JP2011026762A - High shrinkage fiber - Google Patents

High shrinkage fiber Download PDF

Info

Publication number
JP2011026762A
JP2011026762A JP2010250255A JP2010250255A JP2011026762A JP 2011026762 A JP2011026762 A JP 2011026762A JP 2010250255 A JP2010250255 A JP 2010250255A JP 2010250255 A JP2010250255 A JP 2010250255A JP 2011026762 A JP2011026762 A JP 2011026762A
Authority
JP
Japan
Prior art keywords
polymer
shrinkage
nylon
dtex
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010250255A
Other languages
Japanese (ja)
Inventor
Isato Iwamoto
勇人 岩本
Yoshitomo Hara
義智 原
Hideo Ueda
秀夫 上田
Masaharu Saito
雅春 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KB Seiren Ltd
Original Assignee
KB Seiren Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KB Seiren Ltd filed Critical KB Seiren Ltd
Priority to JP2010250255A priority Critical patent/JP2011026762A/en
Publication of JP2011026762A publication Critical patent/JP2011026762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high shrinkage fiber exhibiting high shrinkage in boiling water, and providing high density when used for a woven fabric. <P>SOLUTION: The high shrinkage fiber includes a nylon MXD6 polymer and a nylon 6 polymer in a weight ratio of 35:65 to 70:30, and has a breaking strength of >4.00 cN/dtex. In a preferable embodiment, the weight ratio of the nylon MXD6 polymer to the nylon 6 polymer is 45:55 to 55:45. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、収縮性能が高く、織物として用いた際に高密度を得ることの出来る高収縮繊維に関する。   The present invention relates to a highly shrinkable fiber having high shrinkage performance and capable of obtaining a high density when used as a woven fabric.

近年、高密度の織物の開発において、熱処理によって高い収縮性能を示す繊維が求められている。そして、このような高収縮性繊維を製織した織物に熱処理を施すと、高収縮性の繊維が収縮することによって、経糸と緯糸の間の目が詰まり、適度なハリ、コシと反発感などを有する高密度織物を得ることができる。   In recent years, in the development of high-density fabrics, there has been a demand for fibers that exhibit high shrinkage performance by heat treatment. And, when heat treatment is applied to a woven fabric made of such highly shrinkable fibers, the highly shrinkable fibers contract, thereby clogging the eyes between the warp and the weft, and providing appropriate elasticity, stiffness and resilience. A high-density woven fabric can be obtained.

このような高収縮性の繊維として、高収縮性のポリエステルフィラメントが用いられているが、収縮させた後の風合いが硬く、衣料用途としての快適性に問題があった。   As such a highly shrinkable fiber, a highly shrinkable polyester filament is used, but the texture after shrinkage is hard, and there is a problem in comfort as a clothing application.

特開平3−64516号公報には、沸騰水収縮率が15%以上である高収縮性のナイロン繊維が開示されている。しかしながら、この繊維は他の繊維と混繊して異収縮混繊糸とするためのものであり、この繊維を製織した織物に熱処理を施しても、収縮応力が小さいため十分に収縮されず、高密度の織物を得ることはできなかった。   Japanese Patent Laid-Open No. 3-64516 discloses a highly shrinkable nylon fiber having a boiling water shrinkage of 15% or more. However, this fiber is for blending with other fibers to make a different shrinkage mixed yarn, and even if heat treated to the woven fabric of this fiber, the shrinkage stress is small, so it does not shrink sufficiently, A high density fabric could not be obtained.

特開平8−209444号公報には、沸騰水収縮率が30%以上である高収縮性のナイロン繊維が開示されている。しかしながら、この繊維を製造するために用いられるポリマーは共重合によって製造されるため、共重合ポリマーを製造するのに手間がかかり、またコストも高くなるという問題があった。   JP-A-8-209444 discloses a highly shrinkable nylon fiber having a boiling water shrinkage of 30% or more. However, since the polymer used for producing the fiber is produced by copolymerization, there is a problem that it takes time and effort to produce the copolymer and the cost is increased.

特開平3−64516号公報Japanese Patent Laid-Open No. 3-64516 特開平8−209444号公報JP-A-8-209444

本発明は、このような従来技術の欠点を解決するためになされたもので、沸騰水収縮率が高く、織物として用いた際に高密度を得ることの出来る高収縮繊維を提供することを目的とする。   The present invention has been made in order to solve the disadvantages of the prior art, and an object of the present invention is to provide a highly shrinkable fiber which has a high boiling water shrinkage ratio and can obtain a high density when used as a woven fabric. And

上記の目的を達成するため、本発明はナイロンMXD6ポリマーとナイロン6ポリマーからなる繊維であって、それぞれの重量比率が35:65〜70:30、破断強度が4.00cN/dtex以上であることを特徴とする高収縮繊維を第1の要旨とする。ここで言うナイロンMXD6とは、メタキシレンジアミンとアジピン酸との重合反応から得られる結晶性のポリアミドである。   In order to achieve the above object, the present invention is a fiber made of nylon MXD6 polymer and nylon 6 polymer, each having a weight ratio of 35:65 to 70:30 and a breaking strength of 4.00 cN / dtex or more. The first aspect is a highly shrinkable fiber characterized by the above. Nylon MXD6 referred to here is a crystalline polyamide obtained from a polymerization reaction of metaxylenediamine and adipic acid.

また、本発明の好ましい態様として、上記高収縮繊維のナイロンMXD6ポリマーとナイロン6ポリマーの重量比率が45:55〜55:45であるものが挙げられる。   Moreover, as a preferable aspect of the present invention, there may be mentioned those having a weight ratio of nylon MXD6 polymer to nylon 6 polymer of 45:55 to 55:45 in the high shrinkage fiber.

本発明の高収縮繊維は、ナイロンMXD6ポリマーとナイロン6ポリマーが、それぞれ重量比率35:65〜70:30で混合されていることによって高い収縮性能を示す。ま
た、適度な強度を保持している為、製織性が良好であり、織物としての高い引裂強力を有する。更にはポリエステル高密度織物にはない良好な風合いを有する。
The highly shrinkable fiber of the present invention exhibits high shrinkage performance when nylon MXD6 polymer and nylon 6 polymer are mixed in a weight ratio of 35:65 to 70:30, respectively. Moreover, since moderate intensity | strength is hold | maintained, weaving property is favorable and it has the high tearing strength as a textile fabric. Furthermore, it has a good texture not found in polyester high-density fabrics.

また、共重合ではなく、ポリマーの混合物を用いるため、共重合工程が不要となり共重合にかかる手間やコストを抑えることが出来る。   In addition, since a polymer mixture is used instead of copolymerization, a copolymerization step is not required, and labor and cost for copolymerization can be reduced.

本発明の高収縮繊維の中でも、ナイロンMXD6ポリマーとナイロン6ポリマーの重量比率がそれぞれ45:55〜55:45であるものは沸騰水収縮率が特に高く、本発明繊維を製織して収縮加工を施した際には、より高密度の織物を得ることを可能にする。   Among the highly shrinkable fibers of the present invention, those having a weight ratio of nylon MXD6 polymer and nylon 6 polymer of 45:55 to 55:45, respectively, have a particularly high boiling water shrinkage ratio. When applied, it makes it possible to obtain a higher density fabric.

以下、本発明を詳細に説明する。
本発明に用いられるポリマー混合物は、ナイロンMXD6ポリマーとナイロン6ポリマーをそれぞれ35:65〜70:30の重量比率で混合したものであることが必要である。これを原料として高収縮繊維を得ることが出来る。ナイロンMXD6ポリマーが35重量%未満、或いは70重量%を超える比率である場合、沸騰水収縮率の高い繊維を得ることが出来ない。
Hereinafter, the present invention will be described in detail.
The polymer mixture used in the present invention needs to be a mixture of nylon MXD6 polymer and nylon 6 polymer in a weight ratio of 35:65 to 70:30, respectively. Using this as a raw material, highly shrinkable fibers can be obtained. If the nylon MXD6 polymer is less than 35% by weight or more than 70% by weight, a fiber having a high boiling water shrinkage cannot be obtained.

本発明に用いられるポリマー混合物は、ナイロンMXD6ポリマーとナイロン6ポリマーの重量比率が45:55〜55:45であることが特に好ましい。重量比率が45:55〜55:45であれば、沸騰水収縮率(%)が特に大きいため、より高密度の織物を得ることが出来る。   The polymer mixture used in the present invention particularly preferably has a weight ratio of nylon MXD6 polymer to nylon 6 polymer of 45:55 to 55:45. If the weight ratio is 45:55 to 55:45, since the boiling water shrinkage (%) is particularly large, a higher-density fabric can be obtained.

ナイロン6ポリマーは、溶融紡糸の安定操業性の観点から、相対粘度が2.2以上であることが好ましい。より好ましくは相対粘度が2.4以上、特に好ましくは相対粘度が2.7以上である。また、相対粘度の上限は特に限定されないが、溶融紡糸の安定操業性の観点から、3.5までで十分である。   The nylon 6 polymer preferably has a relative viscosity of 2.2 or more from the viewpoint of stable operability of melt spinning. More preferably, the relative viscosity is 2.4 or more, and particularly preferably the relative viscosity is 2.7 or more. The upper limit of the relative viscosity is not particularly limited, but up to 3.5 is sufficient from the viewpoint of stable operability of melt spinning.

ナイロンMXD6ポリマーは、溶融紡糸の安定操業性の観点から、相対粘度が2.1以上であることが好ましい。より好ましくは相対粘度が2.3以上、特に好ましくは相対粘度が2.5以上である。また、相対粘度の上限は特に限定されないが、溶融紡糸の安定操業性の観点から、3.3までで十分である。   The nylon MXD6 polymer preferably has a relative viscosity of 2.1 or more from the viewpoint of stable operability of melt spinning. More preferably, the relative viscosity is 2.3 or more, and particularly preferably the relative viscosity is 2.5 or more. The upper limit of the relative viscosity is not particularly limited, but up to 3.3 is sufficient from the viewpoint of stable operability of melt spinning.

ナイロン6ポリマー、ナイロンMXD6ポリマーの水分率(ppm)は特に限定されず、適宜決定することが出来る。紡糸操業性の観点から、どちらも紡糸時の水分率が500ppm以下のものを用いるのが好ましい。より好ましくは300ppm以下、特に好ましくは200ppm以下である。   The moisture content (ppm) of the nylon 6 polymer and nylon MXD6 polymer is not particularly limited and can be determined as appropriate. From the viewpoint of spinning operability, it is preferable to use one having a water content of 500 ppm or less during spinning. More preferably, it is 300 ppm or less, Most preferably, it is 200 ppm or less.

ポリマーには、紡糸操業性を良好にするために無機粒子を含有することが好ましい。そのための無機粒子は数多く存在し、酸化チタン、酸化亜鉛、炭酸マグネシウム、酸化ケイ素、炭酸カルシウム、アルミナなどが挙げられる。紡糸操業性に支障がなければ、添加する無機粒子は特に限定されないが、分散性やコストパフォーマンスの観点より酸化チタンが好ましく用いられる。無機粒子を糸重量に対し0.1重量%〜3.0重量%添加することが好ましく、0.3重量%〜1.0重量%が特に好ましい。   The polymer preferably contains inorganic particles in order to improve spinning operability. There are many inorganic particles for this purpose, and examples include titanium oxide, zinc oxide, magnesium carbonate, silicon oxide, calcium carbonate, and alumina. If there is no problem in spinning operability, the inorganic particles to be added are not particularly limited, but titanium oxide is preferably used from the viewpoint of dispersibility and cost performance. It is preferable to add inorganic particles in an amount of 0.1% to 3.0% by weight, particularly preferably 0.3% to 1.0% by weight, based on the yarn weight.

上記無機粒子を用いる場合、粉末あるいは粒子の平均粒子径は、0.01μm〜10μmが好ましく、0.05μm〜2μmが特に好ましい。この範囲であると、粒子の凝集が起こりにくくなるため、糸ムラが生じにくくなり、安定した強度を得ることができる。   When the inorganic particles are used, the average particle size of the powder or particles is preferably 0.01 μm to 10 μm, particularly preferably 0.05 μm to 2 μm. Within this range, the particles are less likely to agglomerate, so that yarn unevenness is less likely to occur and a stable strength can be obtained.

ナイロン6ポリマーとナイロンMXD6ポリマーの混合方法は特に限定されない。例え
ば、容器でナイロン6ポリマーとナイロンMXD6ポリマーのチップをかき混ぜたり、或いは混練したりすればよい。
The mixing method of nylon 6 polymer and nylon MXD6 polymer is not particularly limited. For example, nylon 6 polymer and nylon MXD6 polymer chips may be mixed or kneaded in a container.

本発明繊維を得るための紡糸方法、延撚方法は特に限定されない。コンベンショナル方式での紡糸後に延撚や、紡糸直接延伸法などを適宜決定することが出来る。また延伸方法も特に限定されず、一段延伸や多段延伸など適宜決定することが出来る。   The spinning method and the twisting method for obtaining the fiber of the present invention are not particularly limited. After spinning by the conventional method, it is possible to appropriately determine a twisting method, a spinning direct drawing method, or the like. Also, the stretching method is not particularly limited, and can be appropriately determined such as single-stage stretching or multi-stage stretching.

紡糸条件は、ポリマーの相対粘度や操業性の観点から適宜決定することが出来る。一例として、次のような例を紹介する。相対粘度が3.0のナイロン6ポリマーと、相対粘度2.7のナイロンMXD6ポリマーを混合して、ポリマー混合物を製造する。そして該ポリマー混合物をコンベンショナル法にて溶融紡糸して未延伸糸を得る。この場合、押出し温度(℃)は280℃〜295℃が好ましく、283℃〜292℃が特に好ましい。また、紡糸巻取り速度(m/min)は500m/min〜2000m/minが好ましく、800m/min〜1700m/minが特に好ましい。   The spinning conditions can be appropriately determined from the viewpoint of the relative viscosity of the polymer and the operability. The following example is introduced as an example. A nylon 6 polymer having a relative viscosity of 3.0 and a nylon MXD6 polymer having a relative viscosity of 2.7 are mixed to produce a polymer mixture. The polymer mixture is melt-spun by a conventional method to obtain an undrawn yarn. In this case, the extrusion temperature (° C.) is preferably 280 ° C. to 295 ° C., particularly preferably 283 ° C. to 292 ° C. The spinning winding speed (m / min) is preferably 500 m / min to 2000 m / min, and particularly preferably 800 m / min to 1700 m / min.

コンベンショナル法によって紡糸をした後の延撚条件は特に限定されない。一段延伸、多段延伸や、ローラーヒーター/ローラーヒーターの延伸、ローラーヒーター/プレートヒーターの延伸など、適宜決定することが出来る。   There are no particular limitations on the conditions for drawing after spinning by the conventional method. One-stage stretching, multi-stage stretching, roller heater / roller heater stretching, roller heater / plate heater stretching, and the like can be appropriately determined.

一例として、上記のコンベンショナル法での溶融紡糸によって得た未延伸糸を延撚する場合、ローラーヒーターとプレートヒーターを用いるなら、ローラーヒーターは60℃〜90℃が好ましく、70℃〜85℃が特に好ましい。そしてプレートヒーターは130℃〜170℃が好ましく、145℃〜160℃が特に好ましい。   As an example, in the case of untwisting an undrawn yarn obtained by melt spinning by the conventional method, if a roller heater and a plate heater are used, the roller heater is preferably 60 ° C to 90 ° C, particularly 70 ° C to 85 ° C. preferable. The plate heater is preferably from 130 ° C to 170 ° C, particularly preferably from 145 ° C to 160 ° C.

延伸倍率は紡糸速度(m/min)に合わせて設定するのが好ましい。紡糸速度と延伸倍率をバランス良く決定することによって、得られる繊維の強度、伸度を調整することが出来、製織性に優れた繊維を得ることが出来る。例えば、紡糸速度を1500m/minとしたとき、延伸倍率は2.0倍〜2.4倍にすることが好ましく、2.1倍〜2.3倍とすることが特に好ましい。   The draw ratio is preferably set according to the spinning speed (m / min). By determining the spinning speed and the draw ratio in a well-balanced manner, the strength and elongation of the obtained fiber can be adjusted, and a fiber excellent in weaving property can be obtained. For example, when the spinning speed is 1500 m / min, the draw ratio is preferably 2.0 times to 2.4 times, and particularly preferably 2.1 times to 2.3 times.

延伸速度(m/min)は操業性の観点から500m/min〜1000m/minが好ましく、600m/min〜900m/minが特に好ましい。また、スピンドル回転数(rpm)は、延伸速度に対応した値にすることが好ましい。延伸速度に見合うスピンドル回転数を適宜決定することによって、適当な撚り数となり、良好な操業性、良好な収縮性能を得ることが出来る。スピンドル回転数(rpm)は延伸速度(m/min)の8倍〜12倍の回転数(rpm)とすることが好ましい。   The stretching speed (m / min) is preferably 500 m / min to 1000 m / min, and particularly preferably 600 m / min to 900 m / min from the viewpoint of operability. Further, it is preferable to set the spindle rotation speed (rpm) to a value corresponding to the stretching speed. By appropriately determining the number of spindle rotations corresponding to the drawing speed, the number of twists becomes appropriate, and good operability and good shrinkage performance can be obtained. The spindle rotational speed (rpm) is preferably 8 to 12 times the stretching speed (m / min).

本発明繊維の繊度(dtex)は特に限定されず、紡糸可能な範囲で適宜決定することが出来る。高密度織物の製造には、経糸および緯糸の総繊度が30dtex〜300dtexであることが好ましい。より好ましくは40dtex〜200dtex、特に好ましくは50dtex〜150dtexである。ただし、繊度が小さすぎる場合は糸としての収縮性能が小さいものとなるため、十分に収縮し得る繊度とすることが好ましい。   The fineness (dtex) of the fiber of the present invention is not particularly limited, and can be appropriately determined within a range where spinning is possible. For the production of a high-density fabric, the total fineness of warp and weft is preferably 30 dtex to 300 dtex. More preferably, it is 40 dtex-200 dtex, Most preferably, it is 50 dtex-150 dtex. However, when the fineness is too small, the shrinkage performance as a yarn is low, and therefore it is preferable to have a fineness that can sufficiently shrink.

本発明繊維の単糸繊度(dtex)、フィラメント数は特に限定されず、紡糸可能な範囲で適宜決定することが出来る。マルチフィラメント、モノフィラメントのどちらでも適宜決定することが出来るが、高収縮織物として使用する際は、高い緻密性が得られることからマルチフィラメントであることが好ましい。マルチフィラメントでの単糸繊度は、1dtex〜6dtexであることが好ましく、2dtex〜4dtexであることが特に好ましい。   The single yarn fineness (dtex) and the number of filaments of the fiber of the present invention are not particularly limited, and can be appropriately determined within a range where spinning is possible. Either multifilament or monofilament can be determined as appropriate, but when used as a highly shrinkable woven fabric, a multifilament is preferred because high denseness can be obtained. The single yarn fineness of the multifilament is preferably 1 dtex to 6 dtex, and particularly preferably 2 dtex to 4 dtex.

本発明繊維の断面形状は特に限定されない。紡糸操業性の観点から、丸断面が好ましい。   The cross-sectional shape of the fiber of the present invention is not particularly limited. From the viewpoint of spinning operability, a round cross section is preferable.

本発明繊維は、破断強度(cN/dtex)が4.00cN/dtex以上であることが必要である。好ましくは4.30cN/dtex以上、特に好ましくは4.60cN/dtex以上である。繊維強度が高いことによって、糸切れを起こすことなく高密度で製織することが可能となる。破断強度が4.00cN/dtex未満の場合、高密度で製織をしようとすると糸切れするため、良好な製織性を得ることが出来ない。 The fiber of the present invention needs to have a breaking strength (cN / dtex) of 4.00 cN / dtex or more. Preferably it is 4.30 cN / dtex or more, and particularly preferably 4.60 cN / dtex or more. High fiber strength makes it possible to weave at high density without causing yarn breakage. When the breaking strength is less than 4.00 cN / dtex, when weaving at a high density, the yarn breaks, and good weaving properties cannot be obtained.

本発明繊維は、破断伸度(%)が25%〜55%であることが好ましい。より好ましくは25%〜45%、特に好ましくは30%〜40%である。上記の破断伸度であれば、製織操業性が良好となる。 The fiber of the present invention preferably has a breaking elongation (%) of 25% to 55%. More preferably, it is 25% to 45%, particularly preferably 30% to 40%. If it is said breaking elongation, weaving operativity will become favorable.

本発明繊維は、熱収縮応力(cN/dtex)が0.15cN/dtex以上であることが好ましい。より好ましくは0.20cN/dtex以上、特に好ましくは0.25cN/dtex以上である。熱収縮応力が上記範囲にあれば、収縮加工を施した際に高い収縮応力で収縮することによって、より高密度の織物を得ることが出来る。 The fiber of the present invention preferably has a heat shrinkage stress (cN / dtex) of 0.15 cN / dtex or more. More preferably, it is 0.20 cN / dtex or more, and particularly preferably 0.25 cN / dtex or more. If the thermal shrinkage stress is in the above range, a higher density fabric can be obtained by shrinking with a high shrinkage stress when shrinkage processing is performed.

以下に本発明繊維を用いて高密度織物を得る方法のひとつを紹介する。
本発明繊維を製織する際の製織方法、織組織は特に限定されず、製織性や意匠性等の観点から適宜決定することが出来る。
One method for obtaining a high-density fabric using the fiber of the present invention will be introduced below.
The weaving method and weaving structure when weaving the fiber of the present invention are not particularly limited, and can be appropriately determined from the viewpoints of weaving property and design property.

織物の収縮加工方法は特に限定されず、適宜決定することが出来る。製織後の生機に一定張力を加えながら、熱水に浸すことが好ましい。その際、熱水温度は90℃〜100℃、浸水時間は5分間〜30分間、経方向と緯方向それぞれに0.05cN/dtex〜0.20cN/dtexの引張張力をかけながら収縮加工を施すことが好ましい。 The shrinkage processing method of the woven fabric is not particularly limited and can be appropriately determined. It is preferable to immerse in the hot water while applying a constant tension to the green machine after weaving. At that time, the hot water temperature is 90 ° C. to 100 ° C., the water immersion time is 5 minutes to 30 minutes, and shrinkage is applied while applying a tensile tension of 0.05 cN / dtex to 0.20 cN / dtex in each of the warp direction and the weft direction. It is preferable.

収縮加工後の高密度織物について、その引裂強力(N)は、経糸切断方向の引裂強力が20N以上、かつ緯糸切断方向の引裂強力が15N以上であることが好ましく、経糸切断方向の引裂強力が25N以上、かつ緯糸切断方向の引裂強力が20N以上が特に好ましい。引裂強力が大きければ、収縮加工後でも耐久性の高い高密度織物を得ることが出来る。 For the high-density fabric after shrinkage processing, the tear strength (N) is preferably 20 N or more in the warp cutting direction and 15 N or more in the weft cutting direction, and has a tear strength in the warp cutting direction. It is particularly preferable that the tear strength in the weft cutting direction is 25N or more and 20N or more. If the tear strength is large, a highly durable high-density fabric can be obtained even after shrinkage processing.

以下に実施例を挙げて本発明を更に詳細に説明する。なお、本発明は以下に述べる実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to the Example described below.

A.相対粘度の測定
相対粘度の測定は、柴山科学機械製作所製の自動粘度測定装置(SS−600−L1型)を用いて測定する。溶媒に95.8%濃硫酸を用いて、ポリマーを1g/dlの濃度で溶解させて、恒温槽25℃にて測定する。
A. Measurement of relative viscosity Relative viscosity is measured using an automatic viscosity measuring apparatus (SS-600-L1 type) manufactured by Shibayama Scientific Machinery. The polymer is dissolved at a concentration of 1 g / dl using 95.8% concentrated sulfuric acid as a solvent, and measurement is performed at 25 ° C. in a thermostatic bath.

B.破断強度、破断伸度の測定
JIS−L−1013に準じ、島津製作所製のAGS−1KNGオートグラフ引張試験機を用い、試料糸長20cm、定速引張速度20cm/minの条件で測定する。荷重−伸び曲線での荷重の最高値を繊度で除した値を破断強度(cN/dtex)とし、そのときの伸び率を破断伸度(%)とする。
B. Measurement of breaking strength and breaking elongation Using an AGS-1KNG autograph tensile tester manufactured by Shimadzu Corporation under the conditions of a sample yarn length of 20 cm and a constant speed tensile speed of 20 cm / min according to JIS-L-1013. The value obtained by dividing the maximum value of the load on the load-elongation curve by the fineness is defined as the breaking strength (cN / dtex), and the elongation at that time is defined as the breaking elongation (%).


C.沸騰水収縮率の算出
沸騰水収縮率の算出方法は以下の通りである。まず繊維を折り返し、折り返した位置に0.2gの荷重を吊るす。室温で10分間放置してその繊維長を測定した後、沸騰水に2
0分間浸ける。沸騰水から取り出したものを室温で10分間放置した後、収縮後の繊維長を測定する。沸騰水収縮率Δwは以下の式で求められる。
Δw=[(L0−L1)/L0]×100(%)
L0:0.2gの荷重をかけた状態での収縮前の繊維長
L1:0.2gの荷重をかけた状態での収縮後の繊維長
.
C. Calculation of boiling water shrinkage The method of calculating boiling water shrinkage is as follows. First, the fiber is folded, and a load of 0.2 g is hung on the folded position. After standing at room temperature for 10 minutes and measuring the fiber length,
Soak for 0 minutes. After taking out from boiling water for 10 minutes at room temperature, the fiber length after shrinkage is measured. The boiling water shrinkage Δw can be obtained by the following equation.
Δw = [(L0−L1) / L0] × 100 (%)
L0: Fiber length before shrinkage with a load of 0.2 g L1: Fiber length after shrinkage with a load of 0.2 g applied

D.熱収縮応力の測定
熱収縮応力は、カネボウエンジニアリング製のKE−II型収縮応力測定装置を用いて測定する。長さ5cmのループ状として糸端を結んだ試料に、繊度×2/30(cN)の初期荷重をかけて、室温から120℃/minの昇温速度で加熱した際の熱収縮力を測定する。測定した熱収縮力の最高点を熱収縮力のピーク(cN)とし、そのときの温度を熱収縮力ピーク温度(℃)とする。そして上記熱収縮力の最高値を、繊維繊度の2倍で除した値を熱収縮応力(cN/dtex)とする。
D. Measurement of heat shrinkage stress The heat shrinkage stress is measured using a KE-II type shrinkage stress measuring device manufactured by Kanebo Engineering. Measures the thermal contraction force when heated from room temperature at a heating rate of 120 ° C / min by applying an initial load of fineness x 2/30 (cN) to a sample with a thread end tied as a 5 cm long loop. To do. The highest point of the measured thermal contraction force is defined as the peak (cN) of thermal contraction force, and the temperature at that time is defined as the thermal contraction force peak temperature (° C.). A value obtained by dividing the maximum value of the heat shrinkage force by twice the fiber fineness is defined as heat shrinkage stress (cN / dtex).

E.製織性評価
スルーザー社製織機を用いて、回転数300rpmで平織組織の織物を製織し、毛羽や糸切れ発生のため正常な製織を維持できずに停機せざるを得なくなった時点での製織長を測定する。製織長が長い方が製織性良好と言える。製織長が500m以上のものを製織性良好、500m未満のものを製織性不良とする。
E. Evaluation of weaving Weaving length when weaving plain weave fabric at a rotation speed of 300 rpm using a Sulzer loom, and we have to stop because we cannot maintain normal weaving due to the occurrence of fluff and yarn breakage Measure. A longer weaving length means better weaving. A weaving length of 500 m or more is regarded as good weaving property, and a weaving length of less than 500 m is regarded as poor weaving property.

F.カバーファクター
カバーファクターとは、以下の式
{糸の総繊度(dtex)}1/2 ×{織物密度(本/2.54cm)}
で表され、経糸、緯糸別に求められたカバーファクターの総和で表される。カバーファクターが大きいことは織物面積に占める糸の面積が大きいことを意味し、織物の緻密性が高いと言える。
F. Cover factor The cover factor is the following formula {total fineness of yarn (dtex)} 1/2 × {woven fabric density (pieces / 2.54 cm)}
It is expressed by the sum of the cover factors calculated for each warp and weft. A large cover factor means that the area of the yarn occupying the area of the fabric is large, and it can be said that the denseness of the fabric is high.

G.収縮性能評価(カバーファクター変化量)
織物の収縮性能をカバーファクター変化量で評価する。カバーファクター変化量は以下の式
CF1−CF0
CF0:収縮加工前のカバーファクター
CF1:経方向と緯方向それぞれに0.10cN/dtexの一定張力を加えながら収縮加工を施した後のカバーファクター
で表される。カバーファクター変化量が大きいと、織物が収縮加工によって大きく縮んだことを意味し、収縮性能が高いと言える。カバーファクター変化量が400以上のものを収縮性能良好、400未満のものを収縮性能不良とする。
G. Shrink performance evaluation (cover factor change)
The shrinkage performance of the fabric is evaluated by the change amount of the cover factor. The cover factor change amount is expressed by the following formula CF1-CF0
CF0: Cover factor before contraction processing CF1: Expressed by a cover factor after contraction processing while applying a constant tension of 0.10 cN / dtex in each of the warp direction and the weft direction. When the amount of change in the cover factor is large, it means that the fabric is greatly shrunk by the shrinking process, and it can be said that the shrinkage performance is high. A cover factor change amount of 400 or more is regarded as good shrinkage performance, and a cover factor change of less than 400 is regarded as poor shrinkage performance.

H.織物の収縮加工後引裂強力の測定・評価
JIS−L−1096記載の、A−1法(シングルタング法)に準じ、オリエンテック製引裂強力試験機を用い、5cm×25cmの試料辺の短辺中央に、辺と直角に長さ10cmの切れ目を入れ、引張り速度10cm/minで、収縮加工後の経糸切断方向の引裂強力(N)、緯糸切断方向の引裂強力(N)を測定する。
経糸切断方向の引裂強力が20N以上、かつ緯糸切断方向の引裂強力が15N以上であれば引裂強力良好、経糸切断方向の引裂強力が20N未満、または緯糸切断方向の引裂強力が15N未満であれば引裂強力不良と判断する。
H. Measurement and evaluation of tear strength after shrinkage processing of woven fabric According to A-1 method (single tongue method) described in JIS-L-1096, using a tear strength tester made by Orientec, the short side of the sample side of 5 cm x 25 cm A 10 cm long cut is made in the center at right angles to the sides, and the tensile strength (N) in the warp cutting direction and the tearing strength (N) in the weft cutting direction after shrinkage processing are measured at a pulling speed of 10 cm / min.
If the tear strength in the warp cutting direction is 20 N or more and the tear strength in the weft cutting direction is 15 N or more, the tear strength is good, the tear strength in the warp cutting direction is less than 20 N, or the tear strength in the weft cutting direction is less than 15 N Judged as poor tear strength.

〔実施例1〕
それぞれ酸化チタンを0.4重量%ずつ含有する、相対粘度3.0のナイロン6ポリマーのチップと、相対粘度2.7のナイロンMXD6ポリマーのチップを真空乾燥させた。
乾燥後の水分率はナイロン6ポリマーが130ppm、ナイロンMXD6ポリマーが80ppmとなった。
[Example 1]
Nylon 6 polymer chips having a relative viscosity of 3.0 each containing 0.4% by weight of titanium oxide and nylon MXD6 polymer chips having a relative viscosity of 2.7 were vacuum dried.
The moisture content after drying was 130 ppm for nylon 6 polymer and 80 ppm for nylon MXD6 polymer.

そして、それぞれのポリマーを50:50の重量比率となるようにして一つの袋に入れてかき混ぜ均一に混合した。これを、コンベンショナル法にて、24ホールの紡糸口金を用いて、紡糸温度290℃、紡糸速度1500m/minで溶融紡糸して未延伸糸を得た。   And each polymer was put into one bag so that it might become a weight ratio of 50:50, and it stirred and mixed uniformly. This was melt-spun with a conventional method using a 24-hole spinneret at a spinning temperature of 290 ° C. and a spinning speed of 1500 m / min to obtain an undrawn yarn.

その後、上記の未延伸糸を延伸速度800m/min、スピンドル回転数8000rpm、ローラーヒーター温度85℃、プレートヒーター温度150℃、延伸倍率2.2倍で延撚を行い、延伸糸を得た。この延伸糸の糸質を測定したところ、繊度82.9dtex、強度4.45cN/dtex、伸度35.3%、沸騰水収縮率52.7%であった。   Thereafter, the undrawn yarn was drawn at a drawing speed of 800 m / min, a spindle rotation speed of 8000 rpm, a roller heater temperature of 85 ° C., a plate heater temperature of 150 ° C., and a draw ratio of 2.2 times to obtain a drawn yarn. When the yarn quality of the drawn yarn was measured, the fineness was 82.9 dtex, the strength was 4.45 cN / dtex, the elongation was 35.3%, and the boiling water shrinkage was 52.7%.

そして、上記の延伸糸を緯糸に、経糸には繊度83.4dtex、24フィラメントのホモポリエチレンテレフタレート繊維を用いて、回転数300rpmで製織し、平織組織の生機を作製した。なお、生機の経糸密度は106本/2.54cm、緯糸94本/2.54cm、製織長は896mであった。   Then, using the above-mentioned drawn yarn as weft and the warp yarn using homopolyethylene terephthalate fiber having a fineness of 83.4 dtex and 24 filaments, weaving was performed at a rotational speed of 300 rpm to produce a plain weave machine. The raw machine had a warp density of 106 yarns / 2.54 cm, 94 weft yarns / 2.54 cm, and a weaving length of 896 m.

この生機に、経方向と緯方向それぞれに0.10cN/dtexの一定張力を加えながら、97℃の熱水に20分間浸して収縮加工を施して織物製品を得た。収縮加工後の織物密度を測定したところ、経糸密度は134本/2.54cm、緯糸密度は101本/2.54cmであった。収縮加工後の引裂強力を測定したところ、経糸切断方向の引裂強力(N)が23.2N、緯糸切断方向の引裂強力(N)が17.2Nであった。また、柔らかさがある一方、適度なハリとコシがあり、良好な風合いを有していた。   The green machine was subjected to shrinkage by soaking in 97 ° C. hot water for 20 minutes while applying a constant tension of 0.10 cN / dtex in each of the warp direction and the weft direction. When the fabric density after shrinkage processing was measured, the warp density was 134 / 2.54 cm, and the weft density was 101 / 2.54 cm. When the tear strength after shrinkage processing was measured, the tear strength (N) in the warp cutting direction was 23.2 N, and the tear strength (N) in the weft cutting direction was 17.2 N. Moreover, while having softness, there was moderate firmness and stiffness, and it had a good texture.

<ナイロン6とナイロンMXD6の混合比の違いによる沸騰水収縮性能評価>
〔実施例2、3、比較例1〜4〕
ナイロン6ポリマーとナイロンMXD6ポリマーの混合比率を変化させる以外は、実施例1記載の方法に従って溶融紡糸、延撚を行って得た繊維について各種評価を行った。その結果を表1に示す。
<Evaluation of boiling water shrinkage performance due to difference in mixing ratio between nylon 6 and nylon MXD6>
[Examples 2 and 3, Comparative Examples 1 to 4]
Various evaluations were performed on fibers obtained by melt spinning and twisting according to the method described in Example 1 except that the mixing ratio of the nylon 6 polymer and the nylon MXD6 polymer was changed. The results are shown in Table 1.

Figure 2011026762
Figure 2011026762

比較例1、2は、ナイロンMXD6ポリマーの混合比率が小さすぎるために、沸騰水収縮率が不良であった。それに伴い収縮性能も低く、高密度織物は得られなかった。また、比較例3、4は、ナイロンMXD6ポリマーの混合比率が大きすぎるために、収縮性能が不良であり、高密度織物は得られなかった。一方、本発明に準ずる実施例1〜3は沸騰水収縮率が良好であり、収縮性能が高く、高密度織物を得ることができた。また、柔らかさがある一方、適度なハリとコシがあり、良好な風合いを有していた。   In Comparative Examples 1 and 2, since the mixing ratio of the nylon MXD6 polymer was too small, the boiling water shrinkage rate was poor. Accordingly, the shrinkage performance was also low, and a high-density fabric was not obtained. In Comparative Examples 3 and 4, since the mixing ratio of the nylon MXD6 polymer was too large, the shrinkage performance was poor, and a high-density fabric was not obtained. On the other hand, Examples 1 to 3 according to the present invention had a good boiling water shrinkage ratio, high shrinkage performance, and a high-density fabric could be obtained. Moreover, while having softness, there was moderate firmness and stiffness, and it had a good texture.

<繊維強度の違いによる製織性能評価>
〔実施例4、5、比較例5、6〕
相対粘度を変えて繊維強度を変化させる以外は、実施例1記載の方法で繊維を製造し、製織性能評価、収縮加工後の引裂強力評価を行った。結果を表2に示す。
<Weaving performance evaluation based on fiber strength>
[Examples 4 and 5, Comparative Examples 5 and 6]
Except for changing the fiber strength by changing the relative viscosity, fibers were produced by the method described in Example 1, and weaving performance evaluation and tear strength evaluation after shrinkage processing were performed. The results are shown in Table 2.

Figure 2011026762
Figure 2011026762

比較例5、6は繊維強度が低いために製織性が不良であった。一方、本発明に準ずる実施例4、5は、十分な強度を持つため良好な製織性を得ることが出来た。そして収縮加工後の引裂強力も良好なものとなった。   Comparative Examples 5 and 6 had poor weaving properties because of low fiber strength. On the other hand, since Examples 4 and 5 according to the present invention had sufficient strength, good weaving properties could be obtained. The tear strength after shrinkage processing was also good.

以上のように、本発明の高収縮繊維は、高い沸騰水収縮率、高い収縮性能などの特徴を有しており、高収縮織物に用いるのに好適である。   As described above, the highly shrinkable fiber of the present invention has characteristics such as a high boiling water shrinkage ratio and high shrinkage performance, and is suitable for use in a highly shrinkable fabric.

Claims (2)

ナイロンMXD6ポリマーとナイロン6ポリマーからなる繊維であって、それぞれの重量比率が35:65〜70:30、破断強度(cN/dtex)が4.00cN/dtex以上であることを特徴とする高収縮繊維。 High shrinkage characterized by fibers composed of nylon MXD6 polymer and nylon 6 polymer, each having a weight ratio of 35:65 to 70:30 and a breaking strength (cN / dtex) of 4.00 cN / dtex or more fiber. ナイロンMXD6ポリマーとナイロン6ポリマーの重量比率が、45:55〜55:45である請求項1記載の高収縮繊維。 The high shrinkage fiber according to claim 1, wherein the weight ratio of the nylon MXD6 polymer to the nylon 6 polymer is 45:55 to 55:45.
JP2010250255A 2010-11-08 2010-11-08 High shrinkage fiber Pending JP2011026762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010250255A JP2011026762A (en) 2010-11-08 2010-11-08 High shrinkage fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010250255A JP2011026762A (en) 2010-11-08 2010-11-08 High shrinkage fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005294306A Division JP4648814B2 (en) 2005-10-07 2005-10-07 High shrinkage multifilament, high-density fabric using the same, and method for producing high-density fabric

Publications (1)

Publication Number Publication Date
JP2011026762A true JP2011026762A (en) 2011-02-10

Family

ID=43635800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010250255A Pending JP2011026762A (en) 2010-11-08 2010-11-08 High shrinkage fiber

Country Status (1)

Country Link
JP (1) JP2011026762A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027648A1 (en) 2012-08-14 2014-02-20 三菱瓦斯化学株式会社 Polyether polyamide fiber
US9512314B2 (en) 2012-08-14 2016-12-06 Mitsubishi Gas Chemical Company, Inc. Polyether polyamide composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544109A (en) * 1991-08-02 1993-02-23 Yutaka Anzai Monofilament
JPH06287807A (en) * 1993-04-02 1994-10-11 Mitsubishi Gas Chem Co Inc Drawn polyamide fiber for artificial hair
JPH09241924A (en) * 1995-12-26 1997-09-16 Mitsubishi Gas Chem Co Inc Drawn polyamide fiber and its production
JP2000154426A (en) * 1998-11-16 2000-06-06 Unitika Ltd Polyamide monofilament and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544109A (en) * 1991-08-02 1993-02-23 Yutaka Anzai Monofilament
JPH06287807A (en) * 1993-04-02 1994-10-11 Mitsubishi Gas Chem Co Inc Drawn polyamide fiber for artificial hair
JPH09241924A (en) * 1995-12-26 1997-09-16 Mitsubishi Gas Chem Co Inc Drawn polyamide fiber and its production
JP2000154426A (en) * 1998-11-16 2000-06-06 Unitika Ltd Polyamide monofilament and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027648A1 (en) 2012-08-14 2014-02-20 三菱瓦斯化学株式会社 Polyether polyamide fiber
US9512314B2 (en) 2012-08-14 2016-12-06 Mitsubishi Gas Chemical Company, Inc. Polyether polyamide composition

Similar Documents

Publication Publication Date Title
KR100901325B1 (en) Polylatic acid fiber
JP4648814B2 (en) High shrinkage multifilament, high-density fabric using the same, and method for producing high-density fabric
JP3893995B2 (en) Resin composition and molded body
JP6116459B2 (en) Polyamide latent crimped yarn and method for producing the same
US8293364B2 (en) Highly shrinkable fiber
JP2011026762A (en) High shrinkage fiber
JP2006283033A (en) Polyester resin composition
US20120214374A1 (en) Paper machine clothing having monofilaments with lower coefficient of friction
JP4236657B2 (en) Textile structure and manufacturing method thereof
JP2008266821A (en) High shrinkage fiber
TW201734273A (en) Core-sheath composite cross-section fiber having excellent moisture absorbency and wrinkle prevention
WO2015151220A1 (en) Polyamide latent crimped yarn and method for manufacturing same
JP4729819B2 (en) Polylactic acid fiber with excellent high-temperature mechanical properties
JP5095556B2 (en) Latent crimped monofilament yarns and fabrics
JP4985358B2 (en) Shrinkage difference mixed yarn
JP6691857B2 (en) Polyamide latent crimped yarn and method for producing the same
JP2000248430A (en) Latent crimp-expressing polyester fiber and production
JP5004832B2 (en) Split type composite fiber
JP3757710B2 (en) Latent crimped polyester fiber and production method
JP6298748B2 (en) Polyamide latent crimped yarn and method for producing the same
JPS646285B2 (en)
JPS6329018B2 (en)
JP2005082908A (en) Dyed yarn and method for producing the same
JP2003138437A (en) Polylactic acid false twist textured yarn having excellent bulkiness and stretchability
JP2003293221A (en) Polylactic acid fiber having 31 spiral structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120717