JP2011030735A - Endoscope shape detector and endoscope system - Google Patents

Endoscope shape detector and endoscope system Download PDF

Info

Publication number
JP2011030735A
JP2011030735A JP2009179334A JP2009179334A JP2011030735A JP 2011030735 A JP2011030735 A JP 2011030735A JP 2009179334 A JP2009179334 A JP 2009179334A JP 2009179334 A JP2009179334 A JP 2009179334A JP 2011030735 A JP2011030735 A JP 2011030735A
Authority
JP
Japan
Prior art keywords
light
endoscope
optical
unit
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009179334A
Other languages
Japanese (ja)
Inventor
Yasubumi Takahashi
保文 高橋
Hideaki Kuranishi
英明 倉西
Takeshi Ashida
毅 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2009179334A priority Critical patent/JP2011030735A/en
Publication of JP2011030735A publication Critical patent/JP2011030735A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/009Flexible endoscopes with bending or curvature detection of the insertion part

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To credibly detect distortion generated in optical fibers inserted in an insertion section of an endoscope by means of an inexpensive configuration suitable for downsizing and without carrying out spectral analysis using a spectroscope, and to accurately detect the shape of an insertion section of an endoscope with an easy procedure. <P>SOLUTION: An endoscope shape detector is provided which comprises a plurality of optical fibers 41A, forming a plurality of FBGs (Fiber Bragg Grating) 1, a light source section 49 introducing incident light into the optical fibers, a light path separating section 55 taking out returning reflected diffraction light generated from the incident light by being diffracted at the FBG 1, a light detector 59 detecting the taken out reflected diffraction light, a light shutter 57 arranged between the light path separating section 55 and the light detector 59, and a control section 51 that opens the light shutter 57 in synchronization with a timing when the reflected diffraction light reaches the light detector 59, selectively detects the reflected diffraction light from a specific FBG, acquires distortion amount of the FBG 1 on the basis of the transition amount of wavelength between the detected reflected diffraction light and the incident light, and detects the shape of the insertion section of the endoscope on the basis of the distortion amount. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内視鏡挿入部の形状を検出する内視鏡形状検出装置及びこれを備えた内視鏡システムに関する。   The present invention relates to an endoscope shape detection device that detects the shape of an endoscope insertion portion and an endoscope system including the same.

一般的に、内視鏡は、例えば体腔内の管腔に長尺状の内視鏡挿入部を外部から挿入して被観察部位を観察したり、必要に応じて処置が行なえるようになっている。ところが、体腔内の管腔の形状は大腸や小腸等のように複雑に曲がりくねっており、挿入した内視鏡挿入部がどのような形状になってどの位置まで挿入されたかを、術者は容易に把握することができない。そこで、内視鏡挿入部の体腔内に挿入された状態における形状を把握できるようにする装置が種々提案されている。   In general, an endoscope can be used to observe a site to be observed by inserting a long endoscope insertion portion from the outside into a lumen of a body cavity, for example, and can perform treatment as necessary. ing. However, the shape of the lumen in the body cavity is complicated and winding like the large intestine and small intestine, and it is easy for the surgeon to determine what shape the inserted endoscope insertion part has been inserted and to what position. Can't figure out. Accordingly, various devices have been proposed that allow the shape of the endoscope insertion portion to be grasped when inserted into the body cavity.

例えば特許文献1には、歪センサであるファイバブラッググレーティング(Fiber Bragg Greating:FBG)を有する光ファイバを内視鏡挿入部に埋め込み、この光ファイバの一端側から光を入射して、FBGから生じる反射回折光の波長遷移量から歪を検出し、この歪によって内視鏡挿入部の形状を求める装置が記載されている。また、特許文献2には、同様にFBGを有する光ファイバを内視鏡挿入部に埋め込み、この光ファイバの一端側から光を入射して、FBGを通過した透過光に対する特定波長成分の欠落部の波長遷移量から歪を検出し、内視鏡挿入部の形状を求める装置が記載されている。   For example, in Patent Document 1, an optical fiber having a fiber Bragg grating (FBG), which is a strain sensor, is embedded in an endoscope insertion portion, light is incident from one end side of the optical fiber, and is generated from the FBG. An apparatus is described in which distortion is detected from the wavelength transition amount of reflected diffracted light, and the shape of the endoscope insertion portion is obtained from the distortion. Similarly, in Patent Document 2, an optical fiber having an FBG is embedded in an endoscope insertion portion, light is incident from one end of the optical fiber, and a missing portion of a specific wavelength component with respect to transmitted light that has passed through the FBG. Describes a device that detects distortion from the amount of wavelength transition and obtains the shape of the endoscope insertion portion.

図16に特許文献1の測定光学系を示した。上側が無歪状態における光ファイバ1の測定光学系、下側が歪が生じた状態における光ファイバ1の測定光学系を表している。各測定光学系では、光源からの白色入射光L0がカプラを介して光ファイバ1に導入され、光ファイバ1の光導入側から距離dのFBG1で波長λ1の反射回折光が光ファイバ1の光入射側に戻される。次の距離d2のFBG2には、波長λ1成分の欠落した透過光L1が入射され、波長λ2の反射回折光が光ファイバ1の光入射側に戻される。さらに次の距離d3のFGB3には、波長λ1,λ2成分の欠落した透過光L2が入射され、波長λ3の反射回折光が光ファイバ1の光入射側に戻される。そして、FBG3の下流側には波長λ1,λ2,λ3成分の欠落した透過光L3が導光される。 FIG. 16 shows the measurement optical system of Patent Document 1. The upper side represents the measurement optical system of the optical fiber 1 in a non-strained state, and the lower side represents the measurement optical system of the optical fiber 1 in a state where distortion has occurred. In each measurement optical system, the white incident light L 0 from the light source is introduced into the optical fiber 1 via the coupler, and the reflected diffracted light having the wavelength λ 1 is transmitted from the light introduction side of the optical fiber 1 at the distance d 1 to the optical fiber 1. 1 is returned to the light incident side. The transmitted light L 1 lacking the wavelength λ 1 component is incident on the FBG 2 at the next distance d 2 , and the reflected diffracted light having the wavelength λ 2 is returned to the light incident side of the optical fiber 1. Further, the transmitted light L 2 lacking the wavelength λ 1 and λ 2 components is incident on the FGB 3 of the next distance d 3 , and the reflected diffracted light having the wavelength λ 3 is returned to the light incident side of the optical fiber 1. Then, the wavelength lambda 1 on the downstream side of the FBG 3, lambda 2, lambda 3 components missing transmitted light L 3 of the light guide.

一方、各反射回折光は、光ファイバ1からカプラを介して分光検出器に導光され、分光検出器により波長毎に切り出される。そして、歪の生じていたFBG2からの反射回折光は、無歪状態における波長λ2から微少量Δだけ波長遷移しており、この波長遷移量を測定することで光ファイバ1の歪量を検出している。 On the other hand, each reflected diffracted light is guided from the optical fiber 1 to the spectral detector through the coupler, and is cut out for each wavelength by the spectral detector. The reflected diffracted light from the FBG 2 in which the distortion has occurred undergoes a wavelength transition from the wavelength λ 2 in a non-distorted state by a minute amount Δ, and the distortion amount of the optical fiber 1 is detected by measuring the wavelength transition amount. is doing.

また、特許文献2の測定光学系は、図16の測定光学系における透過光を測定して、特定波長成分の欠落した部分の波長遷移量から光ファイバ1の歪量を検出している。   Further, the measurement optical system of Patent Document 2 measures the transmitted light in the measurement optical system of FIG. 16 and detects the distortion amount of the optical fiber 1 from the wavelength transition amount of the portion where the specific wavelength component is missing.

このように、いずれの装置においても、ファイバに生じる歪に応じてFBGによる反射光の波長が遷移する特性を利用しており、この波長遷移を検出するためには複雑な光学系を有する高価な分光器が必要となる。また、分光器による分光分析を行うため、歪量を得るための手順が複雑になり、装置が大型化することも避けられない。また、反射回折光や透過光の波長成分によりFBGの位置を間接的に識別する構成であるため、検出されたデータが確かに測定対象となるFBGによるデータであるかどうかの検証ができない。   As described above, in any apparatus, the characteristic that the wavelength of the reflected light by the FBG transitions according to the strain generated in the fiber is used, and an expensive optical system having a complicated optical system is required to detect this wavelength transition. A spectroscope is required. In addition, since the spectroscopic analysis is performed by the spectroscope, the procedure for obtaining the distortion amount is complicated, and it is inevitable that the apparatus is enlarged. Further, since the position of the FBG is indirectly identified by the wavelength components of the reflected diffracted light and the transmitted light, it is impossible to verify whether the detected data is certainly data by the FBG that is the measurement target.

特開2004−251779号公報Japanese Patent Laid-Open No. 2004-251779 特開2008−173395号公報JP 2008-173395 A

本発明は、内視鏡挿入部に挿通された光ファイバに生じる歪を、分光器による分光分析を行うことなく安価でしかも小型化に適した構成で検出して、各光ファイバのファイバブラッググレーティングの配置位置における歪量を確実に求め、内視鏡挿入部の形状を簡単な手順で正確に検出できる内視鏡形状検出装置及び内視鏡システムを提供することを目的とする。   According to the present invention, a fiber Bragg grating of each optical fiber is detected by detecting distortion generated in an optical fiber inserted through an endoscope insertion portion with a configuration that is inexpensive and suitable for downsizing without performing spectroscopic analysis by a spectroscope. It is an object of the present invention to provide an endoscope shape detection device and an endoscope system that can reliably obtain the distortion amount at the arrangement position of the endoscope and accurately detect the shape of the endoscope insertion portion with a simple procedure.

本発明は、下記構成からなる。
(1) 互いに回折格子周期の異なる複数のファイバブラッググレーティングを形成した光ファイバと、
前記光ファイバの一端側から、前記ファイバブラッググレーティングそれぞれの回折格子周期に対応した波長の入射光を導入する光源部と、
前記光ファイバに導入した入射光が前記ファイバブラッググレーティングで回折して戻り来る反射回折光を前記入射光の光路から取り出す光路分離部と、
前記光路分離部から取り出された前記反射回折光を検出する光検出部と、
前記光路分離部と前記光検出部との間の光路途中に配置された光シャッタと、
前記回折反射光が前記光検出部に到達するタイミングに同期して前記光シャッタを開閉駆動し、特定の前記ファイバブラッググレーティングからの回折反射光を前記光検出部により選択的に検出させ、該検出された反射回折光の前記入射光に対する波長遷移量に基づいて前記ファイバブラッググレーティングの歪量を求める制御部と、
を備え、
前記光ファイバが、被検体内に挿入され可撓性を有する内視鏡挿入部に少なくとも一対挿通され、前記制御部が前記検出された歪量に基づいて前記内視鏡挿入部の形状を検出する内視鏡形状検出装置。
The present invention has the following configuration.
(1) an optical fiber in which a plurality of fiber Bragg gratings having different diffraction grating periods are formed;
A light source section for introducing incident light having a wavelength corresponding to a diffraction grating period of each of the fiber Bragg gratings from one end side of the optical fiber;
An optical path separation unit that extracts reflected diffracted light that is diffracted and returned by the fiber Bragg grating from the incident light introduced into the optical fiber;
A light detection unit for detecting the reflected diffracted light extracted from the optical path separation unit;
An optical shutter disposed in the middle of the optical path between the optical path separator and the light detector;
The optical shutter is driven to open and close in synchronization with the timing when the diffracted and reflected light reaches the light detection unit, and the diffracted and reflected light from a specific fiber Bragg grating is selectively detected by the light detection unit. A control unit for obtaining a strain amount of the fiber Bragg grating based on a wavelength transition amount of the reflected diffracted light with respect to the incident light;
With
At least a pair of the optical fibers are inserted into a flexible endoscope insertion portion inserted into a subject, and the control portion detects the shape of the endoscope insertion portion based on the detected strain amount. Endoscope shape detection device.

(2) 内視鏡挿入部の先端側に設けた撮像手段から被検体の撮像画像情報を取得する内視鏡システムであって、
前記内視鏡形状検出装置と、
前記内視鏡挿入部の形状の検出情報及び前記撮像画像情報を表示する表示部と、
を備えた内視鏡システム。
(2) An endoscope system for acquiring captured image information of a subject from an imaging means provided on a distal end side of an endoscope insertion portion,
The endoscope shape detection device;
A display unit for displaying the detection information of the shape of the endoscope insertion unit and the captured image information;
Endoscope system equipped with.

本発明の内視鏡形状検出装置及び内視鏡システムは、光ファイバに生じる歪を、分光器による分光分析を行うことなく安価でしかも小型化に適した構成で検出でき、更に、光ファイバの各ファイバブラッググレーティングの配置位置における歪量がそれぞれ検出されるので、内視鏡挿入部の形状を簡単な手順で正確に検出できる。   The endoscope shape detection device and the endoscope system according to the present invention can detect distortion generated in an optical fiber with a configuration that is inexpensive and suitable for downsizing without performing spectroscopic analysis using a spectroscope. Since the amount of strain at the position where each fiber Bragg grating is arranged is detected, the shape of the endoscope insertion portion can be accurately detected by a simple procedure.

本発明の実施形態を説明するための図で、内視鏡形状検出装置を含む内視鏡システムの全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure for describing embodiment of this invention, and is the whole endoscope system block diagram containing an endoscope shape detection apparatus. 内視鏡挿入部の先端部付近の概略図である。It is the schematic of the front-end | tip part vicinity of an endoscope insertion part. 図2のA−A断面図である。It is AA sectional drawing of FIG. 光ファイバに形成されたファイバブラッググレーティングの模式的な構成説明図である。It is typical structure explanatory drawing of the fiber Bragg grating formed in the optical fiber. ファイバブラッググレーティングに生じる歪と反射回折光を示す説明図である。It is explanatory drawing which shows the distortion which arises in a fiber Bragg grating, and reflected diffracted light. 波長に対する反射回折光の強度の関係を示すグラフである。It is a graph which shows the relationship of the intensity | strength of the reflected diffracted light with respect to a wavelength. 形状検出部と光ファイバによる測定光学系を示すブロック構成図である。It is a block block diagram which shows the measurement optical system by a shape detection part and an optical fiber. 光シャッタの構成図である。It is a block diagram of an optical shutter. 光源部から出射されるパルス光の分光強度を示すグラフである。It is a graph which shows the spectral intensity of the pulsed light radiate | emitted from a light source part. 制御部による制御タイムチャート図である。It is a control time chart figure by a control part. 対向配置された一対の光ファイバの歪分布と内視鏡挿入部の変形状態を示す説明図である。It is explanatory drawing which shows the distortion distribution of a pair of optical fiber arranged facing, and the deformation | transformation state of an endoscope insertion part. 内視鏡挿入部の湾曲状態の一例を示す説明図である。It is explanatory drawing which shows an example of the curved state of an endoscope insertion part. 形状検出部の他の構成例を示すブロック構成図である。It is a block block diagram which shows the other structural example of a shape detection part. 内視鏡挿入部の鉗子孔に挿通される処置具を示す斜視図である。It is a perspective view which shows the treatment tool inserted in the forceps hole of an endoscope insertion part. 図14のB−B断面図である。It is BB sectional drawing of FIG. 従来のファイバブラッググレーティングによる歪の検出原理を示す説明図である。It is explanatory drawing which shows the detection principle of the distortion by the conventional fiber Bragg grating.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
図1は本発明の実施形態を説明するための図で、内視鏡形状検出装置を含む内視鏡システム100の全体構成図である。
内視鏡システム100は、内視鏡11と、この内視鏡11に接続される制御装置13とを備え、制御装置13にはモニタ等の表示部15や、図示しない入力手段としてのキーボード等が接続されている。この制御装置13は、内視鏡11に照明光を供給する光源部と、内視鏡11からの撮像信号に各種画像処理を施して映像信号に変換するプロセッサ部を有し、更に、詳細を後述する形状検出部10を内蔵している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram for explaining an embodiment of the present invention, and is an overall configuration diagram of an endoscope system 100 including an endoscope shape detection device.
The endoscope system 100 includes an endoscope 11 and a control device 13 connected to the endoscope 11. The control device 13 includes a display unit 15 such as a monitor, a keyboard as input means (not shown), and the like. Is connected. The control device 13 includes a light source unit that supplies illumination light to the endoscope 11, and a processor unit that performs various image processing on the image pickup signal from the endoscope 11 and converts the image signal into a video signal. A shape detection unit 10 to be described later is incorporated.

内視鏡11は、本体操作部17と、本体操作部17に連設され体腔内に挿入される内視鏡挿入部19とを備える。本体操作部17には、各種管路と信号ケーブルが内包されたユニバーサルコード21が接続され、このユニバーサルコード21の先端には制御装置13に着脱自在に連結されるコネクタ23が取り付けられている。コネクタ23は、複合タイプのコネクタとし、制御装置13の光源部及びプロセッサ部にそれぞれ個別のコネクタで接続する構成としてもよい。   The endoscope 11 includes a main body operation unit 17 and an endoscope insertion unit 19 connected to the main body operation unit 17 and inserted into a body cavity. A universal cord 21 containing various pipes and signal cables is connected to the main body operation unit 17, and a connector 23 detachably connected to the control device 13 is attached to the distal end of the universal cord 21. The connector 23 may be a composite type connector and may be configured to be connected to the light source unit and the processor unit of the control device 13 by individual connectors.

制御装置13の光源部からの出射光は、コネクタ23とユニバーサルコード21を通じて内視鏡11に供給され、内視鏡挿入部19の先端に設けられた照明光学系に照明光として伝送される。   Light emitted from the light source unit of the control device 13 is supplied to the endoscope 11 through the connector 23 and the universal cord 21 and is transmitted as illumination light to an illumination optical system provided at the distal end of the endoscope insertion unit 19.

また、内視鏡挿入部19の先端に設けられた撮像光学系は、照明光学系で照明された観察部位を撮像する撮像素子を有し、撮像素子から得られる観察像の撮像信号を制御装置13に出力する。そして、制御装置13のプロセッサ部は、入力された撮像信号を画像処理した画像情報を表示部15に表示する。これらの一連の処理は、制御装置13に接続されたキーボード等から指示が入力可能になっている。撮像光学系の撮像素子としては、CCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサが用いられる。   In addition, the imaging optical system provided at the distal end of the endoscope insertion unit 19 includes an imaging element that images an observation site illuminated by the illumination optical system, and controls an imaging signal of an observation image obtained from the imaging element 13 is output. Then, the processor unit of the control device 13 displays image information obtained by performing image processing on the input image pickup signal on the display unit 15. In these series of processes, an instruction can be input from a keyboard or the like connected to the control device 13. A CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor is used as an imaging element of the imaging optical system.

また、内視鏡11の本体操作部17には、送気・送水ボタン、吸引ボタン、シャッターボタン、機能切替ボタン等の各種ボタン25が並設されるとともに、内視鏡の先端側を湾曲操作させる一対のアングルノブ27が設けてある。   Various buttons 25 such as an air supply / water supply button, a suction button, a shutter button, a function switching button and the like are arranged in parallel on the main body operation unit 17 of the endoscope 11 and a bending operation is performed on the distal end side of the endoscope. A pair of angle knobs 27 are provided.

内視鏡挿入部19は、本体操作部17側から順に軟性部31、湾曲部33、先端部(内視鏡先端部)35で構成される。軟性部31は可撓性を有して湾曲部33の基端側に連設され、湾曲部33は、本体操作部17のアングルノブ27を回動操作することで内視鏡挿入部19内に挿設されたワイヤ(図視略)が牽引されて湾曲動作するようになっている。これにより、内視鏡先端部35を所望の方向に向けることができる。   The endoscope insertion unit 19 includes a flexible portion 31, a bending portion 33, and a distal end portion (endoscope distal end portion) 35 in this order from the main body operation unit 17 side. The flexible portion 31 has flexibility and is continuously provided on the proximal end side of the bending portion 33, and the bending portion 33 is turned in the endoscope insertion portion 19 by rotating the angle knob 27 of the main body operation portion 17. The wire (not shown) inserted in the cable is pulled to bend. Thereby, the endoscope front-end | tip part 35 can be orient | assigned to a desired direction.

本体操作部17と内視鏡挿入部19との間の連設部37には、鉗子等の処置具が挿入される鉗子挿入部39が設けられ、鉗子挿入部39から挿入された処置具は、内視鏡先端部35の不図示の鉗子口から導出される。   A forceps insertion portion 39 into which a treatment tool such as forceps is inserted is provided in the connecting portion 37 between the main body operation portion 17 and the endoscope insertion portion 19, and the treatment tool inserted from the forceps insertion portion 39 is It is led out from a forceps opening (not shown) of the endoscope distal end portion 35.

本内視鏡システム100においては、上記の内視鏡の基本構成に加えて、内視鏡先端部35から内視鏡挿入部19、本体操作部17、ユニバーサルコード21を通じたコネクタ23までの間に、内視鏡挿入部19の区間における歪を検出する光ファイバ41が挿通されている。この光ファイバ41は以下に示す構成となっている。   In the present endoscope system 100, in addition to the basic configuration of the endoscope described above, the space from the endoscope distal end portion 35 to the endoscope insertion portion 19, the main body operation portion 17, and the connector 23 through the universal cord 21. Further, an optical fiber 41 for detecting strain in the section of the endoscope insertion portion 19 is inserted. The optical fiber 41 has the following configuration.

図2に内視鏡挿入部19の先端部35付近の概略図、図3に図2のA−A断面図を示した。内視鏡挿入部19の内部には、互いに回折格子周期の異なる複数のファイバブラッググレーティングFBG1,FBG2,・・・が形成された光ファイバ41A,41B,41C,41Dが挿通されている。ファイバブラッググレーティングFBG1,FBG2,・・・は、内視鏡挿入部19の区間内で、各光ファイバ41A,41B,41C,41Dの長手方向に対してそれぞれ同じ位置に配置され、各配置位置における歪検出を行う歪センサとして機能する。   FIG. 2 is a schematic view of the vicinity of the distal end portion 35 of the endoscope insertion portion 19, and FIG. 3 is a cross-sectional view taken along the line AA of FIG. Optical fibers 41A, 41B, 41C, and 41D in which a plurality of fiber Bragg gratings FBG1, FBG2,... Having different diffraction grating periods are formed are inserted into the endoscope insertion portion 19. The fiber Bragg gratings FBG1, FBG2,... Are arranged at the same position with respect to the longitudinal direction of each of the optical fibers 41A, 41B, 41C, 41D in the section of the endoscope insertion portion 19, respectively. It functions as a strain sensor that performs strain detection.

これらの光ファイバ41A,41B,41C,41Dは、内視鏡挿入部19の外周側で直径方向に少なくとも一対、図示例では互いに直交する2つの直径方向の合計4箇所に配置され、検出される歪量の情報に基づいて、内視鏡挿入部19の上下方向及び左右方向に変位した形状を検出可能にしている。   These optical fibers 41A, 41B, 41C and 41D are arranged and detected at a total of four locations in the diametrical direction on the outer peripheral side of the endoscope insertion portion 19 and in two diametrical directions orthogonal to each other in the illustrated example. Based on the information on the amount of distortion, the shape of the endoscope insertion portion 19 displaced in the vertical direction and the horizontal direction can be detected.

まず、ファイバブラッググレーティングを有する光ファイバの構成及び歪の測定原理について説明する。
図4は光ファイバに形成されたファイバブラッググレーティングの模式的な構成説明図である。光ファイバ41は、クラッド43、コア45、及び図示しない外皮により形成され、内視鏡挿入部19の区間内においては、周期的な屈折率構造のブラッグ回折格子からなるファイバブラッググレーティング(以下、FBGと略記する)がコア45内に形成されている。
First, the configuration of an optical fiber having a fiber Bragg grating and the principle of strain measurement will be described.
FIG. 4 is a schematic configuration explanatory view of a fiber Bragg grating formed in an optical fiber. The optical fiber 41 is formed by a clad 43, a core 45, and an outer skin (not shown). In the section of the endoscope insertion portion 19, a fiber Bragg grating (hereinafter referred to as FBG) composed of a Bragg diffraction grating having a periodic refractive index structure. Are abbreviated to be formed in the core 45.

FBGは、例えば特開2000−258190号公報にその製法が示されるように、光ファイバ41のコア45内に、屈折率が特定の周期δで変化した屈折率変調構造を有する。この特定の周期δとコア45の平均屈折率nとによって規定されるブラッグ波長(λ=2nδ)の光がFBGによって選択的に反射されることになる。また、FBGは、直径0.1mm程度のクラッド43に対して、コア45の軸方向に5〜20mm、好ましくは10mm程度の大きさに形成され、コア45の軸方向に所定の一定間隔で配置されている。   The FBG has a refractive index modulation structure in which the refractive index is changed at a specific period δ in the core 45 of the optical fiber 41 as disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-258190. Light having a Bragg wavelength (λ = 2nδ) defined by the specific period δ and the average refractive index n of the core 45 is selectively reflected by the FBG. The FBG is formed in a size of about 5 to 20 mm, preferably about 10 mm in the axial direction of the core 45 with respect to the clad 43 having a diameter of about 0.1 mm, and is arranged at predetermined regular intervals in the axial direction of the core 45. Has been.

図5に示すように、上記構成の光ファイバ41の一端側から光を導入すると、FBGの回折格子周期に対応した波長の入射光成分がある場合に、その入射光成分が回折して反射回折光(波長λr0)となり、光ファイバ41の光導入側に戻される。そして、光ファイバ41内のFBGに歪が生じると、FBGの回折格子周期δが変化して、これにより反射回折光の波長がシフトする。具体的には、反射回折光の波長λr1は、λr1=λr0+2n(δ−δ)で表される波長に遷移する。 As shown in FIG. 5, when light is introduced from one end of the optical fiber 41 having the above configuration, when there is an incident light component having a wavelength corresponding to the diffraction grating period of the FBG, the incident light component is diffracted and reflected and diffracted. Light (wavelength λ r0 ) is returned to the light introduction side of the optical fiber 41. When distortion occurs in the FBG of the optical fiber 41, after changing the grating period [delta] p of the FBG, thereby the wavelength of the reflected diffracted light is shifted. Specifically, the wavelength λ r1 of the reflected diffracted light transitions to a wavelength represented by λ r1 = λ r0 + 2n (δ p −δ).

つまり、図6に波長に対する反射回折光の強度の関係を示すように、反射回折光のピーク波長はFBGに生じた歪に応じて遷移し、無歪状態下の基準回折格子周期に対応する反射回折光のピーク波長λr0から増減する。このときのピーク波長λr0からの波長遷移量を求めることで、このFBGの配置位置における光ファイバ41に発生した歪が検出される。また、光ファイバ41には反射回折光のピーク波長が異なる複数のFBGが配置されるが、各FBGからの反射回折光は、光ファイバ41内の光導入側からの光路長が異なるため、光検出部(詳細は後述)に到達するまでの時間差に応じて選択的に取り出すことで、各FBGに生じた歪を個別に検出できる。 That is, as shown in FIG. 6 showing the relationship of the intensity of the reflected diffracted light with respect to the wavelength, the peak wavelength of the reflected diffracted light transitions according to the strain generated in the FBG, and the reflection corresponding to the reference diffraction grating period under the undistorted state Increase or decrease from the peak wavelength λ r0 of the diffracted light. By obtaining the wavelength transition amount from the peak wavelength λ r0 at this time, the distortion generated in the optical fiber 41 at the position where the FBG is arranged is detected. In addition, although a plurality of FBGs having different peak wavelengths of reflected diffracted light are arranged in the optical fiber 41, the reflected diffracted light from each FBG has different optical path lengths from the light introduction side in the optical fiber 41. By selectively extracting according to the time difference until the detection unit (details will be described later) is reached, distortion generated in each FBG can be detected individually.

このように、光ファイバ41の各FBGからの反射回折光をそれぞれ個別に検出し、各反射回折光の波長遷移量を求めることで、光ファイバ41上の各FBGの配置位置における歪がそれぞれ検出される。更に、内視鏡挿入部19の直径方向に並設された光ファイバ対同士で、内視鏡挿入部19の同じ軸方向位置における歪を比較することで、この直径方向のFBGの配置位置における内視鏡挿入部19の形状、即ち、湾曲状態を検出できる。   In this way, by detecting the reflected diffracted light from each FBG of the optical fiber 41 individually and determining the amount of wavelength transition of each reflected diffracted light, the distortion at the position of each FBG on the optical fiber 41 is detected. Is done. Furthermore, by comparing the strain at the same axial position of the endoscope insertion portion 19 between the pair of optical fibers arranged in parallel in the diameter direction of the endoscope insertion portion 19, The shape of the endoscope insertion portion 19, that is, the curved state can be detected.

なお、光源部49からの出射光の波長は400nm〜2200nmが好適に使用できる。   In addition, 400 nm-2200 nm can use the wavelength of the emitted light from the light source part 49 suitably.

次に、内視鏡挿入部19の形状を検出するための具体的な測定光学系の構成例及び作用を説明する。
図7は形状検出部と光ファイバによる測定光学系を示すブロック構成図である。内視鏡挿入部19(図1参照)に挿通される光ファイバ41Aは、制御装置13(図1参照)内の形状検出部10の光学ユニット47Aに接続される。光学ユニット47Aは、光源部49からの出射光を光ファイバ41Aに導入し、各FBG1,FBG2,・・・からの反射回折光を検出して、反射回折光の検出信号OUTを制御部51に出力する。また、光ファイバ41B,41C,41Dについても同様に、形状検出部10の光学ユニット47B,47C,47Dにそれぞれ接続され、反射回折光の検出信号OUTがそれぞれ制御部51に入力される。
Next, a configuration example and operation of a specific measurement optical system for detecting the shape of the endoscope insertion portion 19 will be described.
FIG. 7 is a block diagram showing a measurement optical system using a shape detection unit and an optical fiber. The optical fiber 41A inserted through the endoscope insertion section 19 (see FIG. 1) is connected to the optical unit 47A of the shape detection section 10 in the control device 13 (see FIG. 1). The optical unit 47A introduces light emitted from the light source unit 49 into the optical fiber 41A, detects reflected diffracted light from each of the FBG1, FBG2,..., And outputs a detection signal OUT of the reflected diffracted light to the control unit 51. Output. Similarly, the optical fibers 41B, 41C, and 41D are respectively connected to the optical units 47B, 47C, and 47D of the shape detection unit 10, and the detection signals OUT of the reflected diffracted light are respectively input to the control unit 51.

光ファイバ41A,41B,41C,41Dと、光学ユニット47A,47B,47C,47Dはそれぞれ同一の構成であり、ここでは説明を簡略化するため、光ファイバ41A、光学ユニット47Aを例に説明する。光ファイバ41Aには、光ファイバ41Aの光導入端53から距離D1/2、距離D2/2、距離D3/2の位置にFBG1,FBG2,FBG3,・・・がそれぞれ配置されている。各FBG1,FBG2,FBG3,・・・は、それぞれ互いに異なる回折格子周期を有し、発生する反射回折光の波長はそれぞれ異なる波長λ1,λ2,λ3,・・・とされている。 The optical fibers 41A, 41B, 41C, and 41D and the optical units 47A, 47B, 47C, and 47D have the same configuration. Here, in order to simplify the description, the optical fiber 41A and the optical unit 47A will be described as an example. The optical fiber 41A, the distance D 1/2 from the light introduction end 53 of the optical fiber 41A, the distance D 2/2, the distance FBG1 to D 3/2 positions, FBG 2, FBG 3, · · · are arranged respectively . Each of the FBG1, FBG2, FBG3,... Has a different diffraction grating period, and the wavelengths of the reflected diffracted light generated are different wavelengths λ 1 , λ 2 , λ 3 ,.

一方、光ファイバ41Aが接続される形状検出部10の光学ユニット47Aは、光源部49と光ファイバ41Aを結ぶ光路途中に光路分離部として機能するビームスプリッタ55が配設され、ビームスプリッタ55により分離された光路途中には光シャッタ57が配置され、光シャッタ57の光路前方に光検出部59が配置されている。   On the other hand, the optical unit 47A of the shape detection unit 10 to which the optical fiber 41A is connected is provided with a beam splitter 55 that functions as an optical path separation unit in the middle of the optical path connecting the light source unit 49 and the optical fiber 41A. An optical shutter 57 is disposed in the middle of the optical path, and a light detector 59 is disposed in front of the optical path of the optical shutter 57.

また、光源部49は、制御部51からの制御信号ROを受けて、光学ユニット47Aを介して光ファイバ41AにFBG1,FBG2,FBG3,・・・の回折格子周期に対応する異なる波長のパルス光を時系列的に出射する。光源部49としては、例えば波長スイープが可能なレーザ光源、白色光源にバンドパスフィルタ等の光学フィルタを接続して特定波長成分のみ選択的に出射させる光源等、公知の光源が使用できる。   The light source unit 49 receives the control signal RO from the control unit 51 and applies pulsed light having different wavelengths corresponding to the diffraction grating periods of FBG1, FBG2, FBG3,... To the optical fiber 41A via the optical unit 47A. Are emitted in time series. As the light source unit 49, for example, a known light source such as a laser light source capable of wavelength sweeping or a light source that selectively emits only a specific wavelength component by connecting an optical filter such as a bandpass filter to a white light source can be used.

光学ユニット47Aの光シャッタ57は、高速な光変調が可能な電気光学効果を有する光学機能材料で形成された電気光学シャッタであり、光学機能材料として、例えば、PLZT(チタン酸ジルコン酸ランタン鉛)や非線形光学結晶であるKDP(2水素リン酸カリウム)結晶等が利用可能である。図8に光シャッタ57の構成例を示した。電気光学効果を有する光学機能材料61は、駆動回路63からの駆動電圧により結晶の配向方向が変化することを利用して、クロスニコル配置された偏光板65,67と組み合わせることで、透過/遮光をnsecオーダで高速に制御できる。   The optical shutter 57 of the optical unit 47A is an electro-optical shutter formed of an optical functional material having an electro-optical effect capable of high-speed light modulation. As the optical functional material, for example, PLZT (lead lanthanum zirconate titanate) In addition, KDP (potassium dihydrogen phosphate) crystal, which is a nonlinear optical crystal, can be used. FIG. 8 shows a configuration example of the optical shutter 57. The optical functional material 61 having the electro-optic effect is combined with the polarizing plates 65 and 67 arranged in crossed Nicols by utilizing the fact that the orientation direction of the crystal is changed by the driving voltage from the driving circuit 63, thereby transmitting / shielding light. Can be controlled at high speed on the order of nsec.

この光シャッタ57を透過した光は、フォトダイオードやフォトトランジスタ、或いは光電管等の光電効果を利用した図7に示す光検出部59により、制御部51の制御信号を受けたタイミングで検出される。   The light transmitted through the optical shutter 57 is detected at the timing when the control signal of the control unit 51 is received by the light detection unit 59 shown in FIG. 7 using a photoelectric effect such as a photodiode, a phototransistor, or a photoelectric tube.

つまり、FBG1,FBG2,FBG3,・・・から戻り来る反射回折光は、光学ユニット47Aのビームスプリッタ55により、光源部49からの入射光路から取り出され、光シャッタ57を通じて光検出部59で検出されるようになっている。   That is, the reflected diffracted light returning from FBG1, FBG2, FBG3,... Is extracted from the incident light path from the light source unit 49 by the beam splitter 55 of the optical unit 47A, and detected by the light detection unit 59 through the optical shutter 57. It has become so.

次に、光ファイバ41Aと形状検出部10による光ファイバの歪検出手順について説明する。なお、ここでは、光ファイバ41Aの光入射端から、光源部49、ビームスプリッタ55、光シャッタ57、光検出部59までの各光路長については省略して説明する。   Next, an optical fiber strain detection procedure by the optical fiber 41A and the shape detection unit 10 will be described. Here, each optical path length from the light incident end of the optical fiber 41A to the light source unit 49, the beam splitter 55, the optical shutter 57, and the light detection unit 59 will be omitted.

まず、制御部51は、光源制御信号ROを光源部49に出力して光源部49から複数の狭帯域波長のパルス光を順次出射させる。パルス光は、図9に一例を示すように、特定のFBGの無歪状態における回折格子周期に対応した波長(中心狭帯域波長)λを中心に、その波長の前後に、所定の変化分Δを異ならせた波長(近接狭帯域波長)λi−2Δ、λi−Δ、λi+Δ、λi+2Δの合計5種類のパルス光であり、これらが1つのFBGに対応して光源部49から順次出射される。これら複数のパルス光は、前述の図6に示すFBGの歪状態に応じた波長遷移量を検出するためのパルス光であり、FBGが反射回折光を発生するいずれかのパルス光の波長から、FBGの歪状態を検出する。 First, the control unit 51 outputs a light source control signal RO to the light source unit 49 to sequentially emit a plurality of narrowband wavelength pulse lights from the light source unit 49. As shown in an example in FIG. 9, the pulsed light has a predetermined change amount before and after the wavelength (center narrowband wavelength) λ i corresponding to the diffraction grating period in the undistorted state of a specific FBG. There are a total of five types of pulsed light of different wavelengths (near-band narrow wavelengths) λ i−2Δ , λ i−Δ , λ i + Δ , and λ i + 2Δ , and these correspond to one FBG from the light source unit 49. Sequentially emitted. These plural pulse lights are pulse lights for detecting the wavelength transition amount corresponding to the strain state of the FBG shown in FIG. 6, and from the wavelength of any pulse light that the FBG generates reflected diffracted light, The distortion state of FBG is detected.

FBG1に対しては、中心狭帯域波長をλとし、その波長の前後に波長λ1−2Δ、λ1−Δ、λ1+Δ、λ1+2Δのパルス光を光源部49から順次出射する。出射された各パルス光は、光学ユニット47Aのビームスプリッタ55を通過して光ファイバ41Aの光入射端に照射され、光ファイバ41A内に入射光として順次導入される。 For the FBG 1 , the center narrowband wavelength is λ 1, and pulsed light of wavelengths λ 1-2Δ , λ 1-Δ , λ 1 + Δ , λ 1 + 2Δ is sequentially emitted from the light source unit 49 before and after that wavelength. Each emitted pulsed light passes through the beam splitter 55 of the optical unit 47A, is irradiated onto the light incident end of the optical fiber 41A, and is sequentially introduced into the optical fiber 41A as incident light.

ここで、図10に制御部による制御タイムチャートを示した。まず、制御部51からの光源制御信号ROをトリガとして光源部49は波長λ1−2Δのパルス光を光ファイバ41Aに導入する。すると、光ファイバ41A内では、波長λ1−2Δのパルス光が、入射端から距離D1/2の位置のFBG1にta(ta=D1/(2C))の時間で到達し(ただし、Cは光速)、ここで発生した反射回折光P1が、同じ時間taで光ファイバ41Aの入射端に戻る。戻された反射回折光P2は、図7に示すビームスプリッタ55により光シャッタ57に導かれる。 Here, a control time chart by the control unit is shown in FIG. First, using the light source control signal RO from the control unit 51 as a trigger, the light source unit 49 introduces pulsed light with a wavelength λ1-2Δ into the optical fiber 41A. Then, in the optical fiber 41A, the pulsed light with the wavelength λ1-2Δ reaches the FBG1 at a distance D 1/2 from the incident end in a time ta (ta = D 1 / (2C)) (however, C is the speed of light), and the reflected diffracted light P1 generated here returns to the incident end of the optical fiber 41A at the same time ta. The returned reflected diffraction light P2 is guided to the optical shutter 57 by the beam splitter 55 shown in FIG.

そして、制御部51は、光源制御信号ROを出力してROがアクティブ状態になってから、光ファイバ41Aのパルス光導入側からFBG1までの、パルス光片道通過時間taの2倍の往復通過時間に相当する遅延時間後に、光シャッタ57を開状態にするシャッタ制御信号OCを光シャッタ57に出力する。これにより、光シャッタ57は、反射回折光P2が戻り来たときに、そのタイミングでは光シャッタ57が遮光状態から透光状態になっており、光検出部59に反射回折光P2が照射される。   Then, the controller 51 outputs the light source control signal RO, and after the RO is in the active state, the reciprocating passage time that is twice the pulse light one-way passage time ta from the pulse light introduction side of the optical fiber 41A to the FBG1. After a delay time corresponding to, a shutter control signal OC for opening the optical shutter 57 is output to the optical shutter 57. Thereby, when the reflected diffracted light P2 returns, the optical shutter 57 is in the light-transmitting state from the light-shielding state at that timing, and the reflected diffracted light P2 is irradiated to the light detection unit 59. .

そして、光検出部59は、制御部51から出力されるリセット制御信号RSのLo期間で信号電荷を蓄積し、Hi期間で電荷リセットする制御を行い、リセット制御信号RSのLo期間に照射された反射光回折光P2の信号電荷を選択的に検出する。   Then, the light detection unit 59 performs control for accumulating signal charges in the Lo period of the reset control signal RS output from the control unit 51 and performing charge reset in the Hi period, and is irradiated during the Lo period of the reset control signal RS. The signal charge of the reflected light diffracted light P2 is selectively detected.

上記の波長λ1−2Δのパルス光に対する検出を終了すると、続いて、波長λ1−Δのパルス光に対する検出を行う。波長λ1−Δのパルス光は制御部51からの光源制御信号ROに同期して光源部49から出射され、シャッタ制御信号OCに同期して光検出部59により検出される。このように各パルス光は、周期tpの間隔で順次光ファイバ41Aに導入されて、光検出部59による反射回折光の検出が繰り返し行われる。 When the detection with respect to the pulsed light with the wavelength λ1-2Δ is completed, the detection with respect to the pulsed light with the wavelength λ1 is subsequently performed. The pulsed light of wavelength λ 1-Δ is emitted from the light source unit 49 in synchronization with the light source control signal RO from the control unit 51, and is detected by the light detection unit 59 in synchronization with the shutter control signal OC. In this way, each pulse light is sequentially introduced into the optical fiber 41A at intervals of the period tp, and the detection of the reflected diffracted light by the light detection unit 59 is repeatedly performed.

図10に示す例では、波長λ1−2Δ、λ1−Δ、λ、λ1+Δ、λ1+2Δの各パルス光を光ファイバ41Aに周期tpで順次導入して、各周期tp毎に光検出部59で検出する際、2回目の波長λ1−Δのパルス光のみFBG1から反射回折光P3が発生した様子を示している。光ファイバ41A内のFBG1の位置は変化しないため、それぞれのパルス光に対する反射回折光が光シャッタ57、光検出部59に到達する時間は同一となる。図示例では、パルス光の波長がλ1−Δ以外では、パルス光がFBG1で回折することなくFBG1を通過するため、反射回折光がビームスプリッタ55に戻ることはない。パルス光の波長がλ1−Δの場合のみ、出射から2ta(D1/c)の時間後に反射回折光の信号電荷が検出される。上記の場合では、FBG1の回折格子周期は1/λ1−Δであり、基準回折格子周期1/λから周期1/(−δ)だけずれる歪が生じていたことがわかる。 In the example shown in FIG. 10, pulsed light beams having wavelengths λ 1-2Δ , λ 1-Δ , λ 1 , λ 1 + Δ , λ 1 + 2Δ are sequentially introduced into the optical fiber 41A at a period tp, and light detection is performed at each period tp. Only the second pulse light of the wavelength λ 1-Δ is detected by the unit 59, and the reflected diffracted light P3 is generated from the FBG 1 . Since the position of the FBG 1 in the optical fiber 41A does not change, the time for the reflected diffracted light with respect to each pulsed light to reach the optical shutter 57 and the light detection unit 59 is the same. In the illustrated example, when the wavelength of the pulsed light is other than λ 1−Δ , the reflected light does not return to the beam splitter 55 because the pulsed light passes through the FBG 1 without being diffracted by the FBG 1 . Only when the wavelength of the pulsed light is λ 1-Δ , the signal charge of the reflected diffracted light is detected after a time of 2 ta (D 1 / c) from the emission. In the above case, it can be seen that the diffraction grating period of the FBG 1 is 1 / λ 1−Δ , and distortion that is shifted from the reference diffraction grating period 1 / λ 1 by the period 1 / (− δ) has occurred.

次に、上記のFBG1の歪状態の検出と同様に、光入射端からD2/2の位置にあるFBG2、D3/2の位置にあるFBG3、・・・に対してもそれぞれ異なる波長のパルス光を光ファイバ41Aに順次導入し、反射回折光をそれぞれ検出する。この手順により、光ファイバ41AのFBG1,FBG2,FBG3,・・・からそれぞれの歪状態が検出でき、光ファイバ41の長手方向に対する歪分布が求められる。なお、上記例では一つのFBGに対して5種類の波長のパルス光を用いているが、更に多種の波長のパルス光を用いることで、歪測定レンジの拡大や検出精度の向上が図れる。 Then, similarly to the detection of strain on the above FBG 1, from the light incident end to the FBG 2, D 3/2 positions in the position of D 2/2 FBG 3, even for ... different wavelengths Pulse light is sequentially introduced into the optical fiber 41A, and the reflected diffracted light is detected. According to this procedure, the respective strain states can be detected from the FBG1, FBG2, FBG3,... Of the optical fiber 41A, and the strain distribution in the longitudinal direction of the optical fiber 41 is obtained. In the above example, pulse light of five types of wavelengths is used for one FBG. However, by using pulse light of various wavelengths, the strain measurement range can be expanded and the detection accuracy can be improved.

また、同様にして光ファイバ41B,41C,41Dに対しても、光学ユニット47B,47C,47Dにより反射回折光を検出することで、各光ファイバ41B,41C,41Dの歪分布を求めることができる。   Similarly, the distortion distribution of each of the optical fibers 41B, 41C, and 41D can be obtained for the optical fibers 41B, 41C, and 41D by detecting the reflected diffracted light using the optical units 47B, 47C, and 47D. .

いま、対向配置された一対の光ファイバ41A,41Bの歪分布が図11に示す状態であったとすると、それぞれの歪分布から内視鏡挿入部19の変形状態(内視鏡挿入部の中立線69)が推測できる。例えば、FBG2の配置位置において、光ファイバ41Aの歪ε2が+δ(伸張)、光ファイバ41Bの歪ε2が−δ(圧縮)であると、FBG2の配置位置では、図11において上側に凸となる湾曲状態であることがわかり、歪値が大きい程、湾曲の曲率が大きくなる。なお、内視鏡挿入部19の直径方向外周側に光ファイバ41A,41Bをそれぞれ配置することで、内視鏡挿入部19の変形による歪みが大きくなり、歪の検出精度を向上できる。 Now, assuming that the strain distribution of the pair of optical fibers 41A and 41B arranged opposite to each other is in the state shown in FIG. 11, the deformation state of the endoscope insertion portion 19 (neutral line of the endoscope insertion portion is determined from each strain distribution). 69). For example, when the strain ε 2 of the optical fiber 41A is + δ (extension) and the strain ε 2 of the optical fiber 41B is −δ (compression) at the position where the FBG 2 is disposed, the FBG 2 is projected upward in FIG. It can be seen that the curve is in a curved state, and the greater the distortion value, the greater the curvature of the curve. In addition, by arranging the optical fibers 41A and 41B on the outer circumference side in the diameter direction of the endoscope insertion portion 19, distortion due to deformation of the endoscope insertion portion 19 becomes large, and the detection accuracy of the distortion can be improved.

本構成例では、内視鏡挿入部19の互いに直交する2つの直径方向の外周側で合計4箇所に配置されており、従って、図12に内視鏡挿入部の湾曲状態の一例を示すように、例えば光ファイバ41A,41Bの対によりOーX平面上の内視鏡挿入部19の形状がトレースでき、光ファイバ41C,41Dの対によりO−Y平面上の内視鏡挿入部19の変形形状がトレースできる。   In the present configuration example, the endoscope insertion portion 19 is arranged at a total of four locations on the outer peripheral side in the two diametrical directions orthogonal to each other. Accordingly, FIG. 12 shows an example of a curved state of the endoscope insertion portion. For example, the shape of the endoscope insertion portion 19 on the OX plane can be traced by a pair of optical fibers 41A and 41B, and the endoscope insertion portion 19 on the OY plane can be traced by a pair of optical fibers 41C and 41D. Deformable shape can be traced.

得られた内視鏡挿入部19の形状は、図1に示す表示部15等に出力され、内視鏡11の術者に内視鏡挿入部19の形状が通知される。これにより、内視鏡11の術者は、体腔内に挿入された操作中の内視鏡挿入部19の3次元的な形状を把握でき、検査対象部位の特定や、内視鏡挿入部19の進退操作を円滑に行うことができる。   The obtained shape of the endoscope insertion portion 19 is output to the display portion 15 shown in FIG. 1 and the like, and the operator of the endoscope 11 is notified of the shape of the endoscope insertion portion 19. As a result, the operator of the endoscope 11 can grasp the three-dimensional shape of the endoscope insertion portion 19 being operated and inserted into the body cavity, and can specify the inspection target region or the endoscope insertion portion 19. The advance / retreat operation can be performed smoothly.

なお、形状検出部10の光学系は上記例に限らず、適宜変更が可能である。例えば図13に示すように、4本の光ファイバ41A、41B,41C,41Dからの反射回折光をビームスプリッタ55でそれぞれ取り出した後、ハーフミラー75により光路を合流させて光シャッタ57に投入する構成としてもよい。この場合には、光シャッタ57と光検出部59が1系統のみ配置するだけで済み、構成を簡略化できる上、制御も簡単に行える。   The optical system of the shape detection unit 10 is not limited to the above example, and can be changed as appropriate. For example, as shown in FIG. 13, after the reflected diffracted light from the four optical fibers 41A, 41B, 41C, and 41D is respectively extracted by the beam splitter 55, the optical paths are merged by the half mirror 75 and put into the optical shutter 57. It is good also as a structure. In this case, only one system of the optical shutter 57 and the light detection unit 59 is required, and the configuration can be simplified and the control can be easily performed.

次に、内視鏡形状検出装置の他の構成例を説明する。
上記の内視鏡システム100においては、形状検出部10と接続される光ファイバ41A,41B,41C,41Dを内視鏡挿入部19内に設けていたが、ここでは、図14に示すように、内視鏡挿入部19の長手方向に沿って連通する鉗子孔77に挿入される処置具79に設けている。
Next, another configuration example of the endoscope shape detection apparatus will be described.
In the endoscope system 100 described above, the optical fibers 41A, 41B, 41C, and 41D connected to the shape detection unit 10 are provided in the endoscope insertion unit 19, but here, as shown in FIG. The treatment instrument 79 is inserted into a forceps hole 77 communicating along the longitudinal direction of the endoscope insertion portion 19.

内視鏡挿入部19には、鉗子孔77が図1に示す鉗子挿入部39から内視鏡先端部35まで形成されており、長尺状の処置具79が鉗子孔77に抜き差し自在に挿通される。そして、処置具79のB−B断面を図15に示すように、前述と同様の光ファイバ41A,41B,41C,41Dが、処置具79の外周側で互いに直交する直径方向に2対配置されている。   A forceps hole 77 is formed in the endoscope insertion portion 19 from the forceps insertion portion 39 to the endoscope distal end portion 35 shown in FIG. 1, and a long treatment tool 79 is inserted into the forceps hole 77 so as to be freely inserted and removed. Is done. Then, as shown in FIG. 15, the BB cross section of the treatment instrument 79 is provided with two pairs of optical fibers 41A, 41B, 41C, 41D similar to the above in the diameter direction perpendicular to each other on the outer peripheral side of the treatment instrument 79. ing.

各光ファイバ41A,41B,41C,41Dは、前述の図7、図13に示すように、それぞれ形状検出部10,10Aに接続されて各FBGの歪が検出されるようになっている。この構成によれば、内視鏡挿入部19を設計変更することなく、単純に処置具79を挿入するだけで内視鏡挿入部19の変形を検出することができる。   Each of the optical fibers 41A, 41B, 41C, and 41D is connected to the shape detection units 10 and 10A, respectively, as shown in FIGS. 7 and 13, and the distortion of each FBG is detected. According to this configuration, it is possible to detect deformation of the endoscope insertion portion 19 by simply inserting the treatment instrument 79 without changing the design of the endoscope insertion portion 19.

以上説明した内視鏡形状検出装置によれば、簡単な光学系により内視鏡挿入部の歪が検出でき、低コストでしかも高精度な形状検出が可能となる。例えば、光ファイバ内のFBGから戻り来た反射回折光を検出する際に、FGBからの反射回折光と参照反射面からの反射光との干渉による光強度変換からFBGの位置を特定するOFDR(Optical Frequency Domain Reflectometry)方式も使用できるが、この方式では高価な光スペクトルアナライザが必要となってしまい、また装置を煩雑化させることになる。一方、本構成の内視鏡形状検出装置によれば、高速駆動可能な光シャッタにより各FBGからの反射回折光を選択的に取り出す構成であるため、分光特性計測を行うことなく、安価でしかも小型化に適した構成で光ファイバに生じる歪を検出できる。さらに、光ファイバ内の各FBGの配置位置における歪量がそれぞれ確実に検出されるので、内視鏡挿入部19の形状を簡単な手順で正確に検出できる。   According to the endoscope shape detection device described above, distortion of the endoscope insertion portion can be detected by a simple optical system, and shape detection can be performed at low cost and with high accuracy. For example, when detecting the reflected diffracted light returning from the FBG in the optical fiber, OFDR (which specifies the position of the FBG from light intensity conversion due to interference between the reflected diffracted light from the FGB and the reflected light from the reference reflecting surface) Optical Frequency Domain Reflectometry) can also be used, but this method requires an expensive optical spectrum analyzer and complicates the apparatus. On the other hand, according to the endoscope shape detection device of this configuration, the reflected diffracted light from each FBG is selectively extracted by an optical shutter that can be driven at high speed, so that it is inexpensive without performing spectral characteristic measurement. The distortion generated in the optical fiber can be detected with a configuration suitable for miniaturization. Furthermore, since the amount of strain at the position where each FBG in the optical fiber is arranged is reliably detected, the shape of the endoscope insertion portion 19 can be accurately detected by a simple procedure.

また、内視鏡挿入部19に挿通する光ファイバは、断面上で互いに直交する直径方向に配置された4本(二対)の構成に限らず、更に多数対の光ファイバを配置してもよく、その場合には内視鏡挿入部19の形状検出精度を一層向上できる。   Further, the number of optical fibers inserted through the endoscope insertion portion 19 is not limited to the four (two pairs) arranged in the diameter direction orthogonal to each other on the cross section, and a larger number of pairs of optical fibers may be arranged. In this case, the shape detection accuracy of the endoscope insertion portion 19 can be further improved.

また、光ファイバ内のFBGの配置位置は、内視鏡挿入部19の領域において均等な間隔で配置する以外にも、内視鏡先端部ほど密に配置してもよい。内視鏡先端部のFBGの配置間隔が狭くなることで、変形の検出精度が高くなり、特に形状検出に重要となる内視鏡先端部の状態を正確に把握することができる。   Further, the positions of the FBGs in the optical fiber may be arranged closer to the distal end of the endoscope in addition to being arranged at equal intervals in the region of the endoscope insertion portion 19. By reducing the FBG arrangement interval at the endoscope distal end, the deformation detection accuracy is increased, and the state of the endoscope distal end that is particularly important for shape detection can be accurately grasped.

なお、FBGからの反射回折光により歪を検出する際は、内視鏡挿入部19が体腔内に挿入されて体腔内の粘膜を介して体温付近の温度に保たれ、環境温度の変化の影響を受けにくくなり、歪検出値の温度誤差を小さく抑えられる。   When strain is detected by reflected diffracted light from the FBG, the endoscope insertion portion 19 is inserted into the body cavity and maintained at a temperature near the body temperature via the mucous membrane in the body cavity, and the influence of changes in the environmental temperature The temperature error of the strain detection value can be kept small.

このように、本発明は上記の実施形態に限定されるものではなく、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。   As described above, the present invention is not limited to the above-described embodiments, and modifications and applications by those skilled in the art based on the description of the specification and well-known techniques are also within the scope of the present invention. It is included in the range to calculate.

以上の通り、本明細書には次の事項が開示されている。
(1) 互いに回折格子周期の異なる複数のファイバブラッググレーティングを形成した光ファイバと、
前記光ファイバの一端側から、前記ファイバブラッググレーティングそれぞれの回折格子周期に対応した波長の入射光を導入する光源部と、
前記光ファイバに導入した入射光が前記ファイバブラッググレーティングで回折して戻り来る反射回折光を前記入射光の光路から取り出す光路分離部と、
前記光路分離部から取り出された前記反射回折光を検出する光検出部と、
前記光路分離部と前記光検出部との間の光路途中に配置された光シャッタと、
前記回折反射光が前記光検出部に到達するタイミングに同期して前記光シャッタを開閉駆動し、特定の前記ファイバブラッググレーティングからの回折反射光を前記光検出部により選択的に検出させ、該検出された反射回折光の前記入射光に対する波長遷移量に基づいて前記ファイバブラッググレーティングの歪量を求める制御部と、
を備え、
前記光ファイバが、被検体内に挿入され可撓性を有する内視鏡挿入部に少なくとも一対挿通され、前記制御部が前記検出された歪量に基づいて前記内視鏡挿入部の形状を検出する内視鏡形状検出装置。
この内視鏡形状検出装置によれば、複数種の波長の入射光を光ファイバに順次導入して、ファイバブラッググレーティングから戻り来る反射回折光を光シャッタを介して所定のタイミングで検出することで、検出タイミングの違いから、複数のファイバブラッググレーティングそれぞれを識別しつつ、個別に歪量を検出できる。つまり、光ファイバに生じる歪を、分光器による分光分析を行うことなく安価でしかも小型化に適した構成で検出して、各光ファイバのファイバブラッググレーティングの配置位置における歪量を確実に求め、内視鏡挿入部の形状を簡単な手順で正確に検出できる。
As described above, the following items are disclosed in this specification.
(1) an optical fiber in which a plurality of fiber Bragg gratings having different diffraction grating periods are formed;
A light source section for introducing incident light having a wavelength corresponding to a diffraction grating period of each of the fiber Bragg gratings from one end side of the optical fiber;
An optical path separation unit that extracts reflected diffracted light that is diffracted and returned by the fiber Bragg grating from the incident light introduced into the optical fiber;
A light detection unit for detecting the reflected diffracted light extracted from the optical path separation unit;
An optical shutter disposed in the middle of the optical path between the optical path separator and the light detector;
The optical shutter is driven to open and close in synchronization with the timing when the diffracted and reflected light reaches the light detection unit, and the diffracted and reflected light from a specific fiber Bragg grating is selectively detected by the light detection unit. A control unit for obtaining a strain amount of the fiber Bragg grating based on a wavelength transition amount of the reflected diffracted light with respect to the incident light;
With
At least a pair of the optical fibers are inserted into a flexible endoscope insertion portion inserted into a subject, and the control portion detects the shape of the endoscope insertion portion based on the detected strain amount. Endoscope shape detection device.
According to this endoscope shape detection device, incident light of a plurality of types of wavelengths is sequentially introduced into an optical fiber, and reflected diffracted light returning from the fiber Bragg grating is detected at a predetermined timing via an optical shutter. From the difference in detection timing, it is possible to individually detect the amount of strain while identifying each of the plurality of fiber Bragg gratings. In other words, the strain generated in the optical fiber is detected with a configuration that is inexpensive and suitable for downsizing without performing spectroscopic analysis with a spectroscope, and the amount of strain at the position where the fiber Bragg grating of each optical fiber is arranged is reliably determined. The shape of the endoscope insertion portion can be accurately detected by a simple procedure.

(2) (1)の内視鏡形状検出装置であって、
前記制御部が、前記ファイバブラッググレーティングの無歪状態における基準回折格子周期に対応した回折光を発生する中心狭帯域波長と、該中心狭帯域波長の前後の他の近接狭帯域波長との複数種の狭帯域波長のパルス光を、前記光源部から異なるタイミングで前記光ファイバに順次導入させ、
前記光ファイバへの前記パルス光の導入タイミングに応じたタイミングで前記光シャッタを開閉駆動することにより、前記反射回折光を前記光検出部により選択的に検出し、
該検出された反射回折光に対応するパルス光の狭帯域波長と、前記中心狭帯域波長との差分を前記波長遷移量として求める内視鏡形状検出装置。
この内視鏡形状検出装置によれば、中心狭帯域波長と他の近接狭帯域波長との複数種のパルス光を光ファイバに順次導入して、それぞれ戻り来る反射回折光に同期して光シャッタを開き反射回折光を検出するので、複数回の検出のうちいずれかの回で反射回折光が検出でき、その回に相当する狭帯域波長の中心狭帯域波長との差分を求めることで、反射回折光の入射光に対する波長遷移量を求めることができる。
(2) The endoscope shape detection device according to (1),
The control unit includes a plurality of types of a center narrowband wavelength that generates diffracted light corresponding to a reference diffraction grating period in an unstrained state of the fiber Bragg grating, and other adjacent narrowband wavelengths before and after the center narrowband wavelength. The narrow-band wavelength pulse light is sequentially introduced from the light source unit into the optical fiber at different timings,
By selectively opening and closing the optical shutter at a timing according to the introduction timing of the pulsed light into the optical fiber, the reflected diffracted light is selectively detected by the light detection unit,
An endoscope shape detecting apparatus for obtaining a difference between a narrow band wavelength of pulse light corresponding to the detected reflected diffracted light and the central narrow band wavelength as the wavelength transition amount.
According to this endoscope shape detection apparatus, a plurality of types of pulsed light having a central narrowband wavelength and other adjacent narrowband wavelengths are sequentially introduced into an optical fiber, and each optical shutter is synchronized with the reflected diffracted light that returns. Since the reflected diffracted light is detected, the reflected diffracted light can be detected at any one of a plurality of times, and the difference between the narrowband wavelength corresponding to that time and the center narrowband wavelength is obtained. The amount of wavelength transition with respect to the incident light of the diffracted light can be obtained.

(3) (1)又は(2)の内視鏡形状検出装置であって、
前記制御部が、前記光源部から光出射させる光源制御信号を出力した後の、歪量の被検出対象となる前記ファイバブラッググレーティングの前記光ファイバ内の配置位置に応じた遅延時間後に、前記光シャッタを開状態にするシャッタ制御信号を出力する内視鏡形状検出装置。
この内視鏡形状検出装置によれば、制御部が光源制御信号出力後の所定の遅延時間後にシャッタ制御信号を出力することで、それぞれ異なる位置に配置されたファイバブラッググレーティングからの反射回折光を選択的に取り出すことができる。
(3) The endoscope shape detecting device according to (1) or (2),
After the control unit outputs a light source control signal for emitting light from the light source unit, after the delay time corresponding to the arrangement position in the optical fiber of the fiber Bragg grating to be detected for distortion, the light An endoscope shape detection apparatus that outputs a shutter control signal for opening a shutter.
According to this endoscope shape detection device, the control unit outputs the shutter control signal after a predetermined delay time after the light source control signal is output, so that the reflected diffracted light from the fiber Bragg gratings arranged at different positions can be obtained. Can be selectively extracted.

(4) (1)〜(3)のいずれかの内視鏡形状検出装置であって、
前記光シャッタが、電気光学効果を有する光学機能材料を含んで構成された電気光学シャッタである内視鏡形状検出装置。
この内視鏡形状検出装置によれば、nsecオーダの高速駆動可能な電気光学シャッタを用いることで、光ファイバ内の各ファイバブラッググレーティングを高い分解能で検出でき、歪分布の検出精度を向上できる。
(4) The endoscope shape detection device according to any one of (1) to (3),
An endoscope shape detection apparatus, wherein the optical shutter is an electro-optical shutter configured to include an optical functional material having an electro-optical effect.
According to this endoscope shape detection apparatus, each fiber Bragg grating in the optical fiber can be detected with high resolution by using an electro-optical shutter that can be driven at a high speed on the order of nsec, and the detection accuracy of the strain distribution can be improved.

(5) (1)〜(4)のいずれかの内視鏡形状検出装置であって、
複数の前記光ファイバが、それぞれ同一構成の光ファイバである内視鏡形状検出装置。
この内視鏡形状検出装置によれば、歪検出のための光学系を同じ仕様にでき、装置の簡略化が図れる。また、同じ位置に同じ回折格子周期のファイバブラッググレーティングが設けられるので、内視鏡挿入部の軸方向同一位置における歪を検出でき、一対の光ファイバからの内視鏡挿入部の形状検出を正確に行える。
(5) The endoscope shape detection device according to any one of (1) to (4),
An endoscope shape detection apparatus, wherein the plurality of optical fibers are optical fibers having the same configuration.
According to this endoscope shape detection apparatus, the optical system for distortion detection can be made to have the same specifications, and the apparatus can be simplified. In addition, since the fiber Bragg grating with the same diffraction grating period is provided at the same position, it is possible to detect distortion at the same position in the axial direction of the endoscope insertion portion, and accurately detect the shape of the endoscope insertion portion from a pair of optical fibers. Can be done.

(6) (1)〜(5)のいずれかの内視鏡形状検出装置であって、
前記光路分岐部、前記光シャッタ、及び前記光検出部が、複数の前記光ファイバに対してそれぞれ個別に設けられた内視鏡形状検出装置。
この内視鏡形状検出装置によれば、各光ファイバにそれぞれ測定光学系が設けられることで、各光ファイバの歪検出をそれぞれ同時に行うことができ、形状検出のための測定時間を短縮できる。
(6) The endoscope shape detection device according to any one of (1) to (5),
An endoscope shape detection apparatus in which the optical path branching unit, the optical shutter, and the light detection unit are individually provided for a plurality of the optical fibers.
According to this endoscope shape detection apparatus, since each optical fiber is provided with a measurement optical system, strain detection of each optical fiber can be performed simultaneously, and the measurement time for shape detection can be shortened.

(7) (1)〜(6)のいずれかの内視鏡形状検出装置であって、
前記光ファイバが、前記内視鏡挿入部の直径方向外周側にそれぞれ配置された内視鏡形状検出装置。
この内視鏡形状検出装置によれば、内視鏡挿入部の変形による歪が大きく発生する外周位置で検出するため、高精度で形状の検出が行える。
(7) The endoscope shape detection device according to any one of (1) to (6),
An endoscope shape detection device in which the optical fibers are respectively arranged on the outer peripheral side in the diameter direction of the endoscope insertion portion.
According to this endoscope shape detection apparatus, since the detection is performed at the outer peripheral position where distortion due to deformation of the endoscope insertion portion is greatly generated, the shape can be detected with high accuracy.

(8) (1)〜(6)のいずれかの内視鏡形状検出装置であって、
前記内視鏡挿入部が、該内視鏡挿入部の長手方向に沿って連通する鉗子孔が内設されるとともに、前記鉗子孔に挿通された長尺状の処置具を備え、
前記光ファイバが、前記処置具の直径方向外周側にそれぞれ配置された内視鏡形状検出装置。
この内視鏡形状検出装置によれば、処置具に光ファイバを設けることで、内視鏡の構成を変更することなく内視鏡挿入部の形状を検出できる。
(8) The endoscope shape detection device according to any one of (1) to (6),
The endoscope insertion portion is provided with a forceps hole that communicates along the longitudinal direction of the endoscope insertion portion, and includes a long treatment tool inserted into the forceps hole,
An endoscope shape detection device in which the optical fibers are respectively arranged on the outer peripheral side in the diameter direction of the treatment instrument.
According to this endoscope shape detection device, the shape of the endoscope insertion portion can be detected without changing the configuration of the endoscope by providing the treatment instrument with an optical fiber.

(9) 内視鏡挿入部の先端側に設けた撮像手段から被検体の撮像画像情報を取得する内視鏡システムであって、
(1)〜(8)のいずれかの内視鏡形状検出装置と、
前記内視鏡挿入部の形状の検出情報及び前記撮像画像情報を表示する表示部と、
を備えた内視鏡システム。
この内視鏡システムによれば、内視鏡挿入部の形状を検出した結果と、被検体の撮像画像とを表示部に表示することで、体腔内に挿入された操作中の内視鏡挿入部の形状を把握でき、検査対象部位の特定や、内視鏡挿入部の進退操作を円滑に行うことができる。
(9) An endoscope system for acquiring captured image information of a subject from an imaging means provided on a distal end side of an endoscope insertion portion,
The endoscope shape detection device according to any one of (1) to (8);
A display unit for displaying the detection information of the shape of the endoscope insertion unit and the captured image information;
Endoscope system equipped with.
According to this endoscope system, the result of detecting the shape of the endoscope insertion portion and the captured image of the subject are displayed on the display portion, thereby inserting the endoscope during operation inserted into the body cavity. The shape of the part can be grasped, and the part to be examined can be specified and the endoscope insertion part can be smoothly advanced and retracted.

10,10A 形状検出部
11 内視鏡
13 制御装置
19 内視鏡挿入部
31 軟性部
33 湾曲部
35 内視鏡先端部
39 鉗子挿入部
41,41A,41B,41C,41D 光ファイバ
47A,47B,47C,47D 光学ユニット
49 光源部
51 制御部
53 光導入端
55 ビームスプリッタ(光路分離部)
57 光シャッタ
59 光検出部
61 光学機能材料
63 駆動回路
65,67 偏光板
75 ハーフミラー
77 鉗子孔
79 処置具
FBG ファイバブラッググレーティング
100 内視鏡システム
DESCRIPTION OF SYMBOLS 10,10A Shape detection part 11 Endoscope 13 Control apparatus 19 Endoscope insertion part 31 Flexible part 33 Bending part 35 Endoscope tip part 39 Forceps insertion part 41, 41A, 41B, 41C, 41D Optical fiber 47A, 47B, 47C, 47D Optical unit 49 Light source unit 51 Control unit 53 Light introduction end 55 Beam splitter (optical path separation unit)
57 Optical shutter 59 Photodetector 61 Optical functional material 63 Drive circuit 65, 67 Polarizing plate 75 Half mirror 77 Forceps hole 79 Treatment tool FBG Fiber Bragg grating 100 Endoscope system

Claims (9)

互いに回折格子周期の異なる複数のファイバブラッググレーティングを形成した光ファイバと、
前記光ファイバの一端側から、前記ファイバブラッググレーティングそれぞれの回折格子周期に対応した波長の入射光を導入する光源部と、
前記光ファイバに導入した入射光が前記ファイバブラッググレーティングで回折して戻り来る反射回折光を前記入射光の光路から取り出す光路分離部と、
前記光路分離部から取り出された前記反射回折光を検出する光検出部と、
前記光路分離部と前記光検出部との間の光路途中に配置された光シャッタと、
前記回折反射光が前記光検出部に到達するタイミングに同期して前記光シャッタを開閉駆動し、特定の前記ファイバブラッググレーティングからの回折反射光を前記光検出部により選択的に検出させ、該検出された反射回折光の前記入射光に対する波長遷移量に基づいて前記ファイバブラッググレーティングの歪量を求める制御部と、
を備え、
前記光ファイバが、被検体内に挿入され可撓性を有する内視鏡挿入部に少なくとも一対挿通され、前記制御部が前記検出された歪量に基づいて前記内視鏡挿入部の形状を検出する内視鏡形状検出装置。
An optical fiber in which a plurality of fiber Bragg gratings having different diffraction grating periods are formed;
A light source section for introducing incident light having a wavelength corresponding to a diffraction grating period of each of the fiber Bragg gratings from one end side of the optical fiber;
An optical path separation unit that extracts reflected diffracted light that is diffracted and returned by the fiber Bragg grating from the incident light introduced into the optical fiber;
A light detection unit for detecting the reflected diffracted light extracted from the optical path separation unit;
An optical shutter disposed in the middle of the optical path between the optical path separator and the light detector;
The optical shutter is driven to open and close in synchronization with the timing when the diffracted and reflected light reaches the light detection unit, and the diffracted and reflected light from a specific fiber Bragg grating is selectively detected by the light detection unit. A control unit for obtaining a strain amount of the fiber Bragg grating based on a wavelength transition amount of the reflected diffracted light with respect to the incident light;
With
At least a pair of the optical fibers are inserted into a flexible endoscope insertion portion inserted into a subject, and the control portion detects the shape of the endoscope insertion portion based on the detected strain amount. Endoscope shape detection device.
請求項1記載の内視鏡形状検出装置であって、
前記制御部が、前記ファイバブラッググレーティングの無歪状態における基準回折格子周期に対応した回折光を発生する中心狭帯域波長と、該中心狭帯域波長の前後の他の近接狭帯域波長との複数種の狭帯域波長のパルス光を、前記光源部から異なるタイミングで前記光ファイバに順次導入させ、
前記光ファイバへの前記パルス光の導入タイミングに応じたタイミングで前記光シャッタを開閉駆動することにより、前記反射回折光を前記光検出部により選択的に検出し、
該検出された反射回折光に対応する前記パルス光の狭帯域波長と、前記中心狭帯域波長との差分を前記波長遷移量として求める内視鏡形状検出装置。
The endoscope shape detecting device according to claim 1,
The control unit includes a plurality of types of a center narrowband wavelength that generates diffracted light corresponding to a reference diffraction grating period in an unstrained state of the fiber Bragg grating, and other adjacent narrowband wavelengths before and after the center narrowband wavelength. The narrow-band wavelength pulse light is sequentially introduced from the light source unit into the optical fiber at different timings,
By selectively opening and closing the optical shutter at a timing according to the introduction timing of the pulsed light into the optical fiber, the reflected diffracted light is selectively detected by the light detection unit,
An endoscope shape detection apparatus for obtaining a difference between a narrow band wavelength of the pulsed light corresponding to the detected reflected diffracted light and the central narrow band wavelength as the wavelength transition amount.
請求項1又は請求項2記載の内視鏡形状検出装置であって、
前記制御部が、前記光源部から光出射させる光源制御信号を出力した後の、歪量の被検出対象となる前記ファイバブラッググレーティングの前記光ファイバ内の配置位置に応じた遅延時間後に、前記光シャッタを開状態にするシャッタ制御信号を出力する内視鏡形状検出装置。
The endoscope shape detecting device according to claim 1 or 2,
After the control unit outputs a light source control signal for emitting light from the light source unit, after the delay time corresponding to the arrangement position in the optical fiber of the fiber Bragg grating to be detected for distortion, the light An endoscope shape detection device that outputs a shutter control signal for opening a shutter.
請求項1〜請求項3のいずれか1項記載の内視鏡形状検出装置であって、
前記光シャッタが、電気光学効果を有する光学機能材料を含んで構成された電気光学シャッタである内視鏡形状検出装置。
An endoscope shape detecting device according to any one of claims 1 to 3,
An endoscope shape detection apparatus, wherein the optical shutter is an electro-optical shutter configured to include an optical functional material having an electro-optical effect.
請求項1〜請求項4のいずれか1項記載の内視鏡形状検出装置であって、
複数の前記光ファイバが、それぞれ同一構成の光ファイバである内視鏡形状検出装置。
The endoscope shape detection device according to any one of claims 1 to 4,
An endoscope shape detection apparatus, wherein the plurality of optical fibers are optical fibers having the same configuration.
請求項1〜請求項5のいずれか1項記載の内視鏡形状検出装置であって、
前記光路分岐部、前記光シャッタ、及び前記光検出部が、複数の前記光ファイバに対してそれぞれ個別に設けられた内視鏡形状検出装置。
The endoscope shape detection device according to any one of claims 1 to 5,
An endoscope shape detection apparatus in which the optical path branching unit, the optical shutter, and the light detection unit are individually provided for a plurality of the optical fibers.
請求項1〜請求項6のいずれか1項記載の内視鏡形状検出装置であって、
前記光ファイバが、前記内視鏡挿入部の直径方向外周側にそれぞれ配置された内視鏡形状検出装置。
The endoscope shape detection device according to any one of claims 1 to 6,
An endoscope shape detection device in which the optical fibers are respectively arranged on the outer peripheral side in the diameter direction of the endoscope insertion portion.
請求項1〜請求項6のいずれか1項記載の内視鏡形状検出装置であって、
前記内視鏡挿入部が、該内視鏡挿入部の長手方向に沿って連通する鉗子孔が内設されるとともに、前記鉗子孔に挿通された長尺状の処置具を備え、
前記光ファイバが、前記処置具の直径方向外周側にそれぞれ配置された内視鏡形状検出装置。
The endoscope shape detection device according to any one of claims 1 to 6,
The endoscope insertion portion is provided with a forceps hole that communicates along the longitudinal direction of the endoscope insertion portion, and includes a long treatment tool inserted into the forceps hole,
An endoscope shape detection device in which the optical fibers are respectively arranged on the outer peripheral side in the diameter direction of the treatment instrument.
内視鏡挿入部の先端側に設けた撮像手段から被検体の撮像画像情報を取得する内視鏡システムであって、
請求項1〜請求項8のいずれか1項記載の内視鏡形状検出装置と、
前記内視鏡挿入部の形状の検出情報及び前記撮像画像情報を表示する表示部と、
を備えた内視鏡システム。
An endoscope system for acquiring captured image information of a subject from imaging means provided on the distal end side of an endoscope insertion portion,
The endoscope shape detection device according to any one of claims 1 to 8,
A display unit for displaying the detection information of the shape of the endoscope insertion unit and the captured image information;
Endoscope system equipped with.
JP2009179334A 2009-07-31 2009-07-31 Endoscope shape detector and endoscope system Withdrawn JP2011030735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009179334A JP2011030735A (en) 2009-07-31 2009-07-31 Endoscope shape detector and endoscope system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009179334A JP2011030735A (en) 2009-07-31 2009-07-31 Endoscope shape detector and endoscope system

Publications (1)

Publication Number Publication Date
JP2011030735A true JP2011030735A (en) 2011-02-17

Family

ID=43760413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009179334A Withdrawn JP2011030735A (en) 2009-07-31 2009-07-31 Endoscope shape detector and endoscope system

Country Status (1)

Country Link
JP (1) JP2011030735A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245180A (en) * 2010-05-28 2011-12-08 Fujifilm Corp Endoscope apparatus, endoscope system, and medical apparatus
WO2014091885A1 (en) * 2012-12-11 2014-06-19 オリンパス株式会社 Insertion-assist information detection system for endoscopic device, and endoscopic device
WO2015019745A1 (en) * 2013-08-06 2015-02-12 オリンパス株式会社 Insertion system and method for adjusting shape detection characteristics of shape sensor
JP2015522303A (en) * 2012-03-29 2015-08-06 コーニンクレッカ フィリップス エヌ ヴェ Fiber optical component shape sensing system and operating method thereof
WO2015198773A1 (en) * 2014-06-26 2015-12-30 オリンパス株式会社 Shape estimation device, endoscope system with shape estimation device, shape estimation method, and program for shape estimation
WO2018116372A1 (en) * 2016-12-20 2018-06-28 オリンパス株式会社 Electric endoscope control device and electric endoscope system
US10232189B2 (en) 2012-03-27 2019-03-19 Koninklijke Philips N.V. Guided photodynamic therapy
CN110769737A (en) * 2017-06-21 2020-02-07 奥林巴斯株式会社 Insertion assisting device, insertion assisting method, and endoscope device including insertion assisting device
DE112022004848T5 (en) 2022-03-25 2024-07-18 Nissha Co., Ltd. Hood with sensor and endoscope

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245180A (en) * 2010-05-28 2011-12-08 Fujifilm Corp Endoscope apparatus, endoscope system, and medical apparatus
US10232189B2 (en) 2012-03-27 2019-03-19 Koninklijke Philips N.V. Guided photodynamic therapy
JP2015522303A (en) * 2012-03-29 2015-08-06 コーニンクレッカ フィリップス エヌ ヴェ Fiber optical component shape sensing system and operating method thereof
CN104837397A (en) * 2012-12-11 2015-08-12 奥林巴斯株式会社 Insertion-assist information detection system for endoscopic device, and endoscopic device
WO2014091885A1 (en) * 2012-12-11 2014-06-19 オリンパス株式会社 Insertion-assist information detection system for endoscopic device, and endoscopic device
JP2014113352A (en) * 2012-12-11 2014-06-26 Olympus Corp Insertion-assist information detection system for endoscopic apparatus, and endoscopic apparatus
JP2015029831A (en) * 2013-08-06 2015-02-16 オリンパス株式会社 Insertion system and method for adjusting shape detection characteristic of shape sensor
CN105451630A (en) * 2013-08-06 2016-03-30 奥林巴斯株式会社 Insertion system and method for adjusting shape detection characteristics of shape sensor
WO2015019745A1 (en) * 2013-08-06 2015-02-12 オリンパス株式会社 Insertion system and method for adjusting shape detection characteristics of shape sensor
WO2015198773A1 (en) * 2014-06-26 2015-12-30 オリンパス株式会社 Shape estimation device, endoscope system with shape estimation device, shape estimation method, and program for shape estimation
JP2016007505A (en) * 2014-06-26 2016-01-18 オリンパス株式会社 Shape estimation device, endoscope system with shape estimation device, shape estimation method, and program for shape estimation
CN106455935A (en) * 2014-06-26 2017-02-22 奥林巴斯株式会社 Shape estimation device, endoscope system with shape estimation device, shape estimation method, and program for shape estimation
US10571253B2 (en) 2014-06-26 2020-02-25 Olympus Corporation Shape estimation device, endoscope system including shape estimation device, shape estimation method, and program for shape estimation
WO2018116372A1 (en) * 2016-12-20 2018-06-28 オリンパス株式会社 Electric endoscope control device and electric endoscope system
CN110769737A (en) * 2017-06-21 2020-02-07 奥林巴斯株式会社 Insertion assisting device, insertion assisting method, and endoscope device including insertion assisting device
DE112022004848T5 (en) 2022-03-25 2024-07-18 Nissha Co., Ltd. Hood with sensor and endoscope

Similar Documents

Publication Publication Date Title
JP2011030735A (en) Endoscope shape detector and endoscope system
JP5514633B2 (en) Endoscope system
JP2011200341A (en) Endoscope shape detector and endoscope system
JP4864511B2 (en) Electronic endoscope apparatus and program
US10531790B2 (en) Method and system of spectrally encoded imaging
US6600861B2 (en) Fiber bundle and endoscope apparatus
US10188315B2 (en) Insertion system having insertion portion and insertion member
JP5229325B2 (en) Rotating optical fiber unit and optical coherence tomographic image generator
JP2008173397A (en) Endoscope system
JP2004251779A (en) Three-dimensional shape detector for long flexible member
EP2623016A1 (en) Optical measurement device and probe device
JP2002148185A (en) Oct apparatus
JP5506337B2 (en) 3D shape detector
JP5085142B2 (en) Endoscope system and method for operating apparatus for detecting shape of endoscope insertion portion used therefor
EP2801315B1 (en) Scanning endoscope apparatus
JP5407896B2 (en) Diagnostic aid and optical probe
US20190265459A1 (en) Temperature measurement system and endoscope
JP2007101265A (en) Optical tomographic imaging device
JP4979394B2 (en) Endoscope system
EP2160974B1 (en) Imaging system
JP2010075390A (en) Optical probe for oct and optical coherence tomography system using the same
JP2011130902A (en) Optical probe
WO2020065912A1 (en) Spectroscopic analyzer
JP2009233404A (en) Non-invasive type quantifying instrument of biological component
US20190290113A1 (en) Endoscope apparatus and medical imaging device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120215

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121004

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130308