JP2002148185A - Oct apparatus - Google Patents

Oct apparatus

Info

Publication number
JP2002148185A
JP2002148185A JP2000340620A JP2000340620A JP2002148185A JP 2002148185 A JP2002148185 A JP 2002148185A JP 2000340620 A JP2000340620 A JP 2000340620A JP 2000340620 A JP2000340620 A JP 2000340620A JP 2002148185 A JP2002148185 A JP 2002148185A
Authority
JP
Japan
Prior art keywords
light
signal
signal light
fiber
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000340620A
Other languages
Japanese (ja)
Inventor
Kazuhiro Tsujita
和宏 辻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2000340620A priority Critical patent/JP2002148185A/en
Publication of JP2002148185A publication Critical patent/JP2002148185A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To shorten the fetch time for optical tomographic information in an OCT apparatus for obtaining an optical tomographic image using interference of low coherent light. SOLUTION: Signal light L3 which is low coherent light is transmitted through a fiber 192 provided in an OCT probe 13 inserted in a forceps port 91 of an endoscope. The signal light L3 is separated into signal light L3a to L3e of different wavelength bands by a fiber Bragg grating 193, and applied to a body cavity wall 2. Resultant light L4 of signal light L3a7 to L3e' which is reflected light of the signal light L3a to L3e and reference light L2 is transmitted to a photo detecting part 150 by a fiber 124, and separated into resultant light L4a to L4e of different wavelength band by a fiber Bragg grating 151 to detect the intensity of an interference signal. According to the signal intensity, an optical tomographic image is obtained. Since optical tomographic information from five portions scanned by the signal light L3a to L3e can be simultaneously fetched, the fetch time for the optical tomographic information can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光断層画像を取得
するOCT装置に関し、詳細には低コヒーレンス光であ
る信号光により観察部を走査して、信号光の反射光と、
信号光と僅かな周波数差を有する参照光との干渉信号の
強度に基づいて、観察部の光断層画像を取得するOCT
装置に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to an OCT apparatus for acquiring an optical tomographic image, and more particularly to an OCT apparatus that scans an observation unit with signal light that is low coherence light and reflects reflected light of the signal light.
OCT for acquiring an optical tomographic image of an observation unit based on the intensity of an interference signal between a signal light and a reference light having a slight frequency difference
Related to the device.

【0002】[0002]

【従来の技術】従来、低コヒーレンス光を用いたOCT
(Optical Coherence Tomography)装置、特に低コヒー
レンス光の干渉信号の強度をヘテロダイン検波により測
定することにより、走査領域の光断層画像を取得するO
CT装置が、眼底網膜下の微細構造の光断層画像の取得
等に用いられている。上記OCT装置の詳細は、「Oプ
ラスE Vol.21,No.7 P.802〜804」(春名正光著)に記
載されている。
2. Description of the Related Art Conventionally, OCT using low coherence light
(Optical Coherence Tomography) Apparatus for obtaining an optical tomographic image of a scanning area by measuring the intensity of an interference signal of low coherence light by heterodyne detection.
A CT apparatus is used for acquiring an optical tomographic image of a fine structure below the retina of the fundus. The details of the OCT apparatus are described in "O Plus E Vol. 21, No. 7 P. 802-804" (written by Masamitsu Haruna).

【0003】このOCT装置は、レーザあるいはSLD
(Super Luminescent Diode)等から成る光源から出射さ
れた低コヒーレンス光を信号光と参照光に分割し、ピエ
ゾ素子等により参照光または信号光の周波数を僅かにシ
フトさせ、信号光を走査領域に入射させて該走査領域の
所定の深度で反射した反射光と参照光とを合波させ、そ
の合波光に含まれる干渉信号の強度をヘテロダイン検波
により測定し、断層情報を取得するものであり、参照光
の光路上に配置した可動ミラー等を微少移動させ、参照
光の光路長を変化させることにより、参照光の光路長と
信号光の光路長が一致した走査領域の深度での情報を得
ることができる。また信号光の入射点を僅かにずらしな
がら、測定を繰り返すこと、すなわち信号光による走査
により、所定の領域の光断層画像を取得することができ
る。
[0003] This OCT apparatus uses a laser or SLD.
(Super Luminescent Diode) The low coherence light emitted from the light source is divided into signal light and reference light, and the frequency of the reference light or signal light is slightly shifted by a piezo element or the like, and the signal light enters the scanning area. Then, the reflected light reflected at a predetermined depth of the scanning area and the reference light are multiplexed, the intensity of the interference signal included in the multiplexed light is measured by heterodyne detection, and tomographic information is acquired. Obtain information at the depth of the scanning area where the optical path length of the reference light and the optical path length of the signal light match by moving the movable mirror, etc., arranged on the optical path of the light slightly, and changing the optical path length of the reference light. Can be. Further, by repeating the measurement while slightly shifting the incident point of the signal light, that is, by scanning with the signal light, an optical tomographic image of a predetermined area can be obtained.

【0004】このようなOCT装置を使用すれば、早期
癌の深達度診断なども可能となるため、内視鏡装置の鉗
子口に挿入可能なOCTプローブにより信号光および信
号光の反射光を導光して、体腔内の光断層画像を取得す
る方法の開発が進められている。例えば「OPTICS LETTE
R Vol.24,No19 P1358〜P1360」(by Andrew M Rollins
and Rujchai Ung-arunyawee)には、信号光を導光する光
ファイバと、この光ファイバの先端に配設され、信号光
を直角に反射するミラーを備えたOCTプローブを内視
鏡の鉗子口を介して体腔内に挿入し、先端のミラーを回
転させることにより、ラジアル走査を行い、体腔壁の輪
切り状態の光断層画像であるラジアル光断層画像を表示
するOCT装置が記載されている。
[0004] The use of such an OCT apparatus enables early diagnosis of invasion depth of cancer, etc., so that signal light and reflected light of the signal light are reflected by an OCT probe which can be inserted into a forceps port of an endoscope apparatus. Development of a method of guiding light to obtain an optical tomographic image of a body cavity has been advanced. For example, "OPTICS LETTE
R Vol.24, No19 P1358〜P1360 ”(by Andrew M Rollins
and Rujchai Ung-arunyawee) have an optical fiber that guides the signal light, and an OCT probe that is provided at the tip of this optical fiber and has a mirror that reflects the signal light at right angles. There is described an OCT apparatus that performs a radial scan by rotating a mirror at the distal end by inserting the mirror into a body cavity through the body and displaying a radial optical tomographic image that is an optical tomographic image of a sliced state of the body cavity wall.

【0005】また、本出願人により、多数枚の光断層画
像から3次元光断層画像を生成し、表示するOCT装置
が特願2000-332360号として出願されている。
[0005] Further, an OCT apparatus for generating and displaying a three-dimensional optical tomographic image from a large number of optical tomographic images has been filed by the present applicant as Japanese Patent Application No. 2000-332360.

【0006】[0006]

【発明が解決しようとする課題】上記のように、信号光
を走査して、所定の領域の光断層画像を取得するために
は、走査領域の多数の箇所から光断層情報を取り込む必
要があるが、従来のOCT装置では、1本の信号光によ
り走査領域の1点づつから断層情報を取り込んでいるた
め、短時間で、多くの光断層情報を取り込むことは難し
い。このため、例えば観察者が指定した生体内の所定の
走査領域から光断層情報を取り込んでいる最中に、心拍
や呼吸のために走査領域が動いてしまう場合があり、こ
の場合には所望の走査領域の光断層画像を取得できない
恐れがあった。
As described above, in order to scan the signal light and obtain an optical tomographic image of a predetermined area, it is necessary to take in optical tomographic information from a number of locations in the scanning area. However, in the conventional OCT apparatus, since tomographic information is fetched from each point of the scanning area by one signal light, it is difficult to fetch a large amount of optical tomographic information in a short time. For this reason, for example, while capturing optical tomographic information from a predetermined scanning region in the living body specified by the observer, the scanning region may move due to heartbeat or breathing, and in this case, a desired scanning region may be moved. There is a possibility that an optical tomographic image of the scanning area cannot be obtained.

【0007】また、取得した光断層画像から3次元光断
層画像を生成して表示する場合等には、一層多数の箇所
から光断層情報を取り込む必要があるが、光断層情報を
取り込み中に走査領域が動いてしまった場合には、生成
された3次元光断層画像に乱れが生じることがあった。
Further, when generating and displaying a three-dimensional optical tomographic image from the acquired optical tomographic image, it is necessary to capture optical tomographic information from a greater number of locations. When the region has moved, the generated three-dimensional optical tomographic image may be disturbed.

【0008】なお、生体以外の観察部の光断層画像を取
得する場合であっても、光断層画像の取込時間が長時間
に渡ることは望ましいことではない。
[0008] Even when acquiring an optical tomographic image of an observation unit other than the living body, it is not desirable that the acquisition time of the optical tomographic image is long.

【0009】本発明は上記問題に鑑みてなされたもので
あり、光断層情報の取込時間を短縮することのできるO
CT装置を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has been made in consideration of the above-mentioned problem.
It is an object to provide a CT apparatus.

【0010】[0010]

【課題を解決するための手段】本発明によるOCT装置
においては、低コヒーレンス光である信号光で、観察部
の走査領域を走査し、該走査領域の所定深部からの信号
光の反射光と、信号光と僅かな周波数差を有する参照光
との干渉信号の強度を検出し、該強度に基づいて、走査
領域の光断層画像を取得するOCT装置において、信号
光を走査前に、複数の異なる波長帯域の互いに独立した
信号光に分離する信号光分離手段と、該信号光分離手段
により分離された信号光により走査された走査領域の異
なる箇所からの反射光と、参照光との合波光を、複数の
異なる波長帯域ごとに分離する合波光分離手段とを備え
たことを特徴とするものである。
In an OCT apparatus according to the present invention, a scanning area of an observation section is scanned with a signal light that is low coherence light, and reflected light of the signal light from a predetermined deep portion of the scanning area; In an OCT apparatus for detecting the intensity of an interference signal between a signal light and a reference light having a slight frequency difference and acquiring an optical tomographic image of a scanning region based on the intensity, a plurality of different signals are scanned before scanning the signal light. Signal light separating means for separating into signal light independent of each other in a wavelength band, reflected light from a different portion of a scanning area scanned by the signal light separated by the signal light separating means, and multiplexed light with reference light. Multiplexed light separating means for separating the light into a plurality of different wavelength bands.

【0011】ここで、「走査領域」とは、走査可能な領
域であれば、その形状は如何なるものでもよく、例え
ば、観察部上のライン状の領域や、面上の領域等があ
る。また観察部が、例えば体腔をその奥行き方向に観察
するものである場合等には、リング状の領域や、円筒状
の領域等も「走査領域」に含まれる。
Here, the "scanning region" may be of any shape as long as it is a region that can be scanned. For example, there are a line-like region on the observation unit and a region on the surface. When the observation unit observes a body cavity in the depth direction, for example, a ring-shaped area, a cylindrical area, and the like are also included in the “scanning area”.

【0012】また、「走査領域を走査」する際には、そ
の走査方式は如何なるものでもよく、例えば信号光を導
光する導光手段の先端に取り付けられた反射光学素子を
回転させることにより走査を行うラジアル走査や、信号
光の照射位置をライン状に移動させて走査を行うリニア
走査等、信号光により光断層画像を取得できる走査方式
であればよい。なお、信号光を走査させる走査方法も如
何なるものでもよく、例えば信号光の出射端を移動させ
ることにより走査を行う方法や、出射端から射出された
信号光を反射方向が制御可能なミラー等により反射させ
ることにより走査を行う方法などでもよい。
When "scanning the scanning area", any scanning method may be used. For example, the scanning is performed by rotating a reflection optical element attached to the tip of a light guiding means for guiding signal light. Or a scanning method that can acquire an optical tomographic image by signal light, such as radial scanning for performing scanning and linear scanning for performing scanning by moving the irradiation position of signal light in a line. Note that any scanning method for scanning the signal light may be used.For example, a method of performing scanning by moving the emission end of the signal light, a mirror capable of controlling the reflection direction of the signal light emitted from the emission end, or the like may be used. A method of performing scanning by reflecting light may be used.

【0013】また、上記信号光分離手段と上記合波光分
離手段の少なくとも一方は、光導波路内に段階的に変化
する格子間隔を設定するブラッググレーティングであっ
てもよく、あるいは、異なる波長帯域の光を反射する複
数個のダイクロプリズムから構成されているものでもよ
いが、これに限定されるものではない。例えば波長選択
特性を有するミラーを組み合わせたものなどでもよく、
すなわち信号光または合波光を複数の異なる波長帯域に
分離できるものであれば如何なるものでもよい。
[0013] At least one of the signal light separating means and the multiplexed light separating means may be a Bragg grating for setting a stepwise changing grating interval in the optical waveguide, or a light in a different wavelength band. May be composed of a plurality of dichroic prisms for reflecting light, but the present invention is not limited to this. For example, a combination of mirrors having wavelength selection characteristics may be used,
That is, any signal light or multiplexed light can be separated into a plurality of different wavelength bands.

【0014】ここで、「ブラッググレーティング」とし
ては、その格子の形成方法は如何なる方法でもよく、例
えば具体的には、光導波路に周期的な凹凸を形成するエ
ッチング法により格子間隔を形成するもの、または周期
的なクラディングを設けるクラディング法により格子間
隔を形成するもの、あるいは、周期的に高屈折率領域を
設けることにより格子間隔を形成するもの等がある。
Here, the "Bragg grating" may be formed by any method of forming a grating, for example, a method of forming a grating interval by an etching method for forming periodic irregularities in an optical waveguide, Alternatively, there is a method in which a lattice spacing is formed by a cladding method in which periodic cladding is provided, or a method in which a lattice spacing is formed by periodically providing a high refractive index region.

【0015】上記信号光および合波光がファイバにより
伝搬されるものであれば、ブラッググレーティングはフ
ァイバの出射端に形成されたファイバブラッググレーテ
ィングであることが好ましい。
If the signal light and the multiplexed light are propagated through a fiber, the Bragg grating is preferably a fiber Bragg grating formed at the output end of the fiber.

【0016】上記観察部が生体観察部である場合には、
低コヒーレンス光の波長は、600nm以上1700nm以
下であることが好ましい。
When the observation section is a living body observation section,
The wavelength of the low coherence light is preferably 600 nm or more and 1700 nm or less.

【0017】なお、本発明においては、上記低コヒーレ
ンス光を射出する光源は、特定の光源に限定されるもの
ではなく、低コヒーレンス光を射出するものであれば、
如何なる光源であってもよい。
In the present invention, the light source that emits the low coherence light is not limited to a specific light source.
Any light source may be used.

【0018】[0018]

【発明の効果】本発明によるOCT装置においては、信
号光を走査前に、複数の異なる波長帯域の互いに独立し
た信号光に分離する信号光分離手段と、該分離手段によ
り分離された信号光により走査された走査領域の異なる
箇所からの反射光と、参照光との合波光を、複数の異な
る波長帯域ごとに分離する合波光分離手段とを備えたた
め、信号光分離手段で分離された複数本の信号光で、走
査領域の複数箇所から同時に反射光を取得でき、また合
波光に含まれる信号光と参照光の干渉信号から、走査領
域の複数箇所毎の干渉信号を分離して測定することがで
きる。このため、走査領域の複数箇所から同時に光断層
情報を取り込むことが可能となり、光断層情報の取込時
間を短縮することができる。また、走査領域の動きに影
響されることが少なく、高い信頼性を有する光断層画像
を取得することができる。
In the OCT apparatus according to the present invention, signal light separating means for separating signal light into a plurality of independent signal lights of a plurality of different wavelength bands before scanning, and signal light separated by the separating means. Since there are provided multiplexed light separating means for separating the multiplexed light of the reflected light from the different portions of the scanned scanning area and the reference light into a plurality of different wavelength bands, the plurality of multiplexed lights separated by the signal light separating means are provided. Reflected light can be simultaneously obtained from a plurality of locations in the scanning area with the signal light, and the interference signal at each of the plurality of locations in the scanning area can be measured separately from the interference signal between the signal light and the reference light included in the combined light. Can be. For this reason, it becomes possible to take in optical tomographic information simultaneously from a plurality of positions in the scanning area, and it is possible to shorten the time to take in optical tomographic information. Further, it is possible to acquire an optical tomographic image which is less affected by the movement of the scanning region and has high reliability.

【0019】上記信号光分離手段と上記合波光分離手段
の少なくとも一方として、光導波路内に段階的に変化す
る格子間隔を設定するブラッググレーティングを用いれ
ば、信号光または合波光を効率良く異なる波長帯域に分
離することができる。
If at least one of the signal light separating means and the multiplexed light separating means is a Bragg grating for setting a stepwise changing grating interval in the optical waveguide, the signal light or the multiplexed light can be efficiently separated into different wavelength bands. Can be separated.

【0020】また、上記信号光および合波光がファイバ
により伝搬されるものであり、ブラッググレーティング
として、ファイバの端部に形成されたファイバブラッグ
グレーティングを用いれば、導光手段であるファイバ
と、波長分離手段であるファイバブラッググレーティン
グとを一体的に形成することができ、信号光または合波
光を導光する際の光の損失を低減することができる。
The signal light and the multiplexed light are propagated through a fiber. If the fiber Bragg grating formed at the end of the fiber is used as the Bragg grating, the fiber as the light guide means and the wavelength separating means are separated. The fiber Bragg grating as the means can be integrally formed, and the loss of light when guiding signal light or multiplexed light can be reduced.

【0021】上記信号光分離手段と合波光分離手段の少
なくとも一方として、異なる波長帯域の光を反射する複
数個のダイクロプリズムから構成されているものを用い
れば、波長分離手段の製造コストを低減できる。また、
波長分離手段を後付けすることができるので、波長分離
帯域の変更あるいは帯域数の増加を容易に行うことがで
きる。
If at least one of the signal light separating means and the multiplexed light separating means is composed of a plurality of dichroic prisms reflecting light in different wavelength bands, the manufacturing cost of the wavelength separating means can be reduced. . Also,
Since the wavelength separation means can be added later, the wavelength separation band can be easily changed or the number of bands can be easily increased.

【0022】なお、低コヒーレンス光の波長が、600
nm以上1700nm以下の範囲内であれば、信号光が生体
観察部において、望ましい透過性および散乱性を有する
ので、所望の光断層画像を取得することができる。
The wavelength of the low coherence light is 600
When the wavelength is in the range of not less than 1 nm and not more than 1700 nm, the desired light tomographic image can be obtained because the signal light has desirable transmittance and scattering property in the living body observation unit.

【0023】[0023]

【発明の実施の形態】以下、本発明の具体的な実施の形
態について図面を用いて説明する。図1は、本発明によ
るOCT装置の実施の形態の全体を示す概略構成図であ
り、このOCT装置は、内視鏡の挿入部11に設けられた
鉗子口91に挿入されたOCTプローブ13を用いて、被検
者の体腔1内の3次元ラジアル光断層画像3を取得し、
表示するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an entire embodiment of an OCT apparatus according to the present invention. This OCT apparatus includes an OCT probe 13 inserted into a forceps port 91 provided in an insertion section 11 of an endoscope. To obtain a three-dimensional radial optical tomographic image 3 in the body cavity 1 of the subject,
To display.

【0024】本OCT装置は、被検者の体腔1内に挿入
される内視鏡の挿入部11に設けられた鉗子口91に挿入さ
れるOCTプローブ13と、体腔1内のラジアル光断層画
像を取得し、3次元ラジアル光断層画像3を生成するO
CT部12と、3次元ラジアル光断層画像3を表示するモ
ニタ14とを備えている。なお、挿入部11は、不図示の画
像撮像用の照明光照射部および撮像部を備えるものであ
る。
The OCT apparatus includes an OCT probe 13 inserted into a forceps port 91 provided in an insertion section 11 of an endoscope inserted into a body cavity 1 of a subject, and a radial optical tomographic image in the body cavity 1. To obtain a three-dimensional radial optical tomographic image 3
A CT unit 12 and a monitor 14 for displaying a three-dimensional radial optical tomographic image 3 are provided. Note that the insertion unit 11 includes an illumination light irradiation unit and an imaging unit (not shown) for imaging.

【0025】OCT部12は、図2に示すような波長λs
から波長λmまでのほぼ平坦な波長帯域を有する低コヒ
ーレンス光L1を出射する光源部110 と、低コヒーレンス
光L1を参照光L2および信号光L3へ分割し、また信号光L3
の反射光と参照光L2の合波を行うファイバ結合光学系12
0 と、参照光L2の光路上に配され、参照光L2の光路長を
変化させる光路遅延部130 と、体腔1内における走査領
域の所定の深部で反射された信号光L3の反射光と参照光
L2との合波光L4を検出する光検出部150 と、光検出部15
0 で検出された合波光L4から干渉信号(ビート信号)の
強度を検出し、この信号強度から走査領域の所定の深部
で反射された信号光L3の反射光の強度を求めるヘテロダ
イン検出を行い、光断層画像を生成する信号処理部160
と、初回の径方向走査時に、検出結果から体腔壁2とO
CTプローブ13の位置関係を求め、この位置関係に基づ
いて径方向の走査範囲を制御する走査範囲制御部170
と、信号処理部160 で生成されたラジアル光断層画像に
基づいて3次元ラジアル光断層画像を生成する3次元光
断層画像生成部180 とを備えている。
The OCT unit 12 has a wavelength λs as shown in FIG.
From the light source unit 110 that emits the low coherence light L1 having a substantially flat wavelength band up to the wavelength λm, the low coherence light L1 is divided into the reference light L2 and the signal light L3, and the signal light L3
Fiber-coupled optical system 12 that multiplexes the reflected light and the reference light L2
0, an optical path delay unit 130 arranged on the optical path of the reference light L2 to change the optical path length of the reference light L2, and the reflected light of the signal light L3 reflected at a predetermined deep portion of the scanning region in the body cavity 1 and the reference light. light
A light detection unit 150 for detecting the multiplexed light L4 with L2, and a light detection unit 15
The intensity of the interference signal (beat signal) is detected from the combined light L4 detected at 0, and heterodyne detection for obtaining the intensity of the reflected light of the signal light L3 reflected at a predetermined deep portion of the scanning area from the signal intensity is performed. Signal processing unit 160 that generates an optical tomographic image
During the first radial scan, the body cavity wall 2 and O
A scanning range control unit 170 that determines the positional relationship of the CT probe 13 and controls the radial scanning range based on the positional relationship.
And a three-dimensional optical tomographic image generator 180 for generating a three-dimensional radial optical tomographic image based on the radial optical tomographic image generated by the signal processor 160.

【0026】OCT部12の光源部110 は、低コヒーレン
ス光L1を射出するモードロックチタンサファイアレーザ
111 と、該モードロックチタンサファイアレーザ111 か
ら射出された低コヒーレンス光L1を集光するレンズ112
とを備えている。
The light source unit 110 of the OCT unit 12 is a mode-locked titanium sapphire laser that emits low coherence light L1.
And a lens 112 for condensing the low coherence light L1 emitted from the mode-locked titanium sapphire laser 111.
And

【0027】ファイバ結合光学系120 は、光源部110 か
ら出射された低コヒーレンス光L1を信号光L3と参照光L2
とに分割し、また、信号光L3の走査領域3からの反射光
と参照光L2を合波し、合波光L4を得るファイバカプラ12
1 と、信号光L3に僅かな周波数シフトを生じさせるピエ
ゾ素子を使った周波数シフタ122 と、ファイバカプラ12
1 を介して光源部110 と光路遅延部130 を繋ぐファイバ
123 と、ファイバカプラ121 を介してOCTプローブ13
と光検出部150 を繋ぐファイバ124 とを備えている。な
お、ファイバ123および124 は光ファイバである。
The fiber coupling optical system 120 converts the low coherence light L1 emitted from the light source 110 into a signal light L3 and a reference light L2.
And a fiber coupler 12 that combines the reflected light of the signal light L3 from the scanning area 3 and the reference light L2 to obtain a combined light L4.
1, a frequency shifter 122 using a piezo element that causes a slight frequency shift in the signal light L3, and a fiber coupler 12
Fiber connecting the light source unit 110 and the optical path delay unit 130 via 1
And an OCT probe 13 via a fiber coupler 121.
And a fiber 124 connecting the photodetector 150. The fibers 123 and 124 are optical fibers.

【0028】光路遅延部130 は、ファイバ123 から射出
された参照光L2を集光してミラー132 へ照射し、またミ
ラー132 で反射された参照光L2を集光してファイバ123
へ入射させるレンズ131 と、図1における水平方向への
移動により参照光L2の光路長を変化させるミラー132
と、該ミラー132 を水平方向へ移動させる駆動部133 と
を備えている。
The optical path delay unit 130 condenses the reference light L2 emitted from the fiber 123 and irradiates the same to the mirror 132. The optical path delay unit 130 condenses the reference light L2 reflected by the mirror 132 and condenses the reference light L2.
And a mirror 132 for changing the optical path length of the reference light L2 by moving in the horizontal direction in FIG.
And a drive unit 133 for moving the mirror 132 in the horizontal direction.

【0029】光検出部150 は、ファイバ124の出射端に
設けられ、合波光L4を異なる波長帯域の合波光L4a〜L4e
に分離する合波光分離手段としてのファイバブラッググ
レーティング151 と、合波光L4a〜L4eを検出する光検出
器152a〜152e とを備えている。なおファイバブラッグ
グレーティング151 の構成の詳細は後述する。
The light detection section 150 is provided at the output end of the fiber 124 and converts the combined light L4 into combined lights L4a to L4e of different wavelength bands.
A fiber Bragg grating 151 as multiplexed light separating means for splitting the light into two components, and photodetectors 152a to 152e for detecting the multiplexed lights L4a to L4e. The configuration of the fiber Bragg grating 151 will be described later in detail.

【0030】信号処理部160 は、光検出部150 で検出さ
れた各合波光L4a〜L4eから干渉信号(ビート信号)の強
度を検出し、この信号強度から走査領域の所定の深度で
反射された信号光の強度を求めるヘテロダイン検出を行
い、各合波光L4a〜L4e毎にラジアル光断層画像を生成
し、3次元光断層画像生成部180 へ出力する。また初回
の径方向走査時には、検出結果を走査範囲制御部170 へ
出力する。
The signal processing unit 160 detects the intensity of the interference signal (beat signal) from each of the multiplexed lights L4a to L4e detected by the light detection unit 150, and is reflected at a predetermined depth of the scanning area from the signal intensity. Heterodyne detection for obtaining the intensity of the signal light is performed, a radial optical tomographic image is generated for each of the combined lights L4a to L4e, and output to the three-dimensional optical tomographic image generation unit 180. In addition, at the time of the first radial scanning, the detection result is output to the scanning range control unit 170.

【0031】3次元光断層画像生成部180 は、信号処理
部160 から出力された複数枚のラジアル光断層画像を記
憶する不図示の記憶部を有し、該記憶部に記憶された複
数枚のラジアル光断層画像に基づいて、3次元ラジアル
光断層画像3を生成しモニタ14へ出力する。
The three-dimensional optical tomographic image generating unit 180 has a storage unit (not shown) for storing a plurality of radial optical tomographic images output from the signal processing unit 160, and stores a plurality of radial optical tomographic images stored in the storage unit. Based on the radial optical tomographic image, a three-dimensional radial optical tomographic image 3 is generated and output to the monitor 14.

【0032】OCTプローブ13は、内視鏡の挿入部11の
鉗子口91に挿入可能な被覆管191 と該被覆管191 の中を
貫通するファイバ192 を備えている。ファイバ192 の先
端部には、ファイバ192 で導光された信号光L3を5つの
周波数帯域(中心波長λa 〜λe )の信号光L3a 〜L3e
に分離して、体腔壁2に照射し、かつ信号光L3a 〜L3e
の走査領域3からの反射光であるをファイバ192 に帰還
させる信号光分離手段としてのファイバブラッググレー
ティング193 が設けられている。ファイバブラッググレ
ーティング193 の構成についての詳細は後述する。ファ
イバ192 およびファイバブラッググレーティング193
は、被覆管191 内に固定された状態で組み込まれてい
る。また、ファイバ192 の後端部、すなわちファイバ12
4 とファイバ192 の接続部には、ファイバ124 から射出
された信号光L3をファイバ192 へ導入し、かつファイバ
191 から射出された信号光L3の反射光、すなわち信号L3
a'〜L3e'をファイバ124 に帰還させるレンズ194 が設け
られている。被覆管191 の根本部分には、被覆管191 を
回転およびスライド移動させる走査機構195 が取り付け
られている。走査機構195 は、図示省略されたコントロ
ーラに接続され、被覆管191 をスライド移動および回転
移動させて、信号光L3a 〜L3e により、所定走査領域の
ラジアル走査を行う。なお、被覆管191 の先端部分は、
ファイバブラッググレーティング193 を保護することが
でき、かつ信号光L3a 〜L3e および反射光である信号光
L3a'〜L3e'を透過させる透明な素材により形成されてい
る。
The OCT probe 13 includes a cladding tube 191 that can be inserted into the forceps port 91 of the insertion section 11 of the endoscope, and a fiber 192 that passes through the cladding tube 191. At the tip of the fiber 192, the signal light L3 guided by the fiber 192 is converted into signal lights L3a to L3e of five frequency bands (center wavelengths λa to λe).
And irradiates the body cavity wall 2 with the signal lights L3a to L3e.
A fiber Bragg grating 193 is provided as signal light separating means for returning the reflected light from the scanning area 3 to the fiber 192. Details of the configuration of the fiber Bragg grating 193 will be described later. Fiber 192 and fiber Bragg grating 193
Is fixedly incorporated in the cladding tube 191. Also, the rear end of fiber 192, that is, fiber 12
The signal light L3 emitted from the fiber 124 is introduced into the fiber 192 at the connection between the fiber 4 and the fiber 192.
191 is reflected light of the signal light L3, ie, the signal L3
A lens 194 for returning a ′ to L3e ′ to the fiber 124 is provided. A scanning mechanism 195 that rotates and slides the cladding tube 191 is attached to a root portion of the cladding tube 191. The scanning mechanism 195 is connected to a controller (not shown), and slides and rotates the cladding tube 191 to perform radial scanning of a predetermined scanning area by the signal lights L3a to L3e. The tip of the cladding tube 191 is
The signal light L3a to L3e that can protect the fiber Bragg grating 193 and the signal light that is the reflected light
It is formed of a transparent material that transmits L3a ′ to L3e ′.

【0033】次にファイバブラッググレーティング193
の構成を説明する。ファイバブラッググレーティング19
3 は、紫外線を照射して、ファイバに周期的な高屈折率
領域を設け、ブラッグ回折格子を形成して、その格子間
隔に対応する波長の光を反射させる反射型のグレーティ
ングである。図3の(a)に、ファイバブラッググレー
ティング193 の模式図を示す。この図に示すように、フ
ァイバ192 の長手方向に、格子間隔を段階的に変化させ
た格子群Ba〜Beが45度傾斜して設けられている。ま
た、実際には、各格子群Ba〜Beは、ファイバブラッグ
グレーティング193 の長手方向を軸として、互いに72
度回転した位置関係で配置されている。このため、各格
子群Ba〜Beで反射された信号光L3a 〜L3e は、図3の
(b)に示すように、72度づつずれた方向へ射出され
る。なお概略構成図である図1においても、信号光L3a
〜L3e の射出方向は模式的に記載されているが、実際の
信号光L3a 〜L3e は、上述の通り互いに72°回転して
射出されている。
Next, the fiber Bragg grating 193
Will be described. Fiber Bragg grating 19
Reference numeral 3 denotes a reflective grating that irradiates ultraviolet rays to provide a periodic high refractive index region in the fiber, forms a Bragg diffraction grating, and reflects light having a wavelength corresponding to the grating interval. FIG. 3A is a schematic view of the fiber Bragg grating 193. As shown in this figure, in the longitudinal direction of the fiber 192, grating groups Ba to Be in which the grating interval is changed stepwise are provided at an angle of 45 degrees. Actually, each of the grating groups Ba to Be is located at a distance of 72 from each other with the longitudinal direction of the fiber Bragg grating 193 as an axis.
It is arranged in a positional relationship rotated by degrees. Therefore, the signal lights L3a to L3e reflected by the respective grating groups Ba to Be are emitted in directions shifted by 72 degrees as shown in FIG. 3B. In FIG. 1 which is a schematic configuration diagram, the signal light L3a
Although the emission directions of L3e to L3e are schematically described, the actual signal lights L3a to L3e are emitted after being rotated by 72 ° with respect to each other as described above.

【0034】各格子群Ba〜Beは、上述した信号光L3の
波長帯域λs〜λmを独立した5つの波長帯域に分離する
ものである。図4に示すように、信号光L3の波長帯域λ
s 〜λm をほぼ5等分した波長をλ1、λ2、λ3および
λ4とすると、格子群Ba は、波長がλ1 以下の光を反
射し、波長がλ1 より長い光を透過する。同様に格子群
Bb は、波長がλ2 以下の光を反射し、λ2 より波長が
長い光を透過する。格子群Bc は、波長がλ3 以下の光
を反射し、λ3 より長い光を透過し、格子群Bdは、波
長がλ4 以下の光を反射し、λ4 より長い光を透過す
る。格子群Be は、波長がλm 以下の光を反射し、波長
がλm より長い光を透過する。このため、ファイバ192
により導光された信号光L3は、ファイバブラッググレー
ティング193により、図5に示すような中心波長がλa
〜λe の信号光L3a 〜L3e に分離され、ファイバア192
の長手方向に対して、直角な方向へ射出される。
Each of the grating groups Ba to Be separates the wavelength bands λs to λm of the signal light L3 into five independent wavelength bands. As shown in FIG. 4, the wavelength band λ of the signal light L3
Assuming that the wavelengths obtained by dividing s to .lambda.m into approximately five equal parts are .lambda.1, .lambda.2, .lambda.3 and .lambda.4, the grating group Ba reflects light having a wavelength equal to or less than .lambda.1 and transmits light having a wavelength longer than .lambda.1. Similarly, the grating group Bb reflects light having a wavelength of λ2 or less and transmits light having a wavelength longer than λ2. The grating group Bc reflects light having a wavelength less than λ3 and transmits light longer than λ3, and the grating group Bd reflects light having a wavelength less than λ4 and transmits light longer than λ4. The grating group Be reflects light having a wavelength of less than λm and transmits light having a wavelength longer than λm. Therefore, the fiber 192
The signal light L3 guided by λa has a center wavelength λa as shown in FIG.
Λe to the signal light L3a to L3e.
Are emitted in a direction perpendicular to the longitudinal direction of

【0035】なおλa=(λs+λ1)/2、λb=(λ1
+λ2)/2、λc=(λ2+λ3)/2、λd=(λ3+λ
4)/2、λe=(λ4+λm)/2である。
Λa = (λs + λ1) / 2, λb = (λ1
+ Λ2) / 2, λc = (λ2 + λ3) / 2, λd = (λ3 + λ
4) / 2, λe = (λ4 + λm) / 2.

【0036】また、図1に示す光検出部150 に設けられ
たファイバブラッググレーティング151 も、ファイバブ
ラッググレーティング193 と同様な構成を有するもので
あり、合波光L4を中心波長がλa 〜λe の合波光L4a 〜
L4e に分離する。
The fiber Bragg grating 151 provided in the photodetector 150 shown in FIG. 1 also has the same configuration as the fiber Bragg grating 193, and the multiplexed light L4 is a multiplexed light having a center wavelength of λa to λe. L4a 〜
Separate into L4e.

【0037】次に本発明の実施形態であるOCT装置に
おいて、3次元ラジアル光断層画像を表示する際の動作
について説明する。観察者は内視鏡装置の挿入部11を被
験者の体腔1内に挿入し、続いてOCTプローブ13を挿
入部11の鉗子口91へ挿入する。
Next, the operation of the OCT apparatus according to the embodiment of the present invention when displaying a three-dimensional radial optical tomographic image will be described. The observer inserts the insertion section 11 of the endoscope apparatus into the body cavity 1 of the subject, and then inserts the OCT probe 13 into the forceps port 91 of the insertion section 11.

【0038】まず、光断層画像取得用の低コヒーレンス
光L1がモードロックチタンサファイアレーザ111 から射
出され、この低コヒーレンス光L1は、レンズ112 により
集光され、ファイバ123 に導入される。
First, low coherence light L1 for acquiring an optical tomographic image is emitted from a mode-locked titanium sapphire laser 111, and this low coherence light L1 is condensed by a lens 112 and introduced into a fiber 123.

【0039】ファイバ123 を透過した低コヒーレンス光
L1は、ファイバカプラ121 で、ファイバ123 内を光路遅
延部130 の方向へ進行する参照光L2と、ファイバ124 内
をOCTプローブ13の方向へ進行する信号光L3とに分割
される。
Low coherence light transmitted through the fiber 123
L1 is divided by a fiber coupler 121 into a reference light L2 traveling in the direction of the optical path delay unit 130 in the fiber 123 and a signal light L3 traveling in the direction of the OCT probe 13 in the fiber 124.

【0040】信号光L3は光路上に設けられた周波数シフ
タ122 により変調され、参照光L2と信号光L3には、僅か
な周波数差△fが生じる。
The signal light L3 is modulated by the frequency shifter 122 provided on the optical path, and a slight frequency difference Δf occurs between the reference light L2 and the signal light L3.

【0041】信号光L3はOCTプローブ13のレンズ194
およびファイバ192 を経てファイバブラッググレーティ
ング193 で信号光L3a 〜L3e に分離され、体腔1内の体
腔壁2の走査領域へ照射される。例えば、信号光L3a で
あれば、図1に破線で示された走査領域4の中の1点に
照射される。走査領域へ入射された信号光L3a 〜L3eの
うち走査領域の所定の深度で反射された信号光L3a'〜L3
e'は、ファイバブラッググレーティング193 を経て、フ
ァイバ192 に帰還せしめられる。ファイバ192に帰還せ
しめられた信号光L3a'〜L3e'は、レンズ194 によりファ
イバ124 に入射され、ファイバカプラ121 において、後
述するファイバ123 に帰還せしめられた参照光L2と合波
される。
The signal light L 3 is supplied to the lens 194 of the OCT probe 13.
The signal light L3a to the signal light L3e is separated by the fiber Bragg grating 193 through the fiber 192, and is irradiated to the scanning area of the body cavity wall 2 in the body cavity 1. For example, the signal light L3a is applied to one point in the scanning area 4 indicated by a broken line in FIG. Among the signal lights L3a to L3e incident on the scanning area, the signal lights L3a 'to L3 reflected at a predetermined depth of the scanning area.
e ′ is returned to the fiber 192 via the fiber Bragg grating 193. The signal lights L3a 'to L3e' returned to the fiber 192 are incident on the fiber 124 by the lens 194, and are multiplexed in the fiber coupler 121 with the reference light L2 returned to the fiber 123 described later.

【0042】一方、参照光L2はファイバ123 を通過し光
路遅延部130 のレンズ131 を介して、ミラー132 に入射
し、このミラー132 で反射され再度レンズ131 を透過し
て、ファイバ123 に帰還せしめられる。ファイバ123 に
帰還せしめられた参照光L2はファイバカプラ121 で、上
述した信号光L3a'〜L3e'と合波される。
On the other hand, the reference light L2 passes through the fiber 123, enters the mirror 132 via the lens 131 of the optical path delay unit 130, is reflected by the mirror 132, passes through the lens 131 again, and returns to the fiber 123. Can be The reference light L2 returned to the fiber 123 is multiplexed by the fiber coupler 121 with the above-described signal lights L3a 'to L3e'.

【0043】ファイバカプラ121 で合波された信号光L3
a'〜L3e'および参照光L2は、再び同軸上に重なり、合波
光L4となる。また、信号光L3a'〜L3e'と参照光L2が干渉
し、ビート信号(干渉信号)を発生する。
The signal light L3 multiplexed by the fiber coupler 121
a ′ to L3e ′ and the reference light L2 are again coaxially overlapped, and become a combined light L4. Further, the signal lights L3a 'to L3e' and the reference light L2 interfere with each other to generate a beat signal (interference signal).

【0044】すなわち、参照光L2および信号光L3a 〜L3
e は、可干渉距離の短い低コヒーレンス光であるため、
低コヒーレンス光L1が信号光L3と参照光L2に分割された
のち、信号光L3a〜L3e(L3a'〜L3e')がファイバカプラ
121 に到達するまでの光路長が、参照光L2がファイバカ
プラ121 に到達するまでの光路長に略等しい場合に両光
が干渉し、この干渉する両光の周波数差(△f)で強弱
を繰り返す干渉信号(ビート信号)が発生する。
That is, the reference light L2 and the signal lights L3a to L3
e is a low coherence light with a short coherence distance,
After the low coherence light L1 is split into the signal light L3 and the reference light L2, the signal lights L3a to L3e (L3a 'to L3e') are converted to fiber couplers.
When the optical path length before reaching the reference light L2 is approximately equal to the optical path length before reaching the fiber coupler 121, the two lights interfere with each other, and the difference in frequency between the interfering lights (Δf) reduces the intensity. Repeated interference signals (beat signals) are generated.

【0045】合波光L4は、ファイバ124 を伝搬し、ファ
イバブラッググレーティング151 で分離され、合波光L4
a〜L4eとなり、光検出器152a〜152dにより検出される。
The multiplexed light L4 propagates through the fiber 124 and is separated by the fiber Bragg grating 151.
a to L4e, which are detected by the photodetectors 152a to 152d.

【0046】信号処理部160 では、まず、各光検出器15
2a〜152dにより検出された合波光L4a〜L4eから、干渉信
号(ビート信号)の強度を検出し、走査領域の各箇所の
所定の面で反射された信号光L3a'〜L3e'の強度を求める
ヘテロダイン検出を行う。
In the signal processing section 160, first, each photodetector 15
From the combined lights L4a to L4e detected by 2a to 152d, the intensity of the interference signal (beat signal) is detected, and the intensity of the signal light L3a 'to L3e' reflected on a predetermined surface at each position in the scanning area is obtained. Perform heterodyne detection.

【0047】なお上記の動作は、先ずミラー132 の位置
が、駆動部133 により図中左側に制御された状態で、検
出が行われる。検出毎に順次ミラー132 の位置は、その
光軸方向(図中右方向)に水平移動される。このため参
照光L2がファイバカプラ121に到達するまでの光路長が
変化し、参照光L2と干渉する信号光L3(L3a'〜L3e')の
光路長も変化するため、断層情報を取り込む深度も変化
する。このミラー132の移動により、ファイバブラッグ
グレーティング193 の径方向の走査が行われ、体腔1内
の体腔壁2表面から所望の深度までの断層情報が取り込
まれる。
In the above operation, the detection is first performed in a state where the position of the mirror 132 is controlled by the driving unit 133 to the left side in the figure. For each detection, the position of the mirror 132 is moved horizontally in the direction of the optical axis (rightward in the figure). Therefore, the optical path length until the reference light L2 reaches the fiber coupler 121 changes, and the optical path length of the signal light L3 (L3a 'to L3e') that interferes with the reference light L2 also changes. Change. The movement of the mirror 132 causes the fiber Bragg grating 193 to scan in the radial direction, and captures tomographic information from the surface of the body cavity wall 2 in the body cavity 1 to a desired depth.

【0048】また、上記径方向走査は、初回の走査時に
は、ファイバブラッググレーティング193 の近傍から、
走査可能な範囲まで行われるが、実際に干渉信号(ビー
ト信号)が検出される範囲は、限られている。例えば図
6に示すように、ファイバブラッググレーティング193
が、体腔1内の中心から偏位した位置に配置されている
場合であっても、ファイバブラッググレーティング193
の表面から最も近い体腔壁2(図6に示す配置であれば
距離Se)までの間の走査は無意味であり、またファイバ
ブラッググレーティング193 の表面から最も遠い体腔壁
2(図6に示す配置であれば距離Sb)に検出可能な体腔
壁厚さを加えた範囲を越えた走査も不要である。
In the above-described radial scanning, the first scanning is performed from the vicinity of the fiber Bragg grating 193.
Scanning is performed to the extent that scanning is possible, but the range in which an interference signal (beat signal) is actually detected is limited. For example, as shown in FIG.
Is located at a position deviated from the center in the body cavity 1, even if the fiber Bragg grating 193
The scanning from the surface of the fiber cavity to the nearest body cavity wall 2 (the distance Se in the arrangement shown in FIG. 6) is meaningless, and the body cavity wall 2 furthest from the surface of the fiber Bragg grating 193 (the arrangement shown in FIG. In this case, it is unnecessary to perform scanning beyond the range obtained by adding the detectable body cavity wall thickness to the distance Sb).

【0049】上記のような不要な径方向走査を省くため
に、信号処理部160 から、初回の径方向走査の結果が走
査範囲制御部170 に出力される。走査範囲制御部170 で
は、初回の径方向走査の検出結果に基づいて、ファイバ
ブラッググレーティング193の表面から最も近い体腔壁
までの距離S1と、ファイバブラッググレーティング193
の表面から最も遠い体腔壁までの距離S2を求め、ミラー
132 による走査範囲を、S1−α1 からS2+α2 間に限定
する。なおα1およびα2は、誤差、体腔壁の凹凸および
検出可能な体腔壁厚さ等を考慮し決定する。
In order to eliminate the unnecessary radial scanning as described above, the result of the first radial scanning is output from the signal processing unit 160 to the scanning range control unit 170. The scanning range control unit 170 determines the distance S1 from the surface of the fiber Bragg grating 193 to the nearest body cavity wall based on the detection result of the first radial scan, and the fiber Bragg grating 193.
Find the distance S2 from the surface of the body to the furthest body cavity wall,
132 is limited to a range from S1−α1 to S2 + α2. Note that α1 and α2 are determined in consideration of an error, unevenness of a body cavity wall, a detectable body cavity wall thickness, and the like.

【0050】上記の初回径方向走査を終了すると、走査
機構176 は、被覆管193 、すなわちファイバブラッググ
レーティング193 を僅かに回転させ、初回の径方向走査
点から僅かにずれた点において、同様に所定の深度まで
の断層情報を取り込む。このような微少な回転の繰り返
し、すなわちラジアル走査により、360 度の走査を行な
う。
When the initial radial scanning is completed, the scanning mechanism 176 slightly rotates the cladding tube 193, that is, the fiber Bragg grating 193, and at a point slightly deviated from the initial radial scanning point, the scanning mechanism 176 also performs a predetermined operation. Captures fault information up to a depth of. Scanning at 360 degrees is performed by repeating such minute rotation, that is, by radial scanning.

【0051】信号処理部160 では、上記径方向走査とラ
ジアル走査により取得された情報に基づいて、合波光L4
a〜L4e毎にラジアル光断層画像を生成し、3次元光断層
画像生成部180 に出力する。
In the signal processing unit 160, based on the information obtained by the radial scanning and the radial scanning, the combined light L4
A radial optical tomographic image is generated for each of a to L4e and output to the three-dimensional optical tomographic image generating unit 180.

【0052】また、上記の動作により、ラジアル光断層
画像を取得すると、走査機構195 は、被覆管193 を僅か
にスライド移動させ、前回の走査範囲と重ならない程度
にずれた走査領域において、同様にラジアル光断層画像
を取得する。このようなラジアル光断層画像の取得と、
被覆管193 のスライド移動を繰り返すことにより、3次
元光断層画像生成部180 には、所定範囲のラジアル光断
層画像が蓄積される。3次元光断層画像生成部180 で
は、これらのラジアル光断層画像に基づいて、3次元ラ
ジアル光断層画像を生成し、モニタ14へ出力する。
When a radial optical tomographic image is acquired by the above-described operation, the scanning mechanism 195 slides the cladding tube 193 slightly, and similarly in a scanning region shifted so as not to overlap the previous scanning range. Obtain a radial optical tomographic image. Acquisition of such radial optical tomographic images,
By repeating the sliding movement of the cladding tube 193, a radial optical tomographic image of a predetermined range is accumulated in the three-dimensional optical tomographic image generating unit 180. The three-dimensional optical tomographic image generator 180 generates a three-dimensional radial optical tomographic image based on these radial optical tomographic images and outputs the generated image to the monitor 14.

【0053】モニタ14では、3次元光断層画像生成部18
0 から出力された3次元ラジアル光断層画像を表示す
る。このような動作により、体腔1の3次元ラジアル光
断層画像を表示することができる。
In the monitor 14, a three-dimensional optical tomographic image generator 18
The three-dimensional radial optical tomographic image output from 0 is displayed. With such an operation, a three-dimensional radial optical tomographic image of the body cavity 1 can be displayed.

【0054】上記説明したように、本実施形態のOCT
装置においては、信号光L3を波長帯域の異なる信号光L3
a'〜L3e'に分離して、走査を行い、また合波光L4を波長
帯域の異なる合波光L4a'〜L4e'に分離して干渉信号を信
号強度を検出するため、体腔1内の走査領域の複数箇所
から同時に光断層情報を取り込むことが可能であり、光
断層情報の取り込み時間を短縮することができる。ま
た、光断層画像を取り込み中、体腔壁2が動いてしま
い、所望の走査領域の光断層画像を取得できなくなるこ
とを防止でき、高い信頼性を有する光断層画像を取得す
ることができる。
As described above, the OCT of this embodiment
In the device, the signal light L3 is converted to the signal light L3 having a different wavelength band.
a ′ to L3e ′, perform scanning, and separate the multiplexed light L4 into multiplexed lights L4a ′ to L4e ′ having different wavelength bands to detect the signal intensity of the interference signal. It is possible to capture optical tomographic information from a plurality of locations at the same time, and it is possible to shorten the capturing time of optical tomographic information. In addition, it is possible to prevent the body cavity wall 2 from moving during capturing of an optical tomographic image and to prevent the optical tomographic image of a desired scanning region from being acquired, and to acquire an optical tomographic image having high reliability.

【0055】信号光L3および合波光L4をファイバにより
導光し、ファイバの出射端に形成されたファイバブラッ
ググレーティングにより分離したので、導光手段である
ファイバと、波長分離手段であるファイバブラッググレ
ーティングとを一体的に形成することができ、信号光L3
および合波光L4を伝搬する際の光の損失を低減すること
ができる。
Since the signal light L3 and the multiplexed light L4 are guided by a fiber and separated by a fiber Bragg grating formed at the output end of the fiber, the fiber as the light guiding means and the fiber Bragg grating as the wavelength separating means are separated. Can be integrally formed, and the signal light L3
Further, loss of light when propagating the combined light L4 can be reduced.

【0056】さらに、低コヒーレンス光の波長が、80
0nmであるため、信号光L4が体腔壁2において、望まし
い透過性および散乱性を有するので、所望の光断層画像
を取得することができる。
Further, the wavelength of the low coherence light is 80
Since it is 0 nm, the signal light L4 has desirable transmittance and scattering properties in the body cavity wall 2, so that a desired optical tomographic image can be obtained.

【0057】また、分離された信号光L3a〜L3eが、各々
異なる方向に射出されているため、初回の径方向走査を
行った時点で、体腔1とファイバブラッググレーティン
グ193 の位置関係を検出することができ、この位置関係
に基づいて、光断層情報を取り込むために不要な径方向
の走査を省略できるので、一層光断層情報の取込時間を
短縮することができる。
Since the separated signal lights L3a to L3e are emitted in different directions, the positional relationship between the body cavity 1 and the fiber Bragg grating 193 should be detected at the time of the first radial scanning. Based on this positional relationship, unnecessary scanning in the radial direction for capturing optical tomographic information can be omitted, so that the time for capturing optical tomographic information can be further reduced.

【0058】加えて、被覆管193 をスライドさせる際に
は、一回にファイバブラッググレーティング193 の長手
方向の長さ分スライドさせればよく、微少量移動させる
際に必要な精密な移動機構が不要になり、走査機構195
の機構を簡素化できる。
In addition, when the cladding tube 193 is slid, it is sufficient that the cladding tube 193 is slid at one time by the length in the longitudinal direction of the fiber Bragg grating 193, and a precise moving mechanism required when moving the minute amount is unnecessary. And the scanning mechanism 195
Mechanism can be simplified.

【0059】なお、上記実施の形態における変型例とし
て、OCTプローブ13のファイバブラッググレーティン
グ193 の代わりに、図7の(a)に示すようなダイクロ
プリズムセット201 を用いたものも考えられる。このダ
イクロプリズムセット201 は、それぞれ波長λa 〜λe
を中心とした所定範囲の波長範囲の光のみを直角方向に
反射し、それ以外の波長の光を透過するダイクロプリズ
ムDa〜Deが、ファイバ192 の長手方向に接続されたもの
であり、信号光L3は、これらのダイクロプリズムDa〜De
により信号光L3a 〜L3e に分離される。
As a modified example of the above embodiment, a dichroic prism set 201 as shown in FIG. 7A may be used instead of the fiber Bragg grating 193 of the OCT probe 13. The dichroic prism set 201 has wavelengths λa to λe, respectively.
The dichroic prisms Da to De that reflect only light in a predetermined wavelength range in the perpendicular direction around the center and transmit light of other wavelengths are connected in the longitudinal direction of the fiber 192, and the signal light L3 uses these dichroic prisms Da-De.
As a result, the light is separated into signal lights L3a to L3e.

【0060】また各ダイクロプリズムDa〜Deは、ファイ
バ192 の長手方向を軸として、互いに90度回転した位
置関係で配置され、そのため各ダイクロプリズムDa〜De
に反射された信号光L3a 〜L3d は、図7の(b)に示す
ように、90度づつずれた方向へ射出され、信号光L3e
は、信号光L3a と同じ方向へ射出される。また、光検出
部150 のファイバブラッググレーティング151 の代わり
に、ダイクロプリズムセット201 を使用することもでき
る。このダイクロプリズムセット201 を用いる場合に
は、波長分離手段の製造コストを低減できる。また、ダ
イクロプリズムセット201 は、ファイバ192 に後付けす
ることができるので、波長分離帯域の変更あるいは増加
を容易に行うことができる。
The dichroic prisms Da to De are arranged in a positional relationship rotated by 90 degrees with respect to the longitudinal direction of the fiber 192 as an axis.
The signal lights L3a to L3d reflected in the directions shown in FIG. 7B are emitted in directions shifted by 90 degrees each other, as shown in FIG.
Is emitted in the same direction as the signal light L3a. Further, a dichroic prism set 201 can be used instead of the fiber Bragg grating 151 of the light detecting section 150. When the dichroic prism set 201 is used, the manufacturing cost of the wavelength separating means can be reduced. Further, since the dichroic prism set 201 can be added to the fiber 192, the wavelength separation band can be easily changed or increased.

【0061】なお、本実施の形態では、3次元ラジアル
光断層画像を取得したが、これに限定されるものではな
く、リニア断層画像や、3次元光断層画像を取得するO
CT装置であってもよく、例えばリニア断層画像を取得
する際には、ラジアル走査を行なわずに、被覆管191 を
スライド移動させることにより、体腔1内の縦方向の光
断層画像を短時間に取得できる。また、ラジアル走査を
360度行なうことなく、所望の角度で行って3次元光
断層画像を取得する際等にも、光断層画像の取得時間を
低減することができる。
In this embodiment, a three-dimensional radial optical tomographic image is obtained. However, the present invention is not limited to this.
For example, when acquiring a linear tomographic image, a CT apparatus may be used to slide the cladding tube 191 without performing a radial scan, so that a vertical optical tomographic image in the body cavity 1 can be obtained in a short time. Can be obtained. In addition, even when the three-dimensional optical tomographic image is acquired by performing the scanning at a desired angle without performing the 360-degree radial scanning, the acquisition time of the optical tomographic image can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による第1の実施の形態であるOCT装
置の概略構成図
FIG. 1 is a schematic configuration diagram of an OCT apparatus according to a first embodiment of the present invention;

【図2】信号光の波長帯域の説明図FIG. 2 is an explanatory diagram of a wavelength band of signal light.

【図3】ファイバブラッググレーティングの説明図FIG. 3 is an explanatory diagram of a fiber Bragg grating

【図4】ファイバブラッググレーティングの反射率の説
明図
FIG. 4 is an explanatory diagram of the reflectance of a fiber Bragg grating

【図5】分離された信号光の波長帯域の説明図FIG. 5 is an explanatory diagram of a wavelength band of the separated signal light.

【図6】体腔とファイバブラッググレーティングの位置
関係の説明図
FIG. 6 is an explanatory diagram of a positional relationship between a body cavity and a fiber Bragg grating.

【図7】ダイクロプリズムセットの説明図FIG. 7 is an explanatory diagram of a dichroic prism set.

【符号の説明】[Explanation of symbols]

1 体腔 2 体腔壁 11 挿入部 12 OCT部 13 OCTプローブ 14 モニタ 91 鉗子口 110 低コヒーレンス光源部 120 ファイバ結合光学系 123,124,192 ファイバ 130 光路遅延部 150 光検出部 151,193 ファイバブラッググレーティング 152a〜152d 光検出器 160 信号処理部 170 走査範囲制御部 180 3次元光断層画像生成部 191 被覆管 201 ダイクロプリズムセット Ba,Bb,Bc,Bd,Be 格子群 Da,Db,Dc,De,De ダイクロプリズム L1 低コヒーレンス光 L2 参照光 L3,L3a〜L3e,L3’,L3a'〜L3e' 信号光 L4 合波光 Reference Signs List 1 body cavity 2 body cavity wall 11 insertion section 12 OCT section 13 OCT probe 14 monitor 91 forceps port 110 low coherence light source section 120 fiber coupling optical system 123,124,192 fiber 130 optical path delay section 150 light detection section 151,193 fiber Bragg grating 152a-152d photodetector 160 Signal processing unit 170 Scanning range control unit 180 Three-dimensional optical tomographic image generation unit 191 Cladding tube 201 Dichro prism set Ba, Bb, Bc, Bd, Be Lattice group Da, Db, Dc, De, De Dichro prism L1 Low coherence light L2 Reference light L3, L3a ~ L3e, L3 ', L3a' ~ L3e 'Signal light L4 Combined light

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 低コヒーレンス光である信号光で、観察
部の走査領域を走査し、該走査領域の所定深部からの前
記信号光の反射光と、前記信号光と僅かな周波数差を有
する参照光との干渉信号の強度を検出し、該強度に基づ
いて、前記走査領域の光断層画像を取得するOCT装置
において、 前記信号光を前記走査前に、複数の異なる波長帯域の互
いに独立した信号光に分離する信号光分離手段と、 該信号光分離手段により分離された信号光により走査さ
れた前記走査領域の異なる箇所からの反射光と、前記参
照光との合波光を、前記複数の異なる波長帯域ごとに分
離する合波光分離手段とを備えたことを特徴とするOC
T装置。
1. A scanning area of an observation section is scanned with a signal light that is a low coherence light, and a reflected light of the signal light from a predetermined deep portion of the scanning area and a reference having a slight frequency difference from the signal light. In an OCT apparatus for detecting the intensity of an interference signal with light and acquiring an optical tomographic image of the scanning region based on the intensity, the signal light is subjected to independent signals of a plurality of different wavelength bands before the scanning. Signal light separating means for separating the light into light, reflected light from a different portion of the scanning region scanned by the signal light separated by the signal light separating means, and multiplexed light with the reference light, OC comprising multiplexed light separating means for separating each wavelength band.
T device.
【請求項2】 前記信号光分離手段と前記合波光分離手
段の少なくとも一方が、光導波路内に段階的に変化する
格子間隔を設定するブラッググレーティングであること
を特徴とする請求項1記載のOCT装置。
2. An OCT according to claim 1, wherein at least one of said signal light separating means and said multiplexed light separating means is a Bragg grating for setting a stepwise changing grating interval in an optical waveguide. apparatus.
【請求項3】 前記信号光および合波光がファイバによ
り伝搬されるものであり、前記ブラッググレーティング
が前記ファイバの出射端に形成されたファイバブラッグ
グレーティングであることを特徴とする請求項2記載の
OCT装置。
3. The OCT according to claim 2, wherein the signal light and the multiplexed light are propagated by a fiber, and the Bragg grating is a fiber Bragg grating formed at an emission end of the fiber. apparatus.
【請求項4】 前記信号光分離手段と前記合波光分離手
段の少なくとも一方が、異なる波長帯域の光を反射する
複数個のダイクロプリズムから構成されていることを特
徴とする請求項1から3いずれか1項記載のOCT装
置。
4. The apparatus according to claim 1, wherein at least one of said signal light separating means and said multiplexed light separating means comprises a plurality of dichroic prisms for reflecting light in different wavelength bands. The OCT apparatus according to claim 1.
【請求項5】 前記観察部が生体観察部であり、 前記低コヒーレンス光の波長が、600nm以上1700
nm以下であることを特徴とする請求項1から4いずれか
1項記載のOCT装置。
5. The observation section is a living body observation section, and the wavelength of the low coherence light is 600 nm or more and 1700
The OCT apparatus according to any one of claims 1 to 4, wherein the OCT is equal to or less than nm.
JP2000340620A 2000-11-08 2000-11-08 Oct apparatus Withdrawn JP2002148185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000340620A JP2002148185A (en) 2000-11-08 2000-11-08 Oct apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000340620A JP2002148185A (en) 2000-11-08 2000-11-08 Oct apparatus

Publications (1)

Publication Number Publication Date
JP2002148185A true JP2002148185A (en) 2002-05-22

Family

ID=18815496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000340620A Withdrawn JP2002148185A (en) 2000-11-08 2000-11-08 Oct apparatus

Country Status (1)

Country Link
JP (1) JP2002148185A (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006055236A (en) * 2004-08-18 2006-03-02 Fuji Photo Film Co Ltd Tomographic image observing device, endoscopic device, and probe used for them
KR100724020B1 (en) 2006-04-07 2007-06-04 한국과학기술연구원 Optical interferogram generator based on tunable optical chirped fiber grating for an optical coherent tomography
CN100368925C (en) * 2005-10-27 2008-02-13 南开大学 Excited radiation light amplified broad band optical fiber light source special for optical coherent chromatography
JP2008128710A (en) * 2006-11-17 2008-06-05 Fujifilm Corp Tomographic image processing method, tomographic image processing device, program and optical tomographic imaging system using it
JP2008145187A (en) * 2006-12-07 2008-06-26 Fujifilm Corp Optical tomographic imaging device
JP2008145188A (en) * 2006-12-07 2008-06-26 Fujifilm Corp Optical tomographic imaging apparatus
JP2008521516A (en) * 2004-11-29 2008-06-26 ザ ジェネラル ホスピタル コーポレイション Configuration, apparatus, endoscope, catheter, and method for performing optical image generation by simultaneously illuminating and detecting multiple points on a sample
JP2008539447A (en) * 2005-04-28 2008-11-13 クラウディオ・オリベイラ・エガロン Improved reversible, low cost, high spatial resolution distributed fiber optic sensor
WO2009137701A3 (en) * 2008-05-07 2010-02-11 The General Hospital Corporation System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy
EP2153770A1 (en) 2008-08-15 2010-02-17 Fujifilm Corporation Optical probe and three-dimensional image acquisition apparatus
EP2163191A1 (en) 2008-09-16 2010-03-17 Fujifilm Corporation Diagnostic imaging apparatus
JP2010178787A (en) * 2009-02-03 2010-08-19 Hoya Corp Medical probe and medical observation system
JP2010249584A (en) * 2009-04-13 2010-11-04 Canon Inc Optical tomographic imaging apparatus, and control method for the same
JP2010261858A (en) * 2009-05-08 2010-11-18 Canon Inc Optical interference tomographic imaging device
JP2010259698A (en) * 2009-05-11 2010-11-18 Canon Inc Information processing apparatus in oct system
JP2011005236A (en) * 2009-05-22 2011-01-13 Canon Inc Imaging apparatus and imaging method
US8463083B2 (en) 2009-01-30 2013-06-11 Claudio Oliveira Egalon Side illuminated multi point multi parameter optical fiber sensor
US8676013B2 (en) 2004-07-02 2014-03-18 The General Hospital Corporation Imaging system using and related techniques
US8760663B2 (en) 2005-09-29 2014-06-24 The General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
US9060689B2 (en) 2005-06-01 2015-06-23 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9178330B2 (en) 2009-02-04 2015-11-03 The General Hospital Corporation Apparatus and method for utilization of a high-speed optical wavelength tuning source
US9186066B2 (en) 2006-02-01 2015-11-17 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
US9226665B2 (en) 2003-01-24 2016-01-05 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
US9282931B2 (en) 2000-10-30 2016-03-15 The General Hospital Corporation Methods for tissue analysis
US9330092B2 (en) 2011-07-19 2016-05-03 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
US9326682B2 (en) 2005-04-28 2016-05-03 The General Hospital Corporation Systems, processes and software arrangements for evaluating information associated with an anatomical structure by an optical coherence ranging technique
US9341783B2 (en) 2011-10-18 2016-05-17 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
US9364143B2 (en) 2006-05-10 2016-06-14 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
US9408539B2 (en) 2010-03-05 2016-08-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9415550B2 (en) 2012-08-22 2016-08-16 The General Hospital Corporation System, method, and computer-accessible medium for fabrication miniature endoscope using soft lithography
US9441948B2 (en) 2005-08-09 2016-09-13 The General Hospital Corporation Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography
US9510758B2 (en) 2010-10-27 2016-12-06 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
US9516997B2 (en) 2006-01-19 2016-12-13 The General Hospital Corporation Spectrally-encoded endoscopy techniques, apparatus and methods
US9557154B2 (en) 2010-05-25 2017-01-31 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US9615748B2 (en) 2009-01-20 2017-04-11 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US9646377B2 (en) 2006-01-19 2017-05-09 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
JP2017083390A (en) * 2015-10-30 2017-05-18 エムテックスマツムラ株式会社 Optical coherence tomography device
USRE46412E1 (en) 2006-02-24 2017-05-23 The General Hospital Corporation Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US9763623B2 (en) 2004-08-24 2017-09-19 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
US9968261B2 (en) 2013-01-28 2018-05-15 The General Hospital Corporation Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging
US9968245B2 (en) 2006-10-19 2018-05-15 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
US10058250B2 (en) 2013-07-26 2018-08-28 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
US10426548B2 (en) 2006-02-01 2019-10-01 The General Hosppital Corporation Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
US10736494B2 (en) 2014-01-31 2020-08-11 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10835110B2 (en) 2008-07-14 2020-11-17 The General Hospital Corporation Apparatus and method for facilitating at least partial overlap of dispersed ration on at least one sample
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
US10912462B2 (en) 2014-07-25 2021-02-09 The General Hospital Corporation Apparatus, devices and methods for in vivo imaging and diagnosis
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
US11452433B2 (en) 2013-07-19 2022-09-27 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
US11490826B2 (en) 2009-07-14 2022-11-08 The General Hospital Corporation Apparatus, systems and methods for measuring flow and pressure within a vessel
US11490797B2 (en) 2012-05-21 2022-11-08 The General Hospital Corporation Apparatus, device and method for capsule microscopy

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9282931B2 (en) 2000-10-30 2016-03-15 The General Hospital Corporation Methods for tissue analysis
US9226665B2 (en) 2003-01-24 2016-01-05 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
US9664615B2 (en) 2004-07-02 2017-05-30 The General Hospital Corporation Imaging system and related techniques
US8676013B2 (en) 2004-07-02 2014-03-18 The General Hospital Corporation Imaging system using and related techniques
JP2006055236A (en) * 2004-08-18 2006-03-02 Fuji Photo Film Co Ltd Tomographic image observing device, endoscopic device, and probe used for them
JP4494127B2 (en) * 2004-08-18 2010-06-30 富士フイルム株式会社 Tomographic image observation device, endoscope device, and probe used for them
US9763623B2 (en) 2004-08-24 2017-09-19 The General Hospital Corporation Method and apparatus for imaging of vessel segments
JP2014237042A (en) * 2004-11-29 2014-12-18 ザ ジェネラル ホスピタル コーポレイション Construction, apparatus, endoscope, catheter and method for performing optical image generation by irradiating a plurality of spots on sample simultaneously and detecting the same
US8922781B2 (en) 2004-11-29 2014-12-30 The General Hospital Corporation Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample
JP2008521516A (en) * 2004-11-29 2008-06-26 ザ ジェネラル ホスピタル コーポレイション Configuration, apparatus, endoscope, catheter, and method for performing optical image generation by simultaneously illuminating and detecting multiple points on a sample
US9326682B2 (en) 2005-04-28 2016-05-03 The General Hospital Corporation Systems, processes and software arrangements for evaluating information associated with an anatomical structure by an optical coherence ranging technique
JP2008539447A (en) * 2005-04-28 2008-11-13 クラウディオ・オリベイラ・エガロン Improved reversible, low cost, high spatial resolution distributed fiber optic sensor
US9060689B2 (en) 2005-06-01 2015-06-23 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
US9441948B2 (en) 2005-08-09 2016-09-13 The General Hospital Corporation Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography
US9304121B2 (en) 2005-09-29 2016-04-05 The General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
US8928889B2 (en) 2005-09-29 2015-01-06 The General Hospital Corporation Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures
US9513276B2 (en) 2005-09-29 2016-12-06 The General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
US8760663B2 (en) 2005-09-29 2014-06-24 The General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
CN100368925C (en) * 2005-10-27 2008-02-13 南开大学 Excited radiation light amplified broad band optical fiber light source special for optical coherent chromatography
US10987000B2 (en) 2006-01-19 2021-04-27 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US9646377B2 (en) 2006-01-19 2017-05-09 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US9516997B2 (en) 2006-01-19 2016-12-13 The General Hospital Corporation Spectrally-encoded endoscopy techniques, apparatus and methods
US9186066B2 (en) 2006-02-01 2015-11-17 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
US9186067B2 (en) 2006-02-01 2015-11-17 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
US10426548B2 (en) 2006-02-01 2019-10-01 The General Hosppital Corporation Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
USRE46412E1 (en) 2006-02-24 2017-05-23 The General Hospital Corporation Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
KR100724020B1 (en) 2006-04-07 2007-06-04 한국과학기술연구원 Optical interferogram generator based on tunable optical chirped fiber grating for an optical coherent tomography
US10413175B2 (en) 2006-05-10 2019-09-17 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
US9364143B2 (en) 2006-05-10 2016-06-14 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
US9968245B2 (en) 2006-10-19 2018-05-15 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
JP2008128710A (en) * 2006-11-17 2008-06-05 Fujifilm Corp Tomographic image processing method, tomographic image processing device, program and optical tomographic imaging system using it
JP2008145188A (en) * 2006-12-07 2008-06-26 Fujifilm Corp Optical tomographic imaging apparatus
JP2008145187A (en) * 2006-12-07 2008-06-26 Fujifilm Corp Optical tomographic imaging device
US8593619B2 (en) 2008-05-07 2013-11-26 The General Hospital Corporation System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy
WO2009137701A3 (en) * 2008-05-07 2010-02-11 The General Hospital Corporation System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy
JP2011523862A (en) * 2008-05-07 2011-08-25 ザ ジェネラル ホスピタル コーポレイション System, method and computer-accessible medium for tracking blood vessel movement during microscopic examination of a three-dimensional coronary artery
US9173572B2 (en) 2008-05-07 2015-11-03 The General Hospital Corporation System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy
US10835110B2 (en) 2008-07-14 2020-11-17 The General Hospital Corporation Apparatus and method for facilitating at least partial overlap of dispersed ration on at least one sample
EP2153770A1 (en) 2008-08-15 2010-02-17 Fujifilm Corporation Optical probe and three-dimensional image acquisition apparatus
EP2163191A1 (en) 2008-09-16 2010-03-17 Fujifilm Corporation Diagnostic imaging apparatus
US9615748B2 (en) 2009-01-20 2017-04-11 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
US10088410B2 (en) 2009-01-30 2018-10-02 Claudio Oliveira Egalon Side illuminated multi point multi parameter optical fiber sensor
US8463083B2 (en) 2009-01-30 2013-06-11 Claudio Oliveira Egalon Side illuminated multi point multi parameter optical fiber sensor
US8909004B2 (en) 2009-01-30 2014-12-09 Claudio Oliveira Egalon Side illuminated multi point multi parameter
US10876960B2 (en) 2009-01-30 2020-12-29 Claudio Egalon Side illuminated multi point multi parameter optical fiber sensor
JP2010178787A (en) * 2009-02-03 2010-08-19 Hoya Corp Medical probe and medical observation system
US9178330B2 (en) 2009-02-04 2015-11-03 The General Hospital Corporation Apparatus and method for utilization of a high-speed optical wavelength tuning source
JP2010249584A (en) * 2009-04-13 2010-11-04 Canon Inc Optical tomographic imaging apparatus, and control method for the same
JP2010261858A (en) * 2009-05-08 2010-11-18 Canon Inc Optical interference tomographic imaging device
JP2010259698A (en) * 2009-05-11 2010-11-18 Canon Inc Information processing apparatus in oct system
JP2011005236A (en) * 2009-05-22 2011-01-13 Canon Inc Imaging apparatus and imaging method
US11490826B2 (en) 2009-07-14 2022-11-08 The General Hospital Corporation Apparatus, systems and methods for measuring flow and pressure within a vessel
US9642531B2 (en) 2010-03-05 2017-05-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US10463254B2 (en) 2010-03-05 2019-11-05 The General Hospital Corporation Light tunnel and lens which provide extended focal depth of at least one anatomical structure at a particular resolution
US9408539B2 (en) 2010-03-05 2016-08-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9951269B2 (en) 2010-05-03 2018-04-24 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
US10939825B2 (en) 2010-05-25 2021-03-09 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US9557154B2 (en) 2010-05-25 2017-01-31 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
US9510758B2 (en) 2010-10-27 2016-12-06 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
US9330092B2 (en) 2011-07-19 2016-05-03 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
US9341783B2 (en) 2011-10-18 2016-05-17 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US11490797B2 (en) 2012-05-21 2022-11-08 The General Hospital Corporation Apparatus, device and method for capsule microscopy
US9415550B2 (en) 2012-08-22 2016-08-16 The General Hospital Corporation System, method, and computer-accessible medium for fabrication miniature endoscope using soft lithography
US9968261B2 (en) 2013-01-28 2018-05-15 The General Hospital Corporation Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
US11452433B2 (en) 2013-07-19 2022-09-27 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
US10058250B2 (en) 2013-07-26 2018-08-28 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US10736494B2 (en) 2014-01-31 2020-08-11 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US10912462B2 (en) 2014-07-25 2021-02-09 The General Hospital Corporation Apparatus, devices and methods for in vivo imaging and diagnosis
JP2017083390A (en) * 2015-10-30 2017-05-18 エムテックスマツムラ株式会社 Optical coherence tomography device

Similar Documents

Publication Publication Date Title
JP2002148185A (en) Oct apparatus
US6477403B1 (en) Endoscope system
US7324211B2 (en) Optical tomographic image obtaining apparatus
US9435956B1 (en) Spectroscopic imaging probes, devices, and methods
US7372575B2 (en) Optical tomographic apparatus
JP6792450B2 (en) Forward-viewing endoscopic probe, control method of the probe, and imaging device
US7620445B2 (en) Apparatus for acquiring tomographic image formed by ultrasound-modulated fluorescence
JP3869589B2 (en) Fiber bundle and endoscope apparatus
JP4864511B2 (en) Electronic endoscope apparatus and program
JP5069585B2 (en) Optical tomographic imaging system using an optical probe
JP4907227B2 (en) Intraocular dimension measuring device
JP5229325B2 (en) Rotating optical fiber unit and optical coherence tomographic image generator
JP4799109B2 (en) Electronic endoscope device
JP2008183208A (en) Oct probe and oct system
JP2001125009A (en) Endoscope
JP2005514601A (en) System and method for processing signals from an interferometer with an ultrasonic console
JP2010188114A (en) Optical tomographic imaging method and optical tomographic imaging apparatus
JP2009041946A (en) Optical image measuring instrument
US6788861B1 (en) Endoscope system, scanning optical system and polygon mirror
JP2011212432A (en) Ophthalmologic photographing apparatus
JP2007209536A (en) Optical imaging apparatus
US8687928B2 (en) Optical characteristic measuring probe
JP5429447B2 (en) Optical tomographic image measuring device
JP2006215006A (en) Optical tomographic imaging system
JP2007101267A (en) Optical tomographic imaging apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108