JP2011026172A - Tin oxide particle and method for producing tin oxide sol - Google Patents

Tin oxide particle and method for producing tin oxide sol Download PDF

Info

Publication number
JP2011026172A
JP2011026172A JP2009174028A JP2009174028A JP2011026172A JP 2011026172 A JP2011026172 A JP 2011026172A JP 2009174028 A JP2009174028 A JP 2009174028A JP 2009174028 A JP2009174028 A JP 2009174028A JP 2011026172 A JP2011026172 A JP 2011026172A
Authority
JP
Japan
Prior art keywords
tin
tin oxide
divalent
oxide particles
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009174028A
Other languages
Japanese (ja)
Other versions
JP5330918B2 (en
Inventor
Akinori Kumagai
彰記 熊谷
Akihiro Nara
昭浩 奈良
Takahiko Sakagami
貴彦 坂上
Isamu Yashima
勇 八島
Akihiro Motegi
暁宏 茂出木
Kazuhiko Kato
和彦 加藤
Kenji Suzuoka
健司 鈴岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2009174028A priority Critical patent/JP5330918B2/en
Priority to TW099118608A priority patent/TW201114689A/en
Priority to KR1020100069415A priority patent/KR20110011548A/en
Priority to CN2010102392979A priority patent/CN101967008A/en
Publication of JP2011026172A publication Critical patent/JP2011026172A/en
Application granted granted Critical
Publication of JP5330918B2 publication Critical patent/JP5330918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide tin oxide particles showing high electrical conductivity and transparency when formed into a film. <P>SOLUTION: The tin oxide particles contain two or more types of tin having different valences in the range of divalent to tetravalent, do not substantially contain a dopant element, and have electric conductivity. The tin oxide particles are preferably produced by mixing an aqueous solution containing divalent tin and an alkali to form a hydroxide of divalent tin in the liquid, and by oxidizing the formed hydroxide of divalent tin in the liquid to oxidize a part of the divalent tin to more than divalent to tetravalent tin. The alkali is mixed so that the pH of the liquid prepared by mixing the aqueous solution containing divalent tin and the alkali becomes 1-7. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は酸化スズ粒子に関する。また本発明は、酸化スズゾルの製造方法に関する。   The present invention relates to tin oxide particles. The present invention also relates to a method for producing a tin oxide sol.

非導電性材料、例えばプラスチックに導電性を付与する方法として、プラスチックに導電性粉末を添加する方法が知られている。導電性粉末としては、例えば、金属粉末、カーボンブラック、アンチモン等をドープした酸化スズ等が知られている。しかし、金属粉末やカーボンブラックをプラスチックに添加すると得られるプラスチックが黒色になり、プラスチックの用途が限定されることがある。一方、アンチモン等をドープした酸化スズをプラスチックに添加すると、プラスチックが青黒色になり、カーボンブラック等と同様にやはりプラスチックの用途が限定されることがある。またアンチモンの使用に起因する環境負荷の問題もある。そこで、アンチモン等のドーパントを含まない酸化スズについての検討が種々行われている。   As a method for imparting conductivity to a non-conductive material such as plastic, a method of adding conductive powder to the plastic is known. As the conductive powder, for example, tin powder doped with metal powder, carbon black, antimony or the like is known. However, when metal powder or carbon black is added to the plastic, the resulting plastic becomes black, which may limit the use of the plastic. On the other hand, when tin oxide doped with antimony or the like is added to the plastic, the plastic becomes blue-black, and the use of the plastic may be limited as in the case of carbon black. There is also a problem of environmental load caused by the use of antimony. Therefore, various studies have been made on tin oxide not containing a dopant such as antimony.

例えば特許文献1には、水酸化テトラメチルアンモニウムをNH3/SnO2モル比0.01〜0.3の範囲で含有してなる粒子径30nm以下のアルカリ安定型酸化スズゾルが記載されている。この酸化スズゾルは、酸化スズ濃度がSnO2として15質量%以下のアルカリ型酸化スズゾルに水酸化テトラメチルアンモニウムを添加し、濃縮を行うことで製造される。 For example, Patent Document 1 describes an alkali-stable tin oxide sol having a particle diameter of 30 nm or less and containing tetramethylammonium hydroxide in a NH 3 / SnO 2 molar ratio in the range of 0.01 to 0.3. This tin oxide sol is produced by adding tetramethylammonium hydroxide to an alkali-type tin oxide sol having a tin oxide concentration of SnO 2 of 15% by mass or less and concentrating.

酸化スズゾルの製造方法の別法として、特許文献2には、0.1〜8規定の塩酸にスズをHCl/Sn(モル比)=0.5〜1となるように添加し、この液に過酸化水素水を添加する方法が提案されている。同文献によれば、この方法で得られる酸化スズ粒子の平均粒子径は5〜100nmになるとされている。   As another method for producing a tin oxide sol, in Patent Document 2, tin is added to 0.1 to 8 N hydrochloric acid so that HCl / Sn (molar ratio) = 0.5 to 1, and this solution is added to this liquid. A method of adding hydrogen peroxide water has been proposed. According to this document, the average particle diameter of tin oxide particles obtained by this method is supposed to be 5 to 100 nm.

しかし、上述の技術によって製造された酸化スズ粒子は、これを膜にしたときの透明性や導電性が十分なものとは言えない。   However, the tin oxide particles produced by the above-described technology cannot be said to have sufficient transparency and conductivity when they are used as a film.

また、二価及び四価のスズを含む化合物に関して特許文献3及び特許文献4に記載の技術が知られている。特許文献3においては、二価及び四価のスズ並びにスズと複合酸化物を形成しうる第2元素を含む複合酸化スズ粉末が提案されている。特許文献4においては、二価及び四価のスズを含む二酸化スズ前駆体粒子が提案されている。特許文献3に記載の複合酸化スズ粉末は、スズ以外の元素を含むものであり、経済性や環境負荷の点から有利とは言えない。また特許文献4に記載の二酸化スズ前駆体粒子は、同文献全体の記載から見て水酸化物であると考えられ、酸化物ではない。更に、この前駆体粒子から製造される二酸化スズは、四価のスズのみを含むと考えられる。   Moreover, the technique of patent document 3 and patent document 4 is known regarding the compound containing bivalent and tetravalent tin. Patent Document 3 proposes a composite tin oxide powder containing divalent and tetravalent tin and a second element capable of forming a composite oxide with tin. Patent Document 4 proposes tin dioxide precursor particles containing divalent and tetravalent tin. The composite tin oxide powder described in Patent Document 3 contains elements other than tin, and is not advantageous from the viewpoints of economy and environmental burden. Further, the tin dioxide precursor particles described in Patent Document 4 are considered to be hydroxides from the description of the entire document, and are not oxides. Furthermore, the tin dioxide produced from this precursor particle is considered to contain only tetravalent tin.

特許文献5には、導電性フィラーとして用いられるスズ系酸化物が提案されている。そのスズ系酸化物は、SnO2-xで表され、スズの平均価数は四価以下になっている。しかし、このことはスズが複数の価数を有していることを意味するものではなく、スズの価数としては四価のみの単一のものである。 Patent Document 5 proposes a tin-based oxide used as a conductive filler. The tin-based oxide is represented by SnO 2-x , and the average valence of tin is less than tetravalent. However, this does not mean that tin has a plurality of valences, and the valence of tin is a single valence of only four.

特開2004−359477号公報JP 2004-359477 A 特開2008−222540号公報JP 2008-222540 A 特開平11−292535号公報JP 11-292535 A 特開2008−150258号公報JP 2008-150258 A 特開2003−128417号公報JP 2003-128417 A

発明の目的は、前述した従来技術が有する種々の欠点を解消し得る酸化スズ粒子及びその製造方法を提供することにある。   An object of the present invention is to provide tin oxide particles and a method for producing the same that can eliminate the various disadvantages of the above-described prior art.

本発明は、2価〜4価の範囲で価数が異なる複数種のスズを含み、ドーパント元素を実質的に含んでおらず、かつ導電性を有することを特徴とする酸化スズ粒子を提供するものである。   The present invention provides a tin oxide particle comprising a plurality of types of tin having different valences in the range of divalent to tetravalent, substantially not including a dopant element, and having conductivity. Is.

また本発明は、前記の酸化スズ粒子の好ましい製造方法として、
2価のスズを含む水溶液とアルカリとを混合し、2価のスズの水酸化物を液中に生成させ、
生成した2価のスズの水酸化物を液中で酸化して、2価のスズの一部を2価超4価以下のスズに酸化することを特徴とする酸化スズゾルの製造方法であって、
2価のスズを含む水溶液とアルカリとを混合した液のpHが1〜7となるように、該アルカリを混合する酸化スズゾルの製造方法を提供するものである。
In addition, the present invention provides a preferable method for producing the tin oxide particles as described above.
An aqueous solution containing divalent tin and an alkali are mixed to produce a divalent tin hydroxide in the liquid,
A method for producing a tin oxide sol, wherein the produced divalent tin hydroxide is oxidized in a liquid to oxidize a part of the divalent tin to a divalent to higher than tetravalent tin. ,
The present invention provides a method for producing a tin oxide sol in which an alkali is mixed so that the pH of a solution obtained by mixing an aqueous solution containing divalent tin and an alkali becomes 1 to 7.

本発明によれば、膜にしたときの導電性や透明性が高い酸化スズ粒子が提供される。   According to the present invention, tin oxide particles having high conductivity and transparency when formed into a film are provided.

図1は、実施例1で得られた酸化スズ粒子のXRD回折図である。1 is an XRD diffractogram of tin oxide particles obtained in Example 1. FIG. 図2は、実施例1で得られた酸化スズ粒子の走査型電子顕微鏡像である。FIG. 2 is a scanning electron microscope image of the tin oxide particles obtained in Example 1.

以下本発明を、その好ましい実施形態に基づき説明する。本発明の酸化スズ粒子は、価数が2価から4価までの範囲で価数が異なる複数種のスズを含んでいる点に特徴の一つを有する。従来知られている導電性酸化スズは、一般に4価のスズに、アンチモン、ニオブ、タンタル等のドーパント元素をドープして導電性を高めていたところ、本発明においてはn型半導体である2価の酸化スズに、ドーパント元素として2価超4価以下のスズをドープする構成を採用している。この構成を採用することによって、従来用いられてきたドーパント元素が有する不都合、例えば経済的に不利であることや、環境負荷が大きいこと等を克服しつつ、酸化スズ粒子の導電性を高めることが可能となった。2価のスズのみからなる酸化物は黒色となり、透明性が要求される用途、例えば透明導電膜等に利用することができない。一方、4価のスズのみからなる酸化物は、2価のスズのみからなる酸化物に比べて導電性を高くすることができない。2価超4価以下のスズの具体例には、4価のスズ(SnO2)や3価のスズ(Sn23)等がある。 Hereinafter, the present invention will be described based on preferred embodiments thereof. The tin oxide particles of the present invention are characterized in that they contain a plurality of types of tin having different valences in the range of valences from 2 to 4. Conventionally known conductive tin oxide is generally a tetravalent tin doped with a dopant element such as antimony, niobium, tantalum, etc., to improve conductivity. In the present invention, a divalent which is an n-type semiconductor is used. In this case, the tin oxide is doped with tin that is more than bivalent and less than tetravalent as a dopant element. By adopting this configuration, it is possible to improve the conductivity of tin oxide particles while overcoming the disadvantages of conventionally used dopant elements, such as being economically disadvantageous and having a large environmental load. It has become possible. An oxide composed only of divalent tin is black and cannot be used for applications requiring transparency, such as a transparent conductive film. On the other hand, an oxide made of only tetravalent tin cannot have higher conductivity than an oxide made of only divalent tin. Specific examples of tin that is more than bivalent and less than tetravalent include tetravalent tin (SnO 2 ) and trivalent tin (Sn 2 O 3 ).

2価から4価までの範囲で価数が異なる複数種のスズが酸化スズ粒子中に存在することは、例えば酸化スズ粒子のXRD測定によって確認することができる。具体的には、酸化スズ粒子は、スズの価数に応じてXRDの回折ピークが異なるので、この回折ピークを測定することで、酸化スズ粒子を構成するスズの価数を知ることができる。また、価数が異なる複数種のスズが存在することは、粉末の色によって確認することもできる。すなわち、酸化スズ(II)粒子の粉末は黒色であり、一方酸化スズ(IV)粒子の粉末は白色ないし透明である。これに対し、2価から4価までの範囲で価数が異なる複数種のスズを含む酸化スズ粒子の粉末は、それぞれの価数のスズの存在割合に応じて、黄色みがかった色に着色されている。したがって、かかる色に着色されている酸化スズには、2価から4価までの範囲で価数が異なる複数種のスズが含まれていると判断する。   The presence of plural types of tin having different valences in the range from divalent to tetravalent in the tin oxide particles can be confirmed, for example, by XRD measurement of the tin oxide particles. Specifically, since tin oxide particles have different XRD diffraction peaks depending on the valence of tin, the valence of tin constituting the tin oxide particles can be known by measuring this diffraction peak. The presence of multiple types of tin with different valences can also be confirmed by the color of the powder. That is, the powder of tin (II) oxide particles is black, while the powder of tin (IV) particles is white or transparent. On the other hand, the powder of tin oxide particles containing a plurality of types of tin having different valences in the range from divalent to tetravalent is colored in a yellowish color according to the proportion of tin of each valence. Has been. Therefore, it is determined that the tin oxide colored in such a color includes a plurality of types of tin having different valences in the range from divalent to tetravalent.

本発明の酸化スズ粒子は、金属としてスズのみを有し、ドーパント元素を実質的に含有しない、いわゆるノンドープのものである。酸化スズ粒子がノンドープのものであることによって、高価であり経済性に劣るか又は環境負荷の大きい元素である各種のドーパント元素を用いることなく、導電性の高い酸化スズ粒子を得ることができる。ドーパント元素としては、酸化スズの導電性を向上させるための元素として当該技術分野において従来用いられてきたものが挙げられる。そのような元素としては、例えばNb、Ta、Sb、W、P、N、Biが挙げられる。なお「実質的に含有しない」とは、意図的にドーパント元素を添加することを除外することを意図するものであり、酸化スズ粒子の製造過程において不可避的に微量のドーパント元素が混入することは許容される趣旨である。   The tin oxide particles of the present invention are so-called non-doped particles having only tin as a metal and substantially not containing a dopant element. When the tin oxide particles are non-doped, highly conductive tin oxide particles can be obtained without using various dopant elements which are expensive and inferior in economic efficiency or have a large environmental load. As a dopant element, what has been conventionally used in the said technical field as an element for improving the electroconductivity of tin oxide is mentioned. Examples of such elements include Nb, Ta, Sb, W, P, N, and Bi. In addition, “substantially does not contain” is intended to exclude intentionally adding a dopant element, and a small amount of dopant element is inevitably mixed in the production process of tin oxide particles. This is an acceptable purpose.

本発明の酸化スズ粒子における2価のスズと、2価超4価以下のスズとの割合は、モル比で表して前者:後者=1:9〜9:1、特に2:8〜5:5であることが好ましい。この比率は、XRD測定装置によって測定される。   In the tin oxide particles of the present invention, the ratio of divalent tin and divalent to tetravalent or lower tin is expressed by molar ratio: former: latter = 1: 9 to 9: 1, particularly 2: 8 to 5: 5 is preferable. This ratio is measured by an XRD measuring device.

本発明の酸化スズ粒子は微粒のものであることによっても特徴付けられる。具体的には、透過型電子顕微鏡(TEM)で観察された一次粒子の平均粒径が1〜20nm、特に2〜10nmという微粒のものである。   The tin oxide particles of the present invention are also characterized by being fine particles. Specifically, the primary particles observed with a transmission electron microscope (TEM) have an average particle diameter of 1 to 20 nm, particularly 2 to 10 nm.

微粒であることに加えて、本発明の酸化スズ粒子は導電性の高いものである。具体的には、500kgf下での圧粉体積抵抗率が107Ω・cm以下、特に105Ω・cm以下という低抵抗のものである。圧粉体積抵抗率は例えば三菱化学株式会社製ロレスタPAPD−41を用い、四端子法に従い測定される。 In addition to being fine particles, the tin oxide particles of the present invention are highly conductive. Specifically, the powder has a low volume resistivity of 10 7 Ω · cm or less, particularly 10 5 Ω · cm or less under 500 kgf. The powder volume resistivity is measured according to a four-terminal method using, for example, Loresta PAPD-41 manufactured by Mitsubishi Chemical Corporation.

更に本発明の酸化スズ粒子は、これを膜状に成形した場合に、透明性の高いものである。例えば厚さ2〜3μmで、酸化スズ粒子の含有量が30〜80%の膜を製造した場合、この膜の可視光の全光線透過率は85%以上、特に90%以上という透明性の高いものとなる。   Furthermore, the tin oxide particles of the present invention are highly transparent when formed into a film. For example, when a film having a thickness of 2 to 3 μm and a tin oxide particle content of 30 to 80% is manufactured, the total light transmittance of the visible light of the film is 85% or more, particularly 90% or more. It will be a thing.

次に本発明の酸化スズ粒子の好ましい製造方法について説明する。本製造方法においては、2価のスズを原料として用い、これを用いて2価のスズの水酸化物を得、該水酸化物を酸化して、2価〜4価の範囲で価数が異なる複数種のスズを含む酸化スズ粒子を得る。以下、具体的な工程について説明する。   Next, the preferable manufacturing method of the tin oxide particle of this invention is demonstrated. In this production method, divalent tin is used as a raw material, and a divalent tin hydroxide is obtained using the divalent tin, and the hydroxide is oxidized to have a valence in the range of divalent to tetravalent. Tin oxide particles containing different types of tin are obtained. Hereinafter, specific steps will be described.

先ず原料として2価のスズを含む水溶液を用意する。この水溶液を調製するために、例えば2価のスズの塩、例えば二塩化スズ(II)を用いることができる。水溶液中における2価のスズのイオンの濃度は0.01〜0.35mol/Lとすることかできる。二塩化スズ(II)の水への溶解を促進させるために、濃塩酸又は希塩酸を併用してもよい。なお、原料として四価のスズを用いることも考えられるが、2価のスズと4価のスズとでは、2価のスズの方が4価のスズよりも酸化物になりやすいことが本発明者らの検討の結果判明したことから、本製造方法では2価のスズを原料として用いている。   First, an aqueous solution containing divalent tin is prepared as a raw material. In order to prepare this aqueous solution, for example, a divalent tin salt such as tin (II) dichloride can be used. The concentration of divalent tin ions in the aqueous solution can be 0.01 to 0.35 mol / L. In order to promote dissolution of tin (II) dichloride in water, concentrated hydrochloric acid or dilute hydrochloric acid may be used in combination. Although tetravalent tin may be used as a raw material, in the case of divalent tin and tetravalent tin, the present invention shows that divalent tin is more likely to be an oxide than tetravalent tin. Since it became clear as a result of examination of those, in this manufacturing method, bivalent tin is used as a raw material.

このようにして2価のスズを含む水溶液が調製できたら、この水溶液をアルカリ(塩基性物質)の水溶液中に添加する。この操作によって液中に2価のスズの水酸化物が生成する。アルカリとしては、例えば水酸化ナトリウムや水酸化カリウム等のアルカリ金属の水酸化物、水酸化マグネシウム等のアルカリ土類金属の水酸化物、アンモニア等が挙げられる。両者の混合は室温において行うこともでき、又は加熱下に行うこともできる。両者の混合時に加熱を行う場合も行わない場合も、アルカリの水溶液のpHは7〜13、特に11〜13であることが好ましい。pHがこの範囲内であれば、十分に反応速度が高いので、微粒子が得られるからである。なお、2価のスズの水溶液中にアルカリを添加することも可能であるが、この操作よりも、上述したようにアルカリの水溶液中に2価のスズの水溶液を添加する方が、微粒子を得る観点から有利である。   When an aqueous solution containing divalent tin can be prepared in this way, this aqueous solution is added to an aqueous solution of an alkali (basic substance). By this operation, a divalent tin hydroxide is generated in the liquid. Examples of the alkali include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as magnesium hydroxide, and ammonia. The mixing of both can be performed at room temperature or under heating. Whether the heating is performed or not when the two are mixed, the pH of the alkaline aqueous solution is preferably 7 to 13, particularly 11 to 13. This is because if the pH is within this range, the reaction rate is sufficiently high, and fine particles can be obtained. Although it is possible to add alkali to the divalent tin aqueous solution, fine particles are obtained by adding the divalent tin aqueous solution to the alkaline aqueous solution as described above rather than this operation. It is advantageous from the viewpoint.

2価のスズの水溶液をアルカリの水溶液中に添加する際、添加のしかたによっては、2価のスズの水酸化物が生成せずに、直接に酸化スズが生成することがあるので注意を要する。直接に酸化スズが生成することを防止するためには、2価のスズの水溶液をアルカリの水溶液中に添加する際に、激しく攪拌を行って2価のスズの濃度が局所的に高くなることを防止するようにすればよい。2価のスズを含む水溶液から直接酸化スズを生成させず、2価のスズの水酸化物の生成を経由して酸化スズを生成させる理由は、後述する易解粒性の凝集体からなる酸化スズ粒子を容易に生成させるためである。易解粒性の酸化スズ粒子を生成させることの利点については後述する   When adding a divalent tin aqueous solution to an alkaline aqueous solution, depending on how it is added, care must be taken because divalent tin hydroxide may not be generated and tin oxide may be generated directly. . In order to prevent the formation of tin oxide directly, when adding an aqueous solution of divalent tin to the aqueous solution of alkali, the concentration of divalent tin is locally increased by vigorous stirring. Can be prevented. The reason why tin oxide is not generated directly from an aqueous solution containing divalent tin but through the formation of a divalent tin hydroxide is that oxidation consisting of easily disaggregated aggregates, which will be described later. This is because tin particles are easily generated. The advantages of producing easily disaggregated tin oxide particles will be described later.

2価の水酸化スズの生成よって、反応系内には該水酸化スズからなる易解粒性の凝集体が生成する。この凝集体を構成する水酸化スズの粒径は、最終目的物である酸化スズ粒子の粒径に影響を及ぼす。この凝集体を構成する水酸化スズの粒径は、温度、時間及びpHなどの反応条件をコントロールすることによって制御することができる。また、この凝集体自体の平均粒径は、0.1〜10μm程度である。2価のスズの水酸化物の生成時に易解粒性の凝集体が生成するメカニズムは、一次径が微粒であることによる強い凝集性に起因していると、本発明者らは推測している。   Due to the production of divalent tin hydroxide, an easily disaggregated aggregate composed of the tin hydroxide is produced in the reaction system. The particle size of tin hydroxide constituting the aggregate affects the particle size of tin oxide particles that are the final target. The particle size of tin hydroxide constituting the aggregate can be controlled by controlling reaction conditions such as temperature, time and pH. Moreover, the average particle diameter of this aggregate itself is about 0.1-10 micrometers. The present inventors speculate that the mechanism by which the easily disaggregated aggregates are formed during the formation of the divalent tin hydroxide is due to the strong agglomeration due to the fine primary diameter. Yes.

本明細書において「易解粒性」とは、メディアミルを用い、直径0.3mmのジルコニアビーズを50ccの樹脂容器に充填率60%となるように仕込み、1時間にわたり解粒操作を行なったときに、解砕前の凝集体の個数が10%以下まで減少する程度に容易に解粒させやすいことをいう。   In this specification, “easily pulverizing” means that a media mill was used and zirconia beads having a diameter of 0.3 mm were charged in a 50 cc resin container so that the filling rate was 60%, and the pulverization operation was performed for 1 hour. Sometimes it is easy to be pulverized to such an extent that the number of aggregates before pulverization is reduced to 10% or less.

本製造方法において2価のスズの水酸化物を生成させる場合、これを易解粒性の凝集体の形態で生成させる理由は、後工程における酸化スズ粒子の洗浄を容易にするためである。酸化スズ粒子が生成した時点で、この酸化スズ粒子が高分散性の微粒である場合には、効率のよい洗浄を行うことができず、不純物がゾル中に残存してしまう。不純物がゾル中に残存すると、ゾルに着色が生じてしまう。その結果、本製造方法によって得られた酸化スズ粒子を用いて膜を形成した場合、当該膜の透明性を低下させる一因となることがある。   In the case of producing a divalent tin hydroxide in the present production method, the reason for producing it in the form of an easily disaggregated aggregate is to facilitate washing of the tin oxide particles in the subsequent step. When the tin oxide particles are generated, if the tin oxide particles are highly dispersible fine particles, efficient cleaning cannot be performed, and impurities remain in the sol. If the impurities remain in the sol, the sol is colored. As a result, when a film is formed using the tin oxide particles obtained by this production method, it may contribute to a decrease in the transparency of the film.

2価のスズの水酸化物が生成したら、これを液中で酸化する。酸化には各種の酸化剤を用いることができる。具体的には、例えば過酸化水素の液への添加、酸素ガスの液中への吹き込みなどを用いることができる。また、過酸化水素以外の過酸化物、ハロゲン、ペルオキソ酸、酸素酸、高価数の金属塩、オゾン等を酸化剤として用いることもできる。この酸化によって、2価のスズのうちの一部を、2価超4価以下のスズに酸化するとともに、2価〜4価の範囲で価数が異なる複数種のスズを含む酸化スズ粒子が得られる。この酸化スズ粒子は易解粒性酸化スズ粒子の凝集体の形態で液中に生成する。   When a divalent tin hydroxide is formed, it is oxidized in a liquid. Various oxidizing agents can be used for the oxidation. Specifically, for example, addition of hydrogen peroxide to the liquid, blowing of oxygen gas into the liquid, or the like can be used. In addition, peroxides other than hydrogen peroxide, halogens, peroxo acids, oxyacids, expensive metal salts, ozone, and the like can also be used as oxidizing agents. By this oxidation, a part of the divalent tin is oxidized to a divalent to higher than tetravalent tin and tin oxide particles containing a plurality of types of tin having different valences in the divalent to tetravalent range. can get. The tin oxide particles are generated in the liquid in the form of aggregates of easily defatted tin oxide particles.

本製造方法においては、酸化剤の種類やその添加量を適切に制御することによって、酸化スズ中に含まれる各種の価数を有するスズの割合をコントロールすることができる。詳細には、酸化性の強い環境で2価のスズの水酸化物の酸化を行うと、ほとんどすべての2価のスズが4価のスズまで酸化されてしまうところ、酸化の環境を調節することで、2価のスズのうちの一部のみを2価超4価以下のスズに酸化させることが可能になる。   In this production method, the proportion of tin having various valences contained in the tin oxide can be controlled by appropriately controlling the type of oxidant and the amount added. Specifically, when oxidizing divalent tin hydroxide in a highly oxidative environment, almost all divalent tin is oxidized to tetravalent tin. Thus, it becomes possible to oxidize only a part of the divalent tin to tin of more than 2 valences and less than 4 valences.

2価のスズのうちの一部のみを2価超4価以下のスズに酸化させるための条件としては、例えば酸化剤として過酸化水素を用いる場合には、過酸化水素を添加する前の状態において、液中に含まれる2価のスズ1モルに対して、1〜13モル、特に3〜12モルの過酸化水素を添加することが好ましい。この場合、過酸化水素は一括添加でもよく、あるいは逐次添加でもよい。スズ(II)の局所的な酸化が生じるのを防止する観点からは、所定の時間にわたって逐次添加することが好ましい。   As conditions for oxidizing only a part of the divalent tin to tin of more than 2 valences and less than 4 valences, for example, when hydrogen peroxide is used as an oxidizing agent, the state before adding hydrogen peroxide In addition, it is preferable to add 1-13 mol, especially 3-12 mol hydrogen peroxide with respect to 1 mol of bivalent tin contained in a liquid. In this case, hydrogen peroxide may be added all at once or sequentially. From the viewpoint of preventing local oxidation of tin (II), it is preferable to sequentially add over a predetermined time.

一方、酸化剤として酸素ガスを用いる場合には、1Lの液に対して、酸素ガスを0.01〜1L/min、特に0.05〜0.1L/minの割合で吹き込めばよい。   On the other hand, when oxygen gas is used as the oxidizing agent, oxygen gas may be blown at a rate of 0.01 to 1 L / min, particularly 0.05 to 0.1 L / min, with respect to 1 L of liquid.

2価のスズのうちの一部のみを2価超4価以下のスズに酸化させる場合、液中に存在する不純物の濃度も影響を及ぼすことが本発明者らの検討の結果判明した。詳細には、2価のスズの原料として二塩化スズ(II)を用いる場合、これを水に溶解させるために塩酸(例えば濃塩酸)を併用すると、水溶液中には、二塩化スズ(II)の化学量論比よりも過剰の塩化物イオンが存在することになる。この過剰の塩化物イオンが、2価のスズがそれ以上の酸化数のスズへの酸化を妨げることが本発明者らの検討の結果判明した。この観点から、酸化反応前の状態において、液中に存在する2価のスズ1モルに対して、塩化物イオンを0.1〜5モル、特に1.5〜3.5モル存在させることが好ましい。   As a result of the examination by the present inventors, when only a part of divalent tin is oxidized to tin of more than 2 valences and less than 4 valences, the concentration of impurities present in the liquid also affects. Specifically, when tin (II) dichloride is used as a raw material for divalent tin, if hydrochloric acid (for example, concentrated hydrochloric acid) is used in combination with water to dissolve it in water, tin (II) dichloride is contained in the aqueous solution. There will be an excess of chloride ions than the stoichiometric ratio. As a result of the examination by the present inventors, it was found that this excessive chloride ion hinders the oxidation of divalent tin to tin having a higher oxidation number. From this point of view, in the state before the oxidation reaction, 0.1 to 5 mol, particularly 1.5 to 3.5 mol of chloride ion may be present with respect to 1 mol of divalent tin present in the liquid. preferable.

2価のスズのうちの一部のみを2価超4価以下のスズに酸化させる場合、2価のスズの水酸化物を生成させるときのアルカリの濃度も影響を及ぼすことが本発明者らの検討の結果判明した。詳細には、アルカリの濃度が高い場合よりも低い場合の方が、2価超の価数を有するスズが生成しやすくなる。より具体的に説明すると、2価のスズを含む水溶液とアルカリとを混合した液のpHが1〜7、好ましくは2〜6となるように、該アルカリを混合すると、2価超の価数を有するスズが生成しやすくなる。   In the case where only a part of divalent tin is oxidized to tin that is more than 2 valences or less than 4 valences, the inventors also have an influence on the alkali concentration when producing a hydroxide of divalent tin. It became clear as a result of examination. Specifically, tin having a valence of more than two is more likely to be produced when the alkali concentration is lower than when the alkali concentration is high. More specifically, when the alkali is mixed such that the pH of the solution obtained by mixing the aqueous solution containing divalent tin and the alkali is 1 to 7, preferably 2 to 6, the valence of more than 2 valences. It becomes easy to produce tin having.

2価のスズを酸化させるときの温度及びそれに先立つ2価のスズの水酸化物を生成させるときの温度は、2価のスズのうちの一部のみを2価超4価以下のスズに酸化させることに影響を及ぼす場合がある。具体的には、両温度を低めに設定すると2価超4価以下のスズが生成しやすく、両温度を高めに設定すると2価超4価以下のスズが生成しづらい。中間の温度に設定することで、2価〜4価の範囲で価数が異なる複数種のスズを適切な割合で生成させることができる。より具体的には、両温度を2〜100℃、特に40〜100℃、とりわけ50〜90℃とすることが好ましい。   The temperature at which bivalent tin is oxidized and the temperature at which bivalent tin hydroxide is generated prior to oxidation of the divalent tin is oxidized only to a part of divalent tin that is more than divalent and less than tetravalent. May have an effect. Specifically, when both temperatures are set to be low, tin with a valence of more than 2 and less than 4 is easily generated, and when both temperatures are set to be higher, it is difficult to generate a tin with a valence of more than 2 and less than 4 valences. By setting to an intermediate temperature, it is possible to generate a plurality of types of tin having different valences in an appropriate ratio in the range of divalent to tetravalent. More specifically, it is preferable that both temperatures be 2 to 100 ° C., particularly 40 to 100 ° C., particularly 50 to 90 ° C.

以上の(イ)塩化物イオンの濃度、(ロ)2価のスズの水酸化物を生成させるときのアルカリの濃度、(ハ)2価のスズを酸化させるときの温度及び2価のスズの水酸化物を生成させるときの温度を適切に設定することで、価数の異なる複数種のスズの組成を所望のものとすることができる。   (B) Concentration of chloride ion, (b) Concentration of alkali when producing divalent tin hydroxide, (c) Temperature when oxidizing divalent tin and divalent tin By appropriately setting the temperature at which the hydroxide is generated, it is possible to obtain a desired composition of a plurality of types of tin having different valences.

生成した酸化スズ粒子は、その原料である水酸化スズにおける易解粒性の凝集体の形態を引き継ぎ、易解粒性の凝集体の形態となっている。酸化スズ粒子を易解粒性の凝集体の形態として生成させるための条件としては、水酸化スズ生成後、液の組成を変えずに、酸化することが挙げられる。   The produced tin oxide particles take over the form of easily disaggregated aggregates in the raw material tin hydroxide and are in the form of easily disaggregated aggregates. As conditions for producing the tin oxide particles in the form of easily flocculated aggregates, oxidation is performed without changing the composition of the liquid after the production of tin hydroxide.

酸化スズ粒子が易解粒性の凝集体であることによって、次工程における酸化スズ粒子の洗浄を容易にすることが可能となる。具体的には、易解粒性の凝集体からなる酸化スズ粒子は、例えばリパルプ洗浄を行うことで、不純物の容易な除去が可能である。洗浄は、分散媒である水の導電率が500μS以下、特に100μS以下になるまで行うことが、不純物の十分な除去の点から好ましい。特に液中の塩化物イオンの濃度が0.5〜1.0重量%になるまで洗浄を行うことが好ましい。   When the tin oxide particles are easily flocculated aggregates, it is possible to facilitate the cleaning of the tin oxide particles in the next step. Specifically, the tin oxide particles made of easily flocculated aggregates can be easily removed by, for example, repulp washing. Washing is preferably performed until the conductivity of water as a dispersion medium is 500 μS or less, particularly 100 μS or less, from the viewpoint of sufficient removal of impurities. In particular, washing is preferably performed until the concentration of chloride ions in the solution is 0.5 to 1.0% by weight.

リパルプ洗浄によって所定の導電率まで洗浄された易解粒性酸化スズ粒子の分散液は、解粒操作に付される。それによって、酸化スズゾルが得られる。解粒操作には、例えばビーズミル等のメディアミルを用いることができる。この場合、各種のpH調整剤を液に添加して解粒操作を行うことで、酸化スズ粒子を単分散状態に近づけやすくなる。pH調整剤としては、液のpHを2〜12に調整できるものを用いることが好ましい。そのようなpH調整剤としては、例えばトリエタノールアミン等のアミン類や、水酸化テトラメチルアンモニウム等の四級アンモニウム化合物が挙げられる。   The dispersion liquid of easily disaggregated tin oxide particles washed to a predetermined conductivity by repulp washing is subjected to a granulation operation. Thereby, a tin oxide sol is obtained. For the granulation operation, for example, a media mill such as a bead mill can be used. In this case, tin oxide particles can be easily brought close to a monodispersed state by adding various pH adjusters to the liquid and performing a granulation operation. As the pH adjuster, it is preferable to use one that can adjust the pH of the liquid to 2 to 12. Examples of such pH adjusters include amines such as triethanolamine and quaternary ammonium compounds such as tetramethylammonium hydroxide.

以上の操作によって、水を分散媒とする酸化スズゾルが得られる。この酸化スズゾルにおける酸化スズ粒子の濃度は0.1〜30重量%、特に10〜20重量%とすることが好ましい。この酸化スズゾルにおいては、酸化スズ粒子が高度に分散しており、長時間保存しても沈殿の生成等は認められない。   By the above operation, a tin oxide sol using water as a dispersion medium is obtained. The concentration of the tin oxide particles in the tin oxide sol is preferably 0.1 to 30% by weight, particularly 10 to 20% by weight. In this tin oxide sol, tin oxide particles are highly dispersed, and no precipitates are formed even when stored for a long time.

以上の方法によれば、液中(水中)でスズの酸化物を生成させるので、焼成によって得られた酸化スズを粉砕した後にゾル化する従来の方法に比べて、凝集が少なく分散性の高い酸化スズゾルを容易に得ることができる。   According to the above method, since the oxide of tin is generated in the liquid (in water), there is less aggregation and high dispersibility compared to the conventional method in which the tin oxide obtained by firing is pulverized and then solated. A tin oxide sol can be easily obtained.

このようにして得られた酸化スズ粒子は、例えばその高い導電性を利用して、プリンタや複写機関連の帯電ローラー、感光ドラム、トナー、静電ブラシ等の分野、フラットパネルディスプレイ、CRT、ブラウン管等の分野、塗料、インク、エマルジョンの分野等など、幅広い用途に適用できる。   The tin oxide particles obtained in this way can be used, for example, in the fields of printers and copier-related charging rollers, photosensitive drums, toners, electrostatic brushes, flat panel displays, CRTs, Can be applied to a wide range of applications such as paints, inks, and emulsions.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「重量%」を意味する。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, “%” means “% by weight”.

〔実施例1〕
80gの二塩化スズ(II)・五水和物を2000mlの純水に溶解させ、スズ(II)を含む水溶液を得た。溶解させる際、120mlの濃塩酸を用いた。この水溶液とは別に、1%水酸化ナトリウム水溶液2000mlを用意した。水酸化ナトリウム水溶液中に、2価のスズを含む水溶液を33ml/minの添加速度で逐次添加し、pHを3.0とした。このときの混合液の温度は25℃であった。この添加によって、液中に2価のスズの水酸化物からなる黄色の沈殿が生じた。この沈殿は、易解粒性の凝集体から構成されていた。
[Example 1]
80 g of tin (II) dichloride pentahydrate was dissolved in 2000 ml of pure water to obtain an aqueous solution containing tin (II). When dissolved, 120 ml of concentrated hydrochloric acid was used. Apart from this aqueous solution, 2000 ml of 1% aqueous sodium hydroxide solution was prepared. An aqueous solution containing divalent tin was sequentially added to an aqueous sodium hydroxide solution at an addition rate of 33 ml / min to adjust the pH to 3.0. The temperature of the liquid mixture at this time was 25 degreeC. This addition produced a yellow precipitate consisting of divalent tin hydroxide in the liquid. This precipitate was composed of easily disaggregated aggregates.

次に、液中に200mlの過酸化水素水(30%)を、20ml/minの添加速度で逐次添加し、2価のスズの水酸化物の酸化を行った。過酸化水素の全添加量は200mlであった。酸化は25℃で行った。過酸化水素の添加によって、液中に存在する2価のスズの一部を4価のスズに酸化させるとともに、易解粒性の凝集体からなる酸化スズ粒子を液中に生成させた。凝集体の大きさをマイクロトラックUPA(商品名)で測定したところ、平均して10nm程度であった。マイクロトラックUPAによる測定の手順は以下の次のとおりである。すなわち、分散液を原液のままセル内に入れ、レーザーを照射して粒径を測定する。   Next, 200 ml of hydrogen peroxide (30%) was sequentially added to the solution at an addition rate of 20 ml / min to oxidize divalent tin hydroxide. The total amount of hydrogen peroxide added was 200 ml. The oxidation was performed at 25 ° C. By adding hydrogen peroxide, a part of the divalent tin present in the liquid was oxidized to tetravalent tin, and tin oxide particles composed of easily disaggregated aggregates were generated in the liquid. When the size of the aggregate was measured by Microtrac UPA (trade name), it was about 10 nm on average. The measurement procedure using Microtrack UPA is as follows. That is, the dispersion is put into the cell as a stock solution, and laser is irradiated to measure the particle size.

次に、60℃の温水を用いて液のリパルプ洗浄を行った。洗浄は、液の導電率が100μSになるまで行った。この時点での液中の塩化物イオンの濃度は、イオンクロマト法を用いた測定の結果0.4%であった。洗浄完了後、易解粒性酸化スズ粒子の解粒を行った。解粒には、0.1mmφのジルコニアビーズを用いたペイントシェーカを使用した。解粒においては、pH調整剤として水酸化テトラメチルアンモニウムを液に添加し、液のpHを11に調整した。解粒は1時間行った。最後に液を0.2μmのメンブランフィルターに通し粗粒を除去して、目的とする酸化スズ粒子のゾルを得た。このゾルにおける酸化スズ粒子の濃度は20%であった。TEMによって測定された酸化スズ粒子の平均粒径は5nmであった。また、この酸化スズ粒子のゾル及び粉末は薄黄色を呈していた。この粉末についてXRD測定を行ったところ、2価のスズの酸化物と4価のスズの酸化物のパターンが混在していた。XRDの測定結果を図1に示す。図1に示すXRD測定図においては、ブロードなピークが4価の酸化スズのピークであり、シャープなピークが2価の酸化スズのピークである。この結果から、この酸化スズは2価のスズ及び4価のスズを含むものであることが確認された。2価のスズと4価のスズの比率は、2価の酸化スズのピーク面積及び4価の酸化スズのピーク面積から算出した。その結果、2価のスズ:4価のスズ=5:5であった。また、この酸化スズ粒子はドーパント元素を実質的に含んでいなかった。この酸化スズ粒子のTEM像を図2に示す。同図から明らかなように、得られた酸化スズ粒子はその直径は数nmの微粒のものである。   Next, the repulp washing | cleaning of the liquid was performed using 60 degreeC warm water. Washing was performed until the conductivity of the liquid reached 100 μS. The concentration of chloride ions in the liquid at this time was 0.4% as a result of measurement using ion chromatography. After the cleaning was completed, the easy-definable tin oxide particles were pulverized. For the pulverization, a paint shaker using 0.1 mmφ zirconia beads was used. In pulverization, tetramethylammonium hydroxide was added to the liquid as a pH adjuster, and the pH of the liquid was adjusted to 11. The pulverization was performed for 1 hour. Finally, the liquid was passed through a 0.2 μm membrane filter to remove coarse particles to obtain a target sol of tin oxide particles. The concentration of tin oxide particles in this sol was 20%. The average particle diameter of the tin oxide particles measured by TEM was 5 nm. Further, the sol and powder of the tin oxide particles had a light yellow color. When XRD measurement was performed on this powder, a divalent tin oxide pattern and a tetravalent tin oxide pattern were mixed. The measurement result of XRD is shown in FIG. In the XRD measurement diagram shown in FIG. 1, a broad peak is a tetravalent tin oxide peak, and a sharp peak is a divalent tin oxide peak. From this result, it was confirmed that this tin oxide contains divalent tin and tetravalent tin. The ratio of divalent tin to tetravalent tin was calculated from the peak area of divalent tin oxide and the peak area of tetravalent tin oxide. As a result, divalent tin: tetravalent tin = 5: 5. The tin oxide particles did not substantially contain a dopant element. A TEM image of the tin oxide particles is shown in FIG. As can be seen from the figure, the obtained tin oxide particles have a diameter of several nanometers.

この酸化スズ粒子の圧粉体積抵抗率(500kgf下)を、三菱化学株式会社製ロレスタPAPD−41を用い、四端子法に従い測定したところ、2.1×105Ω・cmであった。また、この酸化スズ粒子を市販のアクリル樹脂とともにトルエン−ブタノール混合溶液に添加し、ペイントシェーカを用いてビーズ分散して分散液を調製した。この分散液をPETフィルムに塗布し、1時間風乾して透明薄膜を形成した。この薄膜について、可視光の全光線透過率を測定したところ90%であった。 The dust volume resistivity (under 500 kgf) of the tin oxide particles was measured according to a four-terminal method using Loresta PAPD-41 manufactured by Mitsubishi Chemical Corporation, and found to be 2.1 × 10 5 Ω · cm. The tin oxide particles were added to a toluene-butanol mixed solution together with a commercially available acrylic resin, and the beads were dispersed using a paint shaker to prepare a dispersion. This dispersion was applied to a PET film and air-dried for 1 hour to form a transparent thin film. With respect to this thin film, the total light transmittance of visible light was measured and found to be 90%.

〔実施例2〕
2価のスズを含む水溶液を添加する際のpHを2.0とした以外は、実施例1と同様に反応を行い、2価のスズの水酸化物の沈殿を得た。この水酸化物は黄色の沈殿であった。この沈殿は、易解粒性の凝集体から構成されていた。次に、実施例1と同様の条件で液中に過酸化水素水(30%)を添加し、2価のスズの水酸化物の酸化を行った。過酸化水素の添加によって、液中に存在する2価のスズの一部を4価のスズに酸化させるとともに、易解粒性の凝集体からなる酸化スズ粒子を液中に生成させた。凝集体の大きさをマイクロトラックUPA(商品名)で測定したところ、平均して10nm程度であった。
[Example 2]
The reaction was carried out in the same manner as in Example 1 except that the pH at the time of adding the aqueous solution containing divalent tin was 2.0, to obtain a precipitate of divalent tin hydroxide. This hydroxide was a yellow precipitate. This precipitate was composed of easily disaggregated aggregates. Next, hydrogen peroxide (30%) was added to the solution under the same conditions as in Example 1 to oxidize divalent tin hydroxide. By adding hydrogen peroxide, a part of the divalent tin present in the liquid was oxidized to tetravalent tin, and tin oxide particles composed of easily disaggregated aggregates were generated in the liquid. When the size of the aggregate was measured by Microtrac UPA (trade name), it was about 10 nm on average.

次に、実施例1と同様の条件でリパルプ洗浄及び易解粒性酸化スズ粒子の解粒を行った。洗浄後の易解粒性酸化スズ粒子の大きさをマイクロトラックUPA(商品名)で測定したところ、平均して10nm程度であった。また、解粒後の酸化スズ粒子をTEMで測定したところ、平均粒径は5nmであった。この酸化スズ粒子のゾル及び粉末は黄色を呈していた。この粉末についてXRD測定を行ったところ、2価のスズの酸化物と4価のスズの酸化物のパターンが混在していた。この結果から、この酸化スズは2価のスズ及び4価のスズを含むものであることが確認された。2価のスズと4価のスズの比率は、2価のスズ:4価のスズ=4:6であった。また、この酸化スズ粒子はドーパント元素を実質的に含んでいなかった。この酸化スズについて、実施例1と同様に圧粉体積抵抗率及び全光線透過率を測定した。結果を以下の表1に示す。   Next, repulp washing and easy pulverizing tin oxide particles were pulverized under the same conditions as in Example 1. When the size of the easily disaggregated tin oxide particles after washing was measured with Microtrac UPA (trade name), it was about 10 nm on average. Moreover, when the tin oxide particle | grains after pulverization were measured by TEM, the average particle diameter was 5 nm. The sol and powder of the tin oxide particles had a yellow color. When XRD measurement was performed on this powder, a divalent tin oxide pattern and a tetravalent tin oxide pattern were mixed. From this result, it was confirmed that this tin oxide contains divalent tin and tetravalent tin. The ratio of divalent tin to tetravalent tin was divalent tin: tetravalent tin = 4: 6. The tin oxide particles did not substantially contain a dopant element. About this tin oxide, the dust volume resistivity and the total light transmittance were measured in the same manner as in Example 1. The results are shown in Table 1 below.

〔実施例3〕
2価のスズを含む水溶液を添加する際のpHを6.0とし、かつ2価のスズの水酸化物を生成させるときの温度を50℃とした以外は、実施例1と同様に反応を行い、2価のスズの水酸化物を得た。この水酸化物は白色の沈殿であった。この沈殿は、易解粒性の凝集体から構成されていた。次に、温度を50℃とした以外は実施例1と同様の条件で液中に過酸化水素水(30%)を添加し、2価のスズの水酸化物の酸化を行った。過酸化水素の添加によって、液中に存在する2価のスズの一部を4価のスズに酸化させるとともに、易解粒性の凝集体からなる酸化スズ粒子を液中に生成させた。凝集体の大きさをマイクロトラックUPA(商品名)で測定したところ、平均して10nm程度であった。
Example 3
The reaction was carried out in the same manner as in Example 1 except that the pH at the time of adding the aqueous solution containing divalent tin was 6.0 and the temperature at which divalent tin hydroxide was formed was 50 ° C. Then, a divalent tin hydroxide was obtained. This hydroxide was a white precipitate. This precipitate was composed of easily disaggregated aggregates. Next, hydrogen peroxide (30%) was added to the solution under the same conditions as in Example 1 except that the temperature was 50 ° C., and bivalent tin hydroxide was oxidized. By adding hydrogen peroxide, a part of the divalent tin present in the liquid was oxidized to tetravalent tin, and tin oxide particles composed of easily disaggregated aggregates were generated in the liquid. When the size of the aggregate was measured by Microtrac UPA (trade name), it was about 10 nm on average.

次に、実施例1と同様の条件でリパルプ洗浄及び易解粒性酸化スズ粒子の解粒を行った。洗浄後の易解粒性酸化スズ粒子の大きさをマイクロトラックUPA(商品名)で測定したところ、平均して10nm程度であった。また、解粒後の酸化スズ粒子をTEMで測定したところ、平均粒径は5nmであった。この酸化スズ粒子のゾル及び粉末は白色を呈していた。この粉末についてXRD測定を行ったところ、2価のスズの酸化物と4価のスズの酸化物のパターンが混在していた。この結果から、この酸化スズは2価のスズ及び4価のスズを含むものであることが確認された。2価のスズと4価のスズの比率は、2価のスズ:4価のスズ=2:8であった。また、この酸化スズ粒子はドーパント元素を実質的に含んでいなかった。この酸化スズについて、実施例1と同様に圧粉体積抵抗率及び全光線透過率を測定した。結果を以下の表1に示す。   Next, repulp washing and easy pulverizing tin oxide particles were pulverized under the same conditions as in Example 1. When the size of the easily disaggregated tin oxide particles after washing was measured with Microtrac UPA (trade name), it was about 10 nm on average. Moreover, when the tin oxide particle | grains after pulverization were measured by TEM, the average particle diameter was 5 nm. The sol and powder of the tin oxide particles had a white color. When XRD measurement was performed on this powder, a divalent tin oxide pattern and a tetravalent tin oxide pattern were mixed. From this result, it was confirmed that this tin oxide contains divalent tin and tetravalent tin. The ratio of divalent tin to tetravalent tin was divalent tin: tetravalent tin = 2: 8. The tin oxide particles did not substantially contain a dopant element. About this tin oxide, the dust volume resistivity and the total light transmittance were measured in the same manner as in Example 1. The results are shown in Table 1 below.

〔実施例4〕
実施例1で用いた1%水酸化ナトリウム水溶液に代えて1%アンモニア水溶液を用い、2価のスズを含む水溶液を添加する際のpHを6.0とし、かつ2価のスズの水酸化物を生成させるときの温度を50℃とした以外は、実施例1と同様に反応を行い、2価のスズの水酸化物を得た。この水酸化物は黄色の沈殿であった。この沈殿は、易解粒性の凝集体から構成されていた。次に、温度を50℃とした以外は実施例1と同様の条件で液中に過酸化水素水(30%)を添加し、2価のスズの水酸化物の酸化を行った。過酸化水素の添加によって、液中に存在する2価のスズの一部を4価のスズに酸化させるとともに、易解粒性の凝集体からなる酸化スズ粒子を液中に生成させた。凝集体の大きさをマイクロトラックUPA(商品名)で測定したところ、平均して10nm程度であった。
Example 4
A 1% aqueous ammonia solution was used in place of the 1% aqueous sodium hydroxide solution used in Example 1, the pH when adding an aqueous solution containing divalent tin was 6.0, and a divalent tin hydroxide was added. The reaction was carried out in the same manner as in Example 1 except that the temperature when generating was changed to 50 ° C. to obtain a divalent tin hydroxide. This hydroxide was a yellow precipitate. This precipitate was composed of easily disaggregated aggregates. Next, hydrogen peroxide (30%) was added to the solution under the same conditions as in Example 1 except that the temperature was 50 ° C., and bivalent tin hydroxide was oxidized. By adding hydrogen peroxide, a part of the divalent tin present in the liquid was oxidized to tetravalent tin, and tin oxide particles composed of easily disaggregated aggregates were generated in the liquid. When the size of the aggregate was measured by Microtrac UPA (trade name), it was about 10 nm on average.

次に、実施例1と同様の条件でリパルプ洗浄及び易解粒性酸化スズ粒子の解粒を行った。洗浄後の易解粒性酸化スズ粒子の大きさをマイクロトラックUPA(商品名)で測定したところ、平均して10nm程度であった。また、解粒後の酸化スズ粒子をTEMで測定したところ、平均粒径は5nmであった。この酸化スズ粒子のゾル及び粉末は黄色を呈していた。この粉末についてXRD測定を行ったところ、2価のスズの酸化物と4価のスズの酸化物のパターンが混在していた。この結果から、この酸化スズは2価のスズ及び4価のスズを含むものであることが確認された。2価のスズと4価のスズの比率は、2価のスズ:4価のスズ=4:6であった。また、この酸化スズ粒子はドーパント元素を実質的に含んでいなかった。この酸化スズについて、実施例1と同様に圧粉体積抵抗率及び全光線透過率を測定した。結果を以下の表1に示す。   Next, repulp washing and easy pulverizing tin oxide particles were pulverized under the same conditions as in Example 1. When the size of the easily disaggregated tin oxide particles after washing was measured with Microtrac UPA (trade name), it was about 10 nm on average. Moreover, when the tin oxide particle | grains after pulverization were measured by TEM, the average particle diameter was 5 nm. The sol and powder of the tin oxide particles had a yellow color. When XRD measurement was performed on this powder, a divalent tin oxide pattern and a tetravalent tin oxide pattern were mixed. From this result, it was confirmed that this tin oxide contains divalent tin and tetravalent tin. The ratio of divalent tin to tetravalent tin was divalent tin: tetravalent tin = 4: 6. The tin oxide particles did not substantially contain a dopant element. About this tin oxide, the dust volume resistivity and the total light transmittance were measured in the same manner as in Example 1. The results are shown in Table 1 below.

〔比較例1〕
2価のスズを含む水溶液を添加する際のpHを8.0とし、かつ2価のスズの水酸化物を生成させるときの温度を90℃とした以外は、実施例1と同様に反応を行い、2価のスズの水酸化物を得た。この水酸化物は黒色の沈殿であった。次に、温度を90℃とした以外は実施例1と同様の条件で液中に過酸化水素水(30%)を添加し、2価のスズの水酸化物の酸化を行い酸化スズ(II)粒子を液中に生成させた。
[Comparative Example 1]
The reaction was performed in the same manner as in Example 1 except that the pH when adding the aqueous solution containing divalent tin was 8.0, and the temperature when generating the divalent tin hydroxide was 90 ° C. Then, a divalent tin hydroxide was obtained. This hydroxide was a black precipitate. Next, hydrogen peroxide (30%) was added to the solution under the same conditions as in Example 1 except that the temperature was 90 ° C., and the divalent tin hydroxide was oxidized to produce tin oxide (II ) Particles were generated in the liquid.

次に、実施例1と同様の条件でリパルプ洗浄を行った。この酸化スズ粒子のゾル及び粉末は黒色を呈していた。この粉末についてXRD測定を行ったところ、スズ(II)の酸化物のパターンであることが確認された。また、この酸化スズ粒子はドーパント元素を実質的に含んでいなかった。この酸化スズについて、実施例1と同様に圧粉体積抵抗率及び全光線透過率を測定した。結果を以下の表1に示す。   Next, repulp washing was performed under the same conditions as in Example 1. The sol and powder of the tin oxide particles were black. When XRD measurement was performed on this powder, it was confirmed that it was a tin (II) oxide pattern. The tin oxide particles did not substantially contain a dopant element. About this tin oxide, the dust volume resistivity and the total light transmittance were measured in the same manner as in Example 1. The results are shown in Table 1 below.

〔比較例2〕
2価のスズを含む水溶液を添加する際のpHを7.0とした以外は、実施例1と同様に反応を行い、2価のスズの水酸化物を得た。この水酸化物は白色の沈殿であった。次に、実施例1と同様の条件で液中に過酸化水素水(30%)を20ml/minの添加速度で逐次添加し、2価のスズの水酸化物の酸化を行った。過酸化水素の全添加量は400mlであった。過酸化水素の過剰添加によって、液中に存在する2価のスズのすべてを4価のスズに酸化させ、酸化スズ粒子を液中に生成させた。
[Comparative Example 2]
The reaction was carried out in the same manner as in Example 1 except that the pH at the time of adding the aqueous solution containing divalent tin was 7.0, to obtain a divalent tin hydroxide. This hydroxide was a white precipitate. Next, hydrogen peroxide (30%) was sequentially added to the solution at the rate of 20 ml / min under the same conditions as in Example 1 to oxidize divalent tin hydroxide. The total amount of hydrogen peroxide added was 400 ml. By the excessive addition of hydrogen peroxide, all of the divalent tin present in the liquid was oxidized to tetravalent tin, and tin oxide particles were generated in the liquid.

次に、実施例1と同様の条件でリパルプ洗浄を行った。この酸化スズ粒子のゾル及び粉末は黒色を呈していた。この粉末についてXRD測定を行ったところ、スズ(IV)の酸化物のパターンであることが確認された。この酸化スズについて、実施例1と同様に圧粉体積抵抗率及び全光線透過率を測定した。結果を以下の表1に示す。   Next, repulp washing was performed under the same conditions as in Example 1. The sol and powder of the tin oxide particles were black. When XRD measurement was performed on this powder, it was confirmed that it was a tin (IV) oxide pattern. About this tin oxide, the dust volume resistivity and the total light transmittance were measured in the same manner as in Example 1. The results are shown in Table 1 below.

表1に示す結果から明らかなとおり、各実施例で得られた酸化スズは、高透明性を有し、かつ低抵抗のものであることが判る。これに対し、比較例1で得られた酸化スズは、抵抗は低いものの透明性に劣ることが判る。比較例2で得られた酸化スズは、逆に透明性は良好なものの高抵抗であることが判る。   As is clear from the results shown in Table 1, it can be seen that the tin oxide obtained in each example has high transparency and low resistance. In contrast, the tin oxide obtained in Comparative Example 1 has low resistance but poor transparency. On the contrary, it can be seen that the tin oxide obtained in Comparative Example 2 has high resistance but good transparency.

Claims (3)

2価〜4価の範囲で価数が異なる複数種のスズを含み、ドーパント元素を実質的に含んでおらず、かつ導電性を有することを特徴とする酸化スズ粒子。   A tin oxide particle comprising a plurality of types of tin having different valences in the range of divalent to tetravalent, substantially not including a dopant element, and having conductivity. 2価のスズを含む水溶液とアルカリとを混合し、2価のスズの水酸化物を液中に生成させ、
生成した2価のスズの水酸化物を液中で酸化して、2価のスズの一部を2価超4価以下のスズに酸化することを特徴とする酸化スズゾルの製造方法であって、
2価のスズを含む水溶液とアルカリとを混合した液のpHが1〜7となるように、該アルカリを混合する酸化スズゾルの製造方法。
An aqueous solution containing divalent tin and an alkali are mixed to produce a divalent tin hydroxide in the liquid,
A method for producing a tin oxide sol, wherein the produced divalent tin hydroxide is oxidized in a liquid to oxidize a part of the divalent tin to a divalent to higher than tetravalent tin. ,
The manufacturing method of the tin oxide sol which mixes this alkali so that the pH of the liquid which mixed the aqueous solution containing divalent tin and the alkali may become 1-7.
液に過酸化物、ハロゲン、ペルオキソ酸、酸素酸、高価数の金属塩、酸素ガス又はオゾンを添加して、2価のスズの水酸化物の酸化を行う請求項2記載の製造方法。   3. The production method according to claim 2, wherein a peroxide, halogen, peroxo acid, oxygen acid, expensive metal salt, oxygen gas or ozone is added to the liquid to oxidize divalent tin hydroxide.
JP2009174028A 2009-07-27 2009-07-27 Method for producing tin oxide particles and tin oxide sol Active JP5330918B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009174028A JP5330918B2 (en) 2009-07-27 2009-07-27 Method for producing tin oxide particles and tin oxide sol
TW099118608A TW201114689A (en) 2009-07-27 2010-06-08 Tin oxide particle and tin oxide sol manufacturing method
KR1020100069415A KR20110011548A (en) 2009-07-27 2010-07-19 Method of manufacturing tin oxide particles and tin oxide sol
CN2010102392979A CN101967008A (en) 2009-07-27 2010-07-27 Preparing methods of tin oxide particles and tin oxide colloidal sols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009174028A JP5330918B2 (en) 2009-07-27 2009-07-27 Method for producing tin oxide particles and tin oxide sol

Publications (2)

Publication Number Publication Date
JP2011026172A true JP2011026172A (en) 2011-02-10
JP5330918B2 JP5330918B2 (en) 2013-10-30

Family

ID=43546252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009174028A Active JP5330918B2 (en) 2009-07-27 2009-07-27 Method for producing tin oxide particles and tin oxide sol

Country Status (4)

Country Link
JP (1) JP5330918B2 (en)
KR (1) KR20110011548A (en)
CN (1) CN101967008A (en)
TW (1) TW201114689A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098948A1 (en) * 2011-01-19 2012-07-26 三井金属鉱業株式会社 Tin oxide particles and method for producing same
JP2014018849A (en) * 2012-07-23 2014-02-03 Fuji Kihan:Kk Method for strengthening welding tip, and welding tip
WO2016133017A1 (en) * 2015-02-16 2016-08-25 三菱マテリアル株式会社 Stannous oxide powder and method for producing stannous oxide powder
JP2017003806A (en) * 2015-06-11 2017-01-05 株式会社リコー Electrochromic display element, display device, information equipment, manufacturing method of electrochromic display element, electrochromic lighting control lens
JP2018027874A (en) * 2016-08-19 2018-02-22 ヒロセホールディングス株式会社 Method for manufacturing metal oxide nanoparticle
CN110171842A (en) * 2019-04-17 2019-08-27 华中科技大学 A kind of preparation method and application of mixed valence tin-based oxide semiconductor material
US10392262B2 (en) 2015-02-16 2019-08-27 Mitsubishi Materials Corporation Stannous oxide powder and method for producing stannous oxide powder
DE112021002332T5 (en) 2020-06-09 2023-01-26 Mitsui Mining & Smelting Co., Ltd. COMPOSITION FOR FORMING A PRIMER COAT, A PRIMER COAT, AN EMISSION CONTROL CATALYST AND AN EMISSION CONTROL DEVICE INCLUDING PRIMER COAT

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787405A (en) * 2014-02-27 2014-05-14 东华大学 Preparation method of rutile-phase tin dioxide sol
KR20190142797A (en) * 2018-06-18 2019-12-30 삼성디스플레이 주식회사 Display device
CN113862716B (en) * 2021-10-19 2023-07-25 浙江工业大学 Nanometer tin oxide loaded platinum alloy catalyst and preparation method and application thereof
CN115440890A (en) * 2022-09-28 2022-12-06 隆基绿能科技股份有限公司 Perovskite solar cell, manufacturing method thereof and laminated solar cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292535A (en) * 1998-04-03 1999-10-26 Tokuyama Corp Production of multiple tin oxide powder
JP2003128417A (en) * 2001-10-23 2003-05-08 Tokuyama Corp Tin oxide and method for producing the same
JP2008150258A (en) * 2006-12-19 2008-07-03 Ishihara Sangyo Kaisha Ltd Precursor particle for tin dioxide, method for producing the same, and method for producing tin dioxide using the precursor particle
JP2008222540A (en) * 2007-03-09 2008-09-25 Daiichi Kigensokagaku Kogyo Co Ltd Method for producing tin oxide sol, and method for controlling average grain diameter of tin oxide sol

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292535A (en) * 1998-04-03 1999-10-26 Tokuyama Corp Production of multiple tin oxide powder
JP2003128417A (en) * 2001-10-23 2003-05-08 Tokuyama Corp Tin oxide and method for producing the same
JP2008150258A (en) * 2006-12-19 2008-07-03 Ishihara Sangyo Kaisha Ltd Precursor particle for tin dioxide, method for producing the same, and method for producing tin dioxide using the precursor particle
JP2008222540A (en) * 2007-03-09 2008-09-25 Daiichi Kigensokagaku Kogyo Co Ltd Method for producing tin oxide sol, and method for controlling average grain diameter of tin oxide sol

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098948A1 (en) * 2011-01-19 2012-07-26 三井金属鉱業株式会社 Tin oxide particles and method for producing same
US8916070B2 (en) 2011-01-19 2014-12-23 Mitsui Mining & Smelting Co., Ltd. Tin oxide particles and method for producing same
JP2014018849A (en) * 2012-07-23 2014-02-03 Fuji Kihan:Kk Method for strengthening welding tip, and welding tip
WO2016133017A1 (en) * 2015-02-16 2016-08-25 三菱マテリアル株式会社 Stannous oxide powder and method for producing stannous oxide powder
US10392262B2 (en) 2015-02-16 2019-08-27 Mitsubishi Materials Corporation Stannous oxide powder and method for producing stannous oxide powder
JP2017003806A (en) * 2015-06-11 2017-01-05 株式会社リコー Electrochromic display element, display device, information equipment, manufacturing method of electrochromic display element, electrochromic lighting control lens
JP2018027874A (en) * 2016-08-19 2018-02-22 ヒロセホールディングス株式会社 Method for manufacturing metal oxide nanoparticle
CN110171842A (en) * 2019-04-17 2019-08-27 华中科技大学 A kind of preparation method and application of mixed valence tin-based oxide semiconductor material
DE112021002332T5 (en) 2020-06-09 2023-01-26 Mitsui Mining & Smelting Co., Ltd. COMPOSITION FOR FORMING A PRIMER COAT, A PRIMER COAT, AN EMISSION CONTROL CATALYST AND AN EMISSION CONTROL DEVICE INCLUDING PRIMER COAT

Also Published As

Publication number Publication date
CN101967008A (en) 2011-02-09
KR20110011548A (en) 2011-02-08
JP5330918B2 (en) 2013-10-30
TW201114689A (en) 2011-05-01

Similar Documents

Publication Publication Date Title
JP5330918B2 (en) Method for producing tin oxide particles and tin oxide sol
CN101888973B (en) Nanoparticulate composition and method for the production thereof
JP5629344B2 (en) Tin oxide particles and method for producing the same
JP5373884B2 (en) Tin oxide particles and method for producing the same
JP4801617B2 (en) Conductive zinc oxide particles and method for producing the same
JP2012251222A (en) Method for producing silver nanoparticle, and ink
WO2012124540A1 (en) Fluorine-doped tin-oxide particles and manufacturing method therefor
JP5809966B2 (en) White conductive powder, conductive mixed powder, dispersion, paint, and film composition
JP5544828B2 (en) Zirconia composite ceramic fine particles, production method thereof, and zirconia composite ceramic fine particle dispersion
JP4193036B2 (en) Method for producing conductive tin oxide
JP5711981B2 (en) Tin oxide particles and method for producing the same
JP4056826B2 (en) Composite oxide black pigment and method for producing the same
JP4745485B2 (en) Magnetite production method
JP5113397B2 (en) Magnetite particle powder
JP4105861B2 (en) Tin-based oxide and method for producing the same
JP4535237B2 (en) Antimony pentoxide sol and method for producing the same
JP2010126376A (en) Method for producing metal or metalloid oxide fine particles
JP4746476B2 (en) Cobalt hydroxide particles and cobalt oxide particles
JP5592067B2 (en) Method for producing conductive tin oxide powder
JP6557556B2 (en) Conductive particles and conductive composition containing the same
JP6200814B2 (en) Tin oxide particles containing phosphorus and method for producing tin oxide sol containing phosphorus
JP2019179590A (en) Conductive particle
JP4223784B2 (en) Method for producing composite oxide black pigment
JP5080840B2 (en) Black complex oxide particles, black slurry, black paste, and black matrix
JP2010111553A (en) Conductive tin oxide powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130726

R150 Certificate of patent or registration of utility model

Ref document number: 5330918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250