JP2011031247A - Mold for continuous casting and method for manufacturing the same - Google Patents

Mold for continuous casting and method for manufacturing the same Download PDF

Info

Publication number
JP2011031247A
JP2011031247A JP2009176747A JP2009176747A JP2011031247A JP 2011031247 A JP2011031247 A JP 2011031247A JP 2009176747 A JP2009176747 A JP 2009176747A JP 2009176747 A JP2009176747 A JP 2009176747A JP 2011031247 A JP2011031247 A JP 2011031247A
Authority
JP
Japan
Prior art keywords
mass
continuous casting
casting mold
plating layer
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009176747A
Other languages
Japanese (ja)
Other versions
JP5185894B2 (en
Inventor
Suketaka Umeyama
祐登 梅山
Keisuke Yamamoto
圭祐 山本
Yasushi Takayama
泰志 高山
Naoko Hashimoto
直子 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Original Assignee
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd filed Critical Mishima Kosan Co Ltd
Priority to JP2009176747A priority Critical patent/JP5185894B2/en
Publication of JP2011031247A publication Critical patent/JP2011031247A/en
Application granted granted Critical
Publication of JP5185894B2 publication Critical patent/JP5185894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold for continuous casting capable of achieving improvement of tenacity and achieving further improvement of thermal shock resistance so as to prolong the life of the mold, and also to provide a method for manufacturing the same. <P>SOLUTION: In the mold for continuous casting and the method for manufacturing the same, a base plating layer 12 and a sprayed coating 13 on which surface roughening process are carried out are sequentially formed at a molten steel contact surface side. The sprayed coating 13 is formed by mixing a granular cermet material A composed of ≥10 mass% and ≤30 mass% of Cr<SB>3</SB>C<SB>2</SB>, ≥5 mass% and ≤15 mass% of Ni, and the balance WC with a granular material B composed of Ni or Ni based alloy. A thermal spray particle, in which the material B occupies ≥5 mass% and ≤30 mass% of a whole, is thermally sprayed by a flame spray machine 14, and the material B is made to exist at the grain boundary of the cermet material A. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鉄鋼等の製造に使用する連続鋳造用鋳型及びその製造方法に係り、更に詳細には、耐熱、耐食、及び耐摩耗性に優れる連続鋳造用鋳型及びその製造方法に関する。 The present invention relates to a continuous casting mold used for manufacturing steel and the like and a manufacturing method thereof, and more particularly to a continuous casting mold excellent in heat resistance, corrosion resistance, and wear resistance and a manufacturing method thereof.

従来、内面を溶射処理して耐摩耗性を高めた連続鋳造用鋳型としては、例えば、特許文献1に開示された鋳型がある。この鋳型の製造に際しては、析出硬化型銅合金からなる母材(以下、母材銅板ともいう)表面に、Ni等の下地めっきを施し、その上にNi−Cr系の自溶性合金を溶射した後、これを約1000℃に加熱している。これにより、母材銅板と下地Niめっき層との間、及び下地Niめっき層と溶射皮膜との間に、それぞれ拡散層を形成して冶金的に結合させ、母材銅板の上に強固な耐摩耗性を有する溶射皮膜を形成させている。 Conventionally, as a casting mold for continuous casting whose inner surface is thermally sprayed to improve wear resistance, for example, there is a mold disclosed in Patent Document 1. In the production of this mold, the surface of a base material made of a precipitation hardening type copper alloy (hereinafter also referred to as a base material copper plate) was subjected to base plating such as Ni, and a Ni—Cr based self-fluxing alloy was sprayed thereon. Thereafter, it is heated to about 1000 ° C. As a result, a diffusion layer is formed between the base copper plate and the base Ni plating layer and between the base Ni plating layer and the sprayed coating, and is bonded metallurgically, thereby providing a strong resistance on the base copper plate. A thermally sprayed coating having wear properties is formed.

しかし、上記したように、溶射後の母材銅板を1000℃程度に加熱する場合、母材銅板が変形する。このため、母材銅板の歪取り作業を行う必要があるが、歪取りを行っても連続鋳造用鋳型のバックフレームに組込めないことがあり、また仮にバックフレームに組込めても、母材銅板の平坦精度が劣るという問題がある。
更に、母材銅板の強度回復のため時効硬化熱処理を行う必要があり、その製造工程が極めて複雑多岐にわたるという問題がある。ここで、Ni−Cr系の自溶性合金を溶射した後、熱処理をしないことも考えられるが、この場合、母材銅板との密着力が0.20〜0.29MPa(2〜3kg/mm)と小さく、長期の使用が困難であるという問題がある。
However, as described above, when the base copper plate after thermal spraying is heated to about 1000 ° C., the base copper plate is deformed. For this reason, it is necessary to perform a strain relief operation on the base copper plate, but even if the strain relief is performed, it may not be incorporated into the back frame of the continuous casting mold. There is a problem that the flatness of the copper plate is inferior.
Furthermore, it is necessary to perform an age hardening heat treatment to recover the strength of the base copper plate, and there is a problem that the manufacturing process is extremely complicated and diverse. Here, it is conceivable that heat treatment is not performed after thermal spraying of a Ni—Cr self-fluxing alloy. In this case, the adhesion with the base copper plate is 0.20 to 0.29 MPa ( 2 to 3 kg / mm 2). ) And is difficult to use for a long time.

そこで、本発明者は、特許文献2に示すような、熱処理を行うことなく製造可能な連続鋳造用鋳型を、先に出願した。具体的には、溶射皮膜を、10〜90質量%のニッケル系合金材料と、耐摩耗性セラミックスを含み、ニッケル系合金材料の割合に対応して90〜10質量%のサーメット材料からなり、しかも、ニッケル系合金材料とサーメット材料とを、それぞれ独立の火炎溶射機を用いて、同時に同一箇所に溶射して形成した鋳型である。 Therefore, the inventor previously applied for a continuous casting mold that can be manufactured without performing heat treatment, as shown in Patent Document 2. Specifically, the thermal spray coating includes 10 to 90% by mass of a nickel-based alloy material and wear-resistant ceramics, and is composed of 90 to 10% by mass of a cermet material corresponding to the proportion of the nickel-based alloy material. In this mold, a nickel-based alloy material and a cermet material are sprayed at the same location simultaneously using independent flame sprayers.

特公昭61−15782号公報Japanese Examined Patent Publication No. 61-15758 特開平10−71454号公報JP-A-10-71454

しかしながら、前記従来の鋳型では、現在のニーズに見合った耐熱衝撃性を備えることができない。
引用文献2には、種々の耐摩耗性セラミックスを使用したサーメット材料の記載があり、特に、耐摩耗性セラミックスにWC/Coを使用した場合に、Ni−Cr系自溶性合金単体と比較して、鋳型の耐摩耗性を向上でき、鋳型の寿命を最も伸ばせることが記載されている。このWC/Coは耐熱衝撃性が優れた材料であるが、これを用いた溶射皮膜を使用しても、靱性の更なる向上が望めず、耐熱衝撃性の向上が図れないため、溶射皮膜が剥離し易く、鋳型の更なる長寿命化が図れなかった。
However, the conventional mold cannot be provided with thermal shock resistance that meets current needs.
Cited Document 2 describes a cermet material using various wear-resistant ceramics. In particular, when WC / Co is used for wear-resistant ceramics, it is compared with a single Ni—Cr-based self-fluxing alloy. It is described that the wear resistance of the mold can be improved, and the life of the mold can be extended most. This WC / Co is a material with excellent thermal shock resistance, but even if a thermal spray coating using this WC / Co is used, no further improvement in toughness can be expected and thermal shock resistance cannot be improved. It was easy to peel off, and the life of the mold could not be further extended.

また、引用文献2において、溶射皮膜の形成に際しては、ニッケル系合金材料とサーメット材料とをそれぞれ溶射する2つの火炎溶射機を用いるため、ニッケル系合金材料とサーメット材料とを均一に分散させた溶射皮膜を形成できない恐れがあった。このため、サーメット材料の密度が高い部分は、靱性が低く、耐熱衝撃性が低下する恐れがあった。
なお、2つの火炎溶射機を用いるため、溶射皮膜を形成する際の作業性が悪く、また、火炎溶射機の設備コストの増大を招き、不経済であるという問題もあった。
Further, in the cited document 2, since two flame sprayers for respectively spraying the nickel-based alloy material and the cermet material are used for forming the sprayed coating, the thermal spraying in which the nickel-based alloy material and the cermet material are uniformly dispersed is used. There was a fear that a film could not be formed. For this reason, the portion where the density of the cermet material is high has low toughness, and there is a fear that the thermal shock resistance is lowered.
In addition, since two flame sprayers are used, there is a problem that workability when forming the sprayed coating is poor, and the equipment cost of the flame sprayer is increased, which is uneconomical.

本発明はかかる事情に鑑みてなされたもので、靱性の向上が図れて耐熱衝撃性の更なる向上が図れ、その結果、鋳型の長寿命化が図れる連続鋳造用鋳型及びその製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a continuous casting mold capable of improving toughness and further improving thermal shock resistance and, as a result, extending the life of the mold, and a method for manufacturing the same. For the purpose.

前記目的に沿う第1の発明に係る連続鋳造用鋳型は、溶鋼接触面側に、粗面化処理が行われた下地めっき層と溶射皮膜が順次形成された連続鋳造用鋳型において、
前記溶射皮膜は、Cr:10質量%以上30質量%以下、Ni:5質量%以上15質量%、及び残部WCからなる粒状のサーメット材料Aと、Ni又はNi系合金からなる粒状の材料Bとを混合して形成され、しかも全体の5質量%以上30質量%以下を前記材料Bとした溶射粒子を火炎溶射機で溶射し、前記サーメット材料Aの粒界に前記材料Bを存在させて形成された。
The continuous casting mold according to the first invention that meets the above-mentioned object is a continuous casting mold in which a base plating layer and a sprayed coating that have been roughened are sequentially formed on the molten steel contact surface side.
The thermal spray coating is composed of a granular cermet material A composed of Cr 3 C 2 : 10% by mass to 30% by mass, Ni: 5% by mass to 15% by mass, and the balance WC, and a granular cermet material composed of Ni or a Ni-based alloy. The material B is formed by mixing with the material B, and sprayed with 5 flame% or more and 30 weight% or less of the whole material B with a flame spraying machine, and the material B exists at the grain boundary of the cermet material A Formed.

第1の発明に係る連続鋳造用鋳型において、前記下地めっき層は、Ni、Co、Fe、又はこれらのいずれか1又は2以上を基材とする合金からなって、該下地めっき層の表面は、前記粗面化処理により粗度が50μm以上150μm以下となっているのがよい。
第1の発明に係る連続鋳造用鋳型において、前記溶射皮膜の厚みは0.1mm以上1mm以下であるのがよい。
第1の発明に係る連続鋳造用鋳型において、前記火炎溶射機は、前記溶射粒子の速度を600m/秒以上にする高速火炎溶射機であるのがよい。
In the continuous casting mold according to the first invention, the base plating layer is made of Ni, Co, Fe, or an alloy based on any one or two of these, and the surface of the base plating layer is The roughness is preferably 50 μm or more and 150 μm or less by the roughening treatment.
In the continuous casting mold according to the first invention, the thickness of the thermal spray coating is preferably 0.1 mm or more and 1 mm or less.
In the continuous casting mold according to the first aspect of the present invention, the flame sprayer may be a high-speed flame sprayer that sets the velocity of the spray particles to 600 m / sec or more.

前記目的に沿う第2の発明に係る連続鋳造用鋳型の製造方法は、溶鋼接触面側に、粗面化処理が行われた下地めっき層と溶射皮膜を順次形成する連続鋳造用鋳型の製造方法において、
Cr:10質量%以上30質量%以下、Ni:5質量%以上15質量%、及び残部WCからなる粒状のサーメット材料Aと、Ni又はNi系合金からなる粒状の材料Bとを混合して形成され、しかも全体の5質量%以上30質量%以下を前記材料Bとした溶射粒子を火炎溶射機で溶射し、前記サーメット材料Aの粒界に前記材料Bを存在させた前記溶射皮膜を形成する。
A method for manufacturing a continuous casting mold according to the second invention in accordance with the above object is a method for manufacturing a continuous casting mold in which a rough plating treatment and a thermal spray coating are sequentially formed on the molten steel contact surface side. In
Mixing granular cermet material A composed of Cr 3 C 2 : 10 mass% or more and 30 mass% or less, Ni: 5 mass% or more and 15 mass%, and the balance WC, and granular material B composed of Ni or Ni-based alloy In addition, the thermal spray coating is formed by spraying thermal spray particles, which are 5% by mass or more and 30% by mass or less of the whole, with the material B using a flame spraying machine, and the material B is present at the grain boundaries of the cermet material A. Form.

第2の発明に係る連続鋳造用鋳型の製造方法において、前記下地めっき層は、Ni、Co、Fe、又はこれらのいずれか1又は2以上を基材とする合金からなって、該下地めっき層に前記粗面化処理を行って、表面の粗度を50μm以上150μm以下とした後、前記溶射皮膜を形成するのがよい。
第2の発明に係る連続鋳造用鋳型の製造方法において、前記火炎溶射機に高速火炎溶射機を使用し、前記溶射粒子の速度を600m/秒以上にするのがよい。
In the method for producing a continuous casting mold according to the second invention, the undercoat layer is made of Ni, Co, Fe, or an alloy based on any one or more of these, and the undercoat layer It is preferable to form the thermal spray coating after the surface roughening treatment is performed to make the surface roughness 50 μm or more and 150 μm or less.
In the method for producing a casting mold for continuous casting according to the second invention, a high-speed flame sprayer is used as the flame sprayer, and the velocity of the spray particles is preferably 600 m / second or more.

本発明に係る連続鋳造用鋳型及びその製造方法は、溶射皮膜を、所定の割合に調整したCr、Ni、及び残部WCからなる粒状のサーメット材料Aと、Ni又はNi系合金からなる粒状の材料Bとを混合して形成され、しかも全体の5質量%以上30質量%以下を材料Bとした溶射粒子を火炎溶射機で溶射し、サーメット材料Aの粒界に材料Bを存在させて形成するので、従来よりも靱性を向上でき、耐熱衝撃性の向上が図れる。従って、形成する溶射皮膜の剥離を抑制でき、鋳型の更なる長寿命化が図れる。 The casting mold for continuous casting and the manufacturing method thereof according to the present invention are composed of a granular cermet material A composed of Cr 3 C 2 , Ni, and the balance WC with a thermal spray coating adjusted to a predetermined ratio, and Ni or a Ni-based alloy. The sprayed particles formed by mixing with the granular material B and having 5% by mass or more and 30% by mass or less of the entire material B as the material B are sprayed by a flame spraying machine so that the material B exists at the grain boundary of the cermet material A. Therefore, the toughness can be improved and the thermal shock resistance can be improved. Therefore, peeling of the sprayed coating to be formed can be suppressed, and the life of the mold can be further extended.

また、下地めっき層が、Ni、Co、Fe、又はこれらのいずれか1又は2以上を基材とする合金からなる場合、火炎溶射機で溶射される溶射粒子の一部が、下地めっき層の表層に入り込み、溶射粒子の噛み込みの保持力を確保できる。ここで、更に、粗面化処理を行っているので、溶射皮膜の付着強度を向上できる。なお、この粗面化処理は、粗度が50μm以上150μm以下であるため、溶射皮膜の厚みのばらつきを抑制しながら、溶射皮膜の密着力を高めることができる。 Further, when the base plating layer is made of Ni, Co, Fe, or an alloy based on any one or more of these, a part of the sprayed particles sprayed by the flame spraying machine is It can penetrate into the surface layer and secure the retention force of the spray particles. Here, since the roughening treatment is further performed, the adhesion strength of the thermal spray coating can be improved. In addition, since this roughening process has a roughness of 50 μm or more and 150 μm or less, the adhesion of the sprayed coating can be enhanced while suppressing variations in the thickness of the sprayed coating.

そして、溶射皮膜の厚みを0.1mm以上1mm以下とする場合、溶射皮膜の厚みを、溶射皮膜の剥離を抑制して、鋳型の更なる長寿命化が図れる最適な厚みとすることができる。
更に、火炎溶射機が、溶射粒子の速度を600m/秒以上にする高速火炎溶射機である場合、溶射皮膜の下地めっき層への密着力を更に高めることができる。
When the thickness of the sprayed coating is 0.1 mm or more and 1 mm or less, the thickness of the sprayed coating can be set to an optimum thickness that can suppress the peeling of the sprayed coating and further increase the life of the mold.
Furthermore, when the flame sprayer is a high-speed flame sprayer that makes the speed of the spray particles 600 m / sec or more, the adhesion of the sprayed coating to the underlying plating layer can be further increased.

本発明の一実施の形態に係る連続鋳造用鋳型の溶射状況を示す説明図である。It is explanatory drawing which shows the thermal spraying condition of the casting mold for continuous casting which concerns on one embodiment of this invention. 同連続鋳造用鋳型の部分拡大断面図である。It is a partial expanded sectional view of the same casting mold. (A)は同連続鋳造用鋳型の溶射皮膜の部分拡大模式図、(B)はサーメット材料Aのみで形成した溶射皮膜の部分拡大模式図である。(A) is the partial expansion schematic diagram of the sprayed coating of the casting mold for continuous casting, (B) is the partial enlarged schematic diagram of the sprayed coating formed only with the cermet material A. 耐熱衝撃性の評価方法の説明図である。It is explanatory drawing of the evaluation method of a thermal shock resistance.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1、図2、図3(A)に示すように、本発明の一実施の形態に係る連続鋳造用鋳型は、上下方向に貫通する空間部が形成された冷却部材10を有し、この空間部に溶鋼を供給して冷却しながら鋳片を製造するものである。なお、冷却部材10は、銅又は銅合金(例えば、Cu−Cr−Zr等)からなる母材11を有し、その溶鋼接触面側に、下地めっき層12と溶射皮膜13が、順次形成されている。以下、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIGS. 1, 2 and 3A, a continuous casting mold according to an embodiment of the present invention has a cooling member 10 in which a space portion penetrating in the vertical direction is formed. The slab is manufactured while supplying molten steel to the space and cooling it. The cooling member 10 includes a base material 11 made of copper or a copper alloy (for example, Cu—Cr—Zr), and a base plating layer 12 and a thermal spray coating 13 are sequentially formed on the molten steel contact surface side. ing. Details will be described below.

図1、図2に示すように、母材11の溶鋼接触面側には、粗面化処理が行われた下地めっき層12が形成されている。下地めっき層12は、溶射の密着の原理であるアンカー効果が、銅又は銅合金からなる柔らかい母材よりも得られるものであり、特に、Ni、Co、Fe、又はこれらのいずれか1又は2以上を基材とする合金からなることが好ましい。
この下地めっき層12に行われる粗面化処理は、下地めっき層12の表面の粗度(Rz)を、50μm以上150μm以下(好ましくは、下限を70μm、上限を120μm、更には100μm)とするのが好ましい。ここで、粗度が50μm以上150μm以下の範囲を外れると、下地めっき層への溶射皮膜の密着力が98MPa(10kg/mm)未満となって小さくなり過ぎる。
As shown in FIGS. 1 and 2, a base plating layer 12 that has been subjected to a roughening treatment is formed on the molten steel contact surface side of the base material 11. The base plating layer 12 has an anchor effect, which is the principle of adhesion of thermal spraying, obtained from a soft base material made of copper or a copper alloy, and in particular, Ni, Co, Fe, or any one or two of these It is preferable to consist of an alloy having the above as a base material.
In the roughening treatment performed on the base plating layer 12, the surface roughness (Rz) of the base plating layer 12 is 50 μm or more and 150 μm or less (preferably, the lower limit is 70 μm, the upper limit is 120 μm, and further 100 μm). Is preferred. Here, when the roughness is out of the range of 50 μm or more and 150 μm or less, the adhesion of the thermal spray coating to the underlying plating layer becomes less than 98 MPa (10 kg / mm 2 ) and becomes too small.

下地めっき層12上には、溶射皮膜13が形成されている。
溶射皮膜13は、Cr、Ni、及び残部WCからなる粒状のサーメット材料Aと、Ni又はNi系合金からなる粒状の材料Bとを混合して形成した溶射粒子を、火炎溶射機14で溶射して形成している。
ここで、材料Bに使用するNi系合金には、例えば、ハステロイ、インコネル、Ni−Cr、又はMCrAlY(ただし、M:Ni又はNi−Co)のいずれか一種を使用できるが、材料BとしてはNiが特に好ましい。なお、材料Bには、不可避的不純物が含まれていてもよい。
A thermal spray coating 13 is formed on the base plating layer 12.
The thermal spray coating 13 is formed by mixing thermal spray particles formed by mixing a granular cermet material A composed of Cr 3 C 2 , Ni, and the balance WC with a granular material B composed of Ni or a Ni-based alloy. It is formed by thermal spraying.
Here, as the Ni-based alloy used for the material B, for example, any one of Hastelloy, Inconel, Ni—Cr, or MCrAlY (M: Ni or Ni—Co) can be used. Ni is particularly preferred. Note that the material B may contain inevitable impurities.

この溶射皮膜13の厚みは、特に限定しないが、0.1mm以上1mm以下の範囲で密に(充填率が90%以上、更には95%以上で)形成されていることが好ましい。
ここで、溶射皮膜の厚みが0.1mm未満の場合、溶射皮膜の厚みが薄過ぎて、鋳型の耐用年数が短くなり過ぎる。一方、溶射皮膜の厚みが1mmを超える場合、溶射皮膜が厚過ぎて、溶射皮膜が冷却部材から剥がれ易くなる。
以上のことから、形成する溶射皮膜13の厚みは、0.1mm以上1mm以下とすることが好ましいが、下限を0.2mm、更には0.3mm、上限を0.7mmとするのが更に好ましい。
The thickness of the sprayed coating 13 is not particularly limited, but is preferably formed densely (with a filling rate of 90% or more, more preferably 95% or more) in a range of 0.1 mm to 1 mm.
Here, when the thickness of the sprayed coating is less than 0.1 mm, the thickness of the sprayed coating is too thin and the service life of the mold becomes too short. On the other hand, when the thickness of the thermal spray coating exceeds 1 mm, the thermal spray coating is too thick and the thermal spray coating is easily peeled off from the cooling member.
From the above, the thickness of the sprayed coating 13 to be formed is preferably 0.1 mm or more and 1 mm or less, but the lower limit is preferably 0.2 mm, more preferably 0.3 mm, and the upper limit is more preferably 0.7 mm. .

溶射粒子は、粒状のサーメット材料Aと粒状の材料B(溶射粒子全体の5質量%以上30質量%以下を粒状の材料Bとしている)を混合して形成されている。この溶射粒子を溶射して形成される溶射皮膜の拡大模式図を図3(A)に、また、粒状のサーメット材料Aのみを溶射して形成した溶射皮膜の拡大模式図を図3(B)に示す。なお、図3(A)、(B)に示す各溶射皮膜は、下地めっき層上に形成されている。
図3(A)に示すように、粒状のサーメット材料Aと材料Bとを混合した溶射粒子により、溶射皮膜を形成することで、サーメット材料Aの粒界に材料Bが存在する。このため、図3(B)に示すサーメット材料Aのみで溶射皮膜を形成した場合と比較して、溶射皮膜の脆さを低減でき、靱性の向上が図れる。
The spray particles are formed by mixing a granular cermet material A and a granular material B (5% by mass to 30% by mass of the entire spray particles are defined as the granular material B). FIG. 3A is an enlarged schematic diagram of the thermal spray coating formed by spraying the thermal spray particles, and FIG. 3B is an enlarged schematic diagram of the thermal spray coating formed by spraying only the granular cermet material A. Shown in Each sprayed coating shown in FIGS. 3A and 3B is formed on a base plating layer.
As shown in FIG. 3A, the material B exists at the grain boundary of the cermet material A by forming a sprayed coating with the sprayed particles obtained by mixing the granular cermet material A and the material B. For this reason, compared with the case where a sprayed coating is formed only by the cermet material A shown in FIG. 3 (B), the brittleness of the sprayed coating can be reduced and the toughness can be improved.

即ち、溶射粒子中の材料Bの量が5質量%未満の場合、サーメット材料Aの粒界に存在する材料Bの量が少な過ぎて、靱性の改善効果が得られなくなる。一方、溶射粒子中の材料Bの量が30質量%を超える場合、溶射皮膜中に含まれるサーメット材料Aの量が少な過ぎ、溶射皮膜の硬度の低下や、体積摩耗率の上昇を招く。なお、材料Bは、サーメット材料Aの全ての粒界に存在することが好ましいが、部分的であってもよい。
以上のことから、溶射粒子中の材料Bの量を5質量%以上30質量%以下としたが、下限を8質量%、更には10質量%、上限を25質量%、更には20質量%とすることが好ましい。
That is, when the amount of the material B in the spray particles is less than 5% by mass, the amount of the material B present at the grain boundary of the cermet material A is too small, and the effect of improving toughness cannot be obtained. On the other hand, when the amount of the material B in the sprayed particles exceeds 30% by mass, the amount of the cermet material A contained in the sprayed coating is too small, resulting in a decrease in the hardness of the sprayed coating and an increase in the volume wear rate. The material B is preferably present at all grain boundaries of the cermet material A, but may be partial.
From the above, the amount of the material B in the spray particles is 5% by mass or more and 30% by mass or less, but the lower limit is 8% by mass, further 10% by mass, the upper limit is 25% by mass, and further 20% by mass. It is preferable to do.

サーメット材料Aは、Cr:10質量%以上30質量%以下(好ましくは、下限を13質量%、更には15質量%、上限を27質量%、更には25質量%)、Ni:5質量%以上15質量%(好ましくは、下限を7質量%、上限を12質量%、更には10質量%)、残部WCで構成されている。なお、サーメット材料Aには、不可避的不純物として、例えば、Fe等が含まれていてもよい。
サーメット材料Aを、上記した構成にすることで、耐摩耗用材料として一般的に使用されているWC/12%Coと比較して、硬度を同程度に、高温での耐熱衝撃性を3〜5倍程度に向上できる。従って、溶射皮膜13の耐クラック性の向上も図れる。
The cermet material A is Cr 3 C 2 : 10% by mass or more and 30% by mass or less (preferably the lower limit is 13% by mass, further 15% by mass, the upper limit is 27% by mass, further 25% by mass), Ni: 5 It is composed of 15% by mass or more and preferably 15% by mass (preferably the lower limit is 7% by mass, the upper limit is 12% by mass, and further 10% by mass), and the balance is WC. The cermet material A may contain, for example, Fe as an inevitable impurity.
By making the cermet material A as described above, the hardness is comparable to that of WC / 12% Co, which is generally used as a wear-resistant material, and the thermal shock resistance at high temperatures is 3 to 3. It can be improved about 5 times. Therefore, the crack resistance of the thermal spray coating 13 can be improved.

以上に示した溶射皮膜13は、火炎溶射機14で溶射粒子を溶射して形成される。
この火炎溶射機14は、溶射粒子の速度を600m/秒(好ましくは、700m/秒)以上にする高速火炎溶射機であるが、通常使用されている火炎溶射機を使用することもできる。なお、高速火炎溶射機を用いた場合には、溶射皮膜13の下地めっき層12への密着力を更に高めることができる。
上記した理由により、溶射粒子の速度の上限については規定していないが、現実的には、例えば、1000m/秒程度である。
The thermal spray coating 13 shown above is formed by spraying thermal spray particles with a flame sprayer 14.
The flame sprayer 14 is a high-speed flame sprayer that makes the velocity of spray particles 600 m / second (preferably 700 m / second) or more, but a flame sprayer that is usually used can also be used. In addition, when a high-speed flame sprayer is used, the adhesive force of the thermal spray coating 13 to the base plating layer 12 can be further increased.
For the reasons described above, the upper limit of the velocity of the spray particles is not defined, but in reality, for example, it is about 1000 m / second.

次に、本発明の一実施の形態に係る連続鋳造用鋳型の製造方法について説明する。
まず、図1、図2に示すように、連続鋳造用鋳型を構成する母材11の溶鋼接触面側内面に、厚みが100μm程度の下地めっきを行って、下地めっき層12を形成する。
この場合の電解液としては、1リットル中に、S−Ni(スルファミン酸ニッケル)を350g、塩化ニッケルを5g、硼酸を30g溶かした溶液を使用し、めっき液の温度を45〜60℃、電流密度を3A/dmとする。ここでは、下地めっき層をNiで形成したが、例えば、Co又はFeで形成してもよく、また、Ni、Co、及びFeのいずれか1又は2以上を基材とする合金で形成してもよい。
Next, the manufacturing method of the casting mold for continuous casting which concerns on one embodiment of this invention is demonstrated.
First, as shown in FIGS. 1 and 2, a base plating layer 12 is formed by performing base plating having a thickness of about 100 μm on the inner surface of the molten steel contact surface side of the base material 11 constituting the continuous casting mold.
As an electrolytic solution in this case, a solution in which 350 g of S-Ni (nickel sulfamate), 5 g of nickel chloride, and 30 g of boric acid are dissolved in 1 liter is used. the density 3A / dm 2. Here, the base plating layer is formed of Ni, but may be formed of, for example, Co or Fe, or may be formed of an alloy based on any one or more of Ni, Co, and Fe. Also good.

この下地めっき層12には、粗面化処理が行われ、下地めっき層12の表面の粗度を50μm以上150μm以下としている。
ここで、粗面化処理は、アルミナを使用したブラスト処理により行う。なお、使用するアルミナとしては、例えば、粒度#24のグリッドのアルミナを使用でき、ブラスト処理の際の空気圧を約0.49MPa(5kg/cm)にする。
そして、粗面化処理された下地めっき層12上に、Cr、Ni、及び残部WCからなる粒状のサーメット材料Aと、Ni又はNi系合金からなる粒状の材料Bとを混合して形成され、しかも全体の5質量%以上30質量%以下を材料Bとした溶射粒子を、火炎溶射機14で溶射する。
The underlying plating layer 12 is subjected to a roughening treatment, and the roughness of the surface of the underlying plating layer 12 is set to 50 μm or more and 150 μm or less.
Here, the roughening treatment is performed by a blast treatment using alumina. In addition, as an alumina to be used, for example, alumina having a grid size of # 24 can be used, and the air pressure at the time of blasting is set to about 0.49 MPa (5 kg / cm 2 ).
Then, a granular cermet material A composed of Cr 3 C 2 , Ni, and the remainder WC and a granular material B composed of Ni or a Ni-based alloy are mixed on the ground plating layer 12 that has been roughened. The sprayed particles that are formed and have 5% by mass or more and 30% by mass or less of the entire material as the material B are sprayed by the flame sprayer 14.

ここで、サーメット材料Aと材料Bの各粒径分布は、形成する溶射皮膜の強度を考慮すれば、例えば、5μm以上60μm以下(好ましくは、下限を10μm、上限を55μm)程度である。なお、溶射前のサーメット材料Aと材料Bの各粒径分布は、同じでもよく、異なってもよい。
この溶射粒子は、サーメット材料Aと材料Bを個別に購入し、これを上記した割合に混合して使用できるが、予め混合されたものを購入して使用することもできる。
Here, the particle size distribution of the cermet material A and the material B is, for example, about 5 μm or more and 60 μm or less (preferably the lower limit is 10 μm and the upper limit is 55 μm) considering the strength of the sprayed coating to be formed. Note that the particle size distributions of the cermet material A and the material B before thermal spraying may be the same or different.
The spray particles can be used by separately purchasing the cermet material A and the material B and mixing them in the above-mentioned proportions, but it is also possible to purchase and use those previously mixed.

そして、溶射粒子を溶射する火炎溶射機14には、溶射粒子の速度を600m/秒(好ましくは、700m/秒)以上にする高速火炎溶射機を使用するが、従来公知の火炎溶射機を使用することもできる。
これにより、図3(A)に示すように、サーメット材料Aの粒界に、材料Bを存在させた溶射皮膜13を形成することができる。この溶射皮膜13の厚みは、特に限定しないが、0.1mm以上1mm以下の範囲で密に形成されていることが好ましい。
このように形成した溶射皮膜13の表面側を、必要に応じて仕上げ加工した後、連続鋳造用鋳型として使用する。
As the flame sprayer 14 for spraying the sprayed particles, a high-speed flame sprayer that makes the speed of the sprayed particles 600 m / second (preferably 700 m / second) or more is used, but a conventionally known flame sprayer is used. You can also
As a result, as shown in FIG. 3A, the sprayed coating 13 in which the material B is present can be formed at the grain boundary of the cermet material A. The thickness of the thermal spray coating 13 is not particularly limited, but is preferably formed densely in the range of 0.1 mm to 1 mm.
The surface side of the sprayed coating 13 formed in this way is finished as necessary, and then used as a continuous casting mold.

次に、本発明の作用効果を確認するために行った実施例について説明する。
まず、前記実施の形態で示した方法により、Cu−Cr−Zrからなる母材の表面に、Niからなる下地めっき層を形成した。ここで、粗面化処理は、粒度#24のアルミナのグリッドを使用し、そのときの空気圧を約0.49MPaとした。
そして、この下地めっき層上に、高速火炎溶射機を用いて、厚みが0.8mm程度の溶射皮膜を形成した。この溶射皮膜を構成する材料の種類とその割合を、表1に示す。
Next, examples carried out for confirming the effects of the present invention will be described.
First, an underlying plating layer made of Ni was formed on the surface of a base material made of Cu—Cr—Zr by the method described in the above embodiment. Here, in the roughening treatment, an alumina grid having a particle size of # 24 was used, and the air pressure at that time was about 0.49 MPa.
Then, a sprayed coating having a thickness of about 0.8 mm was formed on the base plating layer using a high-speed flame spraying machine. Table 1 shows the types and ratios of materials constituting the thermal spray coating.

Figure 2011031247
Figure 2011031247

なお、表1中の耐熱衝撃性は、図4に示すように、形成した溶射皮膜の表面側に、プラズマ溶射機を一定速度で移動させ、溶射皮膜にクラックが発生する回数で評価した。この表1では、比較例1のクラックの発生回数を1.0として、比較例2〜5と実施例1〜4の比率を求めた。
また、表1中の鋳型寿命の延長の度合いは、実際に使用した鋳型の使用時間を測定し、比較例1の時間を1.0として、比較例2〜5と実施例1〜4の比率を求めた。
In addition, as shown in FIG. 4, the thermal shock resistance in Table 1 was evaluated by moving the plasma spraying machine at a constant speed to the surface side of the formed sprayed coating, and the number of times the crack was generated in the sprayed coating. In Table 1, the ratio of Comparative Examples 2 to 5 and Examples 1 to 4 was determined with the number of occurrences of cracks in Comparative Example 1 being 1.0.
The degree of extension of the mold life in Table 1 is the ratio of Comparative Examples 2 to 5 and Examples 1 to 4 by measuring the use time of the actually used mold and setting the time of Comparative Example 1 to 1.0. Asked.

表1から明らかなように、実施例1〜4の耐熱衝撃性は、比較例1の耐熱衝撃性の3倍以上(最大で5倍程度)に上昇させることができ、また、比較例1〜5の中では耐熱衝撃性が高い比較例4、5と比較しても、2倍以上に上昇させることができた。従って、従来よりも鋳型寿命を延長できることを確認できた。
以上のことから、本発明の連続鋳造用鋳型及びその製造方法を使用することで、靱性の向上が図れて耐熱衝撃性の更なる向上が図れ、その結果、鋳型の長寿命化が図れることを確認できた。
As is apparent from Table 1, the thermal shock resistance of Examples 1 to 4 can be increased to 3 times or more (up to about 5 times) of the thermal shock resistance of Comparative Example 1, and Comparative Examples 1 to 4 can be increased. In comparison with Comparative Examples 4 and 5 having a high thermal shock resistance, the temperature could be increased twice or more. Therefore, it was confirmed that the mold life could be extended as compared with the prior art.
From the above, by using the continuous casting mold of the present invention and its manufacturing method, the toughness can be improved and the thermal shock resistance can be further improved. As a result, the life of the mold can be extended. It could be confirmed.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の連続鋳造用鋳型及びその製造方法を構成する場合も本発明の権利範囲に含まれる。
本発明を適用する溶射皮膜を形成する冷却部材には、一対の短辺と一対の長辺とで構成される4つ組みしたものがあるが、これに限定されるものではなく、例えば、ビレット(例えば、幅及び厚みが100〜200mm程度)又はブルーム(例えば、幅及び厚みが200〜400mm程度)を製造するチューブ状のものでもよい。従って、鋳型の構成についても、例えば、スラブ、ビレット、ブルーム、又はビームブランク(H型鋼用に使用)を製造する鋳型、更には、鍛造又は鍛造した銅ブロックに導水孔を穿孔したブロック鋳型に、本願発明を適用することも勿論可能である。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the continuous casting mold of the present invention and the manufacturing method thereof are configured by combining a part or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
The cooling member for forming the thermal spray coating to which the present invention is applied includes a combination of four members composed of a pair of short sides and a pair of long sides, but is not limited to this. For example, a billet (For example, the width | variety and thickness are about 100-200 mm) or the tube shape thing which manufactures a bloom (for example, width | variety and thickness is about 200-400 mm) may be sufficient. Therefore, for the mold configuration, for example, a mold for producing a slab, billet, bloom, or beam blank (used for H-shaped steel), and further, a block mold in which water conduction holes are drilled in a forged or forged copper block, Of course, it is possible to apply the present invention.

10:冷却部材、11:母材、12:下地めっき層、13:溶射皮膜、14:火炎溶射機 10: Cooling member, 11: Base material, 12: Undercoat layer, 13: Thermal spray coating, 14: Flame sprayer

Claims (7)

溶鋼接触面側に、粗面化処理が行われた下地めっき層と溶射皮膜が順次形成された連続鋳造用鋳型において、
前記溶射皮膜は、Cr:10質量%以上30質量%以下、Ni:5質量%以上15質量%、及び残部WCからなる粒状のサーメット材料Aと、Ni又はNi系合金からなる粒状の材料Bとを混合して形成され、しかも全体の5質量%以上30質量%以下を前記材料Bとした溶射粒子を火炎溶射機で溶射し、前記サーメット材料Aの粒界に前記材料Bを存在させて形成されたことを特徴とする連続鋳造用鋳型。
In the continuous casting mold in which the base plating layer and the sprayed coating that have been roughened are sequentially formed on the molten steel contact surface side,
The thermal spray coating is composed of a granular cermet material A composed of Cr 3 C 2 : 10% by mass to 30% by mass, Ni: 5% by mass to 15% by mass, and the balance WC, and a granular cermet material composed of Ni or a Ni-based alloy. The material B is formed by mixing with the material B, and sprayed with 5 flame% or more and 30 weight% or less of the whole material B with a flame spraying machine, and the material B exists at the grain boundary of the cermet material A A casting mold for continuous casting, characterized by being formed.
請求項1記載の連続鋳造用鋳型において、前記下地めっき層は、Ni、Co、Fe、又はこれらのいずれか1又は2以上を基材とする合金からなって、該下地めっき層の表面は、前記粗面化処理により粗度が50μm以上150μm以下となっていることを特徴とする連続鋳造用鋳型。 The mold for continuous casting according to claim 1, wherein the base plating layer is made of Ni, Co, Fe, or an alloy based on any one or more of these, and the surface of the base plating layer is: A continuous casting mold, wherein the roughness is 50 μm or more and 150 μm or less by the roughening treatment. 請求項1又は2記載の連続鋳造用鋳型において、前記溶射皮膜の厚みは0.1mm以上1mm以下であることを特徴とする連続鋳造用鋳型。 The continuous casting mold according to claim 1 or 2, wherein the sprayed coating has a thickness of 0.1 mm or more and 1 mm or less. 請求項1〜3のいずれか1項に記載の連続鋳造用鋳型において、前記火炎溶射機は、前記溶射粒子の速度を600m/秒以上にする高速火炎溶射機であることを特徴とする連続鋳造用鋳型。 The continuous casting mold according to any one of claims 1 to 3, wherein the flame sprayer is a high-speed flame sprayer that sets the velocity of the spray particles to 600 m / sec or more. Mold. 溶鋼接触面側に、粗面化処理が行われた下地めっき層と溶射皮膜を順次形成する連続鋳造用鋳型の製造方法において、
Cr:10質量%以上30質量%以下、Ni:5質量%以上15質量%、及び残部WCからなる粒状のサーメット材料Aと、Ni又はNi系合金からなる粒状の材料Bとを混合して形成され、しかも全体の5質量%以上30質量%以下を前記材料Bとした溶射粒子を火炎溶射機で溶射し、前記サーメット材料Aの粒界に前記材料Bを存在させた前記溶射皮膜を形成することを特徴とする連続鋳造用鋳型の製造方法。
In the method for producing a casting mold for continuous casting, in which a base plating layer and a sprayed coating that have been roughened are sequentially formed on the molten steel contact surface side,
Mixing a granular cermet material A composed of Cr 3 C 2 : 10 mass% to 30 mass%, Ni: 5 mass% to 15 mass%, and the balance WC, and a granular material B composed of Ni or Ni-based alloy In addition, the thermal spray coating is formed by spraying thermal spray particles, which are 5% by mass or more and 30% by mass or less of the whole, with the material B using a flame spraying machine, and the material B is present at the grain boundaries of the cermet material A. A process for producing a casting mold for continuous casting, characterized in that
請求項5記載の連続鋳造用鋳型の製造方法において、前記下地めっき層は、Ni、Co、Fe、又はこれらのいずれか1又は2以上を基材とする合金からなって、該下地めっき層に前記粗面化処理を行って、表面の粗度を50μm以上150μm以下とした後、前記溶射皮膜を形成することを特徴とする連続鋳造用鋳型の製造方法。 6. The method for manufacturing a continuous casting mold according to claim 5, wherein the base plating layer is made of Ni, Co, Fe, or an alloy based on any one or more of these, and the base plating layer is formed on the base plating layer. A method for producing a casting mold for continuous casting, wherein the thermal spray coating is formed after performing the surface roughening treatment so that the surface roughness is 50 μm or more and 150 μm or less. 請求項5又は6記載の連続鋳造用鋳型の製造方法において、前記火炎溶射機に高速火炎溶射機を使用し、前記溶射粒子の速度を600m/秒以上にすることを特徴とする連続鋳造用鋳型の製造方法。 7. The continuous casting mold according to claim 5, wherein a high-speed flame sprayer is used as the flame sprayer, and the velocity of the spray particles is 600 m / sec or more. Manufacturing method.
JP2009176747A 2009-07-29 2009-07-29 Manufacturing method of continuous casting mold Active JP5185894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009176747A JP5185894B2 (en) 2009-07-29 2009-07-29 Manufacturing method of continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009176747A JP5185894B2 (en) 2009-07-29 2009-07-29 Manufacturing method of continuous casting mold

Publications (2)

Publication Number Publication Date
JP2011031247A true JP2011031247A (en) 2011-02-17
JP5185894B2 JP5185894B2 (en) 2013-04-17

Family

ID=43760843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009176747A Active JP5185894B2 (en) 2009-07-29 2009-07-29 Manufacturing method of continuous casting mold

Country Status (1)

Country Link
JP (1) JP5185894B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014154693A (en) * 2013-02-08 2014-08-25 Toyoda Gosei Co Ltd Group iii nitride semiconductor light-emitting element and manufacturing method of the same
JP2014523963A (en) * 2011-06-10 2014-09-18 スルザー メトコ ヴォカ ゲーエムベーハー Spray powder mainly composed of tungsten carbide, and substrate having a thermal spray layer mainly composed of tungsten carbide
JP2015183203A (en) * 2014-03-20 2015-10-22 三島光産株式会社 Continuous casting mold and method for manufacturing the same
JP2020528530A (en) * 2017-07-25 2020-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Brake discs and how to manufacture brake discs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1071454A (en) * 1996-08-27 1998-03-17 Mishima Kosan Co Ltd Mold for continuous casting
JP2003035090A (en) * 2001-07-25 2003-02-07 Fujimi Inc Cutter bit for excavation
JP2003293113A (en) * 2002-04-03 2003-10-15 Aisan Ind Co Ltd Molding die and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1071454A (en) * 1996-08-27 1998-03-17 Mishima Kosan Co Ltd Mold for continuous casting
JP2003035090A (en) * 2001-07-25 2003-02-07 Fujimi Inc Cutter bit for excavation
JP2003293113A (en) * 2002-04-03 2003-10-15 Aisan Ind Co Ltd Molding die and manufacturing method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014523963A (en) * 2011-06-10 2014-09-18 スルザー メトコ ヴォカ ゲーエムベーハー Spray powder mainly composed of tungsten carbide, and substrate having a thermal spray layer mainly composed of tungsten carbide
US9624995B2 (en) 2011-06-10 2017-04-18 Oerlikon Metco Woka Gmbh Tungsten-carbide-based spray powder, and a substrate with a tungsten-carbide-based thermally sprayed layer
JP2014154693A (en) * 2013-02-08 2014-08-25 Toyoda Gosei Co Ltd Group iii nitride semiconductor light-emitting element and manufacturing method of the same
JP2015183203A (en) * 2014-03-20 2015-10-22 三島光産株式会社 Continuous casting mold and method for manufacturing the same
JP2020528530A (en) * 2017-07-25 2020-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Brake discs and how to manufacture brake discs
JP6997288B2 (en) 2017-07-25 2022-01-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Brake discs and how to manufacture brake discs

Also Published As

Publication number Publication date
JP5185894B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
CN102794417A (en) Metal ceramic coating on surface of copper plate of continuous casting mold and manufacturing process for metal ceramic coating
JP5185894B2 (en) Manufacturing method of continuous casting mold
CN106191621B (en) It is prepared by cement rotary kiln support roller surface high-entropy alloy powder, preparation and its coating
JP5894721B2 (en) Surface-treated metal plate and method for producing molded product using the surface-treated metal plate
CN101724874A (en) Surface repairing method for thin-strip continuous casting crystallizing roller or casting blank continuous casting crystallizer
US10844505B2 (en) Rotogravure cylinders, intermediates and methods
CN102851632A (en) Method for preparing high-temperature wear-resistant coating on continuous casting crystallizer copper alloy plate surface
CN104250810A (en) Process for preparing WC hard alloy coating through laser cladding of hot rolling bar apron board roller way
JP7022266B2 (en) Cobalt-nickel alloy material, method of manufacturing mold for continuous casting using it
JP6808834B2 (en) Electrode coating method for resistance welding and electrodes for resistance welding
JP4710904B2 (en) Seamless pipe rolling roll
CN104942262A (en) Functional gradient die-casting die and manufacturing process thereof
CN103834896A (en) Continuous casting crystallizer long-side copper plate coating thermal spraying method
CN104762644A (en) Electroplated amorphous-state nickel-tungsten-phosphorous alloy for copper plate of crystallizer for continuous casting and preparation process of amorphous-state nickel-tungsten-phosphorous alloy
JP6109106B2 (en) Manufacturing method of continuous casting mold
JP7020147B2 (en) Manufacturing method of mold for continuous casting
JP4579706B2 (en) Articles with improved zinc erosion resistance
JP2008291300A (en) Roll having excellent indentation resistance
JP2004255457A (en) Composite roll for hot rolling and method for manufacturing it
JP2003183796A (en) METHOD FOR MANUFACTURING HOT-DIP Zn-Mg-Al-COATED HOT- ROLLED STEEL SHEET SUPERIOR IN PLATING PROPERTY
JPH08158030A (en) Conductor roll for electroplating line and its production
JPH1071454A (en) Mold for continuous casting
JP2759208B2 (en) Shell mold mold
JPH0636963B2 (en) Mold for continuous casting
JPH10230348A (en) Mold for continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130118

R150 Certificate of patent or registration of utility model

Ref document number: 5185894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250