518482B2 (en) 2017-06-01 2019-12-31 Dengensha Toa Co., Ltd. Metal-resin joining device

Similar Documents

Publication Publication Date Title
US8253056B2 (en) Resistance welding method and resistance welding apparatus
US9517526B2 (en) Spot welding apparatus and spot welding method
JP5958638B2 (en) Laser welding method and laser welding apparatus
KR102127991B1 (en) Resistance spot welding method and welded structure
JP5491093B2 (en) Resistance welding equipment
JP2019136748A (en) Resistance spot welding method
JP2012071333A (en) Spot welding method and spot welding apparatus
JP2023013804A (en) Joining device and joining method for friction stir joining and resistance welding
JP2011031267A (en) Resistance welding apparatus, resistance welding method, and electrode used therefor
JP2004098107A (en) Aluminum material resistance spot welding method
US20160039039A1 (en) Aluminum resistance spot welding tip and method of making the same
JP2009208120A (en) Manufacturing method of electric resistance welded tube
JP6712634B2 (en) Apparatus and method for high cycle rate, low resistance welding of metal sheets
JP6144323B2 (en) Bimetal screw manufacturing method
JP7255119B2 (en) Indirect spot welding device and welding method
KR101871077B1 (en) Resistance spot welding method and welded structure
JP2007283328A (en) Method for predicting occurrence of spatter in resistance spot welding, welding method and welding member
JP6090910B2 (en) Spot welding method
JP7479757B2 (en) Spot welding method
JP5789445B2 (en) Resistance welding method
US10449620B2 (en) Welding apparatus and welding method
KR102444935B1 (en) Manufacturing method and manufacturing apparatus of joined article
JP5037102B2 (en) Diffusion bonding method for highly conductive workpieces
US11590600B2 (en) Manufacturing method of joined member
JP2009101399A (en) Spot welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120626

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

A02 Decision of refusal

Effective date: 20131205

Free format text: JAPANESE INTERMEDIATE CODE: A02