JP2011029054A - Discharge lamp-lighting device and illumination fixture - Google Patents

Discharge lamp-lighting device and illumination fixture Download PDF

Info

Publication number
JP2011029054A
JP2011029054A JP2009175113A JP2009175113A JP2011029054A JP 2011029054 A JP2011029054 A JP 2011029054A JP 2009175113 A JP2009175113 A JP 2009175113A JP 2009175113 A JP2009175113 A JP 2009175113A JP 2011029054 A JP2011029054 A JP 2011029054A
Authority
JP
Japan
Prior art keywords
discharge lamp
circuit
inverter
preheating
lighting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009175113A
Other languages
Japanese (ja)
Inventor
Tomohiro Sasagawa
知宏 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009175113A priority Critical patent/JP2011029054A/en
Publication of JP2011029054A publication Critical patent/JP2011029054A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Abstract

<P>PROBLEM TO BE SOLVED: To provide a discharge lamp-lighting device and an illumination fixture using the discharge lamp-lighting device, wherein it is not necessary to cause a stand-by preheat current to flow in a filament when the discharge lamp is turned off, and moreover the lamp is instantly lighted when lighting, and furthermore, an excess stress is not given to an inverter switch and a short period blinking life of the discharge lamp is not impaired. <P>SOLUTION: The discharge lamp-lighting device 1 includes: a DC power source 19; an inverter circuit 11 to convert a DC voltage to a high frequency voltage; an inverter control circuit 22 in order to control an operation frequency of the inverter circuit 11; and a preheating circuit 13 in order to supply a foregoing preheating current to the electrodes of the discharge lamp La. The foregoing preheating time is set by the inverter control circuit 22 so that the area ratio of current×time of the foregoing preheating current concerning the minimum rated voltage and the maximum rated voltage out of a plurality of rated power supply voltage becomes 1:1.2 to 1.6. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱陰極放電灯を点灯させる前に電極を先行予熱させる放電灯点灯装置及び該放電灯点灯装置を用いた照明器具に関する。   The present invention relates to a discharge lamp lighting device that preheats an electrode before lighting a hot cathode discharge lamp, and a lighting fixture using the discharge lamp lighting device.

従来、蛍光灯などの熱陰極放電灯(以下、放電灯と呼ぶ)を点灯させる場合、その両端に始動電圧を印加する前にフィラメントから熱電子が放出するのに充分な電流を流すことで、点滅時のストレスを抑えて短寿命となることを回避している。但し、フィラメント先行予熱を行う先行予熱時間は一般的に1秒〜1.5秒程度に設定されており、点灯までに一定の時間を必要とする。電球のように電源投入と同時に点灯させると、フィラメントが劣化し、短寿命となり易いのである。   Conventionally, when a hot cathode discharge lamp such as a fluorescent lamp (hereinafter referred to as a discharge lamp) is lit, a current sufficient to discharge thermoelectrons from the filament is applied before applying a starting voltage to both ends thereof. The stress at the time of flashing is suppressed and the short life is avoided. However, the pre-heating time for performing the pre-heating of the filament is generally set to about 1 to 1.5 seconds, and a certain time is required until lighting. When the lamp is turned on at the same time as turning on the power like a light bulb, the filament deteriorates and the life is likely to be shortened.

フィラメント先行予熱を行うようにした従来例として、特許文献1で開示された調光用放電灯点灯装置が知られている。この従来例は、調光器から消灯信号が放電灯点灯装置に入力されると、放電灯に加わる電圧が点灯維持電圧を下回る電圧となる消灯周波数となり、その後、放電灯を即時点灯可能な待機予熱状態とし、且つ放電灯への印加電圧が点弧電圧に達しない状態となる待機予熱周波数へ移行させるものである。消灯時も常にフィラメントに適切な電流を流し、即時点灯を可能としている。   As a conventional example in which filament pre-heating is performed, a dimming discharge lamp lighting device disclosed in Patent Document 1 is known. In this conventional example, when a turn-off signal is input from the dimmer to the discharge lamp lighting device, the voltage applied to the discharge lamp becomes a turn-off frequency at which the voltage is lower than the lighting maintenance voltage, and then the standby capable of turning on the discharge lamp immediately. A preheating state is set, and a transition is made to a standby preheating frequency at which the voltage applied to the discharge lamp does not reach the ignition voltage. Even when the lamp is turned off, an appropriate current is always supplied to the filament to enable immediate lighting.

特開平6−223991号公報Japanese Patent Application Laid-Open No. 6-223991

ところが、上述した従来例では、待機予熱状態においても常にフィラメントに電流が流れるので、フィラメントで電力が消費されることになる。このため、待機予熱状態が長い場合には無駄な消費電力が増大してしまう。   However, in the above-described conventional example, since a current always flows through the filament even in the standby preheating state, power is consumed by the filament. For this reason, when the standby preheating state is long, useless power consumption increases.

また、図10に示す回路構成の放電灯点灯装置100においては、インバータスイッチQ1、Q2に図11に示すような電流が流れ、インバータスイッチQ1、Q2に常時ストレスが加わることになる。   Further, in the discharge lamp lighting device 100 having the circuit configuration shown in FIG. 10, a current as shown in FIG. 11 flows through the inverter switches Q1 and Q2, and stress is constantly applied to the inverter switches Q1 and Q2.

ここで、図10に示す従来の放電灯点灯装置100の動作を簡単に説明する。同図に示す放電灯点灯装置100は、一般的な昇圧チョッパ回路10とハーフブリッジ型のインバータ回路11の構成を採る。昇圧チョッパ回路10は、チョークコイルL1と、ダイオードD2と、平滑コンデンサC2と、チョッパスイッチ(FET)Q1とで構成され、交流電圧Vinを全波整流回路16で整流された直流電圧が供給される。インバータ回路11は、昇圧チョッパ回路10で得られた直流電圧を高周波電圧に変換して放電灯Laに印加する。インバータ回路11は、インバータスイッチ(FET)Q2、Q3で構成され、出力端にはLC共振回路12と予熱回路13と放電灯Laが接続される。   Here, the operation of the conventional discharge lamp lighting device 100 shown in FIG. 10 will be briefly described. A discharge lamp lighting device 100 shown in FIG. 1 employs a general boost chopper circuit 10 and a half-bridge type inverter circuit 11. The step-up chopper circuit 10 includes a choke coil L1, a diode D2, a smoothing capacitor C2, and a chopper switch (FET) Q1, and is supplied with a DC voltage obtained by rectifying the AC voltage Vin by the full-wave rectifier circuit 16. . The inverter circuit 11 converts the DC voltage obtained by the step-up chopper circuit 10 into a high frequency voltage and applies it to the discharge lamp La. The inverter circuit 11 includes inverter switches (FETs) Q2 and Q3, and an LC resonance circuit 12, a preheating circuit 13, and a discharge lamp La are connected to the output terminals.

インバータ回路11のインバータスイッチQ2、Q3はインバータ制御回路20で制御され、昇圧チョッパ回路10のチョッパスイッチQ1はチョッパ制御回路21で制御される。インバータ制御回路20とチョッパ制御回路21の電源は、インバータ動作時にはインバータスイッチQ3と並列に接続されたコンデンサC4、C5とダイオードD3、D4と抵抗器R1とから構成される制御電源供給回路17から得られる。   The inverter switches Q2 and Q3 of the inverter circuit 11 are controlled by the inverter control circuit 20, and the chopper switch Q1 of the boost chopper circuit 10 is controlled by the chopper control circuit 21. The power supply for the inverter control circuit 20 and the chopper control circuit 21 is obtained from the control power supply circuit 17 composed of capacitors C4 and C5, diodes D3 and D4, and a resistor R1 connected in parallel with the inverter switch Q3 during inverter operation. It is done.

但し、LC共振回路12の設計や予熱回路13の設計によっては先行予熱時にはLC共振回路12に流れる共振電流が少ない為、インバータ回路11のインバータスイッチQ2、Q3に図11に示すような波形のドレイン電流が流れることになる。これはインバータスイッチQ2又はQ3がONした時に制御電源供給回路17のコンデンサC4に充電された電荷がONしたインバータスイッチ側へ流れる為である。またこれはインバータスイッチQ2、Q3への電気的、或いは熱的なストレスとなる。   However, depending on the design of the LC resonance circuit 12 and the design of the preheating circuit 13, since the resonance current flowing through the LC resonance circuit 12 is small during the preheating, the drains having the waveform as shown in FIG. Current will flow. This is because when the inverter switch Q2 or Q3 is turned on, the electric charge charged in the capacitor C4 of the control power supply circuit 17 flows to the ON inverter switch side. This also causes electrical or thermal stress on the inverter switches Q2 and Q3.

インバータ制御回路20とチョッパ制御回路21の電源ラインと接地との間には平滑コンデンサC6が介挿されている。予熱回路13は、トランスT1とコンデンサC7〜C10から構成され、放電灯Laのフィラメントを予熱する。放電灯Laの点灯後はランプ電流が流れるので、LC共振回路12に流れる共振電流は増加する。従って、インバータ回路11のインバータスイッチQ2、Q3に流れるドレイン電流は図12に示すような波形となる。   A smoothing capacitor C6 is interposed between the power supply line of the inverter control circuit 20 and the chopper control circuit 21 and the ground. The preheating circuit 13 includes a transformer T1 and capacitors C7 to C10, and preheats the filament of the discharge lamp La. Since the lamp current flows after the discharge lamp La is turned on, the resonance current flowing through the LC resonance circuit 12 increases. Therefore, the drain current flowing through the inverter switches Q2 and Q3 of the inverter circuit 11 has a waveform as shown in FIG.

本来は先行予熱時も図12に示すような形のドレイン電流波形が望ましいと言える。先行熱予熱時は共振電流が少ないため、回生電流によってコンデンサC4に充電された電荷が完全に放電されないままインバータスイッチQ2又はQ3がONし、コンデンサC4に充電された電荷が、ONしたインバータスイッチ側へ流れる。   Originally, it can be said that a drain current waveform having a shape as shown in FIG. Since the resonance current is small during the preheating preheating, the inverter switch Q2 or Q3 is turned on without the electric charge charged to the capacitor C4 being completely discharged by the regenerative current, and the electric charge charged to the capacitor C4 is turned on. To flow.

以上ように、図10に示す回路構成の従来の放電灯点灯装置においては、特許文献1で開示された調光用放電灯点灯装置のような待機予熱はインバータスイッチQ2、Q3へのストレスを常に加えることになり、故障の原因となる。   As described above, in the conventional discharge lamp lighting device having the circuit configuration shown in FIG. 10, standby preheating like the dimming discharge lamp lighting device disclosed in Patent Document 1 always causes stress on the inverter switches Q2 and Q3. This will cause a failure.

一方、放電灯Laを瞬時に点灯させる方法として、先行予熱時間を短くし、先行予熱電流を多くすることで、短期間で十分なフィラメント加熱を行い、放電灯Laへ点弧電圧を印加する方法もある。   On the other hand, as a method for turning on the discharge lamp La instantaneously, a method for shortening the preheating time and increasing the preheating current to sufficiently heat the filament in a short period and apply an ignition voltage to the discharge lamp La. There is also.

図13は、一般的な高周波点灯専用形蛍光灯の先行予熱時間と先行予熱電流の関係におけるフィラメントのエミッション開始特性とエミッタ蒸発開始特性を示したものである。同図に示すように、予熱時間が長いと、予熱電流が少なくてもエミッションを開始できる。但し、エミッタが蒸発しだす電流も予熱時間が短いときよりも低い値となる。   FIG. 13 shows the emission start characteristic and emitter evaporation start characteristic of the filament in the relationship between the preceding preheating time and the preceding preheating current of a general fluorescent lamp dedicated for high-frequency lighting. As shown in the figure, if the preheating time is long, the emission can be started even if the preheating current is small. However, the current that the emitter starts to evaporate is also lower than when the preheating time is short.

ここで、問題となる点は先行予熱時間を短くした場合(例えば、0.3秒〜0.5秒)、一般的な先行予熱時間(例えば、1.1秒〜1.3秒)よりも先行予熱電流の設計幅が狭くなる(A>B)点である。更に、安定器(図示略)の電源電圧が100V、200V、242Vと共用の場合は図14に示すような波形となり、100Vと242V時の先行予熱電流の差が大きくなる。これは通常、電源投入当初は予熱回路の電源も安定器(図示略)の電源電圧の上昇に応じて増加するため、100Vと242Vでは予熱回路の電源が一定になるまで差があるためである。これは、同一の昇圧チョッパ回路で複数の電源電圧を用いる以上、目標の出力であるチョッパ出力VDCとなるまでの時間は電源電圧によって異なる為である。昇圧チョッパ回路の設計(VDC検出信号のエラーパンプ設計など/フィードバックを早める)によってはある程度改善できるが、同じ昇圧チョッパ回路である以上はVin=100Vと242Vでは必ず差が生じる。図15に示すように、先行予熱時間が1秒程度あれば、その差は相対的に減少する。   Here, the problem is that when the preceding preheating time is shortened (for example, 0.3 to 0.5 seconds), it is longer than the general preceding preheating time (for example, 1.1 to 1.3 seconds). The design width of the preceding preheating current is narrow (A> B). Further, when the power supply voltage of the ballast (not shown) is shared with 100V, 200V, and 242V, the waveform as shown in FIG. 14 is obtained, and the difference between the pre-heating currents at 100V and 242V increases. This is because the power supply of the preheating circuit normally increases as the power supply voltage of the ballast (not shown) increases when the power is turned on, so there is a difference between 100V and 242V until the power supply of the preheating circuit becomes constant. . This is because, as long as a plurality of power supply voltages are used in the same step-up chopper circuit, the time until the target output chopper output VDC varies depends on the power supply voltage. Although it can be improved to some extent depending on the design of the boost chopper circuit (error pump design of VDC detection signal / acceleration of feedback), there is always a difference between Vin = 100V and 242V as long as the same boost chopper circuit is used. As shown in FIG. 15, if the preceding preheating time is about 1 second, the difference is relatively reduced.

先行予熱時間が短く、且つ100V〜242Vまで使用される安定器(図示略)においては、100V時と242V時の先行電流に差が生じるため、図13に示す予熱電流設計範囲(B)を超えてしまい、短期点滅寿命が悪化することになる。   In ballasts (not shown) that have a short pre-heating time and are used from 100V to 242V, there is a difference in the pre-current at 100V and 242V, which exceeds the preheating current design range (B) shown in FIG. As a result, the short flashing life will deteriorate.

本発明は、係る事情に鑑みてなされたものであり、放電灯の消灯時にはフィラメントへ待機予熱電流を流す必要がなく、また点灯時には瞬時に点灯し、更に、インバータスイッチへ多大なストレス与えることなく、放電灯の短期点滅寿命を損なうことがない放電灯点灯装置及び該放電灯点灯装置を用いた照明器具を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is not necessary to supply a standby preheating current to the filament when the discharge lamp is extinguished, and the lamp is turned on instantaneously when it is lit, and further, without applying a great deal of stress to the inverter switch. An object of the present invention is to provide a discharge lamp lighting device that does not impair the short-term flashing life of the discharge lamp, and a lighting fixture using the discharge lamp lighting device.

本発明の放電灯点灯装置は、直流電源と、前記直流電源から出力される直流電圧を高周波電圧に変換するインバータ回路と、前記インバータ回路の動作周波数を制御するためのインバータ制御回路と、放電灯の電極に先行予熱電流を供給するための予熱回路と、を備える放電灯点灯装置であって、前記インバータ制御回路は、複数の定格電源電圧のうち、最小定格電源電圧と最大定格電源電圧での先行予熱電流の電流×時間の面積比が1:1.2〜1.6となるように先行予熱時間を設定する。   A discharge lamp lighting device according to the present invention includes a DC power supply, an inverter circuit that converts a DC voltage output from the DC power supply into a high-frequency voltage, an inverter control circuit for controlling an operating frequency of the inverter circuit, and a discharge lamp. A preheating circuit for supplying a preheating current to the electrodes of the discharge lamp lighting device, wherein the inverter control circuit has a minimum rated power supply voltage and a maximum rated power supply voltage among a plurality of rated power supply voltages. The preceding preheating time is set so that the area ratio of current x time of the preceding preheating current is 1: 1.2 to 1.6.

上記構成によれば、電圧値の異なる複数の電源電圧での先行予熱電流の電流×時間の面積比を1:1.2〜1.6となるように先行予熱時間を短く設定したので、定格電源電圧が複数ある場合でも、人の感じる時間として充分即時点灯と言えるほど先行予熱時間を短くし、ランプの短期点滅寿命を損なうことのない放電灯点灯装置を提供することができる。   According to the above configuration, the preceding preheating time is set to be short so that the current to time area ratio of the preceding preheating current at a plurality of power supply voltages having different voltage values is 1: 1.2 to 1.6. Even when there are a plurality of power supply voltages, it is possible to provide a discharge lamp lighting device that shortens the preceding preheating time so that it can be said to be immediately lit as long as a person feels, and does not impair the short-term flashing life of the lamp.

上記構成において、前記予熱回路から供給される先行予熱電流はその予熱周波数により増減するものであり、前記インバータ制御回路は、前記直流電源の出力電圧に応じて先行予熱周波数を変化させる。   In the above configuration, the preceding preheating current supplied from the preheating circuit increases or decreases depending on the preheating frequency, and the inverter control circuit changes the preceding preheating frequency according to the output voltage of the DC power supply.

上記構成によれば、定格電源電圧に応じて、先行予熱周波数を変化させることができるので、更に幅広い定格電源電圧、或いはチョッパ回路設計においても人の感じる時間として充分即時点灯と言えるほど先行予熱時間を短くし、ランプの短期点滅寿命を損なうことのない放電灯点灯装置を提供することができる。   According to the above configuration, since the preheating frequency can be changed according to the rated power supply voltage, the preheating time can be said to be sufficient for immediate lighting as a time perceived by a wider range of rated power supply voltages or chopper circuit design. Thus, it is possible to provide a discharge lamp lighting device that does not impair the short-term flashing life of the lamp.

また、上記構成において、前記インバータ回路を構成するインバータスイッチと並列に接続されたコンデンサとダイオードを含み、前記インバータ制御回路の動作用電源を該インバータ制御回路へ供給する制御電源供給回路を更に備えた。   Further, in the above configuration, the apparatus further includes a control power supply circuit that includes a capacitor and a diode connected in parallel with the inverter switch that configures the inverter circuit, and supplies operation power for the inverter control circuit to the inverter control circuit. .

上記構成によれば、先行予熱期間中のインバータスイッチのストレス印加時間を極力少なくすることができる。   According to the above configuration, the stress application time of the inverter switch during the preceding preheating period can be reduced as much as possible.

また、上記構成において、人体の有無を検知する人体検知センサを更に備え、前記インバータ制御回路は、前記人体検知センサからの信号を受けて、放電灯を点灯或いは調光或いは消灯させるように制御する。   Further, in the above configuration, a human body detection sensor that detects the presence or absence of a human body is further provided, and the inverter control circuit receives the signal from the human body detection sensor and controls the discharge lamp to be turned on, dimmed, or turned off. .

上記構成によれば、人感センサを用いた照明器具においても待機予熱方式を用いることなく、人非検知時の無駄な消費電力を無くし、即時点灯による利便性と安全性を向上させることができる。   According to the above-described configuration, it is possible to improve the convenience and safety of immediate lighting by eliminating wasteful power consumption when a person is not detected without using a standby preheating method even in a lighting fixture using a human sensor. .

本発明の照明器具は、前記放電灯点灯装置と、前記放電灯点灯装置により点灯動作が制御される放電灯と、を備える。   The lighting fixture of the present invention includes the discharge lamp lighting device and a discharge lamp whose lighting operation is controlled by the discharge lamp lighting device.

上記構成によれば、短期点滅寿命を損なうことなく従来商品よりも即時点灯をすることができる。   According to the above configuration, it is possible to light up more quickly than conventional products without impairing the short-term flashing life.

本発明は、放電灯の消灯時にはフィラメントへ待機予熱電流を流す必要がなく、また点灯時には瞬時に点灯し、更に、インバータスイッチへ多大なストレス与えることがないことから、放電灯の短期点滅寿命を損なうことがない。   The present invention does not require a standby preheating current to flow to the filament when the discharge lamp is extinguished, and when the lamp is lit, the lamp is turned on instantaneously, and further, no great stress is applied to the inverter switch. There is no loss.

本発明の実施の形態1に係る放電灯点灯装置の回路構成を示す図The figure which shows the circuit structure of the discharge lamp lighting device which concerns on Embodiment 1 of this invention. 図1の放電灯点灯装置において電源電圧を100Vとした場合のチョッパ出力VDCと先行予熱電流との波形を示す図The figure which shows the waveform of the chopper output VDC when the power supply voltage is set to 100V and the preceding preheating current in the discharge lamp lighting device of FIG. 図1の放電灯点灯装置において電源電圧を242Vとした場合のチョッパ出力VDCと先行予熱電流との波形を示す図The figure which shows the waveform of the chopper output VDC when the power supply voltage is set to 242 V and the preceding preheating current in the discharge lamp lighting device of FIG. 本発明の実施の形態2に係る放電灯点灯装置の回路構成を示す図The figure which shows the circuit structure of the discharge lamp lighting device which concerns on Embodiment 2 of this invention. 図4の放電灯点灯装置において電源電圧を100Vとした場合の先行予熱電流とインバータ動作周波数の関係を示す図The figure which shows the relationship between the prior | preceding preheating current and inverter operating frequency when the power supply voltage is 100V in the discharge lamp lighting device of FIG. 図4の放電灯点灯装置において電源電圧を242Vとした場合の先行予熱電流とインバータ動作周波数の関係を示す図The figure which shows the relationship between the prior | preceding preheating current and inverter operating frequency when the power supply voltage is 242V in the discharge lamp lighting device of FIG. 本発明の実施の形態3に係る放電灯点灯装置の回路構成を示す図The figure which shows the circuit structure of the discharge lamp lighting device which concerns on Embodiment 3 of this invention. 制御電源供給回路においてコンデンサ容量を大きくした場合の先行予熱期間におけるインバータ回路のインバータスイッチのドレイン電流の波形を示す図The figure which shows the waveform of the drain current of the inverter switch of an inverter circuit in the prior | preceding preheating period when a capacitor capacity is enlarged in a control power supply circuit 本発明の実施の形態4に係る照明装置の概略構成を示すブロック図The block diagram which shows schematic structure of the illuminating device which concerns on Embodiment 4 of this invention. 従来の放電灯点灯装置の回路構成を示す図The figure which shows the circuit structure of the conventional discharge lamp lighting device 図10の放電灯点灯装置のインバータスイッチに流れる電流を示す図The figure which shows the electric current which flows into the inverter switch of the discharge lamp lighting device of FIG. 先行予熱時の理想的なドレイン電流波形を示す図Diagram showing ideal drain current waveform during pre-heating 一般的な高周波点灯専用形蛍光灯の先行予熱時間と先行予熱電流の関係におけるフィラメントのエミッション開始特性とエミッタ蒸発開始特性を示す図The figure which shows the emission start characteristic and emitter evaporation start characteristic of the filament in the relation between the pre-heating time and the pre-heating current of a general fluorescent lamp for high frequency lighting 先行予熱時間を0.4秒とし、安定器の電源電圧を100V、242Vとしたときの予熱電流の波形を示す図The figure which shows the waveform of the preheating current when the advance preheating time is 0.4 seconds and the power supply voltage of the ballast is 100V, 242V 先行予熱時間を1.2秒とし、安定器の電源電圧を100V、242Vとしたときの予熱電流の波形を示す図The figure which shows the waveform of the preheating current when the preheating time is 1.2 seconds and the power supply voltage of the ballast is 100V and 242V.

以下、本発明を実施するための好適な実施の形態について、図面を参照して詳細に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments for carrying out the invention will be described in detail with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1に係る放電灯点灯装置の回路構成を示す図である。なお、図1において前述した図10と共通する部分には同一の符号を付けている。
(Embodiment 1)
1 is a diagram showing a circuit configuration of a discharge lamp lighting device according to Embodiment 1 of the present invention. 1 that are the same as those in FIG. 10 described above are denoted by the same reference numerals.

図1において、本実施の形態の放電灯点灯装置1は、従来の放電灯点灯装置100と同様に、昇圧チョッパ回路10とハーフブリッジ型のインバータ回路11の構成を採る。昇圧チョッパ回路10と全波整流回路16は直流電源19を構成する。インバータ回路11の出力には、LC共振回路12と予熱回路13と放電灯Laを含む負荷回路14が接続されている。電源電圧Vinは100V〜242Vまで入力可能であり、何れの電圧が入力されてもチョッパ出力VDCは一定となる。昇圧チョッパ回路10のチョッパ出力VDCは、インバータ回路11と負荷回路14への電源となる。従って、予熱回路13から放電灯Laへ供給される予熱電流もチョッパ出力VDCの値によって変化する。   In FIG. 1, the discharge lamp lighting device 1 according to the present embodiment adopts the configuration of a boost chopper circuit 10 and a half-bridge type inverter circuit 11, similarly to the conventional discharge lamp lighting device 100. The step-up chopper circuit 10 and the full-wave rectifier circuit 16 constitute a DC power source 19. An output of the inverter circuit 11 is connected to a load circuit 14 including an LC resonance circuit 12, a preheating circuit 13, and a discharge lamp La. The power supply voltage Vin can be input from 100 V to 242 V, and the chopper output VDC is constant regardless of which voltage is input. The chopper output VDC of the boost chopper circuit 10 serves as a power source for the inverter circuit 11 and the load circuit 14. Accordingly, the preheating current supplied from the preheating circuit 13 to the discharge lamp La also varies depending on the value of the chopper output VDC.

昇圧チョッパ回路10のチョッパ動作はチョッパ制御回路21で制御され、インバータ回路11のインバータ動作はインバータ制御回路22で制御される。また、先行予熱時間はインバータ制御回路22で設定される。予熱〜始動〜点灯のインバータ周波数が変化することで適切な先行予熱電流、始動電圧、定格点灯出力電力を放電灯Laに加えることができる。先行予熱期間の点灯周波数は固定されている。   The chopper operation of the step-up chopper circuit 10 is controlled by the chopper control circuit 21, and the inverter operation of the inverter circuit 11 is controlled by the inverter control circuit 22. The preceding preheating time is set by the inverter control circuit 22. An appropriate preceding preheating current, starting voltage, and rated lighting output power can be applied to the discharge lamp La by changing the inverter frequency of preheating to starting to lighting. The lighting frequency during the preceding preheating period is fixed.

図2は、電源電圧を100Vとした場合のチョッパ出力VDCと先行予熱電流との波形を示す図である。また、図3は、電源電圧を242Vとした場合のチョッパ出力VDCと先行予熱電流との波形を示す図である。図2及び図3に示すように、電源電圧が100Vの場合、電源電圧が242Vの場合に比べ、先行予熱期間にチョッパ出力VDCが一定となるまでの時間が長いことが分かる。昇圧チョッパ回路10の設計が同じであるため、電源電圧の大きさに応じて、チョッパ出力VDCまで電源電圧を昇圧するまでの時間が異なる。電源電圧が小さいと、昇圧されるチョッパ出力が目標の値となるまでに時間を要することは一般的な昇圧チョッパ回路においてやむを得ない。   FIG. 2 is a diagram showing waveforms of the chopper output VDC and the preceding preheating current when the power supply voltage is 100V. FIG. 3 is a diagram showing waveforms of the chopper output VDC and the preceding preheating current when the power supply voltage is 242V. As shown in FIGS. 2 and 3, it can be seen that when the power supply voltage is 100 V, the time until the chopper output VDC becomes constant during the preceding preheating period is longer than when the power supply voltage is 242 V. Since the design of the step-up chopper circuit 10 is the same, the time until the power source voltage is boosted to the chopper output VDC differs depending on the magnitude of the power source voltage. If the power supply voltage is small, it takes unavoidable in a general boost chopper circuit that it takes time for the boosted chopper output to reach the target value.

本実施の形態の特徴的な点は、電源電圧Vin=100VとVin=242Vとの先行予熱電流の電流×時間の面積比が、1:1.2〜1.6になるように先行予熱時間を短く設定している点である。これは、一般的な熱陰極蛍光ランプの同じ先行予熱時間におけるエミッション開始の予熱電流とエミッタ蒸発開始の予熱電流の比が1:1.2〜1.6となっていることによる。実験的にも高周波点灯専用形蛍光灯FHT32とFHT63において電源電圧が100Vと242Vでそれぞれ先行予熱電流の電流×時間の面積比が1:1.4となる状態で点滅寿命試験(「日本工業規格JIS7617−2 直管蛍光灯−第2部:性能規定」に寿命についての規定、付属書C(光束維持率と寿命の試験方法)にその試験方法が記載されている)を行ったところ、所望の短期点滅寿命(4万回以上でも断線せず)を満足することができた。ここでは電源電圧によらず、先行予熱周波数は一定であり、先行予熱時間を調整することで、先行予熱電流の電流×時間の面積比をVin=100VとVin=242Vで1:1.4となるように調整している。   The characteristic point of the present embodiment is that the preceding preheating time is such that the current to time area ratio of the preceding preheating current between the power supply voltages Vin = 100V and Vin = 242V is 1: 1.2 to 1.6. Is a short point. This is because the ratio of the preheating current at the start of emission and the preheating current at the start of evaporation of the emitter in the same preheating time of a general hot cathode fluorescent lamp is 1: 1.2 to 1.6. Experimentally, in the high-frequency lighting dedicated fluorescent lamps FHT32 and FHT63, the power supply voltage is 100 V and 242 V, and the flashing life test is performed in a state where the area ratio of current to time of the pre-heating current is 1: 1.4 (“Japanese Industrial Standards”). JIS7617-2 Straight tube fluorescent lamp-Part 2: Performance specifications ", specifications for life and Annex C (Test methods for luminous flux maintenance factor and life) are described) It was possible to satisfy the short flashing life of (no disconnection even after 40,000 times). Here, the preceding preheating frequency is constant regardless of the power supply voltage, and by adjusting the preceding preheating time, the area ratio of the current of the preceding preheating current × time is 1: 1.4 at Vin = 100V and Vin = 242V. It is adjusted so that

このように本実施の形態の放電灯点灯装置1によれば、電源電圧Vin=100Vと242Vでの先行予熱電流の電流×時間の面積比を1:1.2〜1.6となるように先行予熱時間を短く設定したので、短期点滅寿命を損なうことなく従来商品よりも即時点灯をすることができる。具体例として、先行予熱時間が0.5秒以下であれば、人の目には即時点灯と感じられることが実験的に得られている。   As described above, according to the discharge lamp lighting device 1 of the present embodiment, the area ratio of the current x time of the preceding preheating current at the power supply voltages Vin = 100V and 242V is 1: 1.2 to 1.6. Since the preceding preheating time is set to be short, it is possible to light up more quickly than conventional products without impairing the short flashing life. As a specific example, it has been experimentally obtained that if the preceding preheating time is 0.5 seconds or less, the human eye can feel immediate lighting.

(実施の形態2)
図4は、本発明の実施の形態2に係る放電灯点灯装置の回路構成を示す図である。なお、図4において前述した図10及び図1と共通する部分には同一の符号を付けている。本実施の形態の放電灯点灯装置2は、チョッパ出力電圧VDCを検出するチョッパ出力検出回路30を有している点が、前述した実施の形態1の放電灯点灯装置1と異なる。
(Embodiment 2)
FIG. 4 is a diagram showing a circuit configuration of a discharge lamp lighting device according to Embodiment 2 of the present invention. 4 that are the same as those in FIGS. 10 and 1 described above are denoted by the same reference numerals. The discharge lamp lighting device 2 of the present embodiment is different from the discharge lamp lighting device 1 of the first embodiment described above in that it includes a chopper output detection circuit 30 that detects the chopper output voltage VDC.

チョッパ出力検出回路30は、3つの直列接続された抵抗R5〜R7と、抵抗R7に並列接続されたコンデンサC12とを有し、昇圧チョッパ回路10の出力側に並列に介挿されている。チョッパ出力検出回路30の検出信号(チョッパ出力)S1はインバータ制御回路23に入力される。インバータ制御回路23は、チョッパ出力検出回路30の検出信号S1に応じて、先行予熱時のインバータ周波数を変化させる。なお、チョッパ出力検出回路30は、実際にはチョッパ制御用に使用される回路を兼用しても良い。   The chopper output detection circuit 30 has three resistors R5 to R7 connected in series and a capacitor C12 connected in parallel to the resistor R7, and is inserted in parallel on the output side of the boost chopper circuit 10. A detection signal (chopper output) S 1 of the chopper output detection circuit 30 is input to the inverter control circuit 23. The inverter control circuit 23 changes the inverter frequency during the preceding preheating according to the detection signal S1 of the chopper output detection circuit 30. Note that the chopper output detection circuit 30 may also be used as a circuit that is actually used for chopper control.

図5は、電源電圧を100Vとした場合の先行予熱電流とインバータ動作周波数の関係を示す図である。図6は、電源電圧を242Vとした場合の先行予熱電流とインバータ動作周波数の関係を示す図である。図5及び図6に示すように、Vin=242Vでは、先行予熱時周波数はインバータ動作開始後、すぐに120kHzで一定となるが、Vin=100Vでは、チョッパ出力電圧VDCに応じて、160kHzから120kHzへと変化している。この動作により、インバータ回路11と予熱回路13を含む負荷回路14の電源となるチョッパ出力電圧VDCが低い状態でもVin=242Vとほぼ同じ程度のフィラメント予熱電流を供給することができる。   FIG. 5 is a diagram showing the relationship between the preceding preheating current and the inverter operating frequency when the power supply voltage is 100V. FIG. 6 is a diagram showing the relationship between the preceding preheating current and the inverter operating frequency when the power supply voltage is 242V. As shown in FIG. 5 and FIG. 6, when Vin = 242V, the pre-heating frequency is constant at 120 kHz immediately after the start of the inverter operation, but at Vin = 100V, from 160 kHz to 120 kHz depending on the chopper output voltage VDC. It has changed to. With this operation, a filament preheating current almost equal to Vin = 242V can be supplied even when the chopper output voltage VDC serving as the power source of the load circuit 14 including the inverter circuit 11 and the preheating circuit 13 is low.

以上の動作により、電源電圧Vinが変化しても即時点灯が可能で短期点滅寿命を満足することができる。例えば、先行予熱時にインバータ回路11で消費される電力に相当するインバータスイッチQ3のドレイン電流を検出し、フィードバックすることでVin=100V時とVin=242V時のフィラメント消費電力を同じにしようとしても、従来例(図10)の回路では先行予熱電流は図11のような波形となるため、正確にフィードバックをすることができない。また、先行予熱時にフィラメントで消費される電力を同じにするようにフィラメント電力(或いはフィラメント電流)をフィードバックすれば、Vin=100V時でもVin=242V時でも短期点滅寿命を満足することができるが、フィードバック用の回路を追加する必要があり、コストアップとなる。   With the above operation, even if the power supply voltage Vin changes, immediate lighting is possible and a short flashing life can be satisfied. For example, even if an attempt is made to make the filament power consumption when Vin = 100V and Vin = 242V the same by detecting and feeding back the drain current of the inverter switch Q3 corresponding to the power consumed in the inverter circuit 11 during the preceding preheating, In the circuit of the conventional example (FIG. 10), the preceding preheating current has a waveform as shown in FIG. 11, and therefore accurate feedback cannot be performed. Also, if the filament power (or filament current) is fed back so that the power consumed by the filament during the pre-heating is the same, a short flashing life can be satisfied at both Vin = 100V and Vin = 242V. It is necessary to add a feedback circuit, which increases the cost.

このように本実施の形態の放電灯点灯装置2によれば、昇圧チョッパ回路10のチョッパ出力を検出するチョッパ出力検出回路30の検出信号S1に応じて、先行予熱周波数を変化させるので、前述した実施の形態1の放電灯点灯装置1よりも更に幅広い定格電源電圧、或いはチョッパ回路設計においても人の感じる時間として充分即時点灯と言えるほど先行予熱時間を短くし、放電灯Laの短期点滅寿命を損なうことのない放電灯点灯装置を提供することが可能となる。   As described above, according to the discharge lamp lighting device 2 of the present embodiment, the preceding preheating frequency is changed according to the detection signal S1 of the chopper output detection circuit 30 that detects the chopper output of the step-up chopper circuit 10. The preheating time is shortened so that the lamp can be said to be immediately lit sufficiently as the time perceived by humans in the wider range of rated power supply voltage or chopper circuit design than in the discharge lamp lighting device 1 of Embodiment 1, and the short-term flashing life of the discharge lamp La is shortened. It is possible to provide a discharge lamp lighting device that does not lose.

(実施の形態3)
図7は、本発明の実施の形態3に係る放電灯点灯装置の回路構成を示す図である。なお、図7において前述した図10と共通する部分には同一の符号を付けている。本実施の形態の放電灯点灯装置3の特徴的な点は、昇圧チョッパ回路10のチョッパ制御回路21の制御電源とインバータ回路11のインバータ制御回路22の制御電源をインバータスイッチQ3と並列に接続された制御電源供給回路17から供給している点である。
(Embodiment 3)
FIG. 7 is a diagram showing a circuit configuration of a discharge lamp lighting device according to Embodiment 3 of the present invention. 7 that are the same as those in FIG. 10 described above are denoted by the same reference numerals. The characteristic feature of the discharge lamp lighting device 3 of the present embodiment is that the control power supply of the chopper control circuit 21 of the step-up chopper circuit 10 and the control power supply of the inverter control circuit 22 of the inverter circuit 11 are connected in parallel with the inverter switch Q3. The control power supply circuit 17 supplies power.

制御電源供給回路17のコンデンサC4は、インバータ動作後に十分な電流をインバータ制御回路22及びチョッパ制御回路21へ供給するために一定以上のコンデンサ容量が必要となる。しかし、従来例において述べたように、コンデンサ容量が大きいと先行予熱期間にインバータ回路11のインバータスイッチQ2、Q3のドレイン電流が図8のような波形となり、インバータスイッチQ2、Q3へのストレスとなる。即時点灯を可能とするために、ランプ消灯時に待機予熱を行うと常にストレスがインバータスイッチQ2、Q3へ加わることになる。長時間のストレス印加はインバータスイッチQ2、Q3の故障の原因となる。   The capacitor C4 of the control power supply circuit 17 needs a certain capacity of the capacitor in order to supply a sufficient current to the inverter control circuit 22 and the chopper control circuit 21 after the inverter operation. However, as described in the conventional example, when the capacitor capacity is large, the drain currents of the inverter switches Q2 and Q3 of the inverter circuit 11 have waveforms as shown in FIG. 8 during the pre-heating period, which causes stress on the inverter switches Q2 and Q3. . In order to enable immediate lighting, when standby preheating is performed when the lamp is extinguished, stress is always applied to the inverter switches Q2 and Q3. Long-time stress application causes a failure of the inverter switches Q2 and Q3.

そこで、本実施の形態では、インバータ制御回路22において、先行予熱電流の電流×時間の面積比を電源電圧Vin=100Vと242Vで1:1.4となるように先行予熱時間を短く設定している。先行予熱時間を約0.4秒にすることで放電灯Laの即時点灯が可能となる。   Therefore, in the present embodiment, in the inverter control circuit 22, the preceding preheating time is set to be short so that the ratio of the area of the current of the preheating current × time is 1: 1.4 at the power supply voltages Vin = 100V and 242V. Yes. The discharge lamp La can be turned on immediately by setting the preceding preheating time to about 0.4 seconds.

このように本実施の形態の放電灯点灯装置3によれば、図7の回路構成であっても、インバータ制御回路22において、先行予熱電流の電流×時間の面積比を電源電圧Vin=100Vと242Vで1:1.4となるように先行予熱時間を短く設定しているので、インバータ回路11のインバータスイッチQ2、Q3へのストレス印加時間を極力短くできて短期点滅寿命を損なうことがない。また、即時点灯が可能となる。   As described above, according to the discharge lamp lighting device 3 of the present embodiment, even in the circuit configuration of FIG. 7, the inverter control circuit 22 sets the current pre-current current × time area ratio to the power supply voltage Vin = 100V. Since the preceding preheating time is set to be short so as to be 1: 1.4 at 242 V, the stress application time to the inverter switches Q2 and Q3 of the inverter circuit 11 can be shortened as much as possible, and the short-term flashing life is not impaired. In addition, immediate lighting is possible.

(実施の形態4)
図9は、本発明の実施の形態4に係る照明器具の概略構成を示すブロック図である。本実施の形態の照明器具5は、赤外線を用いて人の有無を検知する焦電センサ等の人感センサ40を有する放電灯点灯装置4を備えたものである。なお、放電灯点灯装置4は、全波整流回路16の前段に入力フィルタ回路15を備えている。この入力フィルタ回路15は、前述した実施の形態1〜実施の形態3の放電灯点灯装置1〜3にも勿論適用可能であり、寧ろ一般的に使用されるものである。また、この入力フィルタ回路15と全波整流回路16と昇圧チョッパ回路10は直流電源19Aを構成する。
(Embodiment 4)
FIG. 9 is a block diagram showing a schematic configuration of a lighting fixture according to Embodiment 4 of the present invention. The lighting fixture 5 of the present embodiment includes a discharge lamp lighting device 4 having a human sensor 40 such as a pyroelectric sensor that detects the presence or absence of a person using infrared rays. Note that the discharge lamp lighting device 4 includes an input filter circuit 15 in front of the full-wave rectifier circuit 16. This input filter circuit 15 is of course applicable to the discharge lamp lighting devices 1 to 3 of the first to third embodiments described above, and is generally used. The input filter circuit 15, the full wave rectifier circuit 16, and the boost chopper circuit 10 constitute a DC power source 19A.

放電灯点灯装置4において、ランプ消灯時に人感センサ40が人を検知するとインバータ制御回路24へH信号を出力する。インバータ制御回路24は、H信号を検知すると、放電灯Laのフィラメントに適切な予熱を行いその後、ランプ両端に始動電圧を加えて点灯させる。   In the discharge lamp lighting device 4, when the human sensor 40 detects a person when the lamp is extinguished, an H signal is output to the inverter control circuit 24. When the inverter control circuit 24 detects the H signal, the inverter control circuit 24 appropriately preheats the filament of the discharge lamp La, and then applies a starting voltage to both ends of the lamp to light it.

本実施の形態では、インバータ制御回路24において、先行予熱電流の電流×時間の面積比を電源電圧Vin=100Vと242Vで1:1.4となるように先行予熱時間を短く設定している。先行予熱時間を約0.4秒にすることで放電灯Laの即時点灯が可能となる。従来のような先行予熱時間に1秒以上を有するような放電灯点灯装置100では、周囲が暗い状態での通路や階段において不便であった。人を検知した後点灯するまで時間が掛かるので人は数歩通路や階段を歩いてしまい場合によっては危険性もある。   In the present embodiment, in the inverter control circuit 24, the preceding preheating time is set short so that the area ratio of current x time of the preceding preheating current is 1: 1.4 at the power supply voltages Vin = 100V and 242V. The discharge lamp La can be turned on immediately by setting the preceding preheating time to about 0.4 seconds. In the conventional discharge lamp lighting device 100 having a pre-heating time of 1 second or more as in the prior art, it is inconvenient in passages and stairs in a dark environment. Since it takes time to turn on after detecting a person, the person walks a few steps or stairs, which may be dangerous.

このように本実施の形態の照明器具5によれば、放電灯点灯装置4が人感センサ40を有して人の有無を検知するので、即時点灯による利便性、安全性が向上し、待機予熱を行わなくてもよく、人が居ない場合に待機電力を抑えることができる。なお、これまでの実施の形態1〜3のように電源電圧が変化しても、短期点滅寿命を損なうことがないことは言うまでもない。   Thus, according to the lighting fixture 5 of this Embodiment, since the discharge lamp lighting device 4 has the human sensor 40 and detects the presence or absence of a person, the convenience and safety by immediate lighting improve, and standby Preheating does not have to be performed, and standby power can be reduced when there are no people. Needless to say, even if the power supply voltage changes as in the first to third embodiments, the short-term flashing life is not impaired.

1〜4 放電灯点灯装置
5 照明器具
10 昇圧チョッパ回路
11 インバータ回路
12 LC共振回路
13 予熱回路
14 負荷回路
15 入力フィルタ回路
16 全波整流回路
17 制御電源供給回路
19、19A 直流電源
21 チョッパ制御回路
22、23、24 インバータ制御回路
30 チョッパ出力検出回路
40 人感センサ
La 放電灯
DESCRIPTION OF SYMBOLS 1-4 Discharge lamp lighting device 5 Lighting fixture 10 Boost chopper circuit 11 Inverter circuit 12 LC resonance circuit 13 Preheating circuit 14 Load circuit 15 Input filter circuit 16 Full wave rectifier circuit 17 Control power supply circuit 19, 19A DC power supply 21 Chopper control circuit 22, 23, 24 Inverter control circuit 30 Chopper output detection circuit 40 Human sensor La Discharge lamp

Claims (5)

直流電源と、
前記直流電源から出力される直流電圧を高周波電圧に変換するインバータ回路と、
前記インバータ回路の動作周波数を制御するためのインバータ制御回路と、
放電灯の電極に先行予熱電流を供給するための予熱回路と、
を備える放電灯点灯装置であって、
前記インバータ制御回路は、複数の定格電源電圧のうち、最小定格電源電圧と最大定格電源電圧での先行予熱電流の電流×時間の面積比が1:1.2〜1.6となるように先行予熱時間を設定する放電灯点灯装置。
DC power supply,
An inverter circuit for converting a DC voltage output from the DC power source into a high-frequency voltage;
An inverter control circuit for controlling the operating frequency of the inverter circuit;
A preheating circuit for supplying a preheating current to the electrodes of the discharge lamp;
A discharge lamp lighting device comprising:
The inverter control circuit is preceded so that a current × time area ratio of the preceding preheating current at the minimum rated power supply voltage and the maximum rated power supply voltage among the plurality of rated power supply voltages is 1: 1.2 to 1.6. A discharge lamp lighting device that sets the preheating time.
前記予熱回路から供給される先行予熱電流はその予熱周波数により増減するものであり、前記インバータ制御回路は、前記直流電源の出力電圧に応じて先行予熱周波数を変化させる請求項1に記載の放電灯点灯装置。   2. The discharge lamp according to claim 1, wherein the preceding preheating current supplied from the preheating circuit increases or decreases depending on the preheating frequency, and the inverter control circuit changes the preceding preheating frequency according to the output voltage of the DC power supply. Lighting device. 前記インバータ回路を構成するインバータスイッチと並列に接続されたコンデンサとダイオードを含み、前記インバータ制御回路の動作用電源を該インバータ制御回路へ供給する制御電源供給回路を更に備えた請求項1又は請求項2に記載の放電灯点灯装置。   2. The control power supply circuit according to claim 1, further comprising a control power supply circuit that includes a capacitor and a diode connected in parallel with an inverter switch that constitutes the inverter circuit, and supplies a power supply for operating the inverter control circuit to the inverter control circuit. The discharge lamp lighting device according to 2. 人体の有無を検知する人体検知センサを更に備え、
前記インバータ制御回路は、前記人体検知センサからの信号を受けて、放電灯を点灯或いは調光或いは消灯させるように制御する請求項1乃至請求項3のいずれかに記載の放電灯点灯装置。
It further comprises a human body detection sensor for detecting the presence or absence of a human body,
The discharge lamp lighting device according to any one of claims 1 to 3, wherein the inverter control circuit controls the discharge lamp to be turned on, dimmed, or turned off in response to a signal from the human body detection sensor.
請求項1乃至請求項4のいずれかに記載の放電灯点灯装置と、
前記放電灯点灯装置により点灯動作が制御される放電灯と、
を備えた照明器具。
The discharge lamp lighting device according to any one of claims 1 to 4,
A discharge lamp whose lighting operation is controlled by the discharge lamp lighting device;
Lighting equipment with
JP2009175113A 2009-07-28 2009-07-28 Discharge lamp-lighting device and illumination fixture Pending JP2011029054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009175113A JP2011029054A (en) 2009-07-28 2009-07-28 Discharge lamp-lighting device and illumination fixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009175113A JP2011029054A (en) 2009-07-28 2009-07-28 Discharge lamp-lighting device and illumination fixture

Publications (1)

Publication Number Publication Date
JP2011029054A true JP2011029054A (en) 2011-02-10

Family

ID=43637569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009175113A Pending JP2011029054A (en) 2009-07-28 2009-07-28 Discharge lamp-lighting device and illumination fixture

Country Status (1)

Country Link
JP (1) JP2011029054A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041080A (en) * 1996-07-26 1998-02-13 Toshiba Lighting & Technol Corp Fluorescent lamp device
JP2002117994A (en) * 2000-10-11 2002-04-19 Matsushita Electric Works Ltd Discharge lamp lighting device
WO2008139711A1 (en) * 2007-04-27 2008-11-20 Panasonic Corporation Long-life hot-cathode fluorescent lamp, backlight or illuminator, having the long-life hot-cathode fluorescent lamp, and its start-up method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041080A (en) * 1996-07-26 1998-02-13 Toshiba Lighting & Technol Corp Fluorescent lamp device
JP2002117994A (en) * 2000-10-11 2002-04-19 Matsushita Electric Works Ltd Discharge lamp lighting device
WO2008139711A1 (en) * 2007-04-27 2008-11-20 Panasonic Corporation Long-life hot-cathode fluorescent lamp, backlight or illuminator, having the long-life hot-cathode fluorescent lamp, and its start-up method

Similar Documents

Publication Publication Date Title
US8648544B2 (en) Illumination lighting apparatus, illumination apparatus, and illumination system
CA2512267A1 (en) Method and circuit for regulating power in a high intensity discharge lamp
JP2002015892A (en) Discharge lamp lighting device
US8860312B2 (en) Light emitting diodes driven by high intensity discharge ballast
US6864642B2 (en) Electronic ballast with DC output flyback converter
JP2010177012A (en) Lighting device, and illumination fixture having the same
JP2010009791A (en) Discharge lamp lighting device and lighting fixture
JP4810994B2 (en) Discharge lamp lighting device and lighting fixture
JP4325184B2 (en) Discharge lamp lighting device
JP5163892B2 (en) Discharge lamp lighting device
JP2011029054A (en) Discharge lamp-lighting device and illumination fixture
JP2010080137A (en) High pressure discharge lamp lighting device and luminaire
JP2009289664A (en) Lighting device for discharge lamp, and illumination apparatus
JP2005259454A (en) Discharge lamp lighting device
US20110241556A1 (en) Method of controlling a fluorescent lamp, a controller and a fluorescent lamp
JP2002299089A (en) Discharge lamp lighting device and luminaire
JP2006040855A (en) Discharge lamp lighting device, lighting apparatus, and lighting system
KR100505756B1 (en) Instantaneous electornic ballast stabilizer of Metal Halide Discharge Lamp having takeover current circuit
JP2002352990A (en) Lighting equipment for electric discharger lamp
JP2009199876A (en) Discharge lamp lighting device, and illumination fixture equipped with this discharge lamp lighting device
JP2006073439A (en) Discharge lamp lighting device and illumination device
JP3858407B2 (en) Discharge lamp lighting device
JP3945715B2 (en) Lighting device
JP2000012269A (en) Discharge lamp lighting device
JP2002289381A (en) Electric discharge lamp lighting equipment and illumination equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001