JP2003277455A - Method for producing polymer particle, polymer particle and carrier for physiologically active substance - Google Patents

Method for producing polymer particle, polymer particle and carrier for physiologically active substance

Info

Publication number
JP2003277455A
JP2003277455A JP2002083734A JP2002083734A JP2003277455A JP 2003277455 A JP2003277455 A JP 2003277455A JP 2002083734 A JP2002083734 A JP 2002083734A JP 2002083734 A JP2002083734 A JP 2002083734A JP 2003277455 A JP2003277455 A JP 2003277455A
Authority
JP
Japan
Prior art keywords
polymerization
particles
particle
physiologically active
active substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002083734A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kasai
澄 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2002083734A priority Critical patent/JP2003277455A/en
Publication of JP2003277455A publication Critical patent/JP2003277455A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a polymer particle, with which a carboxy group-modified particle having a large particle diameter and a uniform diameter is obtained in excellent polymerization stability and in excellent polymerization repeatability of the particle diameter, and to obtain a polymer particle which is highly coated with a carboxylate group, not only combines with a physiologically active substance by a chemical bond in high density but also has extremely slight nonspecific adsorption of physiologically active substances except the target due to high hydrophilicity on the surface of the particle. <P>SOLUTION: The method for producing the polymer particle comprises polymerizing a polymerizable monomer containing ≥50 wt.% of a water-soluble polymerizable carboxylic acid monomer in the presence of a water-soluble radical initiator in a water medium and subjecting a vinyl monomer to emulsion polymerization in the presence of the obtained polymer. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はカルボキシル基変性
の乳化重合ポリマー粒子の重合法および該方法により得
られるポリマー粒子に関する。詳しくは、従来、通常の
乳化重合では得られ難い大粒径のカルボキシル基変性ポ
リマー粒子を比較的均一径でかつ重合安定性良好、生産
再現性良く製造するための製造方法とそのポリマー粒子
に関する。また、本発明は、粒子表面にカルボキシル基
を多量に含有しており、抗体等のタンパク物質、DNA
・RNA等の核酸物質あるいは生理活性糖鎖化合物(以
下、生理活性物質という)を化学結合で大量に結合させ
ることができ、さらに目的としない生理活性物質の物理
吸着(非特異吸着)が極小である高性能の生理活性物質
担体用ポリマー粒子に関する。
TECHNICAL FIELD The present invention relates to a method for polymerizing emulsion-polymerized polymer particles modified with a carboxyl group and polymer particles obtained by the method. More specifically, the present invention relates to a production method for producing a carboxyl group-modified polymer particle having a large particle diameter, which is conventionally difficult to obtain by ordinary emulsion polymerization, with a relatively uniform diameter, good polymerization stability, and good production reproducibility, and the polymer particle. In addition, the present invention contains a large amount of carboxyl groups on the surface of particles, and protein substances such as antibodies and DNA
A large amount of nucleic acid substances such as RNA or physiologically active sugar chain compounds (hereinafter referred to as physiologically active substances) can be bound by chemical bonds, and physical adsorption (non-specific adsorption) of undesired physiologically active substances is minimal. It relates to a polymer particle for a high-performance bioactive substance carrier.

【0002】[0002]

【従来の技術】これまで、乳化重合法では他の水系重合
法である懸濁重合法、水系分散重合法、ミニエマルジョ
ン重合法等と比べて小粒径で比較的均一の粒子径のポリ
マー粒子が得られる点に特徴があるとされていた。乳化
重合での標準的な粒子径は0.05〜0.2μm程度で
ある。また、乳化重合では粒子表面の官能基の制御が比
較的容易であることから、各種の利用目的と用途に応じ
た変性が行われて工業的に大量の製品が乳化重合法によ
り製造されている。しかしながら、上記の粒子径を超え
る大粒径のポリマー粒子を乳化重合で合成するには、安
定化剤である乳化剤を減らして重合することになり、重
合安定性が大幅に悪化するうえに得られるポリマー粒子
の粒子径が重合毎に大きく変動して重合再現性が劣悪に
なる。また、特にカルボキシル基変性粒子の乳化重合で
はカルボキシル基含有モノマーが存在することでさらに
粒子径が低下する方向にある。このため、例えば0.4
μmを超える大粒径のカルボキシル基変性ポリマー粒子
を乳化重合法で実験室で単発に合成することは可能であ
るが、これを工業規模で再現性良く製造することは困難
で特別の手段が必要であった。また、粒子表面に抗体等
のタンパク物質、DNA・RNA等の核酸物質あるいは
生理活性糖鎖化合物等の生理活性物質を物理吸着または
化学結合で結合させる生理活性物質担体用ポリマー粒子
の用途においては、粒子の洗浄・精製を行なう際の遠心
沈降が容易であるために大粒径であること、および粒子
表面性状が均一であるために均一粒子径であることが求
められている。これに対し、粒子合成に関して上記の技
術状況にあり、乳化重合法で均一径でかつ大粒径のポリ
マー粒子、特にカルボキシル基変性ポリマー粒子を再現
性良く工業規模で合成することは困難であった。生理活
性物質担体用ポリマー粒子は目的とする生理活性物質を
物理吸着あるいは化学結合で粒子表面に付けたあと、粒
子表面に目的としない他の生理活性物質が物理吸着する
こと(非特異吸着という)があってはならない。以上の
ような理由から、目的とする生理活性物質が容易に粒子
表面に結合でき、かつ、その後の目的外の生理活性物質
の非特異吸着ができるだけ少ない粒子が求められてい
た。
2. Description of the Related Art Polymer particles having a relatively small particle size and a relatively uniform particle size as compared with other water-based polymerization methods such as suspension polymerization method, water-based dispersion polymerization method and mini-emulsion polymerization method which have hitherto been used. It was said that there was a feature in obtaining. The standard particle size in emulsion polymerization is about 0.05 to 0.2 μm. Further, in emulsion polymerization, the control of the functional groups on the particle surface is relatively easy, so modification is performed according to various purposes and uses, and a large amount of products are industrially manufactured by the emulsion polymerization method. . However, in order to synthesize a polymer particle having a large particle diameter exceeding the above-mentioned particle diameter by emulsion polymerization, it is necessary to reduce the amount of the emulsifying agent which is a stabilizer and polymerize, and the polymerization stability is significantly deteriorated. The particle size of the polymer particles fluctuates greatly with each polymerization, resulting in poor polymerization reproducibility. Further, particularly in emulsion polymerization of carboxyl group-modified particles, the presence of the carboxyl group-containing monomer tends to further reduce the particle size. Therefore, for example, 0.4
It is possible to synthesize single-shot carboxyl group-modified polymer particles with a large particle size exceeding μm in the laboratory by emulsion polymerization method, but it is difficult to manufacture this on an industrial scale with good reproducibility, and special measures are required. Met. Further, in the use of polymer particles for a physiologically active substance carrier in which a protein substance such as an antibody, a nucleic acid substance such as DNA / RNA or a physiologically active substance such as a physiologically active sugar chain compound is bound to the surface of the particle by physical adsorption or chemical bonding, It is required that the particles have a large particle size because centrifugal sedimentation is easy when washing and refining the particles, and that the particle size is uniform because the surface properties of the particles are uniform. On the other hand, in the above technical situation regarding particle synthesis, it was difficult to synthesize polymer particles of uniform diameter and large particle diameter by emulsion polymerization method, particularly carboxyl group-modified polymer particles with good reproducibility on an industrial scale. . Polymer particles for physiologically active substance carriers must have physical adsorption of the target physiologically active substance on the particle surface by physical adsorption or chemical bonding, and then physical adsorption of other unintended physiologically active substance on the particle surface (referred to as non-specific adsorption). There should not be. For the reasons described above, there has been a demand for particles which can easily bind a target physiologically active substance to the surface of the particle and which causes non-specific adsorption of a non-target physiologically active substance thereafter as little as possible.

【0003】[0003]

【本発明が解決しようとする課題】本発明は、大粒径か
つ均一径のカルボキシル基変性粒子を重合安定性良く、
かつ、粒子径の重合再現性良く得られるポリマー粒子の
製造方法および高度にカルボン酸基で被覆されており、
生理活性物質を化学結合で高密度に結合することができ
るだけでなく、粒子表面の親水性が高いため目的外の生
理活性物質の非特異吸着が格段に少ないポリマー粒子を
得ることを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a carboxyl group-modified particle having a large particle diameter and a uniform diameter with good polymerization stability.
And, the production method of the polymer particles obtained with good reproducibility of polymerization of the particle diameter and highly coated with a carboxylic acid group,
It is an object of the present invention to obtain polymer particles in which not only non-specific adsorption of a physiologically active substance other than the purpose is markedly reduced because the hydrophilicity of the particle surface is high, but not only the physiologically active substance can be bound with a high density by a chemical bond.

【0004】[0004]

【本発明を解決するための手段】本発明は、水溶性の重
合性カルボン酸モノマーを50重量%以上含有する重合
性モノマーを水溶性ラジカル開始剤を用いて水媒体中で
重合し、この重合物の存在下にビニルモノマーを乳化重
合することを特徴とする乳化重合ポリマーの製造法およ
び該方法で製造されることを特徴とするポリマー粒子を
提供するものである。
According to the present invention, a polymerizable monomer containing 50% by weight or more of a water-soluble polymerizable carboxylic acid monomer is polymerized in an aqueous medium by using a water-soluble radical initiator, and this polymerization is carried out. The present invention provides a method for producing an emulsion-polymerized polymer, which comprises emulsion-polymerizing a vinyl monomer in the presence of a substance, and polymer particles produced by the method.

【0005】本発明での第一段の重合であるカルボン酸
モノマーの重合における水溶性かつ重合性のカルボン酸
モノマーとは、20℃の水への溶解度が1g/100m
l以上であるラジカル重合性のモノマー、塩およびこれ
らの酸無水物である。具体例としては、アクリル酸、メ
タクリル酸、イタコン酸、フマル酸、マレイン酸、無水
マレイン酸、およびこれらの塩類が挙げられ、イタコン
酸、アクリル酸、メタクリル酸が特に好ましい。これら
のカルボン酸モノマーは二種以上を組み合わせて使用す
ることができる。本発明の第一段の重合でのモノマー
は、これらカルボン酸モノマーを50重量%以上、好ま
しくは80重量%以上、さらに好ましくは90重量%以
上、もっとも好ましくはカルボン酸モノマー単独からな
る。ここで第一段重合のカルボン酸モノマーが50重量
%未満では、引き続き行う第二段の重合の重合安定性が
悪く、得られるポリマー粒子の粒子径分布が幅広くなり
本発明の目的を達することができない。
The water-soluble and polymerizable carboxylic acid monomer in the polymerization of the carboxylic acid monomer which is the first-stage polymerization in the present invention has a solubility in water at 20 ° C. of 1 g / 100 m.
Radical-polymerizable monomers, salts and acid anhydrides thereof which are 1 or more. Specific examples include acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, maleic anhydride, and salts thereof, with itaconic acid, acrylic acid, and methacrylic acid being particularly preferred. These carboxylic acid monomers can be used in combination of two or more kinds. The monomer in the first-stage polymerization of the present invention comprises 50% by weight or more of these carboxylic acid monomers, preferably 80% by weight or more, more preferably 90% by weight or more, and most preferably carboxylic acid monomer alone. If the amount of the carboxylic acid monomer in the first-stage polymerization is less than 50% by weight, the polymerization stability of the subsequent second-stage polymerization is poor, and the particle size distribution of the obtained polymer particles is broad, so that the object of the present invention can be achieved. Can not.

【0006】本発明の第一段の重合でのカルボン酸モノ
マー以外のモノマーとしては乳化重合できるモノマーで
あれば特に制限はない。具体例を挙げると、スチレン、
α−メチルスチレン、ビニルトルエン、ジビニルベンゼ
ン、ビニルビフェニル、ジビニルビフェニル、ビニルナ
フタレン等の芳香族ビニル化合物;メチル(メタ)アク
リレート、エチル(メタ)アクリレート、ブチル(メ
タ)アクリレート、シクロヘキシル(メタ)アクリレー
ト、2−エチルヘキシル(メタ)アクリレート等の(メ
タ)アクリル酸エステル等が挙げられる。また、必要に
応じて、グリシジル(メタ)アクリレート、ビニルベン
ジルアミン、アクリルアミド、メタクリルアミド、アク
リルアミド-t-ブチルスルホン酸、2−スルホエチルメ
タクリレート、2−メトキシエチルアクリレート、クロ
ルメチルスチレン、ポリエチレンオキシド側鎖変性(メ
タ)アクリレート等の特定官能基含有モノマーを使用す
ることもできる。本発明の第一段の重合は水性媒体中
で、水溶性ラジカル開始剤を用いて行なう。ここで使用
できる水溶性のラジカル開始剤の具体例は、過硫酸アン
モニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫
酸塩開始剤あるいはアスコルビン酸/クメンヒドロペル
オキシド系等のレドックス開始剤が良好に使用できる。
また、2,2’−アゾビスイソブチロニトリル、2,
2’−アゾビス(2,4−ジメチルバレロニトリル)等
のアゾ系開始剤も使用できる。これらのうち、過硫酸塩
系の開始剤がもっとも好ましい。
The monomer other than the carboxylic acid monomer in the first-stage polymerization of the present invention is not particularly limited as long as it is a monomer that can be emulsion polymerized. Specific examples include styrene,
Aromatic vinyl compounds such as α-methylstyrene, vinyltoluene, divinylbenzene, vinylbiphenyl, divinylbiphenyl and vinylnaphthalene; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, Examples thereof include (meth) acrylic acid esters such as 2-ethylhexyl (meth) acrylate. If necessary, glycidyl (meth) acrylate, vinylbenzylamine, acrylamide, methacrylamide, acrylamido-t-butylsulfonic acid, 2-sulfoethyl methacrylate, 2-methoxyethyl acrylate, chloromethylstyrene, polyethylene oxide side chain It is also possible to use a monomer having a specific functional group such as modified (meth) acrylate. The first-stage polymerization of the present invention is carried out in an aqueous medium using a water-soluble radical initiator. Specific examples of the water-soluble radical initiator that can be used here include persulfate initiators such as ammonium persulfate, sodium persulfate, and potassium persulfate, or redox initiators such as ascorbic acid / cumene hydroperoxide can be favorably used. .
In addition, 2,2'-azobisisobutyronitrile, 2,
Azo-based initiators such as 2'-azobis (2,4-dimethylvaleronitrile) can also be used. Of these, persulfate initiators are most preferred.

【0007】本発明の第二段の重合は、第一段の重合を
終了させ冷却して取り出したのち、その重合体水溶液ま
たは分散液を第二段の反応容器に添加して重合すること
ができる。あるいは、第一段の重合のあと、第二段のモ
ノマーを添加してそのまま第二段の重合を行なうことも
できる。引き続いて重合する場合は反応容器の温度を下
げずに重合を続けることができ、効率的に生産できる。
なお、第一段目の重合は完結していなくとも良く、第一
段目の重合率が約25%程度以上あれば引き続き第二段
目の重合を行っても本発明の目的を達することができ
る。第二段目の重合のモノマーは、乳化重合できるモノ
マーであれば特に制限はない。具体例を挙げると、スチ
レン、α−メチルスチレン、ビニルトルエン、ジビニル
ベンゼン、ビニルビフェニル、ジビニルビフェニル、ビ
ニルナフタレン等の芳香族ビニル化合物;メチル(メ
タ)アクリレート、エチル(メタ)アクリレート、ブチ
ル(メタ)アクリレート、シクロヘキシル(メタ)アク
リレート、2−エチルヘキシル(メタ)アクリレート等
の(メタ)アクリル酸エステル;アクリル酸、メタクリ
ル酸、イタコン酸、フマル酸、マレイン酸、無水マレイ
ン酸等の不飽和カルボン酸等 が挙げられる。また、必
要に応じて、グリシジル(メタ)アクリレート、ビニル
ベンジルアミン、アクリルアミド、メタクリルアミド、
アクリルアミド-t-ブチルスルホン酸、2−スルホエチ
ルメタクリレート、2−メトキシエチルアクリレート、
クロルメチルスチレン、ポリエチレンオキシド側鎖変性
(メタ)アクリレート等の特定官能基含有モノマーを使
用することもできる。また、本発明では第一段の重合に
よるカルボン酸モノマー成分が粒子表面に多量に移行す
るため、特に第二段でカルボン酸モノマーを使用しなく
とも良いが、第二段の重合安定性のために適量のカルボ
ン酸モノマーを使用することも可能である。本発明の第
二段の重合の重合開始剤は、水溶性のラジカル開始剤で
あれば良く、第一段の重合で示したものが良好に使用で
きる。第一段に引き続いて第二段の重合を行なう場合
は、第一段の開始剤と同一の開始剤で問題ない。第一段
に多めの開始剤を添加して重合し、残存の開始剤をその
まま第二段の開始剤として使用することもできる。本発
明での第一段の重合での全モノマーと第二段の重合の全
モノマーの比率(重量比)は、第一段のカルボン酸モノ
マーの種類にもよるが、通常0.2/99.8〜20/
80であり、好ましくは0.5/99.5〜15/8
5、さらに好ましくは 1/99〜9/91である。第
一段のモノマー/第二段のモノマーの重量比が20/8
0より大きいと、第二段目の重合における水溶性成分が
多すぎて重合安定性が悪化する。また第一段のモノマー
/第二段のモノマーの重量比が0.2/99.8より小
さいと、本発明の実質的な効果が期待できない。また、
第一段の重合で重合されるモノマーおよび第二段の重合
で重合されるモノマーの合計量に対するカルボン酸モノ
マーの割合は、0.2〜20重量%、好ましくは0.5
〜15重量%、特に好ましくは1〜10重量%である。
In the second-stage polymerization of the present invention, after the first-stage polymerization is completed, cooled and taken out, the polymer aqueous solution or dispersion is added to the second-stage reaction vessel for polymerization. it can. Alternatively, after the first stage polymerization, the second stage monomer may be added to carry out the second stage polymerization as it is. In the case of subsequent polymerization, the polymerization can be continued without lowering the temperature of the reaction vessel, and efficient production can be achieved.
The first-stage polymerization does not have to be completed, and the object of the present invention can be achieved even if the second-stage polymerization is continuously performed as long as the first-stage polymerization rate is about 25% or more. it can. The monomer for the second-stage polymerization is not particularly limited as long as it is a monomer capable of emulsion polymerization. Specific examples include aromatic vinyl compounds such as styrene, α-methylstyrene, vinyltoluene, divinylbenzene, vinylbiphenyl, divinylbiphenyl, and vinylnaphthalene; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth). (Meth) acrylic acid esters such as acrylate, cyclohexyl (meth) acrylate and 2-ethylhexyl (meth) acrylate; unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid and maleic anhydride Can be mentioned. If necessary, glycidyl (meth) acrylate, vinylbenzylamine, acrylamide, methacrylamide,
Acrylamide-t-butyl sulfonic acid, 2-sulfoethyl methacrylate, 2-methoxyethyl acrylate,
It is also possible to use a specific functional group-containing monomer such as chloromethylstyrene or polyethylene oxide side chain modified (meth) acrylate. Further, in the present invention, since a large amount of the carboxylic acid monomer component by the first-stage polymerization is transferred to the particle surface, it is not necessary to use the carboxylic acid monomer in the second stage, but because of the second-stage polymerization stability. It is also possible to use suitable amounts of carboxylic acid monomers. The polymerization initiator for the second-stage polymerization of the present invention may be any water-soluble radical initiator, and those shown in the first-stage polymerization can be favorably used. When the second stage polymerization is carried out subsequent to the first stage, the same initiator as the first stage initiator may be used. It is also possible to add a large amount of initiator to the first stage and polymerize, and use the remaining initiator as it is as the second stage initiator. The ratio (weight ratio) of the total monomers in the first-stage polymerization to the total monomers in the second-stage polymerization in the present invention is usually 0.2 / 99, though it depends on the kind of the first-stage carboxylic acid monomer. .8-20 /
80, preferably 0.5 / 99.5 to 15/8
5, more preferably 1/99 to 9/91. Weight ratio of first stage monomer / second stage monomer is 20/8
If it is greater than 0, the amount of water-soluble components in the second-stage polymerization is too large and the polymerization stability deteriorates. If the weight ratio of the first stage monomer / the second stage monomer is less than 0.2 / 99.8, the substantial effect of the present invention cannot be expected. Also,
The ratio of the carboxylic acid monomer to the total amount of the monomers polymerized in the first-stage polymerization and the monomers polymerized in the second-stage polymerization is 0.2 to 20% by weight, preferably 0.5.
-15% by weight, particularly preferably 1-10% by weight.

【0008】本発明の二段目の重合においては、第一段
での高カルボキシル基ポリマーの存在のために重合安定
性は比較的良好である。第二段目の重合においては、基
本的に乳化剤なしで重合を行なうこともできる。また、
さらに第二段で必要以上に乳化剤を使用して重合すると
粒子の実用上の性能を低下させるだけでなく、粒子径を
低下させるほか、重合安定性がかえって低下することに
なる。このため、本発明の第二段の重合での乳化剤の使
用量は水中濃度で0〜500ppm(重量単位)が好ま
しく、さらに好ましくは0〜300ppm、あるいは0
〜200ppmである。
In the second stage polymerization of the present invention, the polymerization stability is relatively good due to the presence of the high carboxyl group polymer in the first stage. In the second-stage polymerization, it is also possible to carry out the polymerization basically without an emulsifier. Also,
Further, polymerization in the second stage by using an emulsifier more than necessary not only deteriorates the practical performance of the particles but also decreases the particle size and the polymerization stability is rather deteriorated. Therefore, the amount of the emulsifier used in the second-stage polymerization of the present invention is preferably 0 to 500 ppm (weight unit) in water concentration, more preferably 0 to 300 ppm, or 0.
-200 ppm.

【0009】本発明の方法は大粒径のポリマー粒子の合
成に適しており、本発明の方法により平均粒子径(測定
法:電子顕微鏡法)で、通常、0.25〜1.3μm、
好ましくは0.35〜1.2μm、特に0.4〜1.0
μmの粒子を得ることができる。ここでの粒子径の変動
係数(CV値)は通常20%以下、好ましくは10%以
下、特に6%以下である。
The method of the present invention is suitable for the synthesis of large-sized polymer particles, and the average particle diameter (measurement method: electron microscopy) of the method of the present invention is usually 0.25 to 1.3 μm.
Preferably 0.35-1.2 μm, especially 0.4-1.0
Particles of μm can be obtained. The coefficient of variation (CV value) of the particle diameter here is usually 20% or less, preferably 10% or less, and particularly 6% or less.

【0010】本発明のポリマー粒子は、乳化重合の後、
pH調整、必要があればスチームストリップ等で残留
モノマーの除去を行い、 透析・限外ろ過・遠心分離等
で粒子表面を洗浄した上で医学生物学用途での担体粒子
として使用できる。従来の担体粒子と比べて本発明の担
体粒子は粒子表面のカルボン酸基の密度が大きく、化学
結合法による目的とする生理活性物質(抗体、抗原、タ
ンパク、核酸、糖鎖等)の結合量が格段に大きいほか
に、粒子表面の親水性が大きいため目的としない生理活
性物質の非特異吸着が格段に小さいことに大きな特徴が
ある。このため、本発明の粒子は高性能の化学結合用生
理活性物質担体粒子として使用できる。
The polymer particles of the present invention, after emulsion polymerization,
It can be used as carrier particles for medical and biological applications after adjusting the pH and, if necessary, removing residual monomers with steam strips, etc. and washing the particle surface with dialysis, ultrafiltration, centrifugation, etc. Compared with conventional carrier particles, the carrier particles of the present invention have a higher density of carboxylic acid groups on the particle surface, and the amount of the target physiologically active substance (antibody, antigen, protein, nucleic acid, sugar chain, etc.) bound by the chemical bonding method In addition to being significantly large, the non-specific adsorption of undesired physiologically active substances is extremely small due to the large hydrophilicity of the particle surface. Therefore, the particles of the present invention can be used as high-performance bioactive substance carrier particles for chemical bonding.

【0011】本発明の生理活性物質担体用ポリマー粒子
は、使用の際に感作させる生理活性物質に応じて適する
官能基を有するモノマーをあらかじめ第二段の重合の
際、特に第二段の重合の後半部に存在させて粒子表面に
組み込むことができる。この目的にはメタクリル酸、ア
クリル酸、フマル酸、イタコン酸のカルボン酸モノマ
ー、グリシジルメタクリレート等のエポキシ基含有モノ
マー、ビニルベンジルアミン、p-アミノスチレン等の
アミノ基含有モノマー等が用いられる。このうち、エポ
キシ基は重合後にその処理条件で多くの官能基に変換す
ることが可能であり、有用である。また、本発明では第
二段の重合において、特定のアミノ基を含有するラジカ
ル重合開始剤を用いると重合した粒子表面に開始剤残基
のアミノ基が存在し、タンパク・核酸・糖鎖等の生理活
性物質と化学結合させることができる。
In the polymer particles for a physiologically active substance carrier of the present invention, a monomer having a functional group suitable for the physiologically active substance to be sensitized during use is preliminarily polymerized in the second stage during the second stage polymerization. Can be incorporated into the particle surface by being present in the latter half of the. For this purpose, carboxylic acid monomers such as methacrylic acid, acrylic acid, fumaric acid and itaconic acid, epoxy group-containing monomers such as glycidyl methacrylate, and amino group-containing monomers such as vinylbenzylamine and p-aminostyrene are used. Of these, the epoxy group is useful because it can be converted into many functional groups under the treatment conditions after the polymerization. Further, in the present invention, in the second-stage polymerization, when a radical polymerization initiator containing a specific amino group is used, the amino group of the initiator residue is present on the surface of the polymerized particles, and the protein, nucleic acid, sugar chain, etc. It can be chemically bound to a physiologically active substance.

【0012】本発明の生理活性物質担体用ポリマー粒子
表面に化学結合法で直接にタンパク、核酸、糖鎖物質等
の生理活性物質を結合させて使用することができるが、
粒子表面に二官能のスペーサ化合物の一端を結合させ、
他方に生理活性物質を結合させることで生理活性物質が
粒子表面から若干の距離を離すことができる。本発明の
担体粒子がアミノ基変性粒子である場合、このスペーサ
化合物としてはエチレングリコールジグリシジルエーテ
ルおよびその誘導体が挙げられる。生理活性物質が粒子
表面から離れることで、生理活性物質の活性が大いに向
上し、均一溶液中での値に近づき、時にはそれを越える
ことも期待できる。本発明の担体粒子へのタンパク、核
酸、糖鎖物質等の生理活性物質の感作は化学結合法で行
うが、その感作法としては、従来の通常の化学結合法の
プロセス(プロトコール)が適用できる。
The bioactive substance such as protein, nucleic acid or sugar chain substance can be directly bound to the surface of the polymer particle for a bioactive substance carrier of the present invention by a chemical bonding method before use.
By attaching one end of a bifunctional spacer compound to the particle surface,
By binding a physiologically active substance to the other, the physiologically active substance can be separated from the particle surface by a slight distance. When the carrier particles of the present invention are amino group-modified particles, examples of the spacer compound include ethylene glycol diglycidyl ether and its derivatives. By separating the physiologically active substance from the particle surface, it is expected that the activity of the physiologically active substance is greatly improved, approaches the value in the homogeneous solution, and sometimes exceeds it. The carrier particles of the present invention are sensitized with a physiologically active substance such as protein, nucleic acid, sugar chain substance, etc. by a chemical bonding method. As the sensitizing method, a conventional ordinary chemical bonding method process (protocol) is applied. it can.

【0013】[0013]

【実施例】以下に実施例をあげて本発明をさらに具体的
に説明する。なお、本実施例において%および部は重量
基準である。 実施例1 (第一段目の重合)2Lの攪拌機つきガラスフラスコに
イオン交換水1800ml、乳化剤としてドデシルベン
ゼンスルホン酸ソーダ0.1g(水中濃度55ppm)、カル
ボン酸モノマーとして、イタコン酸2g、アクリル酸1
gを入れ、120rpmで攪拌しながら窒素置換をして
80℃に昇温した。80℃になったところで開始剤の3
%過硫酸カリウム水溶液16.7gを添加し、80℃で
0.5時間の重合を行った。0.5時間目に固形分濃度
を測定して重合転化率を測定したところ、重合転化率4
5%であり、重合液はほぼ透明であった。 (第二段目の重合)第一段目の重合開始後、0.5時間
目に、第二段目のモノマーとして、スチレン97gを添
加して引き続き80℃のまま、5時間の重合を行ない重
合安定性良好に実施例1のポリマー粒子を得た。重合終
了後、冷却し固形分濃度を測定して重合転化率を測定し
たところ、重合転化率99.5%であった。電子顕微鏡
で粒子径を測定したところ、平均粒子径0.65μm、
粒子径の変動係数1.2%であり、通常の乳化重合で得
られ難い大粒子径かつ均一粒子径であった。実施例1の
粒子は、1%水酸化ナトリウムでpHを8に調整した
後、6,000rpm×10分の遠心分離で粒子を沈降させて上澄
みを捨てイオン交換水で再分散することを3回繰り返し
て粒子の精製を行った。
EXAMPLES The present invention will be described in more detail with reference to the following examples. In this example,% and parts are based on weight. Example 1 (First-stage polymerization) In a 2 L glass flask equipped with a stirrer, 1800 ml of ion-exchanged water, 0.1 g of sodium dodecylbenzenesulfonate as an emulsifier (concentration in water: 55 ppm), 2 g of itaconic acid as a carboxylic acid monomer, acrylic acid 1
g was added, nitrogen substitution was carried out while stirring at 120 rpm, and the temperature was raised to 80 ° C. When the temperature reached 80 ° C, 3 of the initiator
% Aqueous solution of potassium persulfate (16.7 g) was added, and polymerization was carried out at 80 ° C. for 0.5 hour. When the solid content concentration was measured at 0.5 hours to measure the polymerization conversion rate, the polymerization conversion rate was 4
It was 5% and the polymerization liquid was almost transparent. (Second-stage polymerization) At 0.5 hours after the start of the first-stage polymerization, 97 g of styrene was added as a second-stage monomer, and the polymerization was continued for 5 hours at 80 ° C. Polymer particles of Example 1 were obtained with good polymerization stability. After the completion of the polymerization, the reaction mixture was cooled and the solid content concentration was measured to measure the polymerization conversion rate, which was 99.5%. When the particle size was measured with an electron microscope, the average particle size was 0.65 μm,
The variation coefficient of the particle diameter was 1.2%, which was a large particle diameter and a uniform particle diameter that were difficult to obtain by ordinary emulsion polymerization. For the particles of Example 1, the pH was adjusted to 8 with 1% sodium hydroxide, the particles were settled by centrifugation at 6,000 rpm for 10 minutes, the supernatant was discarded, and the particles were redispersed with ion-exchanged water, which was repeated 3 times. Particles were purified.

【0014】実施例2 実施例1の第一段目の重合とまったく同様に重合を行な
い重合開始1時間目に冷却して、一段目重合のポリマー
水溶液を得た。重合固形分から測定した重合転化率は8
7%であった。1Lの攪拌機つきガラスフラスコに第一
段目重合のポリマー分散液800ml、スチレン40
g、ジビニルベンゼン0.2g、メタクリル酸メチル1
0g、5%過硫酸アンモニウム10gを入れて、120
rpmで攪拌しながら窒素置換し、75℃に昇温して5
時間の第二段目の重合を行ったのち、冷却した。重合安
定性は良好で、重合転化率は99.8%、電子顕微鏡に
よる粒子径0.58μm、粒子径の変動係数1.5%で
あった。実施例2でも実施例1と同様に大粒子径で均一
粒径の粒子が重合安定性良く得られた。
Example 2 Polymerization was carried out in exactly the same manner as the first-stage polymerization in Example 1, and the polymer was cooled 1 hour after the initiation of the polymerization to obtain an aqueous polymer solution for the first-stage polymerization. The polymerization conversion rate measured from the polymerization solids is 8
It was 7%. In a 1 L glass flask equipped with a stirrer, 800 ml of the polymer dispersion of the first stage polymerization, 40 styrene
g, divinylbenzene 0.2 g, methyl methacrylate 1
Add 0 g, 5% ammonium persulfate 10 g, 120
Replace with nitrogen while stirring at rpm, raise to 75 ° C and
After the second-stage polymerization for a certain period of time, the system was cooled. The polymerization stability was good, the polymerization conversion rate was 99.8%, the particle diameter by an electron microscope was 0.58 μm, and the variation coefficient of the particle diameter was 1.5%. In Example 2, as in Example 1, particles having a large particle size and a uniform particle size were obtained with good polymerization stability.

【0015】実施例3−9、比較例1−3 モノマーの種類と量、第一段目重合のポリマー量、乳化
剤の量を表1のように変えたほかは実施例1と同様にし
て実施例3−9、比較例1−3のポリマー粒子を得た。
この結果を表1に示す。ここで比較例1は、実施例1と
同一のモノマー組成、同一の乳化剤量で、一段目重合と
二段目重合に分けずに通常の重合法を行なった例であ
り、得られる粒子径は小さいものとなる。また、この系
で乳化剤量を減らしても本発明の様な大粒径の粒子を得
ることはできない。比較例2は、同じく通常の重合法で
できるだけ大粒径を目指してポリスチレン粒子を重合し
た例であるが、0.37μm程度が実用上の限界であっ
た。比較例3は第一段目重合のモノマーにおけるカルボ
ン酸モノマーの比率が少なすぎる例であり、重合安定性
が大きく悪化しており、500Mesh金網でろ過された凝集
物が8.4%(対ポリマー分)あり、さらに粒子径分布
も幅広いものであった。
Examples 3-9, Comparative Examples 1-3 The same procedure as in Example 1 was carried out except that the types and amounts of monomers, the amounts of polymers in the first-stage polymerization, and the amounts of emulsifiers were changed as shown in Table 1. Polymer particles of Example 3-9 and Comparative Example 1-3 were obtained.
The results are shown in Table 1. Comparative Example 1 is an example in which the same monomer composition and the same amount of emulsifier as in Example 1 were used to carry out a normal polymerization method without dividing into first-stage polymerization and second-stage polymerization. It will be small. Further, even if the amount of emulsifier is reduced in this system, it is not possible to obtain particles having a large particle size as in the present invention. Comparative Example 2 is an example in which polystyrene particles were polymerized by the same ordinary polymerization method with the aim of obtaining a particle size as large as possible, but about 0.37 μm was a practical limit. Comparative Example 3 is an example in which the ratio of the carboxylic acid monomer in the monomer of the first-stage polymerization is too small, and the polymerization stability is significantly deteriorated, and the agglomerates filtered with a 500 Mesh wire mesh are 8.4% (versus polymer). And the particle size distribution was wide.

【表1】 [Table 1]

【0016】評価例(タンパク、核酸の物理吸着量の評
価) 実施例1で調製した本発明の生理活性物質担体用ポリマ
ー粒子分散液をエッペンドルフ遠心チューブ(1.5m
l)4本に各0.1ml(粒子固形分量10mg)とり、1ml
リン酸生理食塩水(PBS)で遠心洗浄(6,000rpm×10分)
することを3回繰り返した後、それぞれをウシ血清アル
ブミン20mg、ヒトIgG 20mg、カゼイン20mgまたはcalf D
NA(粗精製)1mgを溶解したPBSに入れ各1mlとした。
上記の粒子とタンパク、または、粒子と核酸の混合液を
25℃で2時間インキュベートした後に、遠心分離(6,
000rpm×10分)し、上澄を220-320nmの紫外光の吸光度
測定を行って粒子に未吸着の液相中のタンパクまたは核
酸の濃度を定量し、これから粒子への吸着量を計算し
た。ペレットはPBSで3回遠心洗浄し、最終的に0.1mlの
PBSに分散させた。同様にして実施例2,3,7の粒子
および比較例1,2の粒子についても評価を行った。比
較例1の粒子は通常の重合法でのカルボン酸変性ポリマ
ー粒子であり、比較例2の粒子は通常の重合法で得られ
たポリスチレン粒子である。この際、比較例1の粒子は
小粒径のため遠心沈降性が非常にわるく、18,000rpm×6
0分の超遠心機でも沈降が不十分であった。結果を表2
に示す。本発明の生理活性物質担体用ポリマー粒子は従
来のポリスチレン系の担体粒子と比べて格段にタンパ
ク、核酸の物理吸着量が少ないことが分かる。
Evaluation Example (Evaluation of Physical Adsorption of Protein and Nucleic Acid) The polymer particle dispersion liquid for a physiologically active substance carrier of the present invention prepared in Example 1 was treated with an Eppendorf centrifuge tube (1.5 m).
l) 0.1 ml each (particle solid content 10 mg) in 4 bottles, 1 ml
Centrifugal washing with phosphate saline (PBS) (6,000 rpm x 10 minutes)
After repeating the procedure three times, 20 mg bovine serum albumin, 20 mg human IgG, 20 mg casein or calf D
1 mg of NA (crude purified) was put into PBS to make 1 ml each.
After incubating the above-mentioned particle and protein or the mixed solution of particles and nucleic acid at 25 ° C for 2 hours, centrifugation (6,
(000 rpm × 10 minutes), the supernatant was subjected to UV-absorbance measurement at 220-320 nm to quantify the concentration of protein or nucleic acid in the liquid phase not adsorbed to the particles, and the amount adsorbed to the particles was calculated from this. Pellet was washed 3 times with PBS and finally washed with 0.1 ml
It was dispersed in PBS. Similarly, the particles of Examples 2, 3 and 7 and the particles of Comparative Examples 1 and 2 were evaluated. The particles of Comparative Example 1 are carboxylic acid-modified polymer particles obtained by an ordinary polymerization method, and the particles of Comparative Example 2 are polystyrene particles obtained by an ordinary polymerization method. At this time, since the particles of Comparative Example 1 have a small particle size, centrifugal sedimentation property is very poor.
Sedimentation was insufficient even with a 0 minute ultracentrifuge. The results are shown in Table 2.
Shown in. It can be seen that the polymer particles for a physiologically active substance carrier of the present invention have a significantly smaller physical adsorption amount of proteins and nucleic acids than conventional polystyrene-based carrier particles.

【0017】[0017]

【表2】 [Table 2]

【0018】評価例(担体粒子から化学発光法AFP免疫
検査試薬の作製と評価) 本発明の生理活性物質担体粒子の性能を評価するため
に、以下のように化学結合法で化学発光AFP免疫検査
試薬を作製して評価した。実施例1の粒子分散液0.1ml
(粒子固形分量10mg)を1mlリン酸生理食塩水(PBS)
で3回遠心洗浄した後、固形物に0.1mM塩酸水溶液
(pH=5.5)を添加して遠心分離処理する操作を3
回繰り返すことにより、粒子の洗浄処理を行った。その
後、1−エチル−3−ジメチルアミノプロピルカルボジ
イミド塩酸塩(同仁化学社製)5mgを溶解した0.1
mM塩酸水溶液0.1mlを添加し、40℃で2時間攪拌
し、更に、抗AFPモノクロ抗体0.1mgを溶解した0.
1mM塩酸水溶液を0.1mlを添加し、室温で1時間
攪拌した後、1重量%カセ゛イン溶液0.1mlを加え、室温で1
4時間攪拌することより、粒子の表面に抗AFPモノクロ
抗体を固定化した粒子を調製した。次いで、このAFP抗
体粒子を含む溶液を遠心分離処理し、固形物に0.1重
量%牛血清アルブミン(BSA)を含むpH7.2のリ
ン酸塩緩衝液(PBS)を添加して遠心分離処理する操
作を3回繰り返すことにより、未反応のAFP抗体を除去
し、実施例1の担体粒子をもちいた抗体感作粒子を化学
結合法で得た。最終粒子固形分は1%に調製した。実施
例2−6、比較例1−3の粒子についても同様の操作を
行い抗体を感作した。
Evaluation Example (Preparation and Evaluation of Chemiluminescent AFP Immunoassay Reagent from Carrier Particles) In order to evaluate the performance of the physiologically active substance carrier particles of the present invention, a chemiluminescent AFP immunoassay is performed by the chemical bonding method as follows. Reagents were prepared and evaluated. 0.1 ml of the particle dispersion of Example 1
(Particle solid content 10 mg) 1 ml Phosphate saline (PBS)
After centrifuging and washing 3 times with, the procedure of adding 0.1 mM hydrochloric acid aqueous solution (pH = 5.5) to the solid and centrifuging it
The particles were washed by repeating this process. Thereafter, 0.1 mg of 5 mg of 1-ethyl-3-dimethylaminopropylcarbodiimide hydrochloride (manufactured by Dojindo Co., Ltd.) was dissolved.
0.1 ml of a mM hydrochloric acid aqueous solution was added, and the mixture was stirred at 40 ° C. for 2 hours, and 0.1 mg of an anti-AFP monoclonal antibody was dissolved.
0.1 ml of a 1 mM aqueous hydrochloric acid solution was added, the mixture was stirred at room temperature for 1 hour, 0.1 ml of a 1% by weight caffeine solution was added, and the mixture was stirred at room temperature for 1 hour.
By stirring for 4 hours, particles having an anti-AFP monoclonal antibody immobilized on the surface of the particles were prepared. Then, the solution containing the AFP antibody particles is subjected to a centrifugation treatment, and a phosphate buffer (PBS) having a pH of 7.2 containing 0.1% by weight of bovine serum albumin (BSA) is added to the solid matter and the centrifugation treatment is carried out. By repeating this operation 3 times, unreacted AFP antibody was removed, and antibody-sensitized particles using the carrier particles of Example 1 were obtained by the chemical bonding method. The final particle solids content was adjusted to 1%. Antibodies were sensitized by the same procedure for the particles of Example 2-6 and Comparative Example 1-3.

【0019】上記調製した抗体感作粒子10μlにAFP抗
原、0, 10, 50, 100, 500ng/mlを添加し、室温で10分
静置した後、アルカリフォスフォターゼ標識したAFP抗
体コンジュゲット200μgを加え、室温で10分反応
させた。未反応物を除去するために、粒子をPBSで4回
遠心洗浄した。最終的に沈降固形分(粒子)を100μl
のルミパルスAMPPD基質液(アダマンチル−1,2−ジオ
キセタンフォスフェイト試薬液、富士レビオ(株))
に分散し、5分後の化学発光値を測定した。結果を表3
に示す。実施例の担体粒子を用いた感作粒子はバックグ
ランドが低く、低濃度から高濃度にわたって精度の高い
測定が可能であることが分かる。比較例1の粒子は遠心
沈降性が悪く、評価現場の遠心機での最大条件(10,000
rpm)で1時間の遠心沈降を行ったが、沈降できないた
め評価できなかった。比較例2の担体粒子は抗体と化学
結合する官能基がなく、この粒子の非特異吸着によるバ
ックグランド値のみが現れている。比較例3の担体粒子
を用いたものは化学発光値から抗原濃度を定量すること
は可能であるが、バックグランドが高いほか、化学発光
値の頭打ちが早く現れて定量可能範囲が狭かった。これ
は、比較例3の粒子の粒子径分布が広すぎるためと考え
られ、実用の検査試薬としては問題があった。
AFP antigen, 0, 10, 50, 100, 500 ng / ml was added to 10 μl of the antibody-sensitized particles prepared above, and the mixture was allowed to stand at room temperature for 10 minutes, and then 200 μg of AFP antibody conjugate labeled with alkaline phosphatase. Was added and reacted at room temperature for 10 minutes. The particles were centrifuged 4 times with PBS to remove unreacted material. Finally 100 μl of sedimented solids (particles)
Lumipulse AMPPD substrate solution (adamantyl-1,2-dioxetane phosphate reagent solution, Fujirebio Co., Ltd.)
And the chemiluminescence value was measured after 5 minutes. The results are shown in Table 3.
Shown in. It can be seen that the sensitized particles using the carrier particles of the examples have a low background and can perform highly accurate measurement from low concentration to high concentration. The particles of Comparative Example 1 had a poor centrifugal sedimentation property, and the maximum conditions (10,000
Although centrifugation was performed for 1 hour at (rpm), it could not be evaluated because it could not be sedimented. The carrier particles of Comparative Example 2 do not have a functional group that chemically bonds to the antibody, and only the background value due to nonspecific adsorption of the particles appears. In the case of using the carrier particles of Comparative Example 3, it is possible to quantify the antigen concentration from the chemiluminescence value, but the background is high, and the chemiluminescence value peaks early and the quantifiable range is narrow. This is considered to be because the particle size distribution of the particles of Comparative Example 3 was too wide, which was a problem as a practical test reagent.

【0020】[0020]

【表3】 注1:担体粒子の遠心沈降性が悪く、抗体感作粒子の調
整ができなかった。
[Table 3] Note 1: The carrier particles had a poor centrifugal sedimentation property, and the antibody-sensitized particles could not be prepared.

【0021】[0021]

【発明の効果】本発明により、大粒径でかつ粒子径分布
が狭いカルボキシル基変性ポリマー粒子が乳化重合にお
いても容易にかつ再現性良く得ることができる。このた
め、従来、乳化重合では困難であった、特にカルボキシ
ル基変性では困難であった例えば0.5μm以上の粒径
でも容易に、工業規模でも生産することができる。本発
明のカルボキシル基変性粒子は高性能の生理活性物質担
体用ポリマー粒子であり、大粒子径・均一粒径であるほ
かに、粒子表面に高い密度でカルボキシル基が存在する
ことから、化学結合法による担体粒子として高密度に生
理活性物質を結合できる上に、粒子表面の親水性が高く
非特異吸着が少ない。このために、本発明の生理活性物
質担体用ポリマー粒子を用いることで、高感度かつ低バ
ックグラウンドの検査試薬が作製できる。本発明の担体
粒子を用いることで、これまでより高い感度でかつ検知
濃度範囲の広いラテックス診断薬、特定のDNA・RN
Aを捕捉、精製、濃縮する特異核酸捕捉粒子、特定のタ
ンパク分離粒子、DNA転写制御因子タンパクの捕集粒
子等を調整することができる。さらにこれら粒子をカラ
ムに詰めると、特定の生理活性物質を検知、捕集するア
フィニティクロマトができる。またこれら粒子をプレー
トに並べて使用することも可能である。本発明の生理活
性物質担体用ポリマー粒子の表面に医薬候補物質を結合
させ、これをカラムに詰める、またはろ紙や薄層ゲルに
担持させる、さらにはプレートに点着させたところに、
細胞分解物あるいはタンパクを流して粒子に親和性のあ
る成分を分別・分離することができる。これにより、医
薬候補物質と相互作用する生体部位を探知することがで
きる。あるいは逆に、本発明の生理活性物質担体用ポリ
マー粒子の表面に特定のタンパク、核酸、糖鎖等の生理
活性物質を結合させ、これを詰めたカラム、ろ紙、薄層
ゲルまたはプレートに医薬候補物質を流して粒子に親和
性のある成分を分別・分離することで医薬物質をスクリ
ーニングすることができる。
According to the present invention, carboxyl group-modified polymer particles having a large particle size and a narrow particle size distribution can be easily and reproducibly obtained in emulsion polymerization. For this reason, it is possible to easily produce even on an industrial scale even with a particle size of, for example, 0.5 μm or more, which has hitherto been difficult with emulsion polymerization, particularly with carboxyl group modification. The carboxyl group-modified particles of the present invention are high-performance polymer particles for physiologically active substance carriers, and in addition to having a large particle diameter and a uniform particle diameter, carboxyl groups are present at a high density on the particle surface, and therefore, the chemical bonding method is used. In addition to being able to bind physiologically active substances as carrier particles with high density, the surface of the particles has high hydrophilicity and less non-specific adsorption. Therefore, by using the polymer particles for a physiologically active substance carrier of the present invention, a highly sensitive and low background test reagent can be produced. By using the carrier particles of the present invention, a latex diagnostic agent with a higher sensitivity and a wider detection concentration range than ever, a specific DNA / RN
Specific nucleic acid-capturing particles for capturing, purifying, and concentrating A, specific protein-separating particles, DNA-transcription control factor protein-collecting particles, and the like can be prepared. Furthermore, if these particles are packed in a column, affinity chromatography for detecting and collecting a specific physiologically active substance can be performed. It is also possible to arrange these particles on a plate and use them. The drug candidate substance is bound to the surface of the polymer particles for a physiologically active substance carrier of the present invention, which is packed in a column, or supported on a filter paper or a thin layer gel, and further spotted on a plate,
A cell lysate or protein can be flowed to separate and separate components having an affinity for particles. This makes it possible to detect a living body part that interacts with the drug candidate substance. Alternatively, conversely, a physiologically active substance such as a specific protein, nucleic acid or sugar chain is bound to the surface of the polymer particles for a physiologically active substance carrier of the present invention, and a column, filter paper, thin layer gel or plate packed with this is used as a drug candidate. A drug substance can be screened by flowing a substance and separating / separating components having an affinity for particles.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水溶性の重合性カルボン酸モノマーを5
0重量%以上含有する重合性モノマーを水溶性ラジカル
開始剤の存在下に水媒体中で重合し、得られた重合体の
存在下にビニルモノマーを乳化重合することを特徴とす
るポリマー粒子の製造方法。
1. A water-soluble polymerizable carboxylic acid monomer
Production of polymer particles, characterized in that 0% by weight or more of a polymerizable monomer is polymerized in an aqueous medium in the presence of a water-soluble radical initiator, and the vinyl monomer is emulsion-polymerized in the presence of the obtained polymer. Method.
【請求項2】 乳化重合における乳化剤の水中濃度が50
0ppm(重量単位)以下である請求項1記載の製造方
法。
2. The emulsifier concentration in water in emulsion polymerization is 50.
The production method according to claim 1, which is 0 ppm (weight unit) or less.
【請求項3】 請求項1記載の方法により得られること
を特徴とするポリマー粒子。
3. Polymer particles obtainable by the method according to claim 1.
【請求項4】 請求項3のポリマー粒子からなることを
特徴とする生理活性物質担体。
4. A physiologically active substance carrier comprising the polymer particles according to claim 3.
JP2002083734A 2002-03-25 2002-03-25 Method for producing polymer particle, polymer particle and carrier for physiologically active substance Pending JP2003277455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002083734A JP2003277455A (en) 2002-03-25 2002-03-25 Method for producing polymer particle, polymer particle and carrier for physiologically active substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002083734A JP2003277455A (en) 2002-03-25 2002-03-25 Method for producing polymer particle, polymer particle and carrier for physiologically active substance

Publications (1)

Publication Number Publication Date
JP2003277455A true JP2003277455A (en) 2003-10-02

Family

ID=29231379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002083734A Pending JP2003277455A (en) 2002-03-25 2002-03-25 Method for producing polymer particle, polymer particle and carrier for physiologically active substance

Country Status (1)

Country Link
JP (1) JP2003277455A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123686A1 (en) * 2005-05-20 2006-11-23 Jsr Corporation Support polymer particle, process for producing the same, magnetic particle for specific trapping, and process for producing the same
JP2006321932A (en) * 2005-05-20 2006-11-30 Jsr Corp Carrier polymer particle and its production method
WO2008087909A1 (en) * 2007-01-16 2008-07-24 Sumitomo Bakelite Company, Ltd. Particles for medical use, particles for analysis, and process for production of both
US8703289B2 (en) 2005-11-01 2014-04-22 Jsr Corporation Organic polymer particles and process for producing the same, magnetic particles for diagnostics, carboxyl group-containing particles and process for producing the same, and probe-bound particles and process for producing the same
WO2019208669A1 (en) * 2018-04-27 2019-10-31 キヤノン株式会社 Particles and method for production thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296683A (en) * 1976-02-09 1977-08-13 Nippon Paint Co Ltd Preparation of water-based polymers
JPS5759923A (en) * 1980-09-29 1982-04-10 Sumitomo Naugatuck Co Ltd Production of copolymer latex
JPS63120770A (en) * 1986-11-11 1988-05-25 Dainippon Ink & Chem Inc Resin composition for water based paint
JPS63146913A (en) * 1986-07-14 1988-06-18 ロ−ム アンド ハ−ス コンパニ− Aqueous dispersion preparation
JPH01201313A (en) * 1987-12-17 1989-08-14 Tioxide Group Plc Core/sheath polymer particle
JPH01315454A (en) * 1988-03-30 1989-12-20 Japan Synthetic Rubber Co Ltd Highly crosslinked polymer particle and production thereof
JPH05255457A (en) * 1992-03-16 1993-10-05 Nippon Zeon Co Ltd Copolymer latex and its production
JPH08169919A (en) * 1994-10-21 1996-07-02 Dainippon Ink & Chem Inc Aqueous curable polymer dispersion and production thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296683A (en) * 1976-02-09 1977-08-13 Nippon Paint Co Ltd Preparation of water-based polymers
JPS5759923A (en) * 1980-09-29 1982-04-10 Sumitomo Naugatuck Co Ltd Production of copolymer latex
JPS63146913A (en) * 1986-07-14 1988-06-18 ロ−ム アンド ハ−ス コンパニ− Aqueous dispersion preparation
JPS63120770A (en) * 1986-11-11 1988-05-25 Dainippon Ink & Chem Inc Resin composition for water based paint
JPH01201313A (en) * 1987-12-17 1989-08-14 Tioxide Group Plc Core/sheath polymer particle
JPH01315454A (en) * 1988-03-30 1989-12-20 Japan Synthetic Rubber Co Ltd Highly crosslinked polymer particle and production thereof
JPH05255457A (en) * 1992-03-16 1993-10-05 Nippon Zeon Co Ltd Copolymer latex and its production
JPH08169919A (en) * 1994-10-21 1996-07-02 Dainippon Ink & Chem Inc Aqueous curable polymer dispersion and production thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123686A1 (en) * 2005-05-20 2006-11-23 Jsr Corporation Support polymer particle, process for producing the same, magnetic particle for specific trapping, and process for producing the same
JP2006321932A (en) * 2005-05-20 2006-11-30 Jsr Corp Carrier polymer particle and its production method
US9447232B2 (en) 2005-05-20 2016-09-20 Jsr Corporation Carrier polymer particle, process for producing the same, magnetic particle for specific trapping, and process for producing the same
US8703289B2 (en) 2005-11-01 2014-04-22 Jsr Corporation Organic polymer particles and process for producing the same, magnetic particles for diagnostics, carboxyl group-containing particles and process for producing the same, and probe-bound particles and process for producing the same
WO2008087909A1 (en) * 2007-01-16 2008-07-24 Sumitomo Bakelite Company, Ltd. Particles for medical use, particles for analysis, and process for production of both
WO2019208669A1 (en) * 2018-04-27 2019-10-31 キヤノン株式会社 Particles and method for production thereof

Similar Documents

Publication Publication Date Title
JP4210828B2 (en) POLYMER PARTICLE FOR BIOLOGICALLY ACTIVE SUBSTANCE AND METHOD FOR PRODUCING THE SAME
JP5866880B2 (en) Particles for immobilizing physiologically active substances, physiologically active substance-immobilized particles, and sugar affinity substance capturing particles
JP5428166B2 (en) Aggregation and dispersion method of magnetic particles and separation, detection method and detection kit using the same
JP5026251B2 (en) Detection method and quantification method of detection target
JP2023126848A (en) Particles, method for producing particles, affinity particles, reagent and kit including the same, and method for detecting target substance
WO2019208669A1 (en) Particles and method for production thereof
JP2003277455A (en) Method for producing polymer particle, polymer particle and carrier for physiologically active substance
JPH028271B2 (en)
JP4984025B2 (en) Organic polymer particle, method for producing the same, and probe binding particle
JP2008239874A (en) Vinyl polymer, blocking agent and method for producing probe-bound particles using the same
JP2006226689A (en) Magnetic particle for immunological examination
JP6442291B2 (en) Particle dispersion, kit for use in detection of target substance, and target substance detection method
JP2009219388A (en) Magnetic particle for immunopcr, method for detecting target substance and detection kit for target substance
JP4684434B2 (en) Virus concentration particle, virus concentration reagent, virus concentration method and virus detection method
JP4761068B2 (en) Magnetic particles and probe binding particles
JP2004061301A (en) Physiologically active substance carrier polymer particle
JP2021036230A (en) Particle and manufacturing method therefor, affinity particle, inspection reagent, inspection kit, and detection method
US10557848B2 (en) Polymer microparticle for carrying physiologically active substance and method for preparing same
JP7150463B2 (en) Particles, Particle Production Method, Affinity Particles, Test Reagent and Test Kit Containing the Same, and Target Substance Detection Method
JP2021032702A (en) Particles for inspecting sample and method for manufacturing the same
JP4161167B2 (en) Virus concentration method, virus detection method, and virus concentration reagent
JP2008191129A (en) Blocking agent, probe-bound particle, and its manufacturing method
WO2017115440A1 (en) Method for detecting substance of interest, method for quantifying substance of interest, kit, and method for preparing reagent
WO2017090721A1 (en) Method of determining quantity of objects to be detected in specimen
JP2014062798A (en) Analyzing carrier, and method for manufacturing and using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515