JP2011028920A - Lightning rod - Google Patents

Lightning rod Download PDF

Info

Publication number
JP2011028920A
JP2011028920A JP2009171579A JP2009171579A JP2011028920A JP 2011028920 A JP2011028920 A JP 2011028920A JP 2009171579 A JP2009171579 A JP 2009171579A JP 2009171579 A JP2009171579 A JP 2009171579A JP 2011028920 A JP2011028920 A JP 2011028920A
Authority
JP
Japan
Prior art keywords
building
lightning
cable
conductor
lightning rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009171579A
Other languages
Japanese (ja)
Other versions
JP5437722B2 (en
Inventor
Masaki Tsuneoka
まさき 恒岡
Keinao Okawa
慶直 大川
Yoshihiro Murano
佳大 村野
Takashi Tsuchida
崇 土田
Hiroki Okamura
浩樹 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kandenko Co Ltd
Original Assignee
Kandenko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kandenko Co Ltd filed Critical Kandenko Co Ltd
Priority to JP2009171579A priority Critical patent/JP5437722B2/en
Publication of JP2011028920A publication Critical patent/JP2011028920A/en
Application granted granted Critical
Publication of JP5437722B2 publication Critical patent/JP5437722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To flow a lightning current in the ground through a specific path in a lighting strike, and to provide effect of preventing generation of an electromagnetic field by induced lightning in a building. <P>SOLUTION: The lightning rod 1 is laid on a roof 3 of the building 2 with insulation from the building 2. A lightning protection cable 5, which is formed of a single or a plurality of power cables with shield or high-frequency coaxial cables for power, connects the lightning rod 1 and a grounding electrode 4. The lightning protection cable 5 is passed in a metal conduit 6 previously routed through an inside of the building 2, and is drawn from a top to a bottom of the building 2. When lightning is induced to the lightning rod 1, an induced current in an opposite direction to the lightning current flowing in the lighting protection cable 5 flows through the metal conduit 6 so as to suppress generation of an external magnetic field of the lightning protection cable 5 by a stroke current. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、高層ビル等の建屋屋上の避雷針若しくは独立棟上げ導体、或いは建屋側面用避雷針若しくは建屋側面用導体(以後、これらをまとめて「避雷針」という。)において、建屋内に発生する誘導雷による被害を抑制する効果を持った避雷針に関するものである。   The present invention relates to a lightning rod on a building such as a high-rise building or an independent building-up conductor, or a lightning rod for a side of a building or a conductor for a side of a building (hereinafter collectively referred to as “lightning rod”), by induced lightning generated in the building. It relates to lightning rods that have the effect of suppressing damage.

従来、図9に示すように、建物の落雷に対し建物を守る方法としては、JIS−A−4201に代表されるように、避雷針を立て、当該避雷針に雷を導くことで直接建物に落雷しないようにしている。これは、建物の損傷や火災を防止することを目的としたものである。   Conventionally, as shown in FIG. 9, as a method of protecting a building against a lightning strike in a building, as shown in JIS-A-4201, a lightning rod is set up, and lightning is not directly applied to the building by guiding the lightning to the lightning rod. I am doing so. This is intended to prevent building damage and fire.

しかし、近年高層ビルの乱立化による雷撃確率の増加に加え、ビル内で使用される電子機器による電子情報の付加価値が上昇の一途をたどる中、避雷針を設けているにもかかわらずこれらの電子情報や電子回路が雷撃電流による誘導起電圧が起因した機能麻痺や損傷を招く事態が多発するようになった。   However, in recent years, in addition to the increase in lightning strike probability due to the rise of high-rise buildings, the added value of electronic information by electronic devices used in the building continues to rise. Information and electronic circuits frequently cause functional paralysis and damage due to induced electromotive force caused by lightning strike current.

雷電流はインパルスであり、DC〜10MHz程度までのさまざまな周波数の波の成分を有していると考えられる。図9において、避雷針1に雷電流が流れると、特に絶縁を施しているわけではないので、建屋2の鉄筋に電流が流れる。建屋2の金属配筋(鉄筋)にこれらの電流が流れると、低周波数成分の波は表皮効果の影響で建屋の外壁部を流れ、磁気シールドを形成することで、建屋内部に磁場が形成されず、誘導雷現象を妨げると考えられる。しかし、高周波になると建屋2内部の金属配筋パスを流れることにより、例えば、λ/2波長の直列共振系のパスが形成され、そのパスがその特定の周波数の波の低インピーダンス系になって建屋2内部に分流する場合が考えられる。これにより、建屋2内部に誘導磁場が発生し、建屋2内部に発生した磁場と鎖交した電子機器等に誘導起電力が生じ、当該電子機器等に障害が生じる。
このように従来の避雷システムでは、強電系の対策であって、電子工学系の弱電機器に対しては対策を考えていなかったのが現状である。
The lightning current is an impulse and is considered to have wave components of various frequencies up to about DC to 10 MHz. In FIG. 9, when a lightning current flows through the lightning rod 1, the current flows through the reinforcing bars of the building 2 because the insulation is not particularly provided. When these currents flow through the metal reinforcement (rebar) in Building 2, low-frequency component waves flow through the outer wall of the building due to the skin effect, forming a magnetic shield, and a magnetic field is formed inside the building. Therefore, it is thought that the thunder phenomenon is hindered. However, when a high frequency is reached, a metal resonance path in the building 2 flows, for example, a λ / 2 wavelength series resonance system path is formed, and the path becomes a low-impedance system of waves of a specific frequency. A case where the current is divided into the building 2 is considered. Thereby, an induced magnetic field is generated inside the building 2, an induced electromotive force is generated in an electronic device or the like interlinked with the magnetic field generated inside the building 2, and a failure occurs in the electronic device or the like.
As described above, the conventional lightning protection system is a countermeasure for a strong electric system and has not considered a countermeasure for a weak electric device of an electronic engineering system.

この対策としてSPDと呼ばれる素子を用いて、電子機器を保護する方式がある。この方式は有効とされているが、局所的な対策であり、基本的には電子機器或いは電気回路毎にSPDを取り付けることとなり、その個数も膨大となる。また、このSPD素子は落雷時の強力な電磁インパルスによる建屋内部の電子機器に過大な電圧が加わることに対しては有効に機能しないことも想定される。   As a countermeasure, there is a method for protecting an electronic device using an element called SPD. Although this method is effective, it is a local measure, and basically an SPD is attached to each electronic device or electric circuit, and the number thereof is enormous. Further, it is assumed that this SPD element does not function effectively when an excessive voltage is applied to an electronic device in a building due to a strong electromagnetic impulse during a lightning strike.

上述のように、SPD素子を用いるものは局所的な対策であり、先進的研究では、このような局所的対策だけでなく、建物全体の耐雷性を高めることが求められている。この対策として、独立型避雷設備がある。この方式は、避雷針やそれに付随するケーブル(引下げ導線)の電気的な絶縁を強化し、さらに引下げ導線にシールドを施すことで、落雷時に建物の構造体に雷電流が流れることや落雷時に大地の電位が上昇し、接地から雷電流が侵入することを抑制するものである。   As described above, what uses an SPD element is a local countermeasure, and advanced research requires not only such a local countermeasure but also an improvement in lightning resistance of the entire building. As a countermeasure, there is an independent lightning arrester. This system strengthens the electrical insulation of the lightning rod and the cable (down conductor) attached to it, and shields the down conductor to allow lightning current to flow through the building structure during lightning strikes and The potential rises, and the lightning current is prevented from entering from the ground.

特開平11−40390号公報JP-A-11-40390

しかしながら、この独立型避雷設備を用いても、単に引下げ導線にシールドを施すだけでは、静電誘導対策となるが電磁誘導対策とはならず、前記強力な電磁インパルスによる電子機器への過大な電圧付加を完全に抑制することはできない。また、避雷針やケーブルの電気的な絶縁性能を高く設計する必要があり、効果や設計面で課題が残る。   However, even if this independent lightning arrester is used, simply shielding the down conductor does not prevent electrostatic induction, but it does not prevent electromagnetic induction. Excessive voltage applied to electronic equipment due to the powerful electromagnetic impulse. Addition cannot be completely suppressed. Moreover, it is necessary to design the electrical insulation performance of a lightning rod and a cable high, and a problem remains in an effect and a design surface.

この発明はこのような従来技術を考慮したものであって、落雷時に特定パスを通して雷電流を地中に流すとともに建屋内部に前記誘導雷による電磁場を発生させない効果を持った避雷針を提供することを目的としたものである。   The present invention considers such a conventional technique, and provides a lightning rod having an effect of causing a lightning current to flow into the ground through a specific path during a lightning strike and not generating an electromagnetic field due to the induced lightning in a building. It is intended.

そこで、この発明は、避雷針は、ステーションポスト碍子などで絶縁し、高層ビルの屋上に敷設し、保護角の設計はJIS-A-4201などの従来方法によるものとする。避雷針から接地極までの間はシールド付電力ケーブル又は電力用高周波同軸ケーブルを用い、これを雷の誘導電流を流せるよう亜鉛引きなど容易に腐食しがたい金属管路内に収納して建屋の内部又は外部に設けて、当該建屋の上部から下部に引下げるものとする。この金属管路は、管路に限らず、ダクト状のもの、網状のもの、銅テープ等を巻きつけたもの等、電磁シールド筒体であればよい。   Therefore, in the present invention, the lightning rod is insulated with a station post insulator or the like and laid on the roof of a high-rise building, and the design of the protection angle is based on a conventional method such as JIS-A-4201. Use a shielded power cable or a high-frequency coaxial cable for power between the lightning rod and the grounding electrode, and store it in a metal conduit that is not easily corroded, such as zinc drawing, so that the induced current of lightning can flow. Or it shall be provided outside and pulled down from the upper part of the building. The metal pipe line is not limited to a pipe line, and may be a duct-like thing, a net-like thing, a thing wound with a copper tape or the like, as long as it is an electromagnetic shield cylinder.

具体的には、請求項1の発明は、建屋屋上の避雷針若しくは独立棟上げ導体、或いは建屋側撃雷用避雷針若しくは建屋側撃雷用棟上げ導体を、建屋に対して絶縁し、建屋の屋上若しくは側面に敷設させ、前記避雷針若しくは独立棟上げ導体から接地極までの間は、単数又は複数のシールド付電力ケーブル又は電力用高周波同軸ケーブルで接続し、予め建屋の内部又は外部に通した電磁シールド筒体内に前記ケーブルを通して建屋上部から下部に引下げ、前記避雷針若しくは独立棟上げ導体に雷が誘導された際、前記ケーブルに流れる雷電流と逆向きの誘導電流が前記電磁シールド筒体に流れることにより、雷撃電流による前記ケーブルの外部に生じる磁場を相殺させる構成とした避雷針とした。   Specifically, the invention according to claim 1 insulates the lightning rod on the building or the independent building up conductor, or the building side lightning arrester or the building side lightning building up conductor from the building, and the roof or side surface of the building. Between the lightning rod or the independent erection conductor and the grounding pole, connect with one or more shielded power cables or power high-frequency coaxial cables, and in the electromagnetic shield cylinder passed through the building in advance or outside By pulling down from the upper part of the building through the cable and when lightning is induced to the lightning rod or the independent building raising conductor, an induced current opposite to the lightning current flowing in the cable flows into the electromagnetic shield cylinder, thereby causing a lightning current. The lightning rod is configured to cancel the magnetic field generated outside the cable.

また、請求項2の発明は、請求項1の発明において、前記単数又は複数のシールド付電力ケーブル又は電力用高周波同軸ケーブルの内導体に接地極を接続し、前記ケーブルのシールド又は電力用高周波同軸ケーブルの外導体に接地極を接続し、前記シールド付電力ケーブル又は電力用高周波同軸ケーブルの内導体と接続した接地極の接地抵抗値と、前記シールド付電力ケーブル又は電力用高周波同軸ケーブルの外導体に接続した接地極の接地抵抗値の和の値が、前記ケーブルの特性インピーダンスに合うように前記接地抵抗を調整した接地極を設けた避雷針とした。   According to a second aspect of the present invention, in the first aspect of the invention, a ground electrode is connected to an inner conductor of the one or more shielded power cables or power high-frequency coaxial cables, and the cable shield or power high-frequency coaxial is connected. A grounding electrode is connected to the outer conductor of the cable, the grounding resistance value of the grounding electrode connected to the inner conductor of the shielded power cable or power high-frequency coaxial cable, and the outer conductor of the shielded power cable or power high-frequency coaxial cable The lightning rod is provided with a grounding electrode in which the grounding resistance is adjusted so that the sum of the grounding resistance values of the grounding electrodes connected to the cable matches the characteristic impedance of the cable.

また、請求項3の発明は、請求項1又は2の発明において、前記単数又は複数のシールド付電力ケーブル又は電力用高周波同軸ケーブルの内導体に接地極を接続し、前記ケーブルのシールド又は同軸ケーブルの外導体に接地極を接続し、これらの接地極の間をインダクタンスを用いて接続し、当該内導体と接続した接地極の抵抗値を、前記内導体と接続した単独の接地極の場合の抵抗値よりも低くした避雷針とした。   The invention of claim 3 is the invention of claim 1 or 2, wherein a ground electrode is connected to an inner conductor of the one or more shielded power cables or high-frequency coaxial cables for power, and the shield or coaxial cable of the cables In the case of a single grounding electrode connected to the inner conductor, a grounding electrode is connected to the outer conductor, and the grounding electrode is connected using an inductance. A lightning rod with a lower resistance value was used.

また、請求項4の発明は、請求項1〜3のいずれかの発明において、前記電磁シールド筒体の出入口の間を、建屋の外周を被ったメッシュ状の電線で電気的に接続し、前記ケーブルに雷撃電流が流れた際、当該雷撃電流と逆向きに流れる誘導電流を建屋外部のメッシュ状の電線に還流させる避雷針とした。   Further, the invention of claim 4 is the invention according to any one of claims 1 to 3, wherein the electromagnetic shield cylindrical body is electrically connected between the entrances and exits with a mesh-like electric wire covering the outer periphery of the building, When a lightning strike current flows through the cable, a lightning rod that recirculates the induced current flowing in the opposite direction to the lightning strike current to the mesh-shaped electric wire in the outdoor part of the building is used.

また、請求項5の発明は、請求項1〜3のいずれかの発明において、前記電磁シールド筒体の出入口の間を、建屋の外周を通した単数又は複数の電線で電気的に接続し、前記ケーブルに雷撃電流が流れた際、当該雷撃電流と逆向きに流れる誘導電流を建屋外部の前記電線に還流させる避雷針とした。   Further, the invention of claim 5 is the invention according to any one of claims 1 to 3, wherein the electromagnetic shield cylindrical body is electrically connected between the entrance and exit with one or more electric wires passing through the outer periphery of the building, When a lightning strike current flows through the cable, a lightning rod that recirculates an induced current flowing in a direction opposite to the lightning strike current to the electric wire in the outdoor part of the building is used.

また、請求項6の発明は、建屋屋上の避雷針若しくは独立棟上げ導体、或いは建屋側撃雷用避雷針若しくは建屋側撃雷用棟上げ導体を、建屋に対して絶縁し、建屋の屋上若しくは側面に敷設させ、前記避雷針若しくは独立棟上げ導体から接地極までの間は、単数又は複数のシールド付電力ケーブル又は電力用高周波同軸ケーブルで接続し、当該ケーブルを建屋上部から下部に引下げ、避雷針付近の前記ケーブルのシールド又は同軸ケーブルの外導体と、接地極付近の前記ケーブルのシールド又は同軸ケーブルの外導体の間を、建屋の外周を被ったメッシュ状の電線で電気的に接続し、前記避雷針若しくは独立棟上げ導体に雷が誘導された際、前記ケーブル又は同軸ケーブルの内導体に流れる雷撃電流と逆向きに流れる誘導電流が前記シールド又は同軸ケーブルの外導体に流れ、さらにこの電流を建屋外部のメッシュ状の電線に還流させる避雷針とした。   Further, the invention of claim 6 insulates the lightning rod on the building or the independent building up conductor, or the building side lightning arrester or the building side lightning building up conductor from the building, and lays it on the roof or side of the building. From the lightning rod or the independent uplifting conductor to the grounding pole, connect with one or more shielded power cables or high-frequency coaxial cables for power, and lower the cable from the top to the bottom of the building, and shield the cable near the lightning rod Alternatively, the outer conductor of the coaxial cable and the shield of the cable in the vicinity of the ground electrode or the outer conductor of the coaxial cable are electrically connected with a mesh-shaped electric wire covering the outer periphery of the building, and the lightning rod or the independent ridge-up conductor When lightning is induced, an induced current that flows in the opposite direction to the lightning strike current that flows through the inner conductor of the cable or coaxial cable is the shield. Flows to the outer conductor of the coaxial cable, and a lightning rod to further refluxed for current building outside the mesh wire.

また、請求項7の発明は、建屋屋上の避雷針若しくは独立棟上げ導体、或いは建屋側撃雷用避雷針若しくは建屋側撃雷用棟上げ導体を、建屋に対して絶縁し、建屋の屋上若しくは側面に敷設させ、前記避雷針若しくは独立棟上げ導体から接地極までの間は、単数又は複数のシールド付電力ケーブル又は電力用高周波同軸ケーブルで接続し、当該ケーブルを建屋上部から下部に引下げ、避雷針付近の前記ケーブルのシールド又は同軸ケーブルの外導体と、接地極付近の前記ケーブルのシールド又は同軸ケーブルの外導体の間を、建屋の外周を通る単数又は複数の電線で電気的に接続し、前記避雷針若しくは独立棟上げ導体に雷が誘導された際、前記ケーブル又は同軸ケーブルの内導体に流れる雷撃電流と逆向きに流れる誘導電流が前記シールド又は同軸ケーブルの外導体に流れ、さらにこの電流を建屋外部の電線に還流させる避雷針とした。   Further, the invention of claim 7 is characterized in that the lightning rod on the building or the independent building up conductor, or the building side lightning arrester or the building side lightning building up conductor is insulated from the building and laid on the roof or side of the building. From the lightning rod or the independent uplifting conductor to the grounding pole, connect with one or more shielded power cables or high-frequency coaxial cables for power, and lower the cable from the top to the bottom of the building, and shield the cable near the lightning rod Alternatively, the outer conductor of the coaxial cable and the shield of the cable near the ground pole or the outer conductor of the coaxial cable are electrically connected with one or a plurality of electric wires passing through the outer periphery of the building, and the lightning rod or the independent building up conductor When lightning is induced, an induced current that flows in the opposite direction to the lightning strike current that flows through the inner conductor of the cable or coaxial cable is the shield. Flows to the outer conductor of the coaxial cable, and a lightning rod to further refluxed for current building outside of the wire.

請求項1の発明によれば、前記避雷針若しくは独立棟上げ導体に雷が誘導された際、前記シールド付電力ケーブル又は電力用高周波同軸ケーブルに流れる雷電流と逆向きの誘導電流が前記電磁シールド筒体に流れることにより、雷撃電流による前記ケーブルの外部磁場の発生を抑制させ、建屋内部の電子機器等に誘導起電力による障害を発生させないもとし、建屋及び当該建屋内部の電子機器等を雷撃から保護するものである。   According to the first aspect of the present invention, when lightning is induced to the lightning rod or the independent ridge conductor, an induced current in a direction opposite to the lightning current flowing in the shielded power cable or power high-frequency coaxial cable is the electromagnetic shield cylinder. To suppress the generation of external magnetic field of the cable due to lightning current, and to prevent the electronic devices in the building from being damaged by induced electromotive force, and to protect the building and the electronic devices in the building from lightning strike To do.

また、請求項2の発明によれば、請求項1の発明の効果に加え、雷電流の高周波成分については、シールド付電力ケーブル又は電力用高周波同軸ケーブルの内導体と接続した接地極の接地抵抗値と、前記シールド付電力ケーブル又は電力用高周波同軸ケーブルの外導体に接続した接地極の接地抵抗値の和の値が、前記ケーブルの特性インピーダンスに合うように前記接地抵抗を調整した接地極としたため、反射波が減衰し、大地にそのエネルギーを吸収させ、反射波による避雷針の電圧上昇を抑えるものである。このように請求項2の発明は、雷電流の高周波成分と低周波成分ついて夫々対策を設けているため、より完全に建屋内に雷の誘動起電圧による磁場を生じさせず、建屋及び当該建屋内部の電子機器等を雷撃から保護するものである。   Further, according to the invention of claim 2, in addition to the effect of the invention of claim 1, the high-frequency component of the lightning current has a ground resistance of the ground electrode connected to the inner conductor of the shielded power cable or power high-frequency coaxial cable. A grounding pole in which the grounding resistance is adjusted so that the sum of the value and the grounding resistance value of the grounding pole connected to the outer conductor of the shielded power cable or power high-frequency coaxial cable matches the characteristic impedance of the cable; Therefore, the reflected wave is attenuated, and the energy is absorbed by the ground, and the voltage rise of the lightning rod due to the reflected wave is suppressed. As described above, since the invention of claim 2 is provided with countermeasures for the high-frequency component and the low-frequency component of the lightning current, the magnetic field caused by the lightning induced electromotive force is not completely generated in the building. It protects electronic equipment inside the building from lightning strikes.

また、請求項3の発明によれば、請求項1又は2の発明の効果に加え、前記単数又は複数のシールド付電力ケーブル又は電力用高周波同軸ケーブルの内導体に接地極を接続し、前記ケーブルのシールド又は同軸ケーブルの外導体に接地極を接続し、これらの接地極の間をインダクタンスを用いて接続したことにより、当該内導体と接続した接地極の抵抗値を、前記内導体と単独で接続した接地極の場合の抵抗値よりも低くし、雷電流の低周波成分は接地極4aと接地極4bに分流し、低抵抗になり、より大地に流れ易くなるものである。   According to the invention of claim 3, in addition to the effect of the invention of claim 1 or 2, a ground electrode is connected to an inner conductor of the one or more shielded power cables or high-frequency coaxial cables for power, and the cable By connecting a grounding pole to the outer conductor of the shield or coaxial cable and connecting between the grounding poles using an inductance, the resistance value of the grounding pole connected to the inner conductor can be determined independently from the inner conductor. The resistance value is lower than that in the case of the connected ground electrode, and the low-frequency component of the lightning current is shunted to the ground electrode 4a and the ground electrode 4b, becomes low resistance, and more easily flows to the ground.

また、請求項4及び5の発明によれば、建屋の外部に建屋を包むようにメッシュ状の電線又はメッシュ状でない電線から成る短絡線を敷設することにより、前記電線の内側、すなわち建屋内部の誘導磁場がほぼ零になるか或いは小さくなるので、建屋内部の雷誘導起電圧は小さくなり、建屋内の誘導雷による障害の発生を防止することができる。また、請求項6及び7の発明によれば、前記請求項4及び5の発明と同様の効果を奏する。   In addition, according to the inventions of claims 4 and 5, by laying a short-circuit wire made of a mesh-like electric wire or a non-mesh electric wire so as to wrap the building outside the building, the inside of the electric wire, that is, the induction of the interior of the building Since the magnetic field becomes almost zero or small, the lightning induced electromotive voltage in the building is reduced, and the occurrence of a failure due to the induced lightning in the building can be prevented. Moreover, according to the invention of Claim 6 and 7, there exists an effect similar to the invention of the said Claim 4 and 5.

この発明は、建屋屋上の避雷針若しくは独立棟上げ導体、或いは建屋側撃雷用避雷針若しくは建屋側撃雷用棟上げ導体を、建屋に対して絶縁し、建屋の屋上若しくは側面に敷設させ、前記避雷針若しくは独立棟上げ導体から接地極までの間は、単数又は複数のシールド付電力ケーブル又は電力用高周波同軸ケーブル(以下これらを避雷ケーブルという)で接続し、予め建屋の内部又は外部に通した電磁シールド筒体内に前記ケーブルを通して建屋上部から下部に引下げ、前記避雷針若しくは独立棟上げ導体に雷が誘導された際、前記ケーブルに流れる雷電流と逆向きの誘導電流が前記電磁シールド筒体に流れ、これにより雷撃電流による前記ケーブルの外部磁場の発生を抑制させ、建屋内部での誘導起電圧の発生を抑制する構成とした避雷針とした。   According to the present invention, the lightning rod on the building or the independent building up conductor, or the building side lightning arrester or the building side lightning raising conductor is insulated from the building and laid on the roof or side of the building, and the lightning rod or independent Between the built-up conductor and the grounding electrode, connect with one or more shielded power cables or power high-frequency coaxial cables (hereinafter referred to as lightning protection cables), and place them inside the electromagnetic shield cylinder that has been passed through the building in advance or outside. Pulled down from the upper part of the building through the cable, and when lightning is induced to the lightning rod or the independent building raising conductor, an induced current opposite to the lightning current flowing in the cable flows to the electromagnetic shield cylinder, thereby causing a lightning strike current. A lightning rod configured to suppress generation of an external magnetic field of the cable and suppress generation of an induced electromotive voltage in a building. It was.

この様な構成とした理由は、次の通りである。
雷電流はインパルスであり、振幅がほぼ等しいDC〜10MHz帯までの波を集合させた波形と考えられる。そこで、まず、周波数帯に応じた対策を行う。
避雷ケーブルの長さをlとする。そこで、分布定数による扱いをしなければ反射波が大きくなり避雷ケーブルの端末に生ずる起電圧が上昇するなどの悪影響が生じる。そこで今、ケーブル内を速度cで進行し、波長をλ、周波数をf(=1/λ)とする。
The reason for such a configuration is as follows.
The lightning current is an impulse, and is considered to be a waveform obtained by collecting waves from the DC to 10 MHz bands having substantially the same amplitude. Therefore, first, measures are taken according to the frequency band.
Let the length of the lightning protection cable be l. Therefore, if the distribution constant is not used, the reflected wave becomes large and adverse effects such as an increase in electromotive voltage generated at the end of the lightning protection cable occur. Therefore, the cable travels at a speed c, and the wavelength is λ and the frequency is f (= 1 / λ).

一般に分布定数を考慮すべき周波数はケーブル長l(以下、lはスモールエルを示す)の10倍が1波長になる周波数以上であるから
λ=c/f=10l (1式)
より f=c/10l (2式)
すなわち、雷インパルスの周波数がc/10l≦f≦10MHz帯までを分布定数で扱わなくてはならない。そこで、前記請求項2の発明に記述したように、この周波数範囲の雷電流に対しては、対地側の前記避雷ケーブル端部(ケーブルヘッド)のシールド又は外導体に接続する接地極の抵抗値rとケーブル又は内導体と接続する接地極の抵抗値Rとの和(r+R)を当該避雷ケーブルの特性インピーダンスZと合わせて(整合をとる)吸収させ、反射波を防止する。この整合が行われないと前記避雷ケーブル端で発生した反射波が前記シールド又は外導体を伝わり避雷針側に伝播する。このとき入射波と反射波の位相がずれて伝播するために変位電流などにより前記避雷ケーブルの外部に誘導起電圧が発生し、電波が放射され、他の電気機器に障害を引き起こす原因となる。また、反射波が避雷針側に反射し、波の干渉によって避雷針の電圧が上昇する。従って、この場合、耐電圧を必要以上にとったケーブル端部(ケーブルヘッド)を用いなければならなくなる。このように前記整合が重要である。
In general, the frequency at which the distribution constant should be taken into consideration is λ = c / f = 10 l (1) because the frequency that is 10 times the cable length l (hereinafter, l represents small el) is one wavelength or more.
F = c / 10l (2 formulas)
That is, the frequency of lightning impulses up to c / 10l ≦ f ≦ 10 MHz must be handled as a distributed constant. Therefore, as described in the second aspect of the invention, the resistance value of the ground electrode connected to the shield or outer conductor of the lightning protection cable end (cable head) on the ground side against lightning current in this frequency range. the sum of the resistance value R of the ground electrode is connected to the r and the cable or the inner conductor (r + R) together with the characteristic impedance Z 0 of the lightning cable (matching) is taken, to prevent reflection waves. If this matching is not performed, the reflected wave generated at the end of the lightning protection cable propagates through the shield or the outer conductor and propagates to the lightning rod side. At this time, since the incident wave and the reflected wave propagate out of phase, an induced electromotive voltage is generated outside the lightning protection cable due to a displacement current or the like, and radio waves are radiated, causing a failure in other electrical devices. The reflected wave is reflected to the lightning rod side, and the voltage of the lightning rod rises due to the interference of the wave. Therefore, in this case, it is necessary to use a cable end (cable head) having a withstand voltage higher than necessary. Thus, the alignment is important.

f<c/10lの範囲の周波数帯の雷電流に関しては集中定数系で扱う。この場合、避雷ケーブルの中心導体に誘導する電圧Eはケーブルの中心導体のインダクタンスをLとするとファラデーの電磁誘導の法則により、
E=−L(di/dt) (3式)
となり、雷電流の流れる方向と逆方向に誘導起電圧が発生する。すなわち、避雷針から接地極に向けて電流が流れる方向を+と仮定すると、接地極から避雷針に向かう−の起電圧が生じ、避雷針先端に高い電圧が誘起する。
ここで、避雷ケーブルに流れる雷電流は一方向に流れる電流パスで考えられるから、無限遠にリターン電流が流れるモデルで考え、前記3式のインダクタンスLは、
A lightning current in a frequency band in the range of f <c / 10l is handled in a lumped parameter system. In this case, the voltage E induced to the center conductor of the lightning protection cable is Faraday's law of electromagnetic induction, assuming that the inductance of the center conductor of the cable is L.
E = -L (di / dt) (3 formulas)
Thus, an induced electromotive voltage is generated in the direction opposite to the direction in which the lightning current flows. That is, assuming that the direction in which current flows from the lightning rod to the ground electrode is +, an electromotive voltage of − is generated from the ground electrode to the lightning rod, and a high voltage is induced at the tip of the lightning rod.
Here, since the lightning current flowing in the lightning arrester cable can be considered as a current path flowing in one direction, it is considered in a model in which a return current flows at infinity, and the inductance L in the above three formulas is:


で与えられる。ここで、aはケーブル導体の半径である。μは真空の透磁率である。このままケーブルにこの電圧を誘起させるとケーブルやケーブル端末の耐電圧は高くとらなくてはならなくなる。また、周辺に発生する磁界により生じる誘導電圧が大きくなり、さまざまな障害、いわゆる誘導障害が発生する。そこで、前記請求項1の発明に記載したように、電磁シールド筒体、例えば金属管路内にこの避雷ケーブルを収納して建屋の上部から下部に引下げる。この金属管路に対する相互誘導Mはケーブル長lと金属管路長がほぼ等しいので、 Given in. Here, a is the radius of the cable conductor. μ 0 is the vacuum permeability. If this voltage is induced in the cable as it is, the withstand voltage of the cable and the cable end must be high. In addition, an induced voltage generated by a magnetic field generated in the periphery increases, and various faults, so-called induction faults, occur. Therefore, as described in the first aspect of the present invention, the lightning protection cable is housed in an electromagnetic shield cylinder, for example, a metal conduit, and pulled down from the upper part to the lower part of the building. Since the mutual induction M for this metal pipe is approximately equal to the cable length l and the metal pipe length,

結局、管路に誘起する起電力Eは
E=−M(di/dt) (6式)
である。ここで、bは金属管路の外径である。
a<bであるが、ケーブル長lが十分に長いと、6式は、金属管路にはケーブルのインダクタンスLに発生するのとほぼ等しい相互誘導電圧をこの金属管路に誘導させることができること、つまり、この誘導起電力により金属管路にケーブルに流れる雷電流と逆向きに誘導電流を発生させることが出来ることを示している。
Eventually, the electromotive force E induced in the pipeline is E = −M (di / dt) (Equation 6)
It is. Here, b is the outer diameter of the metal pipeline.
If a <b, but if the cable length l is sufficiently long, Equation 6 is able to induce a mutual induction voltage in the metal pipe line that is approximately equal to that generated in the inductance L of the cable. In other words, this induced electromotive force can generate an induced current in the opposite direction to the lightning current flowing in the cable in the metal conduit.

また、金属管路の両端にインピーダンスの小さい短絡パスを形成させる。すなわち、請求項4の発明に記載したように、建屋の外部に建屋を包むようにメッシュ状のシールド無し絶縁電線による短絡線を敷設することにより、メッシュの内部すなわち建屋内部の誘導磁場がほぼ零になるか或いは小さくなるので、建屋内部の雷誘導起電圧は小さくなり、建屋内の誘導雷による障害の発生を防止することができる。これは前記請求項4又は5の発明に示すように施工すれば、建屋内の誘導雷による障害の発生をより確実に防止できるが、このようにせず、金属管路を建屋鉄筋に電気的に接触させても、建屋内部の雷誘導起電圧は小さくなり、同様の効果が得られる。建屋配筋の接地は、余計な電流パスを流す要因になると考えられ、建屋内の磁場を緩和する観点から行わない方がよいが、接地を行っても行わなくてもよい。   In addition, a short-circuit path with a small impedance is formed at both ends of the metal pipeline. That is, as described in the invention of claim 4, by laying a short-circuit wire with a mesh-shaped unshielded insulated wire so as to wrap the building outside the building, the induction magnetic field inside the mesh, that is, the inside of the building becomes almost zero. Therefore, the lightning induced electromotive voltage in the building is reduced, and the occurrence of a failure due to the induced lightning in the building can be prevented. If this is constructed as shown in the invention of claim 4 or 5, it is possible to more reliably prevent the occurrence of failure due to induced lightning in the building, but without doing so, the metal conduit is electrically connected to the building rebar. Even if they are brought into contact with each other, the lightning induced electromotive voltage in the building is reduced, and the same effect can be obtained. The grounding of the building bar arrangement is considered to be a factor that causes an extra current path to flow, and it is better not to do so from the viewpoint of relaxing the magnetic field in the building, but it may or may not be grounded.

さらに、前記請求項3の発明に記載したように、集中定数で扱える低周波領域の波のエネルギーはシールド付電力ケーブル又は電力用高周波ケーブルの内導体側に接続した接地極とシールド又は同軸ケーブルの外導体に接続した接地極との間をインダクタンスで接続させることで、内導体に接続した接地極単独の抵抗値よりもその抵抗値を低くすることが出来る。従って、この場合、雷電流は前記内導体に接続した接地極により流れやすくなる。   Furthermore, as described in the third aspect of the invention, the energy of the wave in the low frequency region that can be handled by the lumped constant is obtained from the ground electrode connected to the inner conductor side of the shielded power cable or the power high frequency cable and the shield or coaxial cable. By connecting the ground electrode connected to the outer conductor with an inductance, the resistance value can be made lower than the resistance value of the ground electrode alone connected to the inner conductor. Therefore, in this case, the lightning current easily flows through the ground electrode connected to the inner conductor.

また、前記金属管路等の電磁シールド筒体を用いずに、シールド付電力ケーブル又は電力用高周波同軸ケーブルの外導体の端末において、避雷針側から接地極までを、建屋を包むようにメッシュ状の電線などを用いて短絡しても、前記と同様に雷電流の誘導起電力による誘導電流が前記ケーブルのシールド又は外導体に流れ、これが内導体に流れる雷電流によって生じる外部磁界を相殺する効果が得られる。   In addition, without using an electromagnetic shield cylinder such as the metal pipe, the mesh-shaped electric wire is used to wrap the building from the lightning rod side to the ground electrode at the outer conductor end of the shielded power cable or power high-frequency coaxial cable. As described above, an induced current caused by an induced electromotive force of a lightning current flows to the shield or outer conductor of the cable, and this has an effect of canceling an external magnetic field generated by the lightning current flowing to the inner conductor. It is done.

以下、この発明の実施例1を図に基づいて説明する。図1はこの発明の避雷針の概略構成図で、引下げケーブルの本数は1本で説明する。   Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of a lightning rod according to the present invention, and the number of pull-down cables will be described as one.

避雷針1はステーションポスト碍子などで絶縁し、高層ビル等の建屋2の屋上3に敷設する。保護角の設計は、JIS-A-4201などによるものとする。避雷針1から接地極4までの間は、シールド付電力ケーブル又は電力用高周波同軸ケーブルから成る避雷ケーブル5で接続する。一方、前記建屋2の屋上3から地上まで、亜鉛引きのような容易に腐食しがたい金属管路6を設け、この金属管路6内に前記避雷ケーブル5を通し、地中に引下げる。そして前記避雷ケーブル5の導体やシールド層と金属管路6とは電気的に非接触とする。この金属管路6は前記建屋2の内部に配管したが、場所は限定するものでなく、ケーブル収納用ダクトやエレベータ用シャフトなどに配管することも可能で、さらに、前記建屋2の外壁に沿って設けてもよい。ただし、この金属管路6は、周囲と電気的に絶縁することが好ましい。 The lightning rod 1 is insulated with a station post insulator and laid on the roof 3 of a building 2 such as a high-rise building. The design of protective angle shall be in accordance with JIS-A-4201. Between the lightning rod 1 and the grounding electrode 4, a lightning protection cable 5 comprising a shielded power cable or a power high-frequency coaxial cable is connected. On the other hand, a metal pipe 6 that is not easily corroded, such as zinc drawing, is provided from the roof 3 of the building 2 to the ground, and the lightning protection cable 5 is passed through the metal pipe 6 and pulled down into the ground. The conductor or shield layer of the lightning protection cable 5 and the metal conduit 6 are not in electrical contact. The metal pipe 6 is piped inside the building 2, but the place is not limited, and can be piped to a cable housing duct, an elevator shaft, and the like, and further along the outer wall of the building 2. May be provided. However, this metal conduit 6 is preferably electrically insulated from the surroundings.

また、前記接地極4は、実際には、前記避雷ケーブル5のケーブル又は同軸ケーブルの内導体の端部に接続した接地極4aと、シールド又は同軸ケーブルの外導体の端部に接続した接地極4bとに分けられている。そして、前記接地極4aの抵抗値RΩと前記接地極4bの抵抗値rΩの和の値を、前記避雷ケーブル5の特性インピーダンスZに合うように、夫々の接地抵抗値を調整している。つまり、避雷ケーブル5の特性インピーダンスと地面の特性インピーダンスをマッチングさせる。 The grounding electrode 4 is actually a grounding electrode 4a connected to the end of the inner conductor of the lightning protection cable 5 or the coaxial cable, and a grounding electrode connected to the end of the outer conductor of the shield or coaxial cable. 4b. Then, the respective ground resistance values are adjusted so that the sum of the resistance value RΩ of the ground electrode 4 a and the resistance value rΩ of the ground electrode 4 b matches the characteristic impedance Z 0 of the lightning protection cable 5. That is, the characteristic impedance of the lightning protection cable 5 and the characteristic impedance of the ground are matched.

これにより、雷インパルスの周波数がc/10l≦f≦10MHz帯までの範囲の雷電流については、対地側の避雷ケーブル5の端部に接続した外導体用接地極4bの抵抗値rと内導体用接地極4aの抵抗値Rとの和r+Rで吸収させ、反射を防止させて、前記避雷針1の電圧上昇を抑える効果が得られる。また、f<c/10lの範囲の周波数帯の雷電流に関しては、前記避雷ケーブル5のインダクタンスLに発生するのとほぼ等しい相互誘導起電圧を前記金属管路6に誘導させ、この誘導起電力により金属管路6に誘導電流を発生させる。これにより、内導体に流す雷電流と金属管路6に流させる誘導電流により外部に生ずる磁場を相殺でき、当該金属管路6の外部、つまり建屋2の内部に磁場を発生させない。   Thereby, for the lightning current in the range where the frequency of the lightning impulse is c / 10l ≦ f ≦ 10 MHz, the resistance value r of the outer conductor grounding electrode 4b connected to the end of the lightning arrester cable 5 on the ground side and the inner conductor The effect of suppressing the voltage rise of the lightning rod 1 is obtained by absorbing with the sum r + R of the resistance value R of the ground electrode 4a and preventing reflection. For lightning current in a frequency band in the range of f <c / 10l, a mutual induced electromotive voltage that is substantially equal to that generated in the inductance L of the lightning arrester cable 5 is induced in the metal conduit 6, and this induced electromotive force is induced. As a result, an induced current is generated in the metal pipe 6. Thereby, the magnetic field generated outside can be offset by the lightning current flowing through the inner conductor and the induced current flowing through the metal pipe 6, and the magnetic field is not generated outside the metal pipe 6, that is, inside the building 2.

このように、この実施例1の避雷システムでは、落雷による雷電流を高周波と低周波に分け、高周波成分に対してと低周波成分に対して夫々別の処理を行い、建屋2内に磁場を生じさせないようにしている。   As described above, in the lightning protection system according to the first embodiment, the lightning current caused by the lightning strike is divided into a high frequency and a low frequency, and a separate process is performed for the high frequency component and the low frequency component, respectively. I try not to make it happen.

また、上記実施例1に加え、図2に示すように、前記避雷ケーブル5のケーブル又は同軸ケーブルの内導体に接続した接地極4aと、前記避雷ケーブル5のシールド又は同軸ケーブルの外導体に接続した接地極4bとをインダクタンスLを介して接続させる。これにより、当該内導体等と接続した接地極4aの抵抗値を、前記内導体等と接続した接地極4a単独の場合の抵抗値よりも低くすることができ、雷電流の低周波成分は接地極4aと接地極4bに分流し、低抵抗になり、より大地に流れ易くなる。また、この場合、高周波成分は、前記LとRとrがローパスフィルタ効果を果たし、接地極4aと接地極4b間に流れ、ケーブル端の反射波を減衰する。   In addition to the first embodiment, as shown in FIG. 2, the grounding electrode 4a connected to the cable of the lightning arrester cable 5 or the inner conductor of the coaxial cable and the shield of the lightning arrester cable 5 or the outer conductor of the coaxial cable are connected. The ground electrode 4b is connected via an inductance L. As a result, the resistance value of the ground electrode 4a connected to the inner conductor or the like can be made lower than the resistance value of the ground electrode 4a connected to the inner conductor or the like alone, and the low frequency component of the lightning current is grounded. The current is diverted to the pole 4a and the ground electrode 4b, so that the resistance becomes low and it becomes easier to flow to the ground. In this case, the high-frequency components L, R, and r have a low-pass filter effect, flow between the ground electrode 4a and the ground electrode 4b, and attenuate the reflected wave at the cable end.

図3は、雷電流の高周波成分に対して、L、R、rがローパスフィルタの効果を奏して、内導体の接地極4aと外導体の接地極4b間に流れ、ケーブル端の反射波を減衰させることを示している。   In FIG. 3, L, R, and r have a low-pass filter effect on the high-frequency component of the lightning current, and flow between the inner conductor grounding electrode 4a and the outer conductor grounding electrode 4b. It shows that it attenuates.

図4はこの発明の実施例2の構成を示し、避雷針1の近傍の金属管路6の入り口から接地極4近傍の金属管路6の出口までを、建屋2の外周を被ったメッシュ状シールド無し絶縁電線7で電気的に接続したもので、他の構成は前記実施例1と同様である。このように配線することで、前記避雷ケーブル5に雷撃電流が流れた際、当該雷撃電流と逆向きに流れる誘導電流を建屋外部に還流させ、建屋2の内部に電流が流れるパスが抑制でき、建屋2の内部の誘導磁場をほぼ零にするか或いは小さくすることができるので、建屋2内の誘導雷による障害の発生を防止することができる。   FIG. 4 shows the configuration of the second embodiment of the present invention, in which a mesh shield covering the outer periphery of the building 2 from the entrance of the metal conduit 6 near the lightning rod 1 to the exit of the metal conduit 6 near the ground electrode 4 is shown. This is electrically connected by the insulated wire 7 without other components, and the other configuration is the same as in the first embodiment. By wiring in this way, when a lightning current flows in the lightning protection cable 5, the induced current flowing in the opposite direction to the lightning current can be returned to the outdoor part of the building, and the path through which the current flows inside the building 2 can be suppressed. Since the induction magnetic field inside the building 2 can be made substantially zero or small, it is possible to prevent a failure caused by the induced lightning in the building 2.

前記メッシュ状シールド無し絶縁電線7は、これに限らず、メッシュ状でない、シールド無し絶縁電線でもよい。図5は建屋2の屋上3の平面図を示し、このように金属管路6から放射状にシールド無し絶縁電線8を設け、これを建屋2の外壁に沿って引き下げ、建屋2の下面を這わせて、金属管路6の出口に接続する。当該シールド無し絶縁電線8と建屋2の外壁との接続には、例えば、金属製の雨どい等に溶接するなどして対応できるが、余計な電流パスを作ると、それが建屋2内の誘導電圧につながる危険性があるので、バイパス電路はできるだけ他の構成物と電気的に絶縁するのが望ましい。また、このシールド無し絶縁電線7又は8はシールドがあっても、絶縁電線でなくても基本的には使用できる。   The mesh-shaped unshielded insulated wire 7 is not limited to this, and may be a mesh-free, unshielded insulated wire. FIG. 5 shows a plan view of the roof 3 of the building 2. In this way, the unshielded insulated wires 8 are provided radially from the metal conduit 6, pulled down along the outer wall of the building 2, and the lower surface of the building 2 is turned up. To the outlet of the metal pipe 6. The unshielded insulated wire 8 and the outer wall of the building 2 can be connected by, for example, welding to a metal gutter or the like. However, if an extra current path is created, it is induced in the building 2 It is desirable to isolate the bypass circuit from other components as much as possible because of the risk of voltage connection. The unshielded insulated wire 7 or 8 can basically be used even if it has a shield or is not an insulated wire.

また、雷電流に含まれる周波数帯に前記メッシュ状シールド無し絶縁電線7で作られる短絡パスに分布定数系による遮断インピーダンス、すなわち短絡系の並列共振インピーダンスが存在するようなときにはその周波数だけ先に述べた雷撃電流と逆向きに流れる誘導電流の効果が望めなくなるので、前記メッシュ状シールド無し絶縁電線7で作られる短絡パスにLR並列型などのローパスフィルタなどを挿入してQ値の調整を図ることも考えられる。   Further, when a short-circuit path formed by the mesh-shaped unshielded insulated wire 7 in the frequency band included in the lightning current has a distributed constant system cutoff impedance, that is, a short-circuit parallel resonance impedance, only that frequency is described earlier. Since the effect of the induced current flowing in the direction opposite to the lightning strike current can no longer be expected, the Q value can be adjusted by inserting a low-pass filter such as an LR parallel type into the short-circuit path formed by the mesh-like unshielded insulated wire 7. Is also possible.

また、図6は建屋2の配筋が金属と非金属を用いており、屋上、外壁及び基礎部に鉄筋などの金属配筋9を用い、建屋2の内部の配筋にすべて非金属、例えばアラミドなどを用いた場合の概略構成図である。この場合は落雷時に建屋2の内部に分流することがないので、屋上3と基礎部で金属配筋9と避雷ケーブル5を収納する金属管路6を電気的に接続する。また、建屋2内部の配筋を、全て非金属を用いる場合で、屋上3、外壁、基礎部のいずれかを非金属にする場合は、建屋2外部を被うようにその非金属配筋部をバイパスケーブルでバイパスする構造とする。   Further, FIG. 6 shows that the bar arrangement of the building 2 uses metal and nonmetal, the metal arrangement 9 such as a reinforcing bar is used for the roof, the outer wall and the base part, and all the metal arrangements inside the building 2 are nonmetal, for example, It is a schematic block diagram at the time of using aramid etc. In this case, since there is no shunting into the building 2 during a lightning strike, the metal roof 6 and the metal conduit 6 that houses the lightning protection cable 5 are electrically connected to the roof 3 and the foundation. In addition, when all the reinforcing bars inside the building 2 are made of non-metal, and any of the rooftop 3, the outer wall, and the foundation part is made non-metallic, the non-metallic reinforcing part covers the outside of the building 2 To bypass with a bypass cable.

また、図7は避雷ケーブル5を複数本引下げた場合の例を示す概略構成図である。この場合、避雷ケーブル5流れる電流によって金属管路6と短絡線10a又は10bに流れる電流によって磁場が相殺するため、一方の金属管路6の短絡線10aと他方の金属管路6の短絡線10bとは、絶縁させることが好ましい。なぜなら、一方の金属管路6に収納された避雷ケーブル5に雷電流が流れた場合、当該一方の金属管路6に、誘導起電圧が生じ、この金属管路6と接続された短絡線10aにも還流し、この短絡線10aと短絡線10bとが繋がっていると、他方の金属管路6にも誘導起電圧が生じ、他方の金属管路6の付近の建屋2の内部に磁場が生じる恐れがある。なお、この短絡線10a又は10bは前記メッシュ状のシールド無し絶縁電線7又はシールド無し絶縁電線8と同じものである。   FIG. 7 is a schematic configuration diagram showing an example in which a plurality of lightning protection cables 5 are pulled down. In this case, since the magnetic field is canceled by the current flowing through the metal conduit 6 and the short-circuit line 10a or 10b due to the current flowing through the lightning protection cable 5, the short-circuit line 10a of one metal conduit 6 and the short-circuit wire 10b of the other metal conduit 6 Is preferably insulated. This is because when a lightning current flows through the lightning protection cable 5 accommodated in one metal conduit 6, an induced electromotive voltage is generated in the one metal conduit 6, and the short-circuit line 10 a connected to the metal conduit 6. When the short-circuit wire 10a and the short-circuit wire 10b are connected to each other, an induced electromotive voltage is also generated in the other metal conduit 6, and a magnetic field is generated inside the building 2 near the other metal conduit 6. May occur. The short-circuit wire 10a or 10b is the same as the mesh-shaped unshielded insulated wire 7 or unshielded insulated wire 8.

また、図8は、建屋2の屋上3に設ける避雷針1と建屋側撃雷用避雷針1を建屋2の側壁部に設けた場合の避雷システムの概略構成図である。金属管路6内の避雷ケーブル5にT分岐11を設けて、建屋2の屋上3に設ける避雷針1と建屋2の側壁部に設けた避雷針1とを接続したものである。他の構成は、前記実施例1及び2と同様である。   FIG. 8 is a schematic configuration diagram of a lightning arrester system in which the lightning rod 1 provided on the roof 3 of the building 2 and the lightning rod 1 for building side lightning are provided on the side wall portion of the building 2. A T-branch 11 is provided in the lightning protection cable 5 in the metal conduit 6, and the lightning rod 1 provided on the roof 3 of the building 2 is connected to the lightning rod 1 provided on the side wall of the building 2. Other configurations are the same as those in the first and second embodiments.

図8において、避雷ケーブル5は、地中埋設部に達するまで、避雷ケーブル5どうしが互いに接触して雷電流の反射波が建屋内に波及しないような構成としたことを模試的に示したものである。   In FIG. 8, the lightning protection cable 5 is schematically shown to have a structure in which the lightning protection cables 5 are in contact with each other and the reflected wave of the lightning current does not reach the building until reaching the underground buried portion. It is.

この発明の実施例1の概略構成図である。It is a schematic block diagram of Example 1 of this invention. この発明の実施例1に付加する要部構成原理図である。It is a principal part structure principle diagram added to Example 1 of this invention. この発明の実施例1に付加した構成における、雷電流の高周波成分の反射抑制原理図である。It is a reflection suppression principle figure of the high frequency component of the lightning current in the structure added to Example 1 of this invention. この発明の実施例2の概略構成図である。It is a schematic block diagram of Example 2 of this invention. この発明の実施例2に使用する、建屋屋上に敷設する放射状絶縁電線の敷設概念図である。It is a laying conceptual diagram of the radial insulated wire laid on the building roof used for Example 2 of this invention. この発明の実施例2の建屋配筋の内部部分が非金属で構成されている場合の金属管路と、屋上、側壁、基礎部の配筋との接続状態を示す概略構成図である。It is a schematic block diagram which shows the connection state of the metal pipe line in the case where the internal part of the building bar arrangement of Example 2 of this invention is comprised with a non-metal, and the bar arrangement | positioning of a rooftop, a side wall, and a base part. この発明の実施例2において、避雷ケーブルを複数本設けた場合の概略構成図である。In Example 2 of this invention, it is a schematic block diagram at the time of providing a plurality of lightning protection cables. この発明の実施例2において、建屋屋上の避雷針と側壁の避雷針とを一本の避雷ケーブルで引下げた状態を示す概略構成斜視図である。In Example 2 of this invention, it is a schematic structure perspective view which shows the state which pulled down the lightning rod on the building and the lightning rod on the side wall with one lightning arrester cable. 従来の避雷システムの概略構成図である。It is a schematic block diagram of the conventional lightning protection system.

1 避雷針 2 建屋
3 屋上 4 接地極
5 避雷ケーブル 6 金属管路
7 ネット状シールド無し絶縁電線
8 シールド無し絶縁電線
9 金属配筋 10 短絡線
11 T分岐
DESCRIPTION OF SYMBOLS 1 Lightning rod 2 Building 3 Rooftop 4 Ground pole 5 Lightning protection cable 6 Metal conduit 7 Net-shaped unshielded insulated wire
8 Unshielded insulated wire 9 Metal reinforcement 10 Short circuit 11 T branch

Claims (7)

建屋屋上の避雷針若しくは独立棟上げ導体、或いは建屋側撃雷用避雷針若しくは建屋側撃雷用棟上げ導体を、建屋に対して絶縁し、建屋の屋上若しくは側面に敷設させ、前記避雷針若しくは独立棟上げ導体から接地極までの間は、単数又は複数のシールド付電力ケーブル又は電力用高周波同軸ケーブルで接続し、予め建屋の内部又は外部に通した電磁シールド筒体内に前記ケーブルを通して建屋上部から下部に引下げておくことにより、前記避雷針若しくは独立棟上げ導体に雷が誘導された際、前記ケーブルに流れる雷電流と逆向きの誘導電流が前記電磁シールド筒体に流れて、雷撃電流による前記ケーブルの外部に生じる磁場を相殺させる構成としたことを特徴とする避雷針。   Insulate the lightning rod on the building or the independent building up conductor, or the building side lightning arrester or the building side lightning building up conductor from the building, lay it on the roof or side of the building, and ground it from the lightning rod or the independent building up conductor Between the poles, connect with one or more shielded power cables or high-frequency coaxial cables for power, and pull down from the top to the bottom of the building through the cable in the electromagnetic shield cylinder passed through the building inside or outside in advance. Therefore, when lightning is induced to the lightning rod or the independent ridge conductor, an induced current opposite to the lightning current flowing in the cable flows to the electromagnetic shield cylinder, and the magnetic field generated outside the cable due to the lightning current is canceled out. A lightning rod characterized by having a configuration to be made. 前記単数又は複数のシールド付電力ケーブル又は電力用高周波同軸ケーブルの内導体に接地極を接続し、前記ケーブルのシールド又は電力用高周波同軸ケーブルの外導体に接地極を接続し、前記シールド付電力ケーブル又は電力用高周波同軸ケーブルの内導体と接続した接地極の接地抵抗値と、前記シールド付電力ケーブル又は電力用高周波同軸ケーブルの外導体に接続した接地極の接地抵抗値の和の値が、前記ケーブルの特性インピーダンスに合うように前記接地抵抗を調整した接地極を設けたことを特徴とする、請求項1に記載の避雷針。   A grounding electrode is connected to an inner conductor of the one or a plurality of shielded power cables or power high-frequency coaxial cables, a grounding electrode is connected to an outer conductor of the shield of the cables or the power high-frequency coaxial cable, and the shielded power cable Or the value of the sum of the ground resistance value of the ground electrode connected to the inner conductor of the high frequency coaxial cable for power and the ground resistance value of the ground electrode connected to the outer conductor of the shielded power cable or the high frequency coaxial cable for power is The lightning rod according to claim 1, wherein a grounding pole having the grounding resistance adjusted to match the characteristic impedance of the cable is provided. 前記単数又は複数のシールド付電力ケーブル又は電力用高周波同軸ケーブルの内導体に接地極を接続し、前記ケーブルのシールド又は同軸ケーブルの外導体に接地極を接続し、これらの接地極の間をインダクタンスを用いて接続し、当該内導体と接続した接地極の抵抗値を、前記内導体と接続した単独の接地極の場合の抵抗値よりも低くする構成としたことを特徴とする、請求項1又は2に記載の避雷針。   Connect a grounding electrode to the inner conductor of the one or more shielded power cables or power high-frequency coaxial cables, connect a grounding electrode to the shield of the cable or the outer conductor of the coaxial cable, and induct between the grounding electrodes. And a resistance value of a ground electrode connected to the inner conductor is set lower than a resistance value of a single ground electrode connected to the inner conductor. Or the lightning rod of 2. 前記電磁シールド筒体の出入口の間を、建屋の外周を被ったメッシュ状の電線で電気的に接続しておくことにより、前記ケーブルに雷撃電流が流れた際、当該雷撃電流と逆向きに流れる誘導電流を建屋外部のメッシュ状の電線に還流させる構成としたことを特徴とする、請求項1、2又は3のいずれかに記載の避雷針。   By electrically connecting between the entrance and exit of the electromagnetic shield cylinder with a mesh-shaped wire covering the outer periphery of the building, when a lightning current flows through the cable, it flows in the opposite direction to the lightning current The lightning rod according to any one of claims 1, 2, and 3, wherein the induced current is returned to the mesh-shaped electric wire in the outdoor part of the building. 前記電磁シールド筒体の出入口の間を、建屋の外周を通した単数又は複数の電線で電気的に接続し、前記ケーブルに雷撃電流が流れた際、当該雷撃電流と逆向きに流れる誘導電流を建屋外部の前記電線に還流させる構成としたことを特徴とする、請求項1、2又は3に記載の避雷針。   Between the entrance and exit of the electromagnetic shield cylindrical body is electrically connected with one or a plurality of electric wires passing through the outer periphery of the building, and when a lightning current flows through the cable, an induced current that flows in a direction opposite to the lightning current is generated. The lightning rod according to claim 1, 2 or 3, wherein the electric wire in the outdoor part of the building is refluxed. 建屋屋上の避雷針若しくは独立棟上げ導体、或いは建屋側撃雷用避雷針若しくは建屋側撃雷用棟上げ導体を、建屋に対して絶縁し、建屋の屋上若しくは側面に敷設させ、前記避雷針若しくは独立棟上げ導体から接地極までの間は、単数又は複数のシールド付電力ケーブル又は電力用高周波同軸ケーブルで接続し、当該ケーブルを建屋上部から下部に引下げ、避雷針付近の前記ケーブルのシールド又は同軸ケーブルの外導体と、接地極付近の前記ケーブルのシールド又は同軸ケーブルの外導体の間を、建屋の外周を被ったメッシュ状の電線で電気的に接続し、前記避雷針若しくは独立棟上げ導体に雷が誘導された際、前記ケーブル又は同軸ケーブルの内導体に流れる雷撃電流と逆向きに流れる誘導電流が前記シールド又は同軸ケーブルの外導体に流れ、さらにこの電流を建屋外部のメッシュ状の電線に還流させる構成としたことを特徴とする、避雷針。   Insulate the lightning rod on the building or the independent building up conductor, or the building side lightning arrester or the building side lightning building up conductor from the building, lay it on the roof or side of the building, and ground it from the lightning rod or the independent building up conductor Between the poles, connect with one or more shielded power cables or high-frequency coaxial cables for power, pull down the cables from the top of the building to the bottom, shield the cable near the lightning rod or the outer conductor of the coaxial cable, and ground When the shield of the cable near the pole or the outer conductor of the coaxial cable is electrically connected with a mesh-like electric wire covering the outer periphery of the building, when the lightning is induced to the lightning rod or the independent ridge raising conductor, the cable Or, the induced current flowing in the opposite direction to the lightning strike current flowing in the inner conductor of the coaxial cable is the outer conductor of the shield or the coaxial cable. Flow, characterized by being configured to further refluxed for current building outside the mesh wire, lightning rod. 建屋屋上の避雷針若しくは独立棟上げ導体、或いは建屋側撃雷用避雷針若しくは建屋側撃雷用棟上げ導体を、建屋に対して絶縁し、建屋の屋上若しくは側面に敷設させ、前記避雷針若しくは独立棟上げ導体から接地極までの間は、単数又は複数のシールド付電力ケーブル又は電力用高周波同軸ケーブルで接続し、当該ケーブルを建屋上部から下部に引下げ、避雷針付近の前記ケーブルのシールド又は同軸ケーブルの外導体と、接地極付近の前記ケーブルのシールド又は同軸ケーブルの外導体の間を、建屋の外周を通る単数又は複数の電線で電気的に接続し、前記避雷針若しくは独立棟上げ導体に雷が誘導された際、前記ケーブル又は同軸ケーブルの内導体に流れる雷撃電流と逆向きに流れる誘導電流が前記シールド又は同軸ケーブルの外導体に流れ、さらにこの電流を建屋外部の電線に還流させる構成としたことを特徴とする、避雷針。   Insulate the lightning rod on the building or the independent building up conductor, or the building side lightning arrester or the building side lightning building up conductor from the building, lay it on the roof or side of the building, and ground it from the lightning rod or the independent building up conductor Between the poles, connect with one or more shielded power cables or high-frequency coaxial cables for power, pull down the cables from the top of the building to the bottom, shield the cable near the lightning rod or the outer conductor of the coaxial cable, and ground When the cable shield near the pole or the outer conductor of the coaxial cable is electrically connected with one or more electric wires passing through the outer periphery of the building, when the lightning is induced to the lightning rod or the independent building up conductor, the cable Or, the induced current flowing in the opposite direction to the lightning strike current flowing in the inner conductor of the coaxial cable is the outer conductor of the shield or the coaxial cable. Flow, characterized by being configured to further refluxed for current building outside the wire, lightning rod.
JP2009171579A 2009-07-22 2009-07-22 lightning rod Active JP5437722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009171579A JP5437722B2 (en) 2009-07-22 2009-07-22 lightning rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009171579A JP5437722B2 (en) 2009-07-22 2009-07-22 lightning rod

Publications (2)

Publication Number Publication Date
JP2011028920A true JP2011028920A (en) 2011-02-10
JP5437722B2 JP5437722B2 (en) 2014-03-12

Family

ID=43637458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009171579A Active JP5437722B2 (en) 2009-07-22 2009-07-22 lightning rod

Country Status (1)

Country Link
JP (1) JP5437722B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147876A (en) * 2001-11-15 2003-05-21 Shimizu Corp Method for mounting lighting arrester work lead, and shielding mechanism
JP2008059870A (en) * 2006-08-30 2008-03-13 Nippon Steel Corp Lightning arrester, structure pillar having lightning arresting function, and reduction method of lightning surge voltage
JP2008262885A (en) * 2007-04-12 2008-10-30 Masahiro Igarashi Multilayer shielded wire for lightning arresting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147876A (en) * 2001-11-15 2003-05-21 Shimizu Corp Method for mounting lighting arrester work lead, and shielding mechanism
JP2008059870A (en) * 2006-08-30 2008-03-13 Nippon Steel Corp Lightning arrester, structure pillar having lightning arresting function, and reduction method of lightning surge voltage
JP2008262885A (en) * 2007-04-12 2008-10-30 Masahiro Igarashi Multilayer shielded wire for lightning arresting

Also Published As

Publication number Publication date
JP5437722B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JPS63126121A (en) Holding system for lightning arrester
JP2006080215A (en) Power electronics system for vehicle and noise controlling method therefor
JP2012228149A (en) Resonance type non-contact power supply system
JP5579215B2 (en) Wire harness and wire harness shield structure
EP2378850B1 (en) Tower with EMC protection system
JP2008166104A (en) Grounding electrode, grounding electrode group, and reduction method of lightning surge voltage
Nazari et al. On the performance of grounding, bonding, and shielding systems for direct and indirect lightning strikes
JP5437722B2 (en) lightning rod
Van der Laan et al. Reliable protection of electronics against lightning: Some practical applications
CN207800184U (en) Shield assembly for cable
Yasui et al. Reduction measures of the overvoltage in the TN system of a building struck directly by lightning
JP4103259B2 (en) Lightning protection lead and lightning protection system
CN208607958U (en) A kind of power cable for motor for preventing electromagnetic interference
JP3942204B2 (en) Ground electrode
JP5881968B2 (en) Apparatus or method for mitigating or eliminating electrical disturbances in electrical facilities, etc.
JPH0831668A (en) Method for withstanding lightning using transformer
JP4078181B2 (en) Lightning rod grounding device
Zheng et al. Lightning Electromagnetic Pulse Coupling and Corresponding Protection Advisement
JP2003147876A (en) Method for mounting lighting arrester work lead, and shielding mechanism
EP3722599B1 (en) Electromagnetic grounding arrangement
JP2589409B2 (en) Electromagnetic wave shield structure of electric cable
KR101191936B1 (en) Pile for ground, and ground method of pile
JP7078930B2 (en) Insulated lightning protection system
JP6925290B2 (en) Shielded cable
CN206272067U (en) Semi-shielded formula lightning rod screening arrangement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131212

R150 Certificate of patent or registration of utility model

Ref document number: 5437722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250