JP2005083905A - Magnetic particle - Google Patents

Magnetic particle Download PDF

Info

Publication number
JP2005083905A
JP2005083905A JP2003316543A JP2003316543A JP2005083905A JP 2005083905 A JP2005083905 A JP 2005083905A JP 2003316543 A JP2003316543 A JP 2003316543A JP 2003316543 A JP2003316543 A JP 2003316543A JP 2005083905 A JP2005083905 A JP 2005083905A
Authority
JP
Japan
Prior art keywords
magnetic
particle
cells
particles
magnetic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003316543A
Other languages
Japanese (ja)
Inventor
Satoshi Katayose
聡 片寄
Ichiro Ozaki
一郎 尾崎
Mitsuhiro Murata
充弘 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2003316543A priority Critical patent/JP2005083905A/en
Publication of JP2005083905A publication Critical patent/JP2005083905A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a magnetic particle reduced in the non-specific adsorption of a cell and excellent as a cell capturing carrier for separating and refining the cell in a biochemical/medical field. <P>SOLUTION: The magnetic particle is characterized in that at least the surface is formed of a material having a low adsorbability of the cell and has a functional group usable in the chemically bonding with a probe. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、生化学・医学分野での細胞の分離精製用の担体として磁性粒子に関する。   The present invention relates to magnetic particles as a carrier for separation and purification of cells in the biochemistry and medical fields.

近年、磁性粒子はその表面に抗体や抗原などのプローブを固定化し、多様な細胞群のなかから一種または複数種の細胞を特異的に捕捉し遺伝子検査などを行う細胞捕捉用担体として用いられている。このような細胞捕捉用担体においては、抗体、抗原、レクチン等のプローブが磁性粒子上に固定化され、サンプル中の細胞、特に動物細胞がプローブを介して磁性粒子上に捕捉される。続いて、細胞を免疫学的に染色することによりフローサイトメータを用いた解析に用いられたり、核酸抽出などの操作が行われた後、得られた細胞中の核酸(以下、検査対象核酸)をポリメラーゼ連鎖反応(PCR)等の核酸増幅法などによる遺伝子検査に用いられる。近年、疾病の早期発見などの目的のため検査の高感度化が求められており、検査の感度向上は大きな課題となっている。磁性粒子を用いた細胞捕捉担体においては、血液中の癌細胞の検出等に用いることにより癌の早期発見が期待され、数個の細胞を捕捉・検出するための技術開発が行われている。 In recent years, magnetic particles have been used as cell capture carriers to immobilize probes such as antibodies and antigens on their surfaces, specifically capture one or more types of cells from various cell groups, and perform genetic testing and the like. Yes. In such a cell-capturing carrier, probes such as antibodies, antigens, and lectins are immobilized on the magnetic particles, and cells in the sample, particularly animal cells, are captured on the magnetic particles via the probes. Subsequently, the cells are used for analysis using a flow cytometer by immunologically staining the cells, or after nucleic acid extraction and other operations are performed, the nucleic acids in the cells obtained (hereinafter referred to as test target nucleic acids) Is used for genetic testing by a nucleic acid amplification method such as polymerase chain reaction (PCR). In recent years, for the purpose of early detection of diseases and the like, it has been demanded to increase the sensitivity of examinations, and improving the sensitivity of examinations has become a major issue. In cell capture carriers using magnetic particles, early detection of cancer is expected by using it for detection of cancer cells in blood and the like, and technical developments for capturing and detecting several cells have been carried out.

これらの技術の発展により理論上は一個の細胞の存在まで検出できるレベルに達しているといわれているが、実際には十分な感度は得られていない。その原因のひとつとして、磁性粒子への細胞の非特異的な吸着が上げられる。例えば、血液中の癌細胞を癌特異抗体を結合した磁性粒子で捕捉する場合、血液中には癌細胞以外にリンパ球、好中球、好酸球、好塩基球などの細胞が多数存在し、これらが磁性粒子に非特異的に吸着するとフローサイトメータでのノイズとなったり、遺伝子検査では核酸増幅に持ち込める核酸量の制限からサンプルの一部しか使えない結果となり感度低下を引き起こす。
また、遺伝子検査においては、磁性粒子表面への核酸の非特異的な吸着がおこると、細胞から抽出した核酸が磁性粒子に非特異的に吸着してしまえば検出が不可能となる場合がある。
このようなことから磁性粒子表面への細胞および核酸の非特異的な吸着の抑制が強く求められている。
The development of these technologies is theoretically said to have reached a level where even the presence of a single cell can be detected, but in reality, sufficient sensitivity has not been obtained. One of the causes is nonspecific adsorption of cells to magnetic particles. For example, when capturing cancer cells in blood with magnetic particles bound with cancer-specific antibodies, there are many cells such as lymphocytes, neutrophils, eosinophils, and basophils in addition to cancer cells in the blood. When these non-specifically adsorb to magnetic particles, noise is generated in the flow cytometer, and in genetic testing, only a part of the sample can be used due to the limitation of the amount of nucleic acid that can be brought into nucleic acid amplification, resulting in a decrease in sensitivity.
In addition, in genetic testing, if non-specific adsorption of nucleic acids to the surface of magnetic particles occurs, detection may be impossible if nucleic acids extracted from cells are non-specifically adsorbed to magnetic particles. .
For this reason, suppression of nonspecific adsorption of cells and nucleic acids to the surface of magnetic particles is strongly demanded.

従来、細胞の非特異吸着の抑制としては、粒子表面にポリウレタンのコーテイングする方法が取られてきた。しかし、細胞の非特異吸着の抑制としては十分ではなく、また核酸の非特異吸着の抑制法と両立するものではなかった。一方、核酸の非特異吸着の抑制法として、キャリアと呼ばれるサケ精子などから抽出したDNAを遺伝子試薬に添加する方法がとられてきた。しかし、キャリアの非特異吸着効果が十分得られない場合や、生体物質であるキャリアの品質安定性の問題、キャリアと検査対象核酸の交差反応といった問題点があり、非特異吸着の抑制法としては十分なものではなかった。   Conventionally, as a method for suppressing nonspecific adsorption of cells, a method of coating polyurethane on the particle surface has been taken. However, it is not sufficient for suppressing nonspecific adsorption of cells, and is not compatible with a method for suppressing nonspecific adsorption of nucleic acids. On the other hand, as a method for suppressing nonspecific adsorption of nucleic acid, a method of adding DNA extracted from salmon sperm called a carrier to a gene reagent has been employed. However, there are problems such as when the non-specific adsorption effect of the carrier cannot be obtained sufficiently, the quality stability of the carrier that is a biological substance, and the cross reaction between the carrier and the nucleic acid to be tested. It was not enough.

特開平11-174057公報Japanese Patent Laid-Open No. 11-174057

特開2000-304749公報JP 2000-304749 A 特開2001-272406公報JP 2001-272406 A

本発明は、このような従来の問題点を解決するために、細胞および核酸に対して低吸着性表面をもつ磁性粒子により細胞および核酸の磁性粒子へ非特異吸着を抑制し、従来に比較して高純度の細胞の捕捉・検査を可能とする磁性粒子の提供を目的とするものである。   In order to solve such conventional problems, the present invention suppresses nonspecific adsorption of cells and nucleic acids to magnetic particles by using magnetic particles having a low adsorptive surface for cells and nucleic acids. It is intended to provide magnetic particles that can capture and inspect high-purity cells.

すなわち本発明は、磁性粒子であって少なくともその表面が細胞および核酸に対して低吸着性の材料で形成されており、粒子表面にプローブとの化学結合に使用可能な官能基を有していることを特徴とする磁性粒子である。   That is, the present invention is a magnetic particle, at least the surface of which is formed of a material having low adsorptivity to cells and nucleic acids, and has a functional group that can be used for chemical bonding with a probe on the particle surface. This is a magnetic particle.

本発明の磁性粒子において、少なくともその表面が細胞および核酸に対して低吸着性の材料を得るためには、磁性粒子の表面を非イオン性の親水性のポリマーで被覆することにより達成される。磁性粒子表面への細胞および核酸の非特異吸着は、疎水結合とイオン結合がその重要な役割を果たしており、粒子表面の非イオン性ポリマーよる親水化によって非特異吸着を大幅に低減できる。
本発明の免疫検査用磁性粒子において、基材となる磁性粒子には特に制限は無く、特公平05−10808や特開平7−82301、特表平2−5017853などの方法で製造した粒子が利用可能であるが、好ましくは磁性粒子が核粒子の表面にFeおよびFeの少なくとも一方を含む磁性体層が形成された母粒子に重合により該磁性体層上にポリマー層を形成する磁性粒子を用いることが出来る。磁性粒子の表面に非イオン性の親水性ポリマーを導入する方法としては、磁性粒子の存在下で、非イオン性の親水性モノマーおよびその他の共重合性モノマーを液体中で重合を行う方法をあげることができる。
すなわち、磁性粒子の存在下で、主原料としての非イオン性の親水性モノマーおよび必要に応じて官能基を有する共重合性モノマーや他の共重合性モノマー、副原料である重合開始剤、乳化剤、分散剤、界面活性剤、電解質、架橋剤、分子量調節剤などが必要に応じて添加し、液体中で重合を行う。非イオン性の親水性モノマーとしては、ヒドロキシアルキル(メタ)アクリレート、アルコキシアルキル(メタ)アクリレート、ポリオキシアルキレン(C2−C4)基含有(メタ)アクリレート、エポキシ基含有(メタ)アクリレート、ホスホリルコリン類似基含有単量体をあげることができる。官能基を有する共重合性モノマーとしては、アクリル酸、メタクリル酸、イタコン酸、無類マレイン酸、クロトン酸などのモノまたはジカルボン酸化合物をあげることができる。他の共重合性モノマーとしては、スチレン、ジビニルベンゼンなどの芳香族ビニル単量体、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレートなどのエチレン性不飽和カルボン酸アルキルエステルなどをあげることができる。
In the magnetic particle of the present invention, at least the surface of the magnetic particle can be obtained by coating the surface of the magnetic particle with a nonionic hydrophilic polymer in order to obtain a material having a low adsorptivity to cells and nucleic acids. Nonspecific adsorption of cells and nucleic acids to the surface of magnetic particles plays an important role in hydrophobic and ionic bonds, and nonspecific adsorption can be greatly reduced by hydrophilization of the particle surface with a nonionic polymer.
In the magnetic particle for immunological test of the present invention, there is no particular limitation on the magnetic particle used as a base material, and particles produced by a method such as Japanese Patent Publication No. 05-10808, Japanese Patent Application Laid-Open No. 7-82301, Japanese Patent Publication No. 2-5017853 are used. Although it is possible, the polymer layer is preferably formed on the magnetic layer by polymerizing the mother particle in which the magnetic particle is formed with a magnetic layer containing at least one of Fe 2 O 3 and Fe 3 O 4 on the surface of the core particle. Magnetic particles to be formed can be used. As a method for introducing a nonionic hydrophilic polymer onto the surface of magnetic particles, a method in which a nonionic hydrophilic monomer and other copolymerizable monomers are polymerized in a liquid in the presence of the magnetic particles is exemplified. be able to.
That is, in the presence of magnetic particles, a nonionic hydrophilic monomer as a main raw material, a copolymerizable monomer having a functional group as necessary, other copolymerizable monomers, a polymerization initiator as an auxiliary raw material, an emulsifier In addition, a dispersant, a surfactant, an electrolyte, a crosslinking agent, a molecular weight regulator and the like are added as necessary, and polymerization is performed in a liquid. Nonionic hydrophilic monomers include hydroxyalkyl (meth) acrylate, alkoxyalkyl (meth) acrylate, polyoxyalkylene (C2-C4) group-containing (meth) acrylate, epoxy group-containing (meth) acrylate, and phosphorylcholine-like group The containing monomer can be raised. Examples of the copolymerizable monomer having a functional group include mono- or dicarboxylic acid compounds such as acrylic acid, methacrylic acid, itaconic acid, non-maleic acid, and crotonic acid. Other copolymerizable monomers include aromatic vinyl monomers such as styrene and divinylbenzene, ethylenic monomers such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and cyclohexyl (meth) acrylate. Examples thereof include saturated carboxylic acid alkyl esters.

本発明の磁性粒子において、捕捉対象の細胞およびそれに含まれる核酸の非特異吸着が完全に抑制されることが理想であるが、現実には核酸増幅検査に持ち込む核酸量が核酸増幅に影響を与えず、また核酸吸着が核酸増幅検査の感度に比較して十分低いレベルの吸着量であればよい。通常1mLの血液から細胞の捕捉に1mg程度の粒子が使われ、核酸増幅検査に持ち込む核酸量の制限から、細胞の非特異吸着量が1000個/mg粒子以下、核酸の非特異吸着量が10コピー/mg粒子以下であれば問題はない。   In the magnetic particles of the present invention, it is ideal that nonspecific adsorption of cells to be captured and nucleic acids contained therein is completely suppressed. However, in reality, the amount of nucleic acid brought into the nucleic acid amplification test affects nucleic acid amplification. In addition, it is sufficient that the amount of adsorption of the nucleic acid is sufficiently lower than the sensitivity of the nucleic acid amplification test. Usually, about 1 mg of particles are used to capture cells from 1 mL of blood, and due to the limitation of the amount of nucleic acid brought into the nucleic acid amplification test, the nonspecific adsorption amount of cells is 1000 particles / mg particle or less, and the nonspecific adsorption amount of nucleic acid is 10 There is no problem as long as the copy / mg particle or less.

本発明の磁性粒子の実際の使用に当たって磁性粒子にプローブを結合させる方法としては、物理吸着法または化学結合法をあげることができるが、安定的な使用のためには通常一次プローブを磁性粒子表面の官能基と化学的に結合させる。この方法としては、例えば粒子表面のカルボキシル基とプローブのアミノ基を反応させる場合はカルボジイミド等の縮合剤を使用することができる。   In the actual use of the magnetic particle of the present invention, as a method of binding the probe to the magnetic particle, a physical adsorption method or a chemical bonding method can be mentioned, but for the stable use, the primary probe is usually used on the surface of the magnetic particle. It is chemically bonded to the functional group of As this method, for example, when a carboxyl group on the particle surface is reacted with an amino group of a probe, a condensing agent such as carbodiimide can be used.

本発明の磁性粒子は、細胞の非特異吸着が少ないため、生化学・医学分野での細胞の分離精製用のための細胞捕捉用担体として優れていることがわかる。   It can be seen that the magnetic particles of the present invention are excellent as a cell capture carrier for separating and purifying cells in the biochemistry and medical fields because of less non-specific adsorption of cells.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらによって制限されるものではない。
参考例
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not restrict | limited by these.
Reference example

1.核粒子の作製
特公昭57−24369号公報記載の膨潤重合法、ジャーナル オブポリマーサイエンス ポリマーレター エディション(J.Polym.Sci.,Polymer Letter Ed.)記載の重合方法、あるいは本発明者らが先に提案した重合方法(特開昭61−215602、同61−215603、同61−215604)を参考に下記核粒子を作製した。下記核粒子は、重合後遠心分離により粒子のみ取り出したものをさらに水洗し、乾燥、粉砕した。
1. Preparation of Core Particles Swelling polymerization method described in Japanese Patent Publication No. 57-24369, polymerization method described in Journal of Polymer Science, Polymer Letter Edition (J. Polym. Sci., Polymer Letter Ed.), Or the present inventors The following core particles were prepared with reference to the proposed polymerization method (Japanese Patent Laid-Open Nos. 61-215602, 61-215603, and 61-215604). The following core particles were further washed with water after being polymerized by centrifugation, dried and pulverized.

核粒子1;メチルメタクリレート/ジビニルベンゼン=80/20共重合体
(平均粒径1.5μm、CV値2.2%)
核粒子2;スチレン/ジビニルベンゼン=80/20共重合体
(平均粒径3.5μm、CV値2.5%)
2.核粒子への磁性体の被覆(磁性体層の形成)
油性磁性流体「FV55」[松本油脂(株)製]にアセトンを加えて粒子を析出沈殿させた後、これを乾燥することにより、疎水化処理された表面を有するフェライト系の超常磁性体(平均粒子径:0.01μmを得た。なおこの磁性体は界面活性剤により疎水化処理された表面を有するものである。得られた磁性体をトルエン/水(重量比1:1)に添加し、十分に攪拌した後静置したところ、磁性体はトルエンのみに分散されており、表面が疎水化されたことを確認した。ついで、核粒子5gに、疎水化された磁性体を5g混合し、この混合物をハイブリダイゼーションシステムNHS−0型(奈良機械製作所(株)製)を使用して、羽根(撹拌翼)の周速度100m/秒(16200rpm)で3分間処理した。
Core particle 1; methyl methacrylate / divinylbenzene = 80/20 copolymer
(Average particle size 1.5μm, CV value 2.2%)
Core particle 2; styrene / divinylbenzene = 80/20 copolymer
(Average particle size 3.5μm, CV value 2.5%)
2. Coating of magnetic material on core particles (formation of magnetic layer)
A ferrite superparamagnetic substance (average) having a hydrophobized surface is obtained by adding acetone to the oil-based magnetic fluid “FV55” (manufactured by Matsumoto Yushi Co., Ltd.) to precipitate and precipitate particles. A particle size of 0.01 μm was obtained, which has a surface hydrophobized with a surfactant and added to toluene / water (weight ratio 1: 1). When the mixture was allowed to stand after sufficient stirring, it was confirmed that the magnetic substance was dispersed only in toluene and the surface was hydrophobized, and then 5 g of the hydrophobized magnetic substance was mixed with 5 g of the core particles. This mixture was treated for 3 minutes at a peripheral speed of 100 m / sec (16200 rpm) of a blade (stirring blade) using a hybridization system NHS-0 type (manufactured by Nara Machinery Co., Ltd.).

参考例の磁性体被覆粒子(核粒子1を使用)30gと、分散剤としてノニオン性乳化剤「エマルゲン150」(花王製)の0.5%水溶液375gと、アニオン性乳化剤ラウリル硫酸ナトリウム(SDS)の0.5%水溶液375gとを1Lセパラブルフラスコに投入し充分に分散させた。ついで、イカリ型撹拌羽200rpm撹拌、Nガス気流下60℃とした。これに、モノマーとしてシクロヘキシルメタクリレート15g、メタクリル酸1.5g、ジビニルベンゼン0.6g、2−ヒドロキシエチルメタクリレート1.5g、重合開始剤としてターシャリーブチルペルオキシ2−エチルヘキサネート(日本油脂社製;パーブチルO)1.5g、分散剤としてノニオン性乳化剤「エマルゲン150」(花王製)の0.5%水溶液75gおよびアニオン性乳化剤ラウリル硫酸ナトリウム(SDS)の0.5%水溶液75gの混合物を10℃以下において超音波微分散により乳化させて、2時間にわたり連続添加して反応させた。その後、さらに温度を80℃とし3時間継続し反応を完結させた。その後、室温に冷却し500メッシュステンレス製網で粗大物を除去し、さらに磁気精製において非磁性成分を除去した。粒径は2.1μm、粒子比重は1.6g/cmであった。 30 g of magnetic material-coated particles (using core particle 1) as a reference example, 375 g of a 0.5% aqueous solution of a nonionic emulsifier “Emulgen 150” (manufactured by Kao) as a dispersant, and anionic emulsifier sodium lauryl sulfate (SDS) 375 g of 0.5% aqueous solution was charged into a 1 L separable flask and sufficiently dispersed. Subsequently, it was set to 60 ° C. under a stream of N 2 gas and stirred at 200 rpm with a squid type stirring blade. To this, 15 g of cyclohexyl methacrylate, 1.5 g of methacrylic acid, 0.6 g of divinylbenzene, 1.5 g of 2-hydroxyethyl methacrylate, and tertiary butyl peroxy 2-ethylhexanate (manufactured by NOF Corporation; perbutyl) as a polymerization initiator O) 1.5 g, a mixture of a nonionic emulsifier “Emulgen 150” (manufactured by Kao) as a dispersant, 75 g of a 0.5% aqueous solution and a 0.5% aqueous solution of anionic emulsifier sodium lauryl sulfate (SDS) 75 g And emulsified by ultrasonic fine dispersion and continuously added for 2 hours to react. Thereafter, the temperature was further raised to 80 ° C. and continued for 3 hours to complete the reaction. Then, it cooled to room temperature and removed the coarse thing with the 500 mesh stainless steel net | network, and also removed the nonmagnetic component in the magnetic refinement | purification. The particle size was 2.1 μm and the particle specific gravity was 1.6 g / cm 3 .

参考例の磁性体被覆粒子(核粒子2を使用)30gと、分散剤としてノニオン性乳化剤「エマルゲン150」(花王製)の0.5%水溶液375gと、アニオン性乳化剤ラウリル硫酸ナトリウム(SDS)の0.5%水溶液375gとを1Lセパラブルフラスコに投入し充分に分散させた。ついで、イカリ型撹拌羽200rpm撹拌、Nガス気流下60℃とした。これに、モノマーとしてスチレン6g、メタクリル酸1.5g、ジビニルベンゼン6g、グリシジルメタクリレート6g、重合開始剤としてターシャリーブチルペルオキシ2−エチルヘキサネート(日本油脂社製;パーブチルO)1.5g、分散剤としてノニオン性乳化剤「エマルゲン150」(花王製)の0.5%水溶液75gおよびアニオン性乳化剤ラウリル硫酸ナトリウム(SDS)の0.5%水溶液75gの混合物を10℃以下において超音波微分散により乳化させて、2時間にわたり連続添加して反応させた。その後、さらに温度を80℃とし3時間継続し反応を完結させた。その後、室温に冷却し500メッシュステンレス製網で粗大物を除去し、さらに磁気精製において非磁性成分を除去した。次に、この粒子10gを100mLの10mM HClに分散し、50℃で8時間転倒混和して粒子表面のエポキシ基を開環させた。磁気精製にて、液性が中性になるまで粒子分散液を蒸留水に置換した。得られた粒子の粒径は4.2μm、粒子比重は1.6g/cmであった。 30 g of magnetic material-coated particles (using core particles 2) as a reference example, 375 g of a 0.5% aqueous solution of a nonionic emulsifier “Emulgen 150” (manufactured by Kao) as a dispersant, and anionic emulsifier sodium lauryl sulfate (SDS) 375 g of 0.5% aqueous solution was charged into a 1 L separable flask and sufficiently dispersed. Subsequently, it was set to 60 ° C. under a stream of N 2 gas and stirred at 200 rpm with a squid type stirring blade. To this, 6 g of styrene as monomer, 1.5 g of methacrylic acid, 6 g of divinylbenzene, 6 g of glycidyl methacrylate, 1.5 g of tertiary butyl peroxy 2-ethylhexanate (manufactured by NOF Corporation; Perbutyl O) as a polymerization initiator, dispersant A mixture of 75 g of 0.5% aqueous solution of nonionic emulsifier “Emulgen 150” (manufactured by Kao) and 75 g of 0.5% aqueous solution of anionic emulsifier sodium lauryl sulfate (SDS) was emulsified at 10 ° C. or less by ultrasonic fine dispersion. The reaction was continued for 2 hours. Thereafter, the temperature was further raised to 80 ° C. and continued for 3 hours to complete the reaction. Then, it cooled to room temperature and removed the coarse thing with the 500 mesh stainless steel net | network, and also removed the nonmagnetic component in the magnetic refinement | purification. Next, 10 g of the particles were dispersed in 100 mL of 10 mM HCl, and mixed by inverting at 50 ° C. for 8 hours to open the epoxy groups on the particle surface. The particle dispersion was replaced with distilled water until the liquid became neutral by magnetic purification. The obtained particles had a particle size of 4.2 μm and a particle specific gravity of 1.6 g / cm 3 .

磁性粒子(Spherotech社、粒径2〜2.9μm)30gと、分散剤としてノニオン性乳化剤「エマルゲン150」(花王製)の0.5%水溶液375gと、アニオン性乳化剤ラウリル硫酸ナトリウム(SDS)の0.5%水溶液375gとを1Lセパラブルフラスコに投入し充分に分散させた。ついで、イカリ型撹拌羽200rpm撹拌、Nガス気流下60℃とした。これに、モノマーとしてスチレン8g、メタクリル酸1.5g、ジビニルベンゼン7g、ヒドロキシ(オリゴエチレングリコールn=4)メタクリレート1.5g、重合開始剤としてターシャリーブチルペルオキシ2−エチルヘキサネート(日本油脂社製;パーブチルO)1.5g、分散剤としてノニオン性乳化剤「エマルゲン150」(花王製)の0.5%水溶液75gおよびアニオン性乳化剤ラウリル硫酸ナトリウム(SDS)の0.5%水溶液75gの混合物を10℃以下において超音波微分散により乳化させて、2時間にわたり連続添加して反応させた。その後、さらに温度を80℃とし3時間継続し反応を完結させた。その後、室温に冷却し500メッシュステンレス製網で粗大物を除去し、さらに磁気精製において非磁性成分を除去した。粒径は2.6μm、粒子比重は1.3g/cmであった。
比較例1
30 g of magnetic particles (Spherotech, particle size 2 to 2.9 μm), 375 g of a 0.5% aqueous solution of a nonionic emulsifier “Emulgen 150” (manufactured by Kao) as a dispersant, and anionic emulsifier sodium lauryl sulfate (SDS) 375 g of 0.5% aqueous solution was charged into a 1 L separable flask and sufficiently dispersed. Subsequently, it was set to 60 ° C. under a stream of N 2 gas and stirred at 200 rpm with a squid type stirring blade. To this, 8 g of styrene as a monomer, 1.5 g of methacrylic acid, 7 g of divinylbenzene, 1.5 g of hydroxy (oligoethylene glycol n = 4) methacrylate, and tertiary butyl peroxy 2-ethylhexanate (manufactured by NOF Corporation) as a polymerization initiator 10 g of a mixture of 1.5 g of perbutyl O), 75 g of 0.5% aqueous solution of nonionic emulsifier “Emulgen 150” (manufactured by Kao) and 75 g of 0.5% aqueous solution of anionic emulsifier sodium lauryl sulfate (SDS) as a dispersant. The mixture was emulsified by ultrasonic fine dispersion at a temperature of 0 ° C. or lower and continuously added for 2 hours to react. Thereafter, the temperature was further raised to 80 ° C. and continued for 3 hours to complete the reaction. Then, it cooled to room temperature and removed the coarse thing with the 500 mesh stainless steel net | network, and also removed the nonmagnetic component in the magnetic refinement | purification. The particle size was 2.6 μm and the particle specific gravity was 1.3 g / cm 3 .
Comparative Example 1

実施例1で2−ヒドロキシエチルメタクリレートを用いなかった以外は全て実施例1の方法に基づいて実施した。粒径は2.1μm、粒子比重は1.6g/cmであった。
比較例2
All the steps were performed according to the method of Example 1 except that 2-hydroxyethyl methacrylate was not used in Example 1. The particle size was 2.1 μm and the particle specific gravity was 1.6 g / cm 3 .
Comparative Example 2

磁性粒子(Spherotech社、粒径2〜2.9μm)を用いた。粒径は2.5μm、粒子比重は1.3g/cmであった。
細胞吸着の評価
クエン酸採血した血液5mLを遠心分離し、バフィーコートを採取した。これに0.17M塩化アンモニウム水溶液10mLを加え室温で10分放置したのち遠心分離し、得られた沈殿をリン酸緩衝塩溶液で2回洗浄し4.5x10個の有核細胞を得た。これを4.5mLの0.2%ウシ血清アルブミンを含有するリン酸緩衝塩溶液で浮遊させ、実施例1〜3および比較例1〜2の粒子各1mgに加え、30分間4℃で転倒混和を行った。磁気分離により磁性粒子を分離し、0.2%ウシ血清アルブミンを含有する緩衝リン酸塩溶液で2回洗浄ののち、磁性粒子に吸着した細胞からスマイテストEX R&DをもちいてゲノムDNAを抽出した。このゲノムDNAをβ−グロビン遺伝子を用いた定量PCRで定量することにより粒子に吸着した細胞数を評価した。結果を図1に示す。
核酸吸着の評価
クエン酸採血した血液1mLに0.17M塩化アンモニウム水溶液10mLを加え室温で10分放置したのち遠心分離し、得られた沈殿をリン酸緩衝塩溶液で2回洗浄し1.2x10個の有核細胞を得た。スマイテストEX R&D(ゲノムサイエンス社)を用いて、ゲノムDNAの抽出を行った。得られたゲノムDNAを1000コピー/mLとなるよう純水に溶解しその100μL(100コピー)を実施例1〜3および比較例1〜2の磁性粒子1mgに、加えて攪拌し、室温で10分放置した。磁気分離法により磁性粒子を除去し、上清中のゲノムDNA量をβ−グロビン遺伝子を用いた定量PCR法により定量した。結果を図2に示す。
Magnetic particles (Spherotech, particle size 2 to 2.9 μm) were used. The particle size was 2.5 μm and the particle specific gravity was 1.3 g / cm 3 .
Evaluation of cell adsorption 5 mL of blood collected from citric acid was centrifuged, and a buffy coat was collected. To this was added 10 mL of 0.17 M ammonium chloride aqueous solution, and the mixture was allowed to stand at room temperature for 10 minutes and then centrifuged. The resulting precipitate was washed twice with a phosphate buffered salt solution to obtain 4.5 × 10 6 nucleated cells. This was suspended in a phosphate buffered salt solution containing 4.5 mL of 0.2% bovine serum albumin, added to each 1 mg of the particles of Examples 1 to 3 and Comparative Examples 1 and 2, and mixed by inverting at 4 ° C. for 30 minutes. Went. The magnetic particles were separated by magnetic separation, washed twice with a buffered phosphate solution containing 0.2% bovine serum albumin, and then genomic DNA was extracted from the cells adsorbed to the magnetic particles using Sumittest EX R & D. . The number of cells adsorbed on the particles was evaluated by quantifying this genomic DNA by quantitative PCR using a β-globin gene. The results are shown in FIG.
Evaluation of nucleic acid adsorption 10 mL of 0.17M aqueous ammonium chloride solution was added to 1 mL of blood collected from citric acid, left to stand at room temperature for 10 minutes, centrifuged, and the resulting precipitate was washed twice with a phosphate buffered saline solution. 1.2 × 10 6 nucleated cells were obtained. Genomic DNA was extracted using Smitest EX R & D (Genome Science). The obtained genomic DNA was dissolved in pure water so as to be 1000 copies / mL, and 100 μL (100 copies) thereof was added to 1 mg of magnetic particles of Examples 1 to 3 and Comparative Examples 1 and 2 and stirred. Left for a minute. Magnetic particles were removed by a magnetic separation method, and the amount of genomic DNA in the supernatant was quantified by a quantitative PCR method using a β-globin gene. The results are shown in FIG.

実施例および比較例で測定した粒子に吸着した細胞数を示すグラフ。The graph which shows the cell number adsorb | sucked to the particle | grains measured by the Example and the comparative example. 実施例および比較例で測定した粒子に吸着した核酸数を示すグラフ。The graph which shows the number of nucleic acids adsorb | sucked to the particle | grains measured by the Example and the comparative example.

Claims (5)

磁性粒子であって少なくともその表面が細胞に対して低吸着性の材料で形成されており、粒子表面にプローブと化学結合可能な官能基を有していることを特徴とする磁性粒子。 A magnetic particle, characterized in that it has a functional group capable of chemically bonding to a probe on the particle surface, at least the surface thereof is formed of a material having a low adsorptivity to cells. 細胞に対して低吸着性の材料がさらに核酸に対しても低吸着性であることを特徴とする請求項1に記載の磁性粒子。 2. The magnetic particle according to claim 1, wherein the material having a low adsorptivity to cells further has a low adsorptivity to nucleic acid. 細胞の吸着量が1000個/mg粒子以下であることを特徴とする請求項1または2に記載の磁性粒子。 The magnetic particles according to claim 1 or 2, wherein the amount of adsorbed cells is 1000 / mg particles or less. 核酸の吸着量が10コピー/mg粒子以下であることを特徴とする請求項2または3に記載の磁性粒子。 The magnetic particle according to claim 2 or 3, wherein the nucleic acid adsorption amount is 10 copies / mg particle or less. 磁性粒子が核粒子の表面にFeおよびFeの少なくとも一方を含む磁性体層と該磁性体層上にポリマー層を有するものであることを特徴とする請求項1〜4のいずれかに記載の磁性粒子。
Of claim 1, wherein the magnetic particles have a polymer layer to the magnetic layer and the magnetic body layer containing at least one of Fe 2 O 3 and Fe 3 O 4 on the surface of core particles The magnetic particle in any one.
JP2003316543A 2003-09-09 2003-09-09 Magnetic particle Pending JP2005083905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003316543A JP2005083905A (en) 2003-09-09 2003-09-09 Magnetic particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003316543A JP2005083905A (en) 2003-09-09 2003-09-09 Magnetic particle

Publications (1)

Publication Number Publication Date
JP2005083905A true JP2005083905A (en) 2005-03-31

Family

ID=34416410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003316543A Pending JP2005083905A (en) 2003-09-09 2003-09-09 Magnetic particle

Country Status (1)

Country Link
JP (1) JP2005083905A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211076A (en) * 2006-02-08 2007-08-23 Jsr Corp Organic polymer particle and method for producing the same, and probe-binding particle
JP2007224213A (en) * 2006-01-25 2007-09-06 Jsr Corp Organic polymer particle and method for producing the same and probe-binding particle
JP2007246858A (en) * 2006-03-20 2007-09-27 Jsr Corp Organic polymer particle and process for producing the same, organic polymer particle for binding prove and process for producing the same, and probe-bound particle and process for producing the same
JP2007252240A (en) * 2006-03-22 2007-10-04 Hitachi Metals Ltd Magnetic bead for cell recovery
JP2007262113A (en) * 2006-03-27 2007-10-11 Jsr Corp Carboxy group-containing particle and method for producing the same
US7732051B2 (en) 2006-07-26 2010-06-08 Jsr Corporation Polymer-coated magnetic particles comprising a 2,3-hydroxypropyl group, and probe-bonded particles
US8703289B2 (en) 2005-11-01 2014-04-22 Jsr Corporation Organic polymer particles and process for producing the same, magnetic particles for diagnostics, carboxyl group-containing particles and process for producing the same, and probe-bound particles and process for producing the same
WO2021185682A1 (en) * 2020-03-17 2021-09-23 F. Hoffmann-La Roche Ag Method of improving cell recovery in single-cell analysis

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703289B2 (en) 2005-11-01 2014-04-22 Jsr Corporation Organic polymer particles and process for producing the same, magnetic particles for diagnostics, carboxyl group-containing particles and process for producing the same, and probe-bound particles and process for producing the same
JP2007224213A (en) * 2006-01-25 2007-09-06 Jsr Corp Organic polymer particle and method for producing the same and probe-binding particle
JP2007211076A (en) * 2006-02-08 2007-08-23 Jsr Corp Organic polymer particle and method for producing the same, and probe-binding particle
JP2007246858A (en) * 2006-03-20 2007-09-27 Jsr Corp Organic polymer particle and process for producing the same, organic polymer particle for binding prove and process for producing the same, and probe-bound particle and process for producing the same
JP2007252240A (en) * 2006-03-22 2007-10-04 Hitachi Metals Ltd Magnetic bead for cell recovery
JP2007262113A (en) * 2006-03-27 2007-10-11 Jsr Corp Carboxy group-containing particle and method for producing the same
US7732051B2 (en) 2006-07-26 2010-06-08 Jsr Corporation Polymer-coated magnetic particles comprising a 2,3-hydroxypropyl group, and probe-bonded particles
WO2021185682A1 (en) * 2020-03-17 2021-09-23 F. Hoffmann-La Roche Ag Method of improving cell recovery in single-cell analysis

Similar Documents

Publication Publication Date Title
US5814687A (en) Magnetic polymer particle and process for manufacturing the same
US9739768B2 (en) Methods and reagents for improved selection of biological materials
EP0344270B1 (en) Process for producing magnetically responsive polymer particles and application thereof
JP2006307126A (en) Magnetic particle with porous surface and method for producing the same, and carrier for biochemical use
JP3738847B2 (en) Method for producing diagnostic particles
JP3646461B2 (en) Magnetic polymer particles and method for producing the same
JP2005083905A (en) Magnetic particle
JP2002165591A (en) Magnetic particle and method for using the same
US20090029482A1 (en) Functional particle, and method for separation of target substance using the same
JP4911280B2 (en) Organic polymer particles and method for producing the same
JP2006226689A (en) Magnetic particle for immunological examination
JP2006226690A (en) Magnetic particle for immunological examination
JP2005083904A (en) Magnetic particle
AU654381B2 (en) Process for producing magnetically responsive polymer particles and application thereof
JP4687891B2 (en) Magnetic particles for diagnostics
JP4788056B2 (en) Virus concentration material
JP2001228149A (en) Fine particle dispersant for clinical examination, examination reagent, producing method of reagent, examination method and use
JP2005069926A (en) Magnetic particle for immunological inspection
JP2009109214A (en) Functional particle having particle size distribution allowing measurement of single particle, and separation method of target material using it
JP4684434B2 (en) Virus concentration particle, virus concentration reagent, virus concentration method and virus detection method
JP2006226691A (en) Magnetic particle for immunological examination
JP2001158800A (en) Avidin particle
JP4161167B2 (en) Virus concentration method, virus detection method, and virus concentration reagent
JP2007095903A (en) Magnetic grain
JP2003277455A (en) Method for producing polymer particle, polymer particle and carrier for physiologically active substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212