JP2011027552A - Method for inhibition of fine particle aggregation, and preservative solution - Google Patents

Method for inhibition of fine particle aggregation, and preservative solution Download PDF

Info

Publication number
JP2011027552A
JP2011027552A JP2009173651A JP2009173651A JP2011027552A JP 2011027552 A JP2011027552 A JP 2011027552A JP 2009173651 A JP2009173651 A JP 2009173651A JP 2009173651 A JP2009173651 A JP 2009173651A JP 2011027552 A JP2011027552 A JP 2011027552A
Authority
JP
Japan
Prior art keywords
fine particles
peg
fine
particles
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009173651A
Other languages
Japanese (ja)
Other versions
JP5461910B2 (en
Inventor
Hiroko Tada
博子 多田
Norito Kuno
範人 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009173651A priority Critical patent/JP5461910B2/en
Publication of JP2011027552A publication Critical patent/JP2011027552A/en
Application granted granted Critical
Publication of JP5461910B2 publication Critical patent/JP5461910B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method that facilitates inhibiting aggregation which occurs during fine particles are preserved, and reduces variations in signal intensity caused by the aggregation. <P>SOLUTION: In the method, a solution of PEG having an average molecular weight of ≥2M is added to a fine particle suspension to inhibit the aggregation of fine particles. The fine particle preservative solution contains PEG having an average molecular weight of ≥2M. The fine particles are magnetic fine particles, and the particle diameter of the fine particles is ≤1 μm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、微粒子の凝集を抑制するための方法及び保存液、より具体的には、磁気微粒子の凝集を抑制する方法及び保存液に関するものである。   The present invention relates to a method and a storage solution for suppressing aggregation of fine particles, and more specifically to a method and a storage solution for suppressing aggregation of magnetic particles.

臨床検査や遺伝子検査は、患者から採取した血液、尿、便などの臨床検体を出発原料とし、検査対象となる生体成分の存在量や生化学的な特徴を計測して診断指標を提供することを目的としている。しかし臨床検体は、多種多様な夾雑物を含み、夾雑物により検査対象である目的成分の検出が妨げられ検査結果の精度が低下する場合がある。   For clinical tests and genetic tests, use clinical specimens such as blood, urine, and stool collected from patients as starting materials and measure the abundance and biochemical characteristics of the biological components to be tested to provide diagnostic indicators It is an object. However, clinical specimens contain a wide variety of contaminants, which may hinder the detection of the target component that is the subject of inspection and reduce the accuracy of the test results.

そこで近年では、臨床検体から目的成分を単離・濃縮するために、目的成分に特異的に結合する抗体などの分子を表面に結合した磁気微粒子を利用する前処理技術が広く用いられるようになってきている。磁気微粒子は、夾雑物を多く含む液性検体中でも目的成分との接触頻度が高く、目的成分を効率よく吸着し単離することが可能である。また、磁気微粒子は磁気によるB/F分離が可能で、遠心機等の大型な装置を使用する必要がなく、自動化装置への適用に有効である。臨床検査分野においては、高感度なアッセイの開発を目指し微粒子による反応時間短縮・感度向上が望まれている。一般的に、微粒子は、保存中に粒子同士の凝集が進み、表面積が減少することによりシグナル強度が低下するという課題がある。また、保存中に凝集が進むため、微粒子の使用時期により凝集の程度が異なり、凝集塊の表面積にばらつきが生じ再現性の高い結果が得られないという課題がある。   Therefore, in recent years, in order to isolate and concentrate target components from clinical specimens, pretreatment techniques using magnetic fine particles in which molecules such as antibodies that specifically bind to target components are bound to the surface have been widely used. It is coming. Magnetic fine particles have a high contact frequency with a target component even in a liquid sample containing a large amount of impurities, and can efficiently adsorb and isolate the target component. In addition, magnetic fine particles can be separated by B / F by magnetism, and it is not necessary to use a large device such as a centrifuge, which is effective for application to an automation device. In the clinical laboratory field, aiming at the development of a highly sensitive assay, it is desired to reduce the reaction time and improve the sensitivity with fine particles. In general, the fine particles have a problem that the signal intensity decreases due to agglomeration of the particles during storage and a decrease in surface area. Further, since aggregation proceeds during storage, there is a problem that the degree of aggregation varies depending on the use time of the fine particles, the surface area of the aggregates varies, and a highly reproducible result cannot be obtained.

粒径0.01〜100μmの粒子が凝集することにより生じる課題を解決する手段として、特許文献1において(以下、従来例1)、「非特異的反応や自然凝集等を抑制するために処理を行う必要があれば、測定対象物質に対する特異的結合物質を固定化させた容器の溶液収容部分の内壁面又は粒子に、ウシ血清アルブミン(BSA)、カゼイン、ゼラチン、卵白アルブミン、若しくはその塩などのタンパク質、界面活性剤又は脱脂粉乳等を接触させること等の公知の方法により処理して、測定対象物質に対する特異的結合物質を固定化させた担体のブロッキング処理(マスキング処理)を行ってもよい。」旨の記載がある。   As a means for solving the problems caused by aggregation of particles having a particle diameter of 0.01 to 100 μm, in Patent Document 1 (hereinafter referred to as Conventional Example 1), “Need to perform treatment to suppress non-specific reaction, natural aggregation, etc.” If there is a protein, such as bovine serum albumin (BSA), casein, gelatin, ovalbumin, or a salt thereof, on the inner wall surface or particle of the solution storage part of the container in which the specific binding substance for the substance to be measured is immobilized, It may be treated by a known method such as bringing a surfactant or nonfat dry milk into contact, and a blocking treatment (masking treatment) of a carrier on which a specific binding substance for the substance to be measured is immobilized may be performed. Is described.

非特許文献1においては(以下、従来例2)、分子量2000〜5000のPEGを粒径2.2μmの磁気微粒子表面に修飾し粒子の分散性を高めている。   In Non-Patent Document 1 (hereinafter, Conventional Example 2), PEG having a molecular weight of 2000 to 5000 is modified on the surface of magnetic fine particles having a particle size of 2.2 μm to enhance the dispersibility of the particles.

上記従来例1には以下の課題が考えられる。従来例1ではラテックス粒子におけるブロッキング処理の効果を示しているが、ラテックス粒子以外の粒子に対する効果は不明である。またブロッキング処理により、どの程度凝集が抑制されるか開示されていない。さらにブロッキング処理を行ったラテックス粒子においては、粒子の表面に上記ブロッキング剤による被覆が生じていると考えられ、ラテックス粒子表面が生体物質等結合のための活性基やリンカーで修飾されている場合には、形成された被膜が生体物質等の結合反応に阻害的に働き、表面の活性基やリンカーが見かけ上減少するという課題が生じる可能性がある。   The conventional example 1 has the following problems. Conventional Example 1 shows the effect of blocking treatment on latex particles, but the effect on particles other than latex particles is unknown. Moreover, it is not disclosed how much aggregation is suppressed by the blocking treatment. Furthermore, in latex particles that have undergone blocking treatment, it is considered that the surface of the particles is covered with the blocking agent, and the latex particle surface is modified with an active group or linker for binding to biological substances, etc. However, there is a possibility that the formed coating acts to inhibit the binding reaction of biological substances and the like, and the surface active groups and linkers are apparently reduced.

従来例2で述べられている粒子の分散性は、免疫沈降反応において抗原を添加したときに生じる粒子の凝集を粒子の沈降により評価しているに過ぎず、粒子の保存中に生じる凝集に対する評価は行っていない。また、PEGが表面に修飾されていない粒子を用いる場合は、粒子を使用する前にPEGで修飾する工程が必要となり、従来例1のように添加するだけの場合に比較し、手間と時間を要し簡便な方法ではない。   The dispersibility of the particles described in Conventional Example 2 is merely evaluated by the sedimentation of particles when the antigen is added in the immunoprecipitation reaction, and is evaluated for the aggregation that occurs during storage of the particles. Does not go. In addition, when using particles in which PEG is not modified on the surface, a step of modifying with PEG is necessary before using the particles. Compared to the case where the particles are simply added as in Conventional Example 1, the labor and time are reduced. It is not a simple method.

粒径1μm以下の微粒子では、従来例で示されている粒径が1μmを超える粒子よりも、単位重量あたりの表面積が大きくなるため微粒子同士の接触回数が多くなり、凝集しやすくなると予想される。そのため保存中に微粒子の凝集を抑制し、且つ微粒子の反応性にも影響を及ぼさない保存液の開発が望まれている。   In the case of fine particles having a particle size of 1 μm or less, the surface area per unit weight is larger than the particles having a particle size of more than 1 μm as shown in the conventional example, so that the number of contact between the fine particles is increased, and aggregation is likely to occur. . Therefore, development of a storage solution that suppresses aggregation of fine particles during storage and does not affect the reactivity of the fine particles is desired.

特開2006-227027JP2006-227027

Nagasaki Y, Kobayashi H, Katsuyama Y, Jomura T, Sakura T.;Enhanced immunoresponse of antibody/mixed-PEG co-immobilized surface construction of high-performance immunomagnetic ELISA system, J Colloid Interface Sci, 309, 524-530, 2007Nagasaki Y, Kobayashi H, Katsuyama Y, Jomura T, Sakura T .; Enhanced immunoresponse of antibody / mixed-PEG co-immobilized surface construction of high-performance immunomagnetic ELISA system, J Colloid Interface Sci, 309, 524-530, 2007

本発明は、微粒子の保存中に生じる凝集を効率よく抑制し、且つ微粒子の反応性を維持する方法を提供することを目的とする。   An object of the present invention is to provide a method for efficiently suppressing aggregation occurring during storage of fine particles and maintaining the reactivity of the fine particles.

本発明者らは、微粒子の保存中に生じる凝集を重量平均分子量2,000,000(2M)のポリエチレングリコール(PEG)を添加することにより抑制できることを見出し、本発明を完成するに至った。   The present inventors have found that aggregation occurring during storage of fine particles can be suppressed by adding polyethylene glycol (PEG) having a weight average molecular weight of 2,000,000 (2M), and have completed the present invention.

即ち、本発明は以下の発明を包含する。
(1)微粒子の凝集を抑制する方法であって、重量平均分子量2,000,000以上のポリエチレングリコールの溶液を、微粒子を含む懸濁液に添加することを含む、前記方法。
(2)微粒子が磁気微粒子である、(1)に記載の方法。
(3)微粒子の粒径が1μm以下である、(1)又は(2)に記載の方法。
(4)ポリエチレングリコール最終濃度が0.05〜1w/v%である、(1)〜(3)のいずれかに記載の方法。
(5)微粒子の凝集を抑制するための微粒子保存液であって、重量平均分子量2,000,000以上のポリエチレングリコールを含有する前記保存液。
(6)微粒子が磁気微粒子である、(5)に記載の保存液。
(7)微粒子が粒径1μm以下の微粒子である、(5)又は(6)に記載の保存液。
(8)ポリエチレングリコール濃度が0.1〜5.0w/v%である、(5)〜(7)のいずれかに記載の保存液。
(9)(5)〜(8)のいずれかに記載の保存液を用いて保存した微粒子を、反応液に添加するステップを有する、反応方法。
(10)(5)〜(8)のいずれかに記載の保存液を用いて保存した微粒子を洗浄し保存液を除去するステップと、保存液を除去した微粒子を反応液に添加するステップを有する、反応方法。
(11)微粒子及び重量平均分子量2,000,000以上のポリエチレングリコールを含有する、微粒子懸濁液。
(12)微粒子が磁気微粒子である、(11)に記載の微粒子懸濁液。
(13)微粒子の粒径が1μm以下である、(11)又は(12)に記載の微粒子懸濁液。
(14)ポリエチレングリコール濃度が0.05〜1w/v%である、(11)〜(13)のいずれかに記載の微粒子懸濁液。
(15)微粒子が生体物質を結合するための表面修飾を有する、(11)〜(14)のいずれかに記載の微粒子懸濁液。
That is, the present invention includes the following inventions.
(1) A method for suppressing aggregation of fine particles, the method comprising adding a solution of polyethylene glycol having a weight average molecular weight of 2,000,000 or more to a suspension containing fine particles.
(2) The method according to (1), wherein the fine particles are magnetic fine particles.
(3) The method according to (1) or (2), wherein the particle diameter of the fine particles is 1 μm or less.
(4) The method according to any one of (1) to (3), wherein the final concentration of polyethylene glycol is 0.05 to 1 w / v%.
(5) A fine particle preservation solution for suppressing aggregation of fine particles, wherein the preservation solution contains polyethylene glycol having a weight average molecular weight of 2,000,000 or more.
(6) The preservation solution according to (5), wherein the fine particles are magnetic fine particles.
(7) The preservation solution according to (5) or (6), wherein the fine particles are fine particles having a particle diameter of 1 μm or less.
(8) The preservation solution according to any one of (5) to (7), wherein the polyethylene glycol concentration is 0.1 to 5.0 w / v%.
(9) A reaction method comprising a step of adding fine particles stored using the storage solution according to any one of (5) to (8) to the reaction solution.
(10) A step of washing the fine particles stored using the storage solution according to any one of (5) to (8) to remove the storage solution and a step of adding the fine particles from which the storage solution has been removed to the reaction solution. , Reaction method.
(11) A fine particle suspension containing fine particles and polyethylene glycol having a weight average molecular weight of 2,000,000 or more.
(12) The fine particle suspension according to (11), wherein the fine particles are magnetic fine particles.
(13) The fine particle suspension according to (11) or (12), wherein the particle diameter of the fine particles is 1 μm or less.
(14) The fine particle suspension according to any one of (11) to (13), wherein the polyethylene glycol concentration is 0.05 to 1 w / v%.
(15) The fine particle suspension according to any one of (11) to (14), wherein the fine particles have a surface modification for binding a biological substance.

本発明により、微粒子に生じる凝集を簡便に抑制することができ、さらには、凝集により生じる測定結果のばらつきを低減することが可能となる。   According to the present invention, aggregation occurring in fine particles can be easily suppressed, and furthermore, variation in measurement results caused by aggregation can be reduced.

PEGを含む保存液で保存した場合の単分散粒子の割合を示す図である。It is a figure which shows the ratio of the monodispersed particle at the time of preserve | saving with the preservation | save liquid containing PEG. 本発明の一実施形態である免疫酵素反応の模式図である。It is a schematic diagram of the immunoenzyme reaction which is one Embodiment of this invention. 実施例1の実験フローを示す。The experimental flow of Example 1 is shown. 実施例1で使用した微粒子の単分散粒子の割合を示す図である。FIG. 2 is a graph showing the ratio of monodispersed fine particles used in Example 1. 実施例1の免疫酵素反応の結果を示す図である。FIG. 3 shows the results of the immunoenzyme reaction of Example 1. 実施例2の実験フローを示す。The experimental flow of Example 2 is shown. 実施例2で使用した微粒子の単分散粒子の割合を示す図である。5 is a graph showing the proportion of finely dispersed monodispersed particles used in Example 2. FIG. 実施例2の免疫酵素反応の結果を示す図である。FIG. 3 is a graph showing the results of the immunoenzymatic reaction of Example 2.

本発明は、微粒子の凝集を抑制する方法に関し、該方法は、重量平均分子量2,000,000以上のポリエチレングリコールの溶液を、微粒子を含む懸濁液に添加することを含む。重量平均分子量2,000,000以上のポリエチレングリコールの溶液を、微粒子を含む懸濁液に添加することにより、微粒子懸濁液の保存において微粒子の凝集を抑制することができる。従って、換言すれば、本発明は、重量平均分子量2,000,000以上のポリエチレングリコールの溶液を、微粒子を含む懸濁液に添加することを含む、微粒子懸濁液の保存方法に関する。   The present invention relates to a method for suppressing aggregation of fine particles, and the method includes adding a solution of polyethylene glycol having a weight average molecular weight of 2,000,000 or more to a suspension containing fine particles. By adding a polyethylene glycol solution having a weight average molecular weight of 2,000,000 or more to a suspension containing fine particles, aggregation of the fine particles can be suppressed during storage of the fine particle suspension. Therefore, in other words, the present invention relates to a method for preserving a fine particle suspension, which comprises adding a solution of polyethylene glycol having a weight average molecular weight of 2,000,000 or more to a suspension containing fine particles.

本発明の方法において対象となる微粒子は特に制限されないが、水不溶性で、加熱変性時に溶融しないものが好ましい。その材料としては、例えば、例えば、金、銀、銅、鉄、酸化鉄、アルミニウム、タングステン、モリブデン、クロム、白金、チタン、ニッケル等の金属;ステンレス、ハステロイ、インコネル、モネル、ジュラルミン等の合金;シリコン;ガラス、石英ガラス、溶融石英、合成石英、アルミナ、サファイア、セラミクス、フォルステライトおよび感光性ガラス等のガラス材料;ポリエステル樹脂、ポリスチレン、ポリエチレン樹脂、ポリプロピレン樹脂、ABS樹脂(Acrylonitrile Butadiene Styrene 樹脂)、ナイロン、アクリル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、メチルペンテン樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂および塩化ビニル樹脂等のプラスチック;アガロース、デキストラン、セルロース、ポリビニルアルコール、ニトロセルロース、キチン、キトサンが挙げられる。本発明は、特に、鉄や酸化鉄からなる集磁可能な磁気微粒子を対象とすることが好ましい。磁気微粒子を用いる場合は、磁気分離による微粒子の回収等が可能となり、取り扱いが簡便な点で有利である。   The target fine particles in the method of the present invention are not particularly limited, but those that are insoluble in water and do not melt during heat denaturation are preferred. Examples of the material include metals such as gold, silver, copper, iron, iron oxide, aluminum, tungsten, molybdenum, chromium, platinum, titanium, and nickel; alloys such as stainless steel, hastelloy, inconel, monel, and duralumin; Silicon: Glass materials such as glass, quartz glass, fused silica, synthetic quartz, alumina, sapphire, ceramics, forsterite and photosensitive glass; polyester resin, polystyrene, polyethylene resin, polypropylene resin, ABS resin (Acrylonitrile Butadiene Styrene resin), Plastics such as nylon, acrylic resin, fluororesin, polycarbonate resin, polyurethane resin, methylpentene resin, phenol resin, melamine resin, epoxy resin and vinyl chloride resin; agarose, dextran, cellulose, polyvinyl Examples include alcohol, nitrocellulose, chitin, and chitosan. In particular, the present invention is preferably directed to magnetic particles that can be collected from iron or iron oxide. When magnetic fine particles are used, fine particles can be recovered by magnetic separation, which is advantageous in terms of easy handling.

微粒子はいかなる形状のものでもよく、多面体、多角柱、球、円柱、錐体等の形状が挙げられる。微粒子のサイズは、好ましくは粒径1μm以下、より好ましくは粒径0.5〜1.0μmである。ここで、粒径は、平均粒径をさし、微粒子が球状でない場合、粒径は最長辺の長さをさす。   The fine particles may have any shape, and examples thereof include a polyhedron, a polygonal column, a sphere, a cylinder, and a cone. The size of the fine particles is preferably 1 μm or less, more preferably 0.5 to 1.0 μm. Here, the particle diameter refers to the average particle diameter, and when the fine particles are not spherical, the particle diameter refers to the length of the longest side.

本発明の方法は、生体物質を捕捉するための微粒子に特に好適に用いられる。生体物質を捕捉するための微粒子は、好ましくは、生体物質を結合するための表面修飾を有する。生体物質には、核酸(DNA及びRNAを含む)、タンパク質、ペプチド、オリゴペプチド、ポリペプチド、糖、細胞などが包含される。微粒子上の表面修飾は特に限定されず、生体物質を、共有結合、イオン結合、水素結合、物理吸着、生物学的結合(例えば、ビオチンとアビジンまたはストレプトアビジンとの結合、抗原と抗体との結合など)によって結合するための表面修飾が挙げられる。具体的には、アミノ基、ヒドロキシル基、カルボキシル基、メルカプト基等を結合する活性基の導入、ならびに、プロテインA、プロテインG、モノクローナル抗体、ポリクローナル抗体、アビジン、ストレプトアビジン等のタンパク質による被覆が挙げられる。   The method of the present invention is particularly preferably used for fine particles for capturing biological substances. The microparticles for capturing the biological material preferably have a surface modification for binding the biological material. Biological substances include nucleic acids (including DNA and RNA), proteins, peptides, oligopeptides, polypeptides, sugars, cells, and the like. The surface modification on the microparticle is not particularly limited, and a biological substance can be covalently bonded, ionic bond, hydrogen bond, physical adsorption, biological bond (for example, binding of biotin and avidin or streptavidin, binding of antigen and antibody) Etc.) for surface binding. Specific examples include introduction of active groups that bind amino groups, hydroxyl groups, carboxyl groups, mercapto groups, etc., and coating with proteins such as protein A, protein G, monoclonal antibodies, polyclonal antibodies, avidin and streptavidin. It is done.

例えば、微粒子に、活性エステル基、エポキシ基、アルデヒド基、カルボジイミド基、イソチオシアネート基またはイソシアネート基等の活性基を導入することにより、生体物質のアミノ基と共有結合を形成できる。また、微粒子に、活性エステル基、マレイミド基またはジスルフィド基等の活性基を導入することにより、生体物質のメルカプト基と共有結合を形成できる。活性エステル基としては、例えば、p−ニトロフェニル基、N−ヒドロキシスクシンイミド基、コハク酸イミド基、フタル酸イミド基、5−ノルボルネン−2,3−ジカルボキシイミド基等が挙げられる。   For example, by introducing an active group such as an active ester group, an epoxy group, an aldehyde group, a carbodiimide group, an isothiocyanate group or an isocyanate group into the fine particles, a covalent bond can be formed with the amino group of the biological substance. In addition, by introducing an active group such as an active ester group, a maleimide group or a disulfide group into the fine particles, a covalent bond can be formed with a mercapto group of a biological material. Examples of the active ester group include a p-nitrophenyl group, an N-hydroxysuccinimide group, a succinimide group, a phthalimide group, and a 5-norbornene-2,3-dicarboximide group.

活性基を微粒子の表面に導入する方法の一つとしては、所望の活性基を有するシランカップリング剤によって微粒子を処理する方法が挙げられる。カップリング剤の例としては、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−β−アミノプロピルメチルジメトキシシラン、あるいはγ−グリシドキシプロピルトリメトキシシラン等が挙げられる。活性基を微粒子に導入する別の方法としては、プラズマ処理が挙げられる。このようなプラズマ処理により、微粒子の表面に、水酸基やアミノ基等の官能基を導入することができる。プラズマ処理は、当業者には既知の装置を用いて行うことができる。   One method for introducing an active group onto the surface of the fine particles is to treat the fine particles with a silane coupling agent having a desired active group. Examples of coupling agents include γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -β-aminopropylmethyldimethoxysilane, Alternatively, γ-glycidoxypropyltrimethoxysilane and the like can be mentioned. Another method for introducing the active group into the fine particles includes plasma treatment. By such plasma treatment, functional groups such as hydroxyl groups and amino groups can be introduced on the surfaces of the fine particles. The plasma treatment can be performed using an apparatus known to those skilled in the art.

物理吸着によって生体物質を微粒子に結合する方法としては、ポリ陽イオン(ポリリシン、ポリアリルアミン、ポリエチレンイミン等)で表面処理した微粒子に、生体物質の荷電を利用して静電結合させる方法などが挙げられる。   Examples of a method of binding a biological material to the fine particles by physical adsorption include a method of electrostatically binding the fine particles surface-treated with a polycation (polylysine, polyallylamine, polyethyleneimine, etc.) using the charge of the biological material. It is done.

本発明の方法は、生体物質検出試験に使用するための微粒子にも好適に用いられる。生体物質検出試験は、検体等の試料に含まれる生体物質を検出する試験をさし、好ましくは、特定の生体物質を分離すること、及び/又は生体物質の相互作用を検出することを含む。生体物質の相互作用には、生体物質間の相互作用、及び生体物質とその他の物質との相互作用が包含され、例えば、タンパク質間の相互作用、タンパク質とポリペプチドの相互作用、核酸間の相互作用、タンパク質と核酸の相互作用、タンパク質と化合物との相互作用などが包含され、好ましくは生体物質間の特異的相互作用である。より具体的には、核酸相補鎖間のハイブリダイゼーション、抗原と抗体又はその断片との反応、酵素と基質又は阻害剤との結合反応、リガンドとレセプターの結合反応、アビジンとビオチンの結合反応、核酸と転写因子の結合反応、細胞接着因子の結合反応、糖鎖とタンパク質の結合反応、脂肪鎖とタンパク質の結合反応、リン酸基とタンパク質の結合反応、補欠因子とタンパク質の結合反応などが挙げられる。   The method of the present invention is also suitably used for fine particles for use in biological material detection tests. The biological material detection test refers to a test for detecting a biological material contained in a sample such as a specimen, and preferably includes separating a specific biological material and / or detecting an interaction between biological materials. The interaction between biological materials includes interactions between biological materials and interactions between biological materials and other materials, such as interactions between proteins, interactions between proteins and polypeptides, interactions between nucleic acids. Effects, protein-nucleic acid interactions, protein-compound interactions, and the like, preferably specific interactions between biological materials. More specifically, hybridization between nucleic acid complementary strands, reaction between antigen and antibody or fragment thereof, binding reaction between enzyme and substrate or inhibitor, binding reaction between ligand and receptor, binding reaction between avidin and biotin, nucleic acid And transcription factor binding reaction, cell adhesion factor binding reaction, sugar chain and protein binding reaction, fatty chain and protein binding reaction, phosphate group and protein binding reaction, prosthetic factor and protein binding reaction, etc. .

ポリエチレングリコール(PEG)の重量平均分子量は、2,000,000(2M)以上、好ましくは2〜3.5Mである。ここで、PEGの重量平均分子量は、高速液体クロマトグラフィーを使用し、ゲルパーミエーションクロマトグラフィー(GPC)法によって測定したものをさす。一般に、重量平均分子量2MのPEGには1.5M〜2MのPEGが含まれる。   The weight average molecular weight of polyethylene glycol (PEG) is 2,000,000 (2M) or more, preferably 2 to 3.5M. Here, the weight average molecular weight of PEG refers to that measured by gel permeation chromatography (GPC) method using high performance liquid chromatography. Generally, PEG having a weight average molecular weight of 2M includes 1.5M to 2M PEG.

重量平均分子量2M未満のPEGでは微粒子の凝集を抑制する効果がないので、本発明において用いるPEGの平均分子量は2M以上に限定される。凝集抑制効果を発揮するメカニズムは明らかではないが、一般的にPEGは溶液中で網目構造を形成すると考えられており、平均分子量2M以上のPEGが形成する網目構造により物理的障害が生じ、微粒子の接触頻度が低減することで凝集が抑制できると考えられる。   Since PEG having a weight average molecular weight of less than 2M has no effect of suppressing the aggregation of fine particles, the average molecular weight of PEG used in the present invention is limited to 2M or more. Although the mechanism that exerts the aggregation-inhibiting effect is not clear, it is generally considered that PEG forms a network structure in solution, and the physical structure is caused by the network structure formed by PEG having an average molecular weight of 2M or more. It is considered that aggregation can be suppressed by reducing the contact frequency.

ポリエチレングリコール(PEG)は、エチレングリコールの重合体であり、HO-(CH2-CH2-O)n-Hで表される構造を有する、ポリマーをさす。 Polyethylene glycol (PEG) is a polymer of ethylene glycol and refers to a polymer having a structure represented by HO— (CH 2 —CH 2 —O) n —H.

PEG溶液を微粒子を含む懸濁液に添加する際、PEG最終濃度、則ちPEG溶液添加後の微粒子懸濁液におけるPEG濃度が、好ましくは1w/v%以下、より好ましくは0.05〜0.1w/v%となるようにする。PEG最終濃度を0.05w/v%以上とすることにより、微粒子の凝集を効果的に抑制することができ、PEG最終濃度が1w/v%以下であればPEGが溶媒に容易に溶解する。   When the PEG solution is added to the suspension containing fine particles, the final concentration of PEG, that is, the PEG concentration in the fine particle suspension after addition of the PEG solution is preferably 1 w / v% or less, more preferably 0.05 to 0.1 w / Try to be v%. By setting the final PEG concentration to 0.05 w / v% or more, the aggregation of the fine particles can be effectively suppressed. If the final PEG concentration is 1 w / v% or less, PEG is easily dissolved in the solvent.

PEGを溶解する溶媒は、特に限定されず、例えば、リン酸緩衝液、グリシン緩衝液、トリス塩酸緩衝液、グッド緩衝液等が挙げられる。溶媒のpHは特に限定されず、その後の工程に合わせて適宜調製される。PEG溶液におけるPEG濃度は、微粒子懸濁液に添加した後のPEG最終濃度が上記濃度範囲となるように適宜選択されるが、好ましくは0.1〜5.0w/v%、より好ましくは0.5〜1w/v%である。   The solvent for dissolving PEG is not particularly limited, and examples thereof include phosphate buffer, glycine buffer, Tris-HCl buffer, Good buffer, and the like. The pH of the solvent is not particularly limited and is appropriately adjusted according to the subsequent steps. The PEG concentration in the PEG solution is appropriately selected so that the final concentration of PEG after addition to the fine particle suspension falls within the above concentration range, but is preferably 0.1 to 5.0 w / v%, more preferably 0.5 to 1 w / v%.

保存中の微粒子の濃度は特に限定されず、その後の工程に合わせて適宜調製されるが、通常、50 mg/mL以下、より好ましくは1〜10 mg/mLである。   The concentration of the microparticles during storage is not particularly limited and is appropriately adjusted according to the subsequent steps, but is usually 50 mg / mL or less, more preferably 1 to 10 mg / mL.

本発明はまた、微粒子の凝集を抑制するための微粒子保存液に関する。本発明の微粒子保存液は、重量平均分子量2,000,000以上のポリエチレングリコールを含有する。保存対象となる微粒子、及びポリエチレングリコールについては、上述したとおりである。本発明の微粒子保存液におけるポリエチレングリコールの濃度は、微粒子懸濁液に保存液を添加した後のPEG最終濃度が上記濃度範囲となるように適宜選択されるが、好ましくは0.1〜5.0w/v%、より好ましくは0.5〜1w/v%である。   The present invention also relates to a fine particle storage solution for suppressing aggregation of fine particles. The fine particle preservation solution of the present invention contains polyethylene glycol having a weight average molecular weight of 2,000,000 or more. The fine particles to be stored and polyethylene glycol are as described above. The concentration of polyethylene glycol in the fine particle preservation solution of the present invention is appropriately selected so that the final concentration of PEG after adding the preservation solution to the fine particle suspension is within the above concentration range, but preferably 0.1 to 5.0 w / v. %, More preferably 0.5 to 1 w / v%.

本発明はまた、微粒子及び重量平均分子量2,000,000以上のポリエチレングリコールを含有する、微粒子懸濁液に関する。微粒子、及びポリエチレングリコールについては、上述したとおりである。微粒子懸濁液におけるPEG濃度は、好ましくは1w/v%以下、より好ましくは0.05〜0.1w/v%である。PEG濃度を0.05w/v%以上とすることにより、微粒子の凝集を効果的に抑制することができ、PEG濃度が1w/v%以下であればPEGが溶媒に容易に溶解する。微粒子懸濁液における微粒子の濃度は特に限定されないが、通常、50 mg/mL以下、より好ましくは1〜10 mg/mLである。   The present invention also relates to a fine particle suspension containing fine particles and polyethylene glycol having a weight average molecular weight of 2,000,000 or more. The fine particles and polyethylene glycol are as described above. The PEG concentration in the fine particle suspension is preferably 1 w / v% or less, more preferably 0.05 to 0.1 w / v%. By setting the PEG concentration to 0.05 w / v% or more, the aggregation of the fine particles can be effectively suppressed. When the PEG concentration is 1 w / v% or less, PEG is easily dissolved in the solvent. The concentration of the fine particles in the fine particle suspension is not particularly limited, but is usually 50 mg / mL or less, more preferably 1 to 10 mg / mL.

本発明のポリエチレングリコールを含む保存液中で保存された微粒子を使用するときは、微粒子が保存液に懸濁された状態で用いてもよいし、使用前に洗浄し微粒子から保存液を除去してもよい。洗浄後に微粒子を懸濁する溶液は特に限定されず、使用用途にあわせて適宜選択される。   When using fine particles stored in a preservation solution containing the polyethylene glycol of the present invention, the fine particles may be used in a state suspended in the preservation solution, or washed before use to remove the preservation solution from the fine particles. May be. The solution in which the fine particles are suspended after washing is not particularly limited and is appropriately selected according to the intended use.

本発明の保存液で保存した微粒子の使用用途は特に限定されない。微粒子を適切に表面修飾することにより、例えば、免疫酵素反応、免疫凝集反応、免疫沈降反応、核酸精製、タンパク質精製、細胞回収、細菌回収等に使用することができる。例えば、免疫酵素反応においては、微粒子の凝集により全微粒子の表面積の総和が減少するために、微粒子の凝集程度により検出されるシグナル強度にばらつきが生じることが問題となることがあるが、本発明の保存方法及び保存液を用いることにより微粒子の凝集を抑制し、シグナル強度のばらつきを抑制することができる。   The usage of the fine particles stored in the storage solution of the present invention is not particularly limited. By appropriately surface-modifying the microparticles, for example, it can be used for immunoenzyme reaction, immunoaggregation reaction, immunoprecipitation reaction, nucleic acid purification, protein purification, cell recovery, bacteria recovery and the like. For example, in the immunoenzymatic reaction, since the total surface area of all the microparticles decreases due to the aggregation of the microparticles, there may be a problem that the detected signal intensity varies depending on the degree of the microparticle aggregation. By using the storage method and storage solution, aggregation of fine particles can be suppressed, and variation in signal intensity can be suppressed.

本発明の保存液を用いて保存した微粒子を、例えば、生体物質の捕捉反応の反応液や生体物質の相互作用の反応液、好ましくは、免疫酵素反応、免疫凝集反応、免疫沈降反応等の反応液に添加して、反応を実施することができる。好ましくは、本発明の保存液を用いて保存した微粒子を洗浄して保存液を除去してから、微粒子を上記のような反応液に添加して反応を実施する。反応の前に微粒子を洗浄して保存液を除去することにより、PEGの排除体積効果により反応のシグナル強度を増強することができる。   The microparticles stored using the storage solution of the present invention are, for example, a reaction solution for capturing a biological material or a reaction solution for interacting a biological material, preferably a reaction such as an immunoenzymatic reaction, an immunoagglutination reaction, an immunoprecipitation reaction, etc. The reaction can be carried out by adding to the liquid. Preferably, the fine particles stored using the preservation solution of the present invention are washed to remove the preservation solution, and then the reaction is carried out by adding the fine particles to the reaction solution as described above. By washing the microparticles before the reaction to remove the stock solution, the signal intensity of the reaction can be enhanced by the excluded volume effect of PEG.

以下に、本発明を実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

〔実施例1〕
PEG添加による凝集抑制効果の検討
評価対象の微粒子として粒径1μmの磁気微粒子MyOne(Dynal社)を用いた。一般に磁気微粒子等は低温(4℃程度)で保存され、保存期間が長期になるほど磁気微粒子の凝集が生じ進行すると考えられている。磁気微粒子の長期間保存による凝集を実験的に再現するために、前記磁気微粒子を、4 ℃で1年間保存した状態と同等であると推定される、37℃で2週間保存する加速試験を実施した。重量平均分子量2MのPEG溶液を、磁気微粒子を含む懸濁液に添加し加速試験を行った後、微粒子の粒径分布を求めた。粒径分布は粒子の相対的な大きさに比例する前方散乱(FS)、側方散乱(SS)を指標として測定し、加速試験後の微粒子中に含まれる単分散粒子の割合を求めた。磁気微粒子の濃度は、1 mg/mLとした。その結果を図1に示す。微粒子の懸濁液として通常用いられているリン酸緩衝液(以下PBSとする)に磁気微粒子を懸濁し、4℃で2週間保存した時の単分散粒子の割合は67.7%であるのに対し、37℃で2週間の加速試験を行ったときの単分散粒子の割合は31.8%に減少し磁気微粒子が凝集していた。一方、重量平均分子量2MのPEGを最終濃度0.05〜0.25w/v%で添加したときは、37℃で2週間の加速試験後の単分散粒子の割合は78%以上で、重量平均分子量2MのPEGの添加により磁気微粒子の凝集を抑制できることが明らかになった。比較対照として、重量平均分子量0.5MのPEGを最終濃度2.5又は0.25w/v%で添加したときは、37℃で2週間の加速試験後の単分散粒子の割合は50%以下であり、重量平均分子量0.5MのPEGでは磁気微粒子の凝集を抑制することができなかった。この結果は、重量平均分子量2MのPEGは磁気微粒子の凝集抑制に効果があることを示す。
Example 1
Examination of Aggregation Inhibition Effect by Addition of PEG Magnetic fine particles MyOne (Dynal) having a particle diameter of 1 μm were used as fine particles to be evaluated. In general, magnetic fine particles and the like are stored at a low temperature (about 4 ° C.), and it is considered that the magnetic particles aggregate and progress as the storage period becomes longer. In order to experimentally reproduce the agglomeration of magnetic fine particles after long-term storage, an accelerated test was performed to store the magnetic fine particles at 37 ° C for 2 weeks, which is estimated to be equivalent to the state of being stored at 4 ° C for 1 year. did. A PEG solution having a weight average molecular weight of 2M was added to a suspension containing magnetic fine particles and subjected to an acceleration test, and then the particle size distribution of the fine particles was determined. The particle size distribution was measured using forward scattering (FS) and side scattering (SS), which are proportional to the relative size of the particles, as indicators, and the proportion of monodispersed particles contained in the fine particles after the acceleration test was determined. The concentration of the magnetic fine particles was 1 mg / mL. The results are shown in FIG. Whereas the percentage of monodisperse particles is 67.7% when magnetic fine particles are suspended in a phosphate buffer solution (hereinafter referred to as PBS) that is normally used as a fine particle suspension and stored at 4 ° C for 2 weeks. When the accelerated test was conducted at 37 ° C. for 2 weeks, the proportion of monodisperse particles decreased to 31.8%, and the magnetic fine particles were aggregated. On the other hand, when PEG having a weight average molecular weight of 2M was added at a final concentration of 0.05 to 0.25 w / v%, the proportion of monodispersed particles after an accelerated test at 37 ° C. for 2 weeks was 78% or more, and the weight average molecular weight of 2M It became clear that the addition of PEG can suppress the aggregation of magnetic fine particles. As a comparative control, when PEG having a weight average molecular weight of 0.5 M was added at a final concentration of 2.5 or 0.25 w / v%, the proportion of monodispersed particles after an accelerated test at 37 ° C. for 2 weeks was 50% or less, PEG having an average molecular weight of 0.5 M could not suppress aggregation of magnetic fine particles. This result indicates that PEG having a weight average molecular weight of 2M is effective in suppressing aggregation of magnetic fine particles.

微粒子を用いた免疫酵素反応評価
以下に示す方法を用いて、加速試験(37℃で2週間保存)を行った後の磁気微粒子の反応性を評価した。
免疫酵素反応のモデル系としてサンドイッチELISA系を用いた(図2)。使用した磁気微粒子1の表面にはストレプトアビジン2が修飾され微粒子3を形成している。検出成分5として肝臓がんの腫瘍マーカーであるα-フェトプロテイン(以下AFPとする、Dako X0900)、捕捉抗体4としてビオチン標識抗AFPヤギポリクローナル抗体(NBT PA-011)、検出抗体6としてアルカリフォスファターゼ標識抗AFPラビットポリクローナル抗体(Dako A008)を用いた。1.8 μLの捕捉抗体4と0.5 μLの検出成分5と0.6 μLの検出抗体6と180 μLのWash Buffer(0.9 % NaCl、0.1 % Tween20、以下WBとする)を混合して複合体7を形成させたものを、以降の反応に用いた。反応のフローを図3に示す。保存液中の磁気微粒子の濃度は、1 mg/mLとした。図3に示す保存液中で加速試験を行った微粒子3を14.4 μg使用し、白色ウェルプレート中で、これに20 μLの複合体7と80 μLのWBを混合し、37 ℃で反応後、磁気分離により微粒子3を回収した。80 μLのWBで微粒子を2回洗浄後、発光基質CDP-star(GEヘルスケアバイオサイエンス)を30 μL添加し、37 ℃で5分間反応させた。発光の測定はプレートリーダー(TECAN ULTRA)で行った。
Evaluation of immunoenzyme reaction using microparticles The reactivity of magnetic microparticles after an accelerated test (stored at 37 ° C. for 2 weeks) was evaluated using the following method.
A sandwich ELISA system was used as a model system for the immunoenzymatic reaction (FIG. 2). Streptavidin 2 is modified to form fine particles 3 on the surface of the magnetic fine particles 1 used. Detection component 5 is α-fetoprotein (hereinafter referred to as AFP, Dako X0900), a tumor marker for liver cancer, biotin-labeled anti-AFP goat polyclonal antibody (NBT PA-011) as capture antibody 4, and alkaline phosphatase label as detection antibody 6. An anti-AFP rabbit polyclonal antibody (Dako A008) was used. 1.8 μL of capture antibody 4, 0.5 μL of detection component 5, 0.6 μL of detection antibody 6 and 180 μL of Wash Buffer (0.9% NaCl, 0.1% Tween20, hereinafter referred to as WB) are mixed to form complex 7. This was used for subsequent reactions. The reaction flow is shown in FIG. The concentration of magnetic fine particles in the preservation solution was 1 mg / mL. Using 14.4 μg of microparticles 3 that were accelerated in the stock solution shown in Fig. 3, 20 μL of complex 7 and 80 μL of WB were mixed in a white well plate and reacted at 37 ° C. Fine particles 3 were recovered by magnetic separation. After washing the microparticles twice with 80 μL of WB, 30 μL of luminescent substrate CDP-star (GE Healthcare Bioscience) was added and reacted at 37 ° C. for 5 minutes. Luminescence was measured with a plate reader (TECAN ULTRA).

図3に示す保存液中で加速試験を行った微粒子3の単分散粒子の割合を図4に示す。単分散粒子の割合は、0.1w/v%PEGで78.5%であり、PBS中で加速試験を行った微粒子3より単分散粒子の割合が高く、PEGに凝集を抑制する効果があることが示された。   FIG. 4 shows the ratio of the monodispersed particles of the fine particles 3 subjected to the acceleration test in the preservation solution shown in FIG. The proportion of monodisperse particles is 78.5% at 0.1 w / v% PEG, which is higher than that of fine particles 3 subjected to an acceleration test in PBS, indicating that PEG has an effect of suppressing aggregation. It was done.

次に、図3に示す保存液中で加速試験を行った微粒子3を使用して免疫酵素反応を行ったときの結果を、図5を用いて説明する。PBS中で加速試験を行った微粒子3を用いた場合のシグナル強度は、4℃で2週間保存した微粒子3を用いた場合と比較し約3割減少した。重量平均分子量2MのPEGを含む溶液中で加速試験を行った微粒子3を用いた場合は、4℃で2週間保存した微粒子3を用いた場合と比較してシグナル強度が約2倍に上昇した。この結果は、凝集抑制及びシグナル強度増強の両観点から、重量平均分子量2MのPEGは微粒子3の保存液の成分として適していること、平均分子量2MのPEGを、微粒子懸濁液に添加することで微粒子の凝集を抑制できることを示すものである。   Next, the results when the immunoenzymatic reaction was performed using the microparticles 3 subjected to the acceleration test in the preservation solution shown in FIG. 3 will be described with reference to FIG. The signal intensity in the case of using the microparticles 3 subjected to the acceleration test in PBS was reduced by about 30% compared to the case of using the microparticles 3 stored at 4 ° C. for 2 weeks. When using microparticles 3 that had been accelerated in a solution containing PEG with a weight average molecular weight of 2M, the signal intensity increased approximately twice compared to when microparticles 3 stored at 4 ° C for 2 weeks were used. . This result shows that from the viewpoints of both aggregation suppression and signal intensity enhancement, PEG with a weight average molecular weight of 2M is suitable as a component of the preservation solution for fine particles 3, and PEG with an average molecular weight of 2M is added to the fine particle suspension. This shows that aggregation of fine particles can be suppressed.

〔実施例2〕
実施例1と同様に重量平均分子量2MのPEGを含む溶液中で加速試験(37℃で2週間保存)を行った微粒子3を、免疫酵素反応を行う直前に洗浄し、PEGを除去してから免疫酵素反応に使用した。反応のフローを図6に示す。
(Example 2)
After removing the PEG, the microparticles 3 subjected to the accelerated test (stored at 37 ° C. for 2 weeks) in a solution containing PEG having a weight average molecular weight of 2M as in Example 1 were washed immediately before the immunoenzymatic reaction. Used for immunoenzymatic reaction. The reaction flow is shown in FIG.

図6に示す保存液中で試験を行った微粒子3の単分散粒子の割合を図7に示す。微粒子3がPEGを含む保存液に懸濁したままの単分散粒子の割合は79.1%であるのに対し、加速試験後にPEGを除去した微粒子3の単分散粒子の割合は87.3%であり、PEGを除去しても微粒子3は凝集せず分散状態を維持していることが確認できた。   FIG. 7 shows the ratio of the monodisperse particles of the fine particles 3 tested in the preservation solution shown in FIG. The proportion of monodisperse particles in which fine particles 3 are suspended in a preservation solution containing PEG is 79.1%, whereas the proportion of monodispersed particles of fine particles 3 from which PEG has been removed after the acceleration test is 87.3%. It was confirmed that the fine particles 3 did not agglomerate and maintained a dispersed state even when the was removed.

次に、図6に示す保存液中で試験を行った微粒子3を使用して免疫酵素反応を行ったときの結果を図8に示す。PEGを含む保存液中での加速試験後にPEGを除去した微粒子3のシグナル強度は、PBS中4℃で2週間保存した微粒子と比較しおよそ3割上昇した。この結果は、重量平均分子量2MのPEG溶液中で微粒子3を保存することで、微粒子3の凝集を抑制しシグナル強度の低下を防止できたことを示す。微粒子3を、PEGを含む保存液中で加速試験を実施した後、PEGを含む保存液に懸濁したまま使用した時のシグナル強度と、PEGを除去して使用した時のシグナル強度の差は、PEGの排除体積効果によるシグナル強度の増強を示す。微粒子3を、PBSで懸濁し4℃で2週間保存した時のシグナル強度と、PEGを含む保存液中で加速試験を実施した後PEGを除去し使用した時のシグナル強度の差は、PEGを添加することにより微粒子3の凝集が抑制され表面積の低下が防止され、シグナル強度が維持されたことを示す。   Next, FIG. 8 shows the results when an immunoenzymatic reaction was performed using the microparticles 3 tested in the preservation solution shown in FIG. The signal intensity of the microparticles 3 from which PEG was removed after the acceleration test in a storage solution containing PEG was increased by approximately 30% compared to the microparticles stored in PBS at 4 ° C. for 2 weeks. This result shows that storage of the microparticles 3 in a PEG solution having a weight average molecular weight of 2M suppressed aggregation of the microparticles 3 and prevented a decrease in signal intensity. The difference between the signal intensity when the microparticles 3 were used in a preservation solution containing PEG and suspended in the preservation solution containing PEG, and the signal intensity when used after removing PEG was , Shows enhanced signal intensity due to the excluded volume effect of PEG. The difference between the signal intensity when microparticle 3 was suspended in PBS and stored at 4 ° C for 2 weeks and the signal intensity when PEG was removed and used after accelerating tests in a preservation solution containing PEG By adding, the aggregation of the fine particles 3 is suppressed, the reduction of the surface area is prevented, and the signal intensity is maintained.

以上のことから、凝集抑制及びシグナル強度安定化の両観点において、重量平均分子量2MのPEGは微粒子3の保存液の成分として適していること、重量平均分子量2MのPEGを、微粒子3を含む懸濁液に添加することで微粒子3の凝集を抑制できることが明らかになった。また本発明により、従来例2と異なりPEGを保存液に添加するだけで微粒子3の凝集を簡便に抑制することが可能となった。   From the above, in terms of both aggregation suppression and signal intensity stabilization, PEG having a weight average molecular weight of 2M is suitable as a component of the preservation solution for the fine particles 3, and PEG having a weight average molecular weight of 2M is included in the suspension containing the fine particles 3. It was revealed that aggregation of the fine particles 3 can be suppressed by adding to the suspension. Also, according to the present invention, unlike the conventional example 2, the aggregation of the fine particles 3 can be easily suppressed by simply adding PEG to the preservation solution.

1…磁気微粒子
2…ストレプトアビジン
3…微粒子
4…捕捉抗体
5…検出成分
6…検出抗体
7…複合体
1… Magnetic particles
2 ... Streptavidin
3 ... fine particles
4… Capture antibody
5… Detection component
6… Detection antibody
7 ... complex

Claims (15)

微粒子の凝集を抑制する方法であって、重量平均分子量2,000,000以上のポリエチレングリコールの溶液を、微粒子を含む懸濁液に添加することを含む、前記方法。   A method for suppressing aggregation of fine particles, comprising adding a solution of polyethylene glycol having a weight average molecular weight of 2,000,000 or more to a suspension containing fine particles. 微粒子が磁気微粒子である、請求項1に記載の方法。   The method according to claim 1, wherein the fine particles are magnetic fine particles. 微粒子の粒径が1μm以下である、請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the particle diameter of the fine particles is 1 µm or less. ポリエチレングリコール最終濃度が0.05〜1w/v%である、請求項1〜3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the final concentration of polyethylene glycol is 0.05 to 1 w / v%. 微粒子の凝集を抑制するための微粒子保存液であって、重量平均分子量2,000,000以上のポリエチレングリコールを含有する前記保存液。   A fine particle preservation solution for suppressing aggregation of fine particles, the preservation solution containing polyethylene glycol having a weight average molecular weight of 2,000,000 or more. 微粒子が磁気微粒子である、請求項5に記載の保存液。   The preservation solution according to claim 5, wherein the fine particles are magnetic fine particles. 微粒子が粒径1μm以下の微粒子である、請求項5又は6に記載の保存液。   The preservation solution according to claim 5 or 6, wherein the fine particles are fine particles having a particle diameter of 1 µm or less. ポリエチレングリコール濃度が0.1〜5.0w/v%である、請求項5〜7のいずれか1項に記載の保存液。   The preservation solution according to any one of claims 5 to 7, wherein the polyethylene glycol concentration is 0.1 to 5.0 w / v%. 請求項5〜8のいずれか1項に記載の保存液を用いて保存した微粒子を、反応液に添加するステップを有する、反応方法。   The reaction method which has a step which adds the microparticles | fine-particles preserve | saved using the preservation | save liquid of any one of Claims 5-8 to a reaction liquid. 請求項5〜8のいずれか1項に記載の保存液を用いて保存した微粒子を洗浄し保存液を除去するステップと、保存液を除去した微粒子を反応液に添加するステップを有する、反応方法。   A reaction method comprising: washing fine particles stored using the preservation solution according to any one of claims 5 to 8 and removing the preservation solution; and adding the fine particles from which the preservation solution has been removed to the reaction solution. . 微粒子及び重量平均分子量2,000,000以上のポリエチレングリコールを含有する、微粒子懸濁液。   A fine particle suspension containing fine particles and polyethylene glycol having a weight average molecular weight of 2,000,000 or more. 微粒子が磁気微粒子である、請求項11に記載の微粒子懸濁液。   The fine particle suspension according to claim 11, wherein the fine particles are magnetic fine particles. 微粒子の粒径が1μm以下である、請求項11又は12に記載の微粒子懸濁液。   The fine particle suspension according to claim 11 or 12, wherein the fine particles have a particle size of 1 µm or less. ポリエチレングリコール濃度が0.05〜1w/v%である、請求項11〜13のいずれか1項に記載の微粒子懸濁液。   The fine particle suspension according to any one of claims 11 to 13, wherein the polyethylene glycol concentration is 0.05 to 1 w / v%. 微粒子が生体物質を結合するための表面修飾を有する、請求項11〜14のいずれか1項に記載の微粒子懸濁液。   The fine particle suspension according to any one of claims 11 to 14, wherein the fine particles have a surface modification for binding a biological substance.
JP2009173651A 2009-07-24 2009-07-24 Method for suppressing aggregation of fine particles and preservation solution Expired - Fee Related JP5461910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009173651A JP5461910B2 (en) 2009-07-24 2009-07-24 Method for suppressing aggregation of fine particles and preservation solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009173651A JP5461910B2 (en) 2009-07-24 2009-07-24 Method for suppressing aggregation of fine particles and preservation solution

Publications (2)

Publication Number Publication Date
JP2011027552A true JP2011027552A (en) 2011-02-10
JP5461910B2 JP5461910B2 (en) 2014-04-02

Family

ID=43636471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009173651A Expired - Fee Related JP5461910B2 (en) 2009-07-24 2009-07-24 Method for suppressing aggregation of fine particles and preservation solution

Country Status (1)

Country Link
JP (1) JP5461910B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025634A1 (en) * 2013-08-21 2015-02-26 日本軽金属株式会社 Substrate for biochips and method for producing same
JP6224217B1 (en) * 2016-12-27 2017-11-01 Jsr株式会社 How to store latex particle dispersion
WO2021210622A1 (en) * 2020-04-15 2021-10-21 合同会社H.U.グループ中央研究所 Method for harvesting extracellular vesicles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135999A (en) * 1993-11-16 1995-05-30 Tokuyama Corp Dried reagent for measuring blood coagulation time
JPH09151110A (en) * 1995-11-30 1997-06-10 Pola Chem Ind Inc Agglomeration suppressing agent and liquid cosmetic containing the same
JPH11183478A (en) * 1997-12-25 1999-07-09 Hitachi Chem Co Ltd Antibody measuring reagent and its production method
JP2005353888A (en) * 2004-06-11 2005-12-22 Stanley Electric Co Ltd Light emitting element
JP2006227027A (en) * 2000-12-28 2006-08-31 Shino Test Corp Measuring reagent for measured material
WO2007037410A1 (en) * 2005-09-30 2007-04-05 Pulse-Immunotech Corporation Method of assaying substance with affinity in sample including step of destroying blood-cell ingredient

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135999A (en) * 1993-11-16 1995-05-30 Tokuyama Corp Dried reagent for measuring blood coagulation time
JPH09151110A (en) * 1995-11-30 1997-06-10 Pola Chem Ind Inc Agglomeration suppressing agent and liquid cosmetic containing the same
JPH11183478A (en) * 1997-12-25 1999-07-09 Hitachi Chem Co Ltd Antibody measuring reagent and its production method
JP2006227027A (en) * 2000-12-28 2006-08-31 Shino Test Corp Measuring reagent for measured material
JP2005353888A (en) * 2004-06-11 2005-12-22 Stanley Electric Co Ltd Light emitting element
WO2007037410A1 (en) * 2005-09-30 2007-04-05 Pulse-Immunotech Corporation Method of assaying substance with affinity in sample including step of destroying blood-cell ingredient

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025634A1 (en) * 2013-08-21 2015-02-26 日本軽金属株式会社 Substrate for biochips and method for producing same
JP2015040729A (en) * 2013-08-21 2015-03-02 日本軽金属株式会社 Biochip substrate and manufacturing method therefor
JP6224217B1 (en) * 2016-12-27 2017-11-01 Jsr株式会社 How to store latex particle dispersion
JP2018105716A (en) * 2016-12-27 2018-07-05 Jsr株式会社 Storage method of latex particle fluid dispersion
WO2018124203A1 (en) * 2016-12-27 2018-07-05 Jsr株式会社 Method of storing latex particle dispersion liquid
WO2021210622A1 (en) * 2020-04-15 2021-10-21 合同会社H.U.グループ中央研究所 Method for harvesting extracellular vesicles

Also Published As

Publication number Publication date
JP5461910B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
US9739768B2 (en) Methods and reagents for improved selection of biological materials
JP2008241560A (en) Protein immobilizing carrier and its manufacturing method
JP6348553B2 (en) Pretreatment reagent kit for detecting HBs antigen and reagent kit for HBs antigen detection
JP5184554B2 (en) Detection method and quantification method of detection target
EP3415912B1 (en) Analyte detection method and reagent kit for detecting analyte
JP5461910B2 (en) Method for suppressing aggregation of fine particles and preservation solution
JP2021096268A (en) Method for measuring soluble interleukin-2 receptor and agent for measurement
JP4935973B2 (en) Organic polymer particles and method for producing the same
JP4879067B2 (en) Sample preparation solution for immunoassay, reagent kit for immunoassay, and immunoassay method
JP4911280B2 (en) Organic polymer particles and method for producing the same
JPWO2002048711A1 (en) Immunological analysis reagent and analysis method
TW201209413A (en) Immunomagnetic complex and its use in red blood cell grouping/phenotyping
JP4975601B2 (en) Reagent kit for HCV antibody measurement and HCV antibody measurement method
JP2008190946A (en) Immunoassay using protein adsorption inhibitor, and substrate and kit for immunoassay
EP4212875A1 (en) Biochip, method for producing same, and use of same
JPH0763761A (en) Manufacture of fine magnetic particles for fixing physiologically active material
JP2005069926A (en) Magnetic particle for immunological inspection
JP4761068B2 (en) Magnetic particles and probe binding particles
JP2005083905A (en) Magnetic particle
ES2901625T3 (en) Method of producing a probe-bound carrier and method of detecting or separating a target substance
JP2003344410A (en) Immuno-measurement reagent and immuno-measurement method
JP4831352B2 (en) Probe binding particle, method for producing the same, and blocking agent
WO2017115440A1 (en) Method for detecting substance of interest, method for quantifying substance of interest, kit, and method for preparing reagent
JP2006177754A (en) Optical interaction measuring method
JP2008261840A (en) Hcv antibody measuring reagent kit and hcv antibody measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees