JP2011026170A - Method for producing ceramic product, and base material - Google Patents

Method for producing ceramic product, and base material Download PDF

Info

Publication number
JP2011026170A
JP2011026170A JP2009173777A JP2009173777A JP2011026170A JP 2011026170 A JP2011026170 A JP 2011026170A JP 2009173777 A JP2009173777 A JP 2009173777A JP 2009173777 A JP2009173777 A JP 2009173777A JP 2011026170 A JP2011026170 A JP 2011026170A
Authority
JP
Japan
Prior art keywords
plant
base material
moisture
ceramic product
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009173777A
Other languages
Japanese (ja)
Inventor
Seiichi Abe
清一 阿部
Masaharu Okada
正治 岡田
Jun Sato
佐藤  淳
Masahito Kurata
雅人 倉田
Setsuichi Kasai
節一 笠井
Toshiyuki Nakane
利幸 中根
Takeshi Yoshikawa
猛 吉川
Sumako Saijo
寿真子 西條
Masashi Kasai
政志 笠井
Norihiko Oshima
憲彦 大島
Ryuji Hayashi
隆二 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MINO SHIGEN KAIHATSU KK
Kubota Corp
Original Assignee
MINO SHIGEN KAIHATSU KK
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MINO SHIGEN KAIHATSU KK, Kubota Corp filed Critical MINO SHIGEN KAIHATSU KK
Priority to JP2009173777A priority Critical patent/JP2011026170A/en
Publication of JP2011026170A publication Critical patent/JP2011026170A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a ceramic product by using a vegetable binder, in which the fluidity and plasticity of a base material are controlled by adjusting the moisture content of the base material without depending on clay of a molding component, a drying step is not required and a firing step of the base material is carried out while having the moisture. <P>SOLUTION: The method for producing the ceramic product comprises the steps of: blending 53 and kneading 54 a predetermined amount of waste 52 being a raw material with a predetermined amount of a vegetable raw material 51 being the vegetable binder to form the base material; molding 55 the base material to obtain the compact; and firing 56 the compact having the moisture added by the vegetable binder at the least. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は窯業製品の製造方法及び素地材に関する。   The present invention relates to a method for manufacturing ceramic products and a base material.

従来の陶磁器等の窯業製品の基本的な製法は以下に例示するようなものであった。図5に示すように、主な原料は、骨格成分をなす珪石1、成形成分をなす粘土2、焼結成分をなす長石3である。粘土2は水との混合比を調整することで流動性と可塑性を制御し、乾燥により機械的強度を確保する。   The basic manufacturing method of conventional ceramics products such as ceramics is as exemplified below. As shown in FIG. 5, main raw materials are silica 1 that forms a skeleton component, clay 2 that forms a molding component, and feldspar 3 that forms a sintering component. The clay 2 controls fluidity and plasticity by adjusting the mixing ratio with water, and ensures mechanical strength by drying.

珪石1と粘土2と長石3の各々の適当量を粉砕12して配合4し、さらに粉砕12して後に水を加えて混練5して坏土を得る。坏土を目的に応じた成形法によって所定形状に成形6し、その後に乾燥7させる。次に、乾燥した成形物に施釉8し、焼成用の窯で焼成9して釉焼きし、釉焼きした面に加飾10して後に焼成11する。   An appropriate amount of each of silica 1, clay 2 and feldspar 3 is pulverized 12 and blended 4 and further pulverized 12 and then water is added and kneaded 5 to obtain a clay. The clay is formed into a predetermined shape 6 by a forming method according to the purpose, and then dried 7. Next, the dried molded product is glazed 8, fired 9 in a firing kiln and fired, decorated 10 on the fired surface, and fired 11 later.

ところで、このような窯業の手法を利用する先行技術としては、例えば特許文献1に記載するものがある。これは溶融スラグの高級資源化方法に関するものであり、都市ごみ、下水汚泥、飛灰、鉱山廃砕,河川の堆積物,湖沼のヘドロ等の廃棄物を溶融処理して溶融スラグ化するに際し、廃棄物に調整材を添加して溶融処理することにより調整溶融スラグを生成する。そして、この調整溶融スラグを冷却固化して所定の性能を有する低融点ガラスを形成し、この低融点ガラスを適当粒度に粉砕することにより窯業原料としての原料ガラスを得るものである。   By the way, as a prior art using such a ceramic technique, there is one described in Patent Document 1, for example. This is related to a high-grade method for melting slag resources. When waste such as municipal waste, sewage sludge, fly ash, mine demolition, river deposits, sludge from lakes and the like is melted to form molten slag, Adjusted molten slag is generated by adding an adjusting material to the waste and subjecting it to a melting treatment. Then, the adjusted molten slag is cooled and solidified to form a low-melting glass having a predetermined performance, and the low-melting glass is pulverized to an appropriate particle size to obtain a raw glass as a ceramic raw material.

また、特許文献2に記載する多孔質セラミックス製品の製造方法は、混練工程において、所定温度で焼結することによりセラミックス製品を構成し得る原料粉末と所定温度への加熱により消失する消失性材料粉末とを少なくとも水とともに混練して混練物とし、成形工程において混練物で成形体を成形し、焼結工程において成形体を所定温度で焼結するものである。   Moreover, the manufacturing method of the porous ceramic product described in Patent Document 2 includes a raw material powder that can constitute a ceramic product by sintering at a predetermined temperature in a kneading step, and a disappearing material powder that disappears by heating to a predetermined temperature. Are kneaded together with at least water to form a kneaded product, the molded product is molded with the kneaded product in the molding process, and the molded product is sintered at a predetermined temperature in the sintering process.

また、特許文献3には、アルミナ及び/又はシリカを主成分とする窯業原料にもみ殻を加えて混合し、成形し、焼成して廃水処理用担体を得ることが記載されている。   Patent Document 3 describes that a chaff is added to a ceramic raw material containing alumina and / or silica as a main component, mixed, molded, and fired to obtain a wastewater treatment carrier.

特許第3188326号公報Japanese Patent No. 3188326 特開2000−128657号公報JP 2000-128657 A 特開平6−86995号公報JP-A-6-86995

ところで、従来の窯業製品の製造方法においては、坏土の可塑性を考慮すると素地配合における含水率は7〜20重量%であり、添加できる水分の上限は20重量%が限界であり、かつ水分調整は成形成分をなす粘土に対してのみ行なうことができる。含水率が上限値を超えると坏土の流動性が高まって可塑性が低下するために、水や骨格成分をなす原料を均質に保持することが困難となってそれらの偏りが起こるとともに、成形体の型崩れが生じて適切な形状に成形することが困難となる。また、成形体の含水率が高いと乾燥時間が大幅に長引くことになる。   By the way, in the conventional method for manufacturing ceramic products, the moisture content in the base composition is 7 to 20% by weight in consideration of the plasticity of the clay, and the upper limit of the water that can be added is 20% by weight, and the moisture adjustment Can only be performed on clay as a forming component. If the water content exceeds the upper limit, the fluidity of the clay is increased and the plasticity is lowered, so that it is difficult to keep water and the raw material constituting the skeletal component homogeneous, and the unevenness occurs. Therefore, it becomes difficult to mold into an appropriate shape. In addition, if the moisture content of the molded body is high, the drying time is significantly prolonged.

従来の窯業製品の製造方法において軽比重の多孔体を製造する場合には、一般的にかさ比重は約0.4が限界であり、かさ比重を下げるためにおが粉、籾殻、紙、パーライトなどを混練しているが、これらのものは一般的に粘性がないので、別途、粘土などのバインダーとなるものが必要であった。発泡体は薬品の添加によって製造できるが、大きな陶磁器では強度が保てないので成形が困難であり、セメントなどを添加する必要があった。また、大型品であれば乾燥や焼成時の収縮や膨張によりわれやひびなどの欠陥が出やすく、製品化が困難であった。   When manufacturing a porous body with a light specific gravity in the conventional method for producing ceramic products, the bulk specific gravity is generally limited to about 0.4, and sawdust, rice husk, paper, pearlite are used to reduce the bulk specific gravity. However, since these materials are generally not viscous, a material such as clay is required separately. Foams can be manufactured by adding chemicals, but large ceramics cannot maintain strength, making them difficult to mold, and it is necessary to add cement or the like. Moreover, if it is a large product, defects such as cracks and cracks are likely to occur due to shrinkage and expansion during drying and firing, making it difficult to produce a product.

従来の窯業製品の製造方法では、成形体は成形後に乾燥させることが必須であり、乾燥させない場合には焼成時に割れやひびなどの欠点を発する。この乾燥工程には設備費や管理費、燃料代がコストとして発生する。   In the conventional method for manufacturing ceramic products, it is essential that the molded body is dried after molding, and if not dried, defects such as cracks and cracks occur during firing. Equipment costs, management costs, and fuel costs are incurred in the drying process.

従来の窯業製品の製造方法では、焼成工程を一般的に1100〜1300℃で焼結させる必要がある。従来の陶磁器は原料中に占める粘土の割合が大きいので、耐火度が高くて1000℃以下での焼成では強度が不足して製品に適正な品質を確保することが困難である。このため、全製造コストの中で焼成工程の燃料費が最も多く占めており、素焼き、釉焼き、本焼きと焼成を重ねるほどに燃料費が嵩む。   In the conventional method for producing a ceramic product, it is necessary to sinter the firing process generally at 1100 to 1300 ° C. Since conventional ceramics have a large proportion of clay in the raw material, the fire resistance is high, and firing at 1000 ° C. or less is insufficient in strength and it is difficult to ensure proper quality for the product. For this reason, the fuel cost of a baking process occupies most in all the manufacturing costs, and a fuel cost increases, so that unglazed baking, glazed baking, main baking, and baking are repeated.

また、発泡体は焼成時に膨張を伴うので、発泡体の寸法精度出しは一般的に焼成後に切断工程で切り出して整える必要があり、そのコストも加算される。大型品になると成形時より強度が要求されるので、一般的に粘土の配合率が多くなる。このため、乾燥時の乾燥収縮が大きくなって割れやひびが発生し易くなる。また、焼成工程においても粘土が多いほどに焼成収縮が大きくなり、自重によりひびや割れが発生する。   Further, since the foam is expanded at the time of firing, it is generally necessary to cut out and prepare the foam with a cutting process after firing, and the cost is also added. Larger products generally require higher strength than the molding, so generally the clay content increases. For this reason, drying shrinkage at the time of drying becomes large, and cracks and cracks are likely to occur. Also, in the firing process, the more clay there is, the greater the shrinkage of firing, and cracks and cracks occur due to their own weight.

本発明は上記した課題を解決するものであり、成形成分の粘土に因らずして素地材の含水率を調整して流動性と可塑性を制御することができ、かつ乾燥工程を不要となして成形時の水分を含んだままで焼成工程を行なえる窯業製品の製造方法及び素地材を提供することを目的とする。   The present invention solves the above-described problems, can control the fluidity and plasticity by adjusting the moisture content of the base material regardless of the clay of the molding component, and eliminates the need for a drying step. It is an object of the present invention to provide a ceramic product manufacturing method and a base material that can be fired while containing moisture during molding.

上記課題を解決するために、本発明の窯業製品の製造方法は、窯業用原料と鉱物性廃棄物のうちの少なくとも何れかを素地原料とし、所定量の素地原料と所定量の植物由来の成形材を配合、混練して素地材を形成し、素地材を成形して成形体となし、少なくとも植物由来の成形材に内包された水分を含む成形体を焼成することを特徴とする。   In order to solve the above-mentioned problems, a method for producing a ceramic product according to the present invention uses at least one of a ceramic raw material and a mineral waste as a raw material, and a predetermined amount of the raw material and a predetermined amount of plant-derived molding. A material is mixed and kneaded to form a base material, and the base material is formed into a molded body, and at least a molded body containing moisture contained in a plant-derived molding material is fired.

また、本発明の窯業製品の製造方法において、植物由来の成形材は、少なくとも生の植物、乾燥した植物の何れかであり、水分を内包する植物細胞を成形材中に含むことを特徴とする。   In the method for producing a ceramic product according to the present invention, the plant-derived molding material is at least a raw plant or a dried plant, and the plant material containing moisture is contained in the molding material. .

また、本発明の窯業製品の製造方法において、植物由来の成形材は、少なくとも植物性繊維質と多糖類を含む植物性原料であることを特徴とする。
また、本発明の窯業製品の製造方法において、鉱物性廃棄物は、結晶性物、非結晶性物、ガラス状物、ゲル状物、金属、それらの混合体の少なくとも何れかであることを特徴とする。
In the method for producing a ceramic product of the present invention, the plant-derived molding material is a plant raw material containing at least plant fiber and polysaccharide.
Further, in the method for producing a ceramic product of the present invention, the mineral waste is at least one of a crystalline material, an amorphous material, a glassy material, a gelled material, a metal, and a mixture thereof. And

また、本発明の窯業製品の製造方法において、成形体は所定の含水率を有する状態で焼成してかさ比重0.1〜0.4の多孔体となすことを特徴とする。   In the method for producing a ceramic product of the present invention, the molded body is fired in a state having a predetermined moisture content to become a porous body having a bulk specific gravity of 0.1 to 0.4.

また、本発明の窯業製品の製造方法において、素地材の水分は植物由来の成形材の添加量により調整することを特徴とする。
また、本発明の窯業製品の製造方法において、素地材は20〜70重量%の含水率を有することを特徴とする。
In the method for producing a ceramic product according to the present invention, the moisture of the base material is adjusted by the amount of the plant-derived molding material added.
In the method for manufacturing a ceramic product according to the present invention, the base material has a moisture content of 20 to 70% by weight.

また、本発明の窯業製品の製造方法において、植物由来の成形材は所定量のカリウム元素、ナトリウム元素およびその化合物を含み、成形体は600〜1000℃で焼成することを特徴とする。   In the method for producing a ceramic product of the present invention, the plant-derived molding material contains a predetermined amount of potassium element, sodium element and a compound thereof, and the molded article is fired at 600 to 1000 ° C.

本発明の素地材は、窯業製品用の成形体を形成するための素地材であって、窯業用原料と鉱物性廃棄物のうちの少なくとも何れかの素地原料と、水分を内包する植物細胞を含む成形材を配合したことを特徴とする。   The base material of the present invention is a base material for forming a molded body for ceramic products, comprising at least one base material of ceramic raw materials and mineral waste, and plant cells containing moisture. It is characterized by blending a molding material containing.

以上の本発明においては、植物由来の成形材を使用することで、一般的な成形成分である粘土に因らずして所定の流動性と粘性と可塑性を備えた素地材を調製できる。   In the present invention described above, by using a plant-derived molding material, a base material having predetermined fluidity, viscosity, and plasticity can be prepared regardless of clay, which is a general molding component.

本発明の実施の形態における窯業製品の製造方法を示す工程図Process drawing which shows the manufacturing method of the ceramics product in embodiment of this invention 同実施の形態における植物性原料と廃棄物の結合構造を示す模式図Schematic showing the binding structure of plant raw materials and waste in the same embodiment (a)は成形時の植物性原料と廃棄物の結合構造を示す模式図、(b)は(a)中のA部に含まれた植物細胞を示す拡大図(A) is a schematic diagram showing the binding structure of the plant raw material and waste at the time of molding, (b) is an enlarged view showing the plant cells contained in part A in (a) (a)は焼成時の植物性原料と廃棄物の結合構造を示す模式図、(b)は(a)中のB部を示す拡大図、(c)は(a)中のC部を示す拡大図(A) is a schematic diagram showing the combined structure of plant raw materials and waste during firing, (b) is an enlarged view showing part B in (a), and (c) shows part C in (a). Enlarged view 従来の窯業製品の製造方法を示す工程図Process diagram showing a conventional method for manufacturing ceramic products 焼成温度とかさ比重の関係図Relationship between firing temperature and bulk specific gravity 焼成温度と収縮の度合いの関係図Relationship diagram between firing temperature and degree of shrinkage

以下、本発明の実施の形態を図面に基づいて説明する。図1において、植物由来の成形材は、生の植物、乾燥した植物等の植物性原料であり、水分を内包する植物細胞を有するものであり、植物性原料は少なくとも植物性繊維質と多糖類を含むものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, a plant-derived molding material is a plant raw material such as a raw plant or a dried plant, and has plant cells containing moisture, and the plant raw material includes at least plant fiber and polysaccharide. Is included.

本実施の形態で植物由来の成形材として使用する植物性原料51は、50〜97重量%の含水率を有するものであり、セルロース、セミセルロース、リグニンおよび無機物のカリウム元素、ナトリウム元素、その化合物等を含んでいる。植物性原料51は陸生植物、海生植物の何れでもよく、陸生植物では例えば草、木、竹、水草等であって水分、カリウム元素、ナトリウム元素、マグネシウム元素などのミネラルを多く含むものである。海生植物では海藻や海草であって例えば昆布やてんぐさであり、植物性繊維質および多糖類を多く含むものが植物由来の成形材として有用である。陸生植物比べて海生植物はそのセルロースが弱くて柔軟性を有しており、本発明の植物由来の成形材に適している。   The plant raw material 51 used as a plant-derived molding material in the present embodiment has a moisture content of 50 to 97% by weight, and includes cellulose, semicellulose, lignin, inorganic potassium elements, sodium elements, and compounds thereof Etc. The plant raw material 51 may be either a terrestrial plant or a marine plant. The terrestrial plant is, for example, grass, wood, bamboo, aquatic plants, etc., and contains a lot of minerals such as moisture, potassium element, sodium element, and magnesium element. Among marine plants, seaweeds and seaweeds such as kelp and tengu, which are rich in plant fiber and polysaccharides are useful as plant-derived molding materials. Compared to terrestrial plants, marine plants are weak in cellulose and have flexibility, and are suitable for the plant-derived molding material of the present invention.

さらに植物由来の成形材に適した植物性原料としては以下に示すようなものがある。
1.各種木材の廃棄物 間伐材、剪定材、大鋸粉
2.各種草類の廃棄物 草刈材、すすき、笹、竹、雑草
3.加工品の廃棄物 紙、建築廃材、布、おから
4.農業関係の廃棄物 農作物、稲、わら、とうもろこし、芋、大豆、茶殻の絞りかす、ぬか
5.食品の廃棄物 野菜、果物、およびその絞り汁、絞りかす
6.各種海草・水草類 あおさ、てんぐさ、わかめ、昆布などの海草、海藻類、水草、およびその絞り汁、絞りかす
素地原料の主たる成分をなす鉱物性廃棄物52はガラス質材であり、ガラス質材は廃棄ビン等のガラスカレットや廃棄物(都市ごみ、下水汚泥、工場などからの産業廃棄物)由来の溶融スラグ等からなり、鉱物性廃棄物52として金属(例えば、鉄くず、アルミくず、銅くず)を使用することも可能であり、鉱物性廃棄物52は、結晶性物、非結晶性物、ガラス状物、ゲル状物、それらの混合体の少なくとも何れかであればよい。
Further, plant materials suitable for plant-derived molding materials include the following.
1. Various wood waste Thinned wood, pruned wood, large sawdust 2. 2. Waste of various grasses Mowing materials, Susukino, bamboo grass, bamboo, weeds Processed waste Paper, building waste, cloth, okara 4. Agricultural waste Agricultural crops, rice, straw, corn, straw, soybeans, tea chaff, bran Food waste Vegetables, fruits, and their juices and pomace Various seaweeds and aquatic plants Seaweeds such as blue seaweed, tengu, seaweed, and kelp, seaweeds, seaweeds, and their juices and pomace. Mineral waste 52, the main component of the raw material, is a vitreous material and is a glassy material. The material consists of glass cullet such as waste bins and molten slag derived from waste (industrial waste from municipal waste, sewage sludge, factories, etc.), and mineral waste 52 as metal (for example, iron scrap, aluminum scrap, It is also possible to use copper scrap), and the mineral waste 52 may be at least one of a crystalline material, an amorphous material, a glassy material, a gelled material, and a mixture thereof.

しかし、従来の珪石などの窯業用原料を主たる材料とすることも可能であり、素地原料に粘土を含有させることも可能である。さらに、従来の製法における坏土中のバインダー機能をもつ粘土の一部を植物性原料51で置換する構成も可能である。   However, conventional raw materials for ceramics such as silica can be used as the main material, and the base material can also contain clay. Furthermore, the structure which substitutes a part of clay with the binder function in the clay in the conventional manufacturing method with the vegetable raw material 51 is also possible.

植物性原料51および鉱物性廃棄物52は、後述する混練工程の混練手段をなす混練機等に投入可能な形状に粉砕58して前処理しており、その形状および粒径は任意に設定することが可能であり、植物性原料51は原型に近い状態での投入も可能である。   The plant raw material 51 and the mineral waste 52 are pretreated by pulverizing 58 into a shape that can be put into a kneader or the like that constitutes a kneading means in a kneading step described later, and the shape and particle size are arbitrarily set. The plant raw material 51 can be input in a state close to the original form.

この植物性原料51および鉱物性廃棄物52を配合53する。素地材の水分は50〜97重量%の含水率を有する植物性原料51の添加量により主として調整し、少なくとも植物由来の成形材としての植物性原料51により加えた水分を含むものである。本実施の形態では、さらに別途に水分を加えて水分調整しており、素地材の含水率が20〜70重量%の含水率となるように水分調整する。   This plant material 51 and mineral waste 52 are blended 53. The moisture of the base material is mainly adjusted by the addition amount of the plant raw material 51 having a moisture content of 50 to 97% by weight, and contains at least the water added by the plant raw material 51 as a plant-derived molding material. In the present embodiment, moisture is further adjusted by adding moisture separately, and moisture adjustment is performed so that the moisture content of the base material is 20 to 70% by weight.

植物性原料51と鉱物性廃棄物52と水を配合調整したものを、混練手段をなす混練機に投入して混練54して20〜70重量%の所定含水率の素地材を調製する。植物性繊維質と多糖類を含む植物性原料51を植物由来の成形材とすることで、一般的な成形成分である粘土に因らずして所定の流動性と粘性と可塑性を備えた素地材を調製できる。   A plant material 51, a mineral waste 52, and water are mixed and adjusted in a kneader serving as a kneading means and kneaded 54 to prepare a base material having a predetermined moisture content of 20 to 70% by weight. By using a plant-derived raw material 51 containing plant fiber and polysaccharide as a plant-derived molding material, a substrate having a predetermined fluidity, viscosity and plasticity regardless of clay as a general molding component The material can be prepared.

植物は炭水化物であり、水溶性と不溶性の糖類で出来ており、生の植物は50%以上の水分を含有し、不溶性繊維にはゲル状と粘着性のあるものが多い。
すなわち、図2に示すように、植物性原料51からなる植物由来の成形材151は、所定量のセルロース、セミセルロース、リグニン、無機物のカリウム元素、ナトリウム元素、その化合物を含んでおり、その周囲に鉱物性廃棄物52からなる素地原料152を集めている。植物由来の成形材151は植物性原料中のセルロース、セミセルロースからなる植物性繊維質と素地原料152との間、素地原料152の相互間を多糖類あるいはリグニンは接着剤として接合することで、素地材に所定の流動性と粘性と可塑性を与える。
Plants are carbohydrates, made of water-soluble and insoluble sugars, raw plants contain more than 50% water, and many insoluble fibers are gel-like and sticky.
That is, as shown in FIG. 2, the plant-derived molding material 151 made of the plant raw material 51 contains a predetermined amount of cellulose, semicellulose, lignin, inorganic potassium element, sodium element, and a compound thereof. The base material 152 made of the mineral waste 52 is collected. The plant-derived molding material 151 is formed by joining polysaccharides or lignin as an adhesive between the base material 152 and the base material 152 between the plant fiber consisting of cellulose and semicellulose in the plant material and the base material 152. Gives the base material predetermined fluidity, viscosity and plasticity.

この素地材を、型込め、プレス成形、手びねり等で成型55して所定形状の成形体となす。この成形時には、素地材はその水分の多くが植物の細胞中に含まれることで水分の移動が抑制された状態にあり、かつ植物の細胞が素地材中に均等に拡散することで成形体において水分が偏ることがなく全体として水分分布が平均化されており、水分の偏りに因る成形体の型崩れは生じない。よって、後述する焼成工程で成形体を焼成してなる窯業製品57が均質な品質となる。また、植物性繊維質によって成形体に強度が発現するので、例えば厚さ10cmで縦横1m×1m程度の大型の成形体を成形できる。   This base material is molded 55 by molding, press molding, hand-bending, or the like to obtain a molded body having a predetermined shape. At the time of molding, the base material is in a state in which most of the moisture is contained in the plant cells and the movement of moisture is suppressed, and the plant cells are evenly diffused in the base material so that The moisture distribution is averaged without any unevenness of the moisture, and the molded product does not lose its shape due to the unevenness of the moisture. Therefore, the ceramic product 57 obtained by firing the molded body in the firing step described later has a uniform quality. Moreover, since strength is expressed in the molded body by the vegetable fiber, a large-sized molded body having a thickness of about 10 cm and a length and width of about 1 m × 1 m can be formed.

本実施の形態では、例えば含水率40重量%の素地材をプレス成形や手びねりで成形55する。素地材は20〜70重量%の含水率の下でも所定の流動性と粘性と可塑性を有しており、骨格成分をなす素地原料を均質に保持することができる。このように、植物由来の成形材151を添加して20〜70重量%の含水率で所定の流動性と粘性と可塑性を備えた素地材を調製し、この素地材を成型55して成型体となすことを本実施の形態では水成形と称す。この水成形が本発明の一つの特徴をなす。   In the present embodiment, for example, a base material having a moisture content of 40% by weight is molded 55 by press molding or hand-bending. The base material has predetermined fluidity, viscosity, and plasticity even under a moisture content of 20 to 70% by weight, and the base material constituting the skeleton component can be kept homogeneous. In this way, a plant-derived molding material 151 is added to prepare a base material having a predetermined fluidity, viscosity, and plasticity with a moisture content of 20 to 70% by weight, and the base material is molded 55 to form a molded body. This is referred to as water forming in the present embodiment. This water forming is one of the features of the present invention.

従来では一定の条件下での成形体の乾燥を必須とし、乾燥条件が満たされない場合には成形体に割れやひびが生じた。
これは粘土に含まれた水分が粘土から均等に抜け出ず、成形体の一部が早期に乾燥することにより生じるものであり、十分に乾燥させない場合には成形体の粘土中に残留する水分が焼成時に急激に蒸発することにより、製品が膨張して製品に割れが生じる。
Conventionally, it is essential to dry the molded body under certain conditions, and when the drying conditions are not satisfied, the molded body is cracked or cracked.
This is because the moisture contained in the clay does not escape evenly from the clay and a part of the molded body dries early, and if it is not sufficiently dried, the moisture remaining in the clay of the molded body Rapid evaporation during firing causes the product to expand and crack the product.

従来では大型品になると成形時点でも成形体の強度が要求されるので、一般的に粘土の配合率が多くなり、乾燥時の乾燥収縮が大きくなって成形体の自重によりひび割れが発生し易くなり、焼成工程においても粘土が多いほどに焼成収縮が大きくなってその自重によりひび割れが発生する。   Conventionally, when a large product is required, the strength of the molded product is required even at the time of molding, so generally the blending ratio of clay increases, drying shrinkage during drying increases, and cracks are likely to occur due to the weight of the molded product. In the firing process, the more clay, the greater the shrinkage of firing and the occurrence of cracks due to its own weight.

しかしながら、本実施の形態では植物由来の成形材151がその粘着性により素地原料152をつなぎとめることで型崩れを防止でき、素地材中の水分の多くが植物の細胞中に含まれてその移動が抑制された状態にあり、かつ植物の細胞が素地材中に均等に拡散することで成形体において水分が偏ることがなく全体として水分分布が平均化されており、成形体は保水性が高くて水分が揮散し難いものとなり、常温の湿度を管理する下で成形体の含水率を維持することが可能となり、従来の乾燥工程におけるひびや割れに起因する不良品の発生がなくなる。   However, in this embodiment, the plant-derived molding material 151 can prevent the deformation of the base material 152 by holding the base material 152 due to its adhesiveness, and most of the moisture in the base material is contained in the plant cells, and its movement is prevented. It is in a suppressed state, and the moisture distribution in the molded body is not biased by the plant cells evenly diffusing into the base material, so that the moisture distribution is averaged as a whole, and the molded body has high water retention. It becomes difficult for water to evaporate, and it becomes possible to maintain the moisture content of the molded body under the control of humidity at room temperature, thereby eliminating the occurrence of defective products due to cracks and cracks in the conventional drying process.

また、焼成温度が600℃から850℃である低温領域では、成形体中で植物由来の成形材が成形成分として機能して骨格成分をなす素地原料を保持しているが、焼成時には細胞が消失して水分が素地原料のガラス質材の粒子間から容易に抜け出せるため、焼成収縮や焼成膨張がない焼成方法が可能となる。   In the low temperature region where the firing temperature is 600 ° C. to 850 ° C., the plant-derived molding material functions as a molding component in the molded body and retains the base material that forms the skeletal component, but the cells disappear during firing. Thus, moisture can easily escape from between the particles of the vitreous material as the raw material, so that a firing method without firing shrinkage or firing expansion is possible.

よって、寸法精度が焼成前の成形体と焼成後の窯業製品との間で維持でき、焼成収縮、焼成膨張に起因するひび割れが発現しづらく、大型の製品を製造することが可能となり、多孔体の焼成品を切り出して製品化する必要がなく、焼成品をそのまま多孔体の窯業製品とすることが可能である。   Therefore, the dimensional accuracy can be maintained between the molded body before firing and the ceramic product after firing, cracks due to firing shrinkage and firing expansion are difficult to appear, and it becomes possible to produce a large product, It is not necessary to cut out the fired product and commercialize it, and the fired product can be directly used as a porous ceramic product.

また、それ以上の焼成温度の領域でも従来の方法法に比べて収縮率の小さい焼成方法が可能となるため、図7で示すように、従来の方法で製造可能なサイズに対して相対的に大きな焼成品を製造可能となる。   In addition, since a firing method having a smaller shrinkage rate than the conventional method can be performed even in a region of a higher firing temperature, as shown in FIG. 7, relative to the size that can be produced by the conventional method. Large fired products can be manufactured.

このため、本実施の形態では、乾燥工程を経ることなく、少なくとも植物由来の成形材151により加えた水分を含む成形体を600〜1000℃で焼成56してかさ比重0.1〜0.4の多孔体の窯業製品57となす。   For this reason, in this Embodiment, without passing through a drying process, the molded object containing the water | moisture content added at least by the plant-derived molding material 151 is baked 56 at 600-1000 degreeC, and bulk specific gravity 0.1-0.4. It becomes the ceramic product 57 of the porous body.

また、図3に示すように、成形体中において水分は植物細胞201の細胞膜202の中に液胞203として存在し、細胞膜202の外側を強固な細胞壁204が取り囲んでいるので、焼成時の加熱によって水分153が蒸発するものの、遊離水でないのでゆっくりと蒸発するので、割れ等が生じない。焼成時には植物自身が自己の有機物中に含有する一定量の酸素で自己燃焼するので、外部からの加熱だけでなく成形体の内部からも加熱することができ、例えば厚さ10cmの厚い製品も焼成できる。   In addition, as shown in FIG. 3, moisture exists in the cell membrane 202 of the plant cell 201 as a vacuole 203 in the molded body, and a strong cell wall 204 surrounds the outside of the cell membrane 202, so that heating during firing is performed. Although the water 153 evaporates due to this, since it is not free water, it evaporates slowly, so that no cracks or the like occur. At the time of firing, the plant itself self-combusts with a certain amount of oxygen contained in its own organic matter, so it can be heated not only from the outside but also from the inside of the molded body. For example, a thick product having a thickness of 10 cm is also fired it can.

炭素は加熱により酸素と反応して発熱する。しかしながら、炭素は岩石中の無機物である酸化ケイ素中の酸素と反応して発熱することはない。一方、植物中の炭素化合物は加熱により分解し、燃焼して水と炭酸ガスを生成して発熱する。このことが省エネ効果を発揮し、焼結反応を促進して低温焼結を可能にする大きな要因の一つである。よって、多く使用するほどに内部発熱による焼結安定性と省エネルギーが期待できる。   Carbon reacts with oxygen by heating and generates heat. However, carbon does not generate heat by reacting with oxygen in silicon oxide, which is an inorganic substance in rocks. On the other hand, the carbon compound in the plant is decomposed by heating and burns to generate water and carbon dioxide to generate heat. This is one of the major factors that show energy-saving effects, promote the sintering reaction, and enable low-temperature sintering. Therefore, the more it is used, the better the sintering stability and energy saving due to internal heat generation.

例えば、800℃程度での焼成では、成形体に含まれた水分は蒸発してなくなり、水分が占めていた領域が空隙となり、植物由来の成形材151の植物細胞も消失し、植物由来の成形材151が占めていた領域が空隙となる。この状態でかさ比重は例えば0.2程度であり、大型品の製造が可能となる。   For example, in firing at about 800 ° C., the water contained in the molded body is not evaporated, the area occupied by the water becomes voids, the plant cells of the plant-derived molding material 151 disappear, and the plant-derived molding is performed. The area occupied by the material 151 is a void. In this state, the bulk specific gravity is about 0.2, for example, and a large product can be manufactured.

一方、焼成温度が900℃程度では、空隙の領域に、素地原料152、無機物のカリウム元素、ナトリウム元素、その化合物が移動して成形体が縮み、かさ比重が例えば1.0程度となるものが製造可能となる。   On the other hand, when the firing temperature is about 900 ° C., the raw material 152, the inorganic potassium element, the sodium element, and the compound move to the void region, the molded body shrinks, and the bulk specific gravity becomes about 1.0, for example. Manufacturable.

また、焼成温度が1000℃程度では、空隙を埋めるように素地原料152、無機物のカリウム元素、ナトリウム元素、その化合物が移動して空隙がわずかとなり、素地原料152の周りをカリウム元素、ナトリウム元素などの低沸点物質が焼結成分として取り囲み、さらに比重の大きな焼成品の製造が可能となる。   Further, when the firing temperature is about 1000 ° C., the raw material 152, the inorganic potassium element, the sodium element, and the compound move so as to fill the voids, and the voids become small. Thus, a low-boiling substance is surrounded as a sintering component, and a fired product having a higher specific gravity can be produced.

このように、焼成時には植物由来の成形材151をなす植物性原料51に含まれたカリウム元素、ナトリウム元素などの低沸点物質が焼結成分として機能することで600〜1000℃で焼成することができるので、従来の窯業製品の焼成する設備において従来よりも短時間で焼成することができ、金属セッターを使用して焼成することが可能となり、省エネルギー化とコストの低減をはかることができる。   Thus, at the time of baking, low-boiling substances such as potassium element and sodium element contained in the plant raw material 51 forming the plant-derived molding material 151 function as a sintering component, so that baking is performed at 600 to 1000 ° C. Therefore, it can be fired in a shorter time than conventional equipment for firing ceramic products, and can be fired using a metal setter, thereby saving energy and reducing costs.

また、図4の(a)に示すように、焼成時は、低温下で成形体中の水分153が外表面へ移行し、有機物が燃焼した燃焼排ガス154は水分が蒸発したときに生じた素地中の微細空隙を通過するので、燃焼排ガス154の噴出により焼成体に割れ等の欠陥が生じ難い。また、カリウム元素、ナトリウム元素などの低沸点物質の塩類155が燃焼排ガス154とともに低温時点で成形体の表面に移動し、表面で釉薬のように集結固化することで窯業製品57の表面強度が高まる。焼成時には加飾も同時に可能であり、窯業製品57へのレーザーによる溶射加工も可能であり、複合や補強による各種機能強化のための加工が可能である。   Further, as shown in FIG. 4 (a), during firing, the moisture 153 in the molded body is transferred to the outer surface at a low temperature, and the combustion exhaust gas 154 in which the organic matter is burned is generated on the basis of the evaporation of moisture. Since it passes through the fine voids in the inside, defects such as cracks are unlikely to occur in the fired body due to the ejection of the combustion exhaust gas 154. Further, the surface strength of the ceramic product 57 is increased by the salt 155 of low boiling point substances such as potassium element and sodium element moving to the surface of the molded body together with the combustion exhaust gas 154 at a low temperature and consolidating and solidifying like a glaze on the surface. . At the time of firing, decoration can be performed at the same time, laser spraying processing to the ceramic product 57 can be performed, and processing for strengthening various functions by composite and reinforcement is possible.

また、図4の(b)に示すように、焼成温度が低温域である場合は、成形体中の成形材151の植物性原料51が成形成分として機能して骨格成分をなす素地原料152の鉱物性廃棄物52のガラス質材を保持し、焼成時には細胞が消失して水分がガラス質材の粒子間から容易に抜け出ることで、焼成収縮や焼成膨張がない焼成方法が可能となる。詳述すると、図4の(c)に示すように、焼成温度が無機物同士で反応しない低温域においては、成形材151をなす植物性原料51のみが先に燃焼し、成形体の内部からも焼成でき、植物性原料51の燃焼により成形体の内部から発生する熱(矢印Aで示す)が素地原料152の鉱物性廃棄物52に伝わり、燃焼で発生した低沸点物質の塩類155が素地原料152の鉱物性廃棄物52のガラス質材同士を接合する焼結助材の役目を果す挙動を示すので、全体としては収縮しない。焼成温度が無機物同士で反応する高温域では無機物同士の反応に起因して収縮が始まる。   Further, as shown in FIG. 4B, when the firing temperature is in a low temperature range, the plant raw material 51 of the molding material 151 in the molded body functions as a molding component and forms a skeleton component. By holding the vitreous material of the mineral waste 52, cells are lost at the time of firing, and moisture easily escapes from between the particles of the vitreous material, so that a firing method without firing shrinkage and firing expansion becomes possible. More specifically, as shown in FIG. 4 (c), in the low temperature range where the firing temperature does not react with inorganic substances, only the plant raw material 51 forming the molding material 151 burns first, and also from the inside of the molded body. Heat (indicated by arrow A) generated from the inside of the molded body due to combustion of the plant raw material 51 is transferred to the mineral waste 52 of the base raw material 152, and the low-boiling point salts 155 generated by the combustion are the base raw material. Since the behavior which plays the role of the sintering auxiliary material which joins the vitreous materials of the mineral waste 52 of 152 is shown, it does not shrink as a whole. In a high temperature range where the firing temperature reacts with inorganic materials, shrinkage starts due to the reaction between inorganic materials.

このため、寸法精度が焼成前の成形体と焼成後の窯業製品57との間で変わらず、多孔体の焼成品を切り出して製品化する必要がなく、焼成品をそのまま多孔体の窯業製品57とすることが可能であり、焼成収縮、焼成膨張に起因するひび割れが発現しづらく、大型の製品を製造することが可能となる。   For this reason, the dimensional accuracy does not change between the molded body before firing and the ceramic product 57 after firing, and it is not necessary to cut out a porous fired product to produce a product. It is possible to produce a large-sized product in which cracks due to firing shrinkage and firing expansion are difficult to occur.

本実施の形態において、素地材の含水率が高くなることは、焼成後に残る素地原料152である鉱物性廃棄物52の割合が少なくなり、焼成によって消失する植物由来の成形材151である植物性原料51の割合が多くなることである。   In the present embodiment, the high moisture content of the base material means that the proportion of the mineral waste 52 that is the base material 152 that remains after firing decreases, and the plant material that is the plant-derived molding material 151 that disappears by firing. The ratio of the raw material 51 is increased.

このため、含水率が高い成形体は植物性原料51の水分によって膨潤した状態にあり、この含水率が高い成形体を焼成することで、かさ比重が小さい窯業製品57となり、植物性原料51の含有率を調整することで、焼成後の窯業製品57の比重を任意に調整して、かさ比重0.1〜0.4(屋根、壁材の複合材に用いる)の多孔質の窯業製品57を製造できる。逆に素地材の含水率を低く設定することで、かさ比重0.4〜1.5(屋根および壁材に用いる)の多孔質の窯業製品57を製造することも可能であり、さらに素地材の含水率を低く設定することで、かさ比重1.5〜3.0(床材に用いる)の窯業製品57を製造できる。   Therefore, the molded body having a high moisture content is in a state swollen by the moisture of the plant raw material 51. By firing the molded body having a high moisture content, a ceramic product 57 having a low bulk specific gravity is obtained. By adjusting the content ratio, the specific gravity of the fired ceramic product 57 is arbitrarily adjusted, and a porous ceramic product 57 having a bulk specific gravity of 0.1 to 0.4 (used for a composite material of a roof and a wall material). Can be manufactured. Conversely, by setting the moisture content of the base material to be low, it is also possible to produce a porous ceramic product 57 having a bulk specific gravity of 0.4 to 1.5 (used for roofs and wall materials). A ceramic product 57 having a bulk specific gravity of 1.5 to 3.0 (used for a flooring material) can be manufactured by setting the moisture content of.

多孔体の窯業製品57における気泡サイズは、混練機に投入する植物性原料51を前処理して適切な粒径に加工することで、任意に調整することが可能である。この軽比重で多孔体の窯業製品57は、機能的に広い用途に使用することができ、例えば機能性建材(防火、防音、吸湿)に適している。
実施例1
焼成温度800℃、かさ比重0.2の軽量体
配合例
木材粉砕物50%
海藻粉砕物15%
溶融スラグ粉砕物30%
焼結助剤5%
実施例2
焼成温度900℃、かさ比重1.0の焼結体
配合例
木材粉砕物30%
海藻粉砕物10%
下水溶融スラグ粉砕物(粗粒)40%
ごみ焼却灰溶融スラグ粉砕物(細粒)15%
ベントナイト5%
実施例3
焼成温度1000℃、かさ比重2.0の焼結体
配合例
笹粉砕物10%
海藻粉砕物5%
窯業原料70%
湾岸ヘドロ15%
図6に示すように、従来は焼成温度1000℃以上でかさ比重が0.4以上の焼成品しかできなかったが、実施例1では焼成温度800℃でかさ比重0.2のものを製造できる。
The cell size of the porous ceramic product 57 can be arbitrarily adjusted by pre-processing the plant raw material 51 to be put into the kneader and processing it to an appropriate particle size. This light specific gravity porous ceramics product 57 can be used for a wide range of functional applications, and is suitable for functional building materials (fireproof, soundproof, moisture absorption), for example.
Example 1
Light-weight body with a firing temperature of 800 ° C and a bulk specific gravity of 0.2 Example of pulverized wood 50%
15% seaweed ground
Molten slag 30%
Sintering aid 5%
Example 2
Sintered body with a firing temperature of 900 ° C. and a bulk specific gravity of 1.0 Mixing example Wood pulverized product 30%
10% ground seaweed
Sewage melt slag pulverized product (coarse) 40%
Waste incineration ash molten slag pulverized material (fine granules) 15%
Bentonite 5%
Example 3
Sintered body with a firing temperature of 1000 ° C. and a bulk specific gravity of 2.0 Compounding example 10% crushed material
5% ground seaweed
70% ceramic materials
Gulf sludge 15%
As shown in FIG. 6, conventionally, only a fired product having a firing temperature of 1000 ° C. or more and a bulk specific gravity of 0.4 or more could be produced.

図7に示すように、成形材に植物を用いて製造した本発明の方法の焼成品は成形材の一部を粘土に置き換えて製造したものに比べて収縮の度合いが小さく、特に実施例1の配合、焼成温度では収縮率が0となる。
尚、上記実施の形態において、窯業用原料である珪石や砂、粘土、フリット等も素地原料に使用してよく、さらには、上記のような窯業用原料と鉱物性廃棄物とを素地原料に使用してもよい。
As shown in FIG. 7, the baked product of the method of the present invention produced using a plant as a molding material has a smaller degree of shrinkage than that produced by replacing a part of the molding material with clay. The shrinkage is 0 at the blending and firing temperatures.
In the above embodiment, the ceramic raw materials such as silica, sand, clay, frit, etc. may be used as the raw material, and further, the ceramic raw material and the mineral waste as described above are used as the raw material. May be used.

51 植物性原料
52 廃棄物
53 配合
54 混練
55 成型
56 焼成
57 窯業製品
58 粉砕
151 植物由来の成形材
152 素地原料
153 水分
154 燃焼排ガス
155 低沸点物質の塩類
201 植物細胞
202 細胞膜
203 液胞
204 細胞壁
DESCRIPTION OF SYMBOLS 51 Plant raw material 52 Waste 53 Compounding 54 Kneading 55 Molding 56 Firing 57 Ceramics product 58 Crushing 151 Plant-derived molding material 152 Base material 153 Moisture 154 Combustion exhaust gas 155 Low-boiling point salt 201 Plant cell 202 Cell membrane 203 Vacuole 204 Cell wall

Claims (9)

窯業用原料と鉱物性廃棄物のうちの少なくとも何れかを素地原料とし、所定量の素地原料と所定量の植物由来の成形材を配合、混練して素地材を形成し、素地材を成形して成形体となし、少なくとも植物由来の成形材に内包された水分を含む成形体を焼成することを特徴とする窯業製品の製造方法。   At least one of ceramic raw materials and mineral waste is used as a raw material, a predetermined amount of raw material and a predetermined amount of plant-derived molding material are mixed and kneaded to form a raw material, and the raw material is molded A method for producing a ceramic product, comprising firing a molded body containing moisture contained in at least a plant-derived molding material. 植物由来の成形材は、少なくとも生の植物、乾燥した植物の何れかであり、水分を内包する植物細胞を成形材中に含むことを特徴とする請求項1に記載の窯業製品の製造方法。   The method for producing a ceramic product according to claim 1, wherein the plant-derived molding material is at least a raw plant or a dried plant, and the plant material contains moisture in the molding material. 植物由来の成形材は、少なくとも植物性繊維質と多糖類を含む植物性原料であることを特徴とする請求項1に記載の窯業製品の製造方法。   The method for producing a ceramic product according to claim 1, wherein the plant-derived molding material is a plant raw material containing at least plant fiber and a polysaccharide. 鉱物性廃棄物は、結晶性物、非結晶性物、ガラス状物、ゲル状物、それらの混合体の少なくとも何れかであることを特徴とする請求項1〜3の何れか1項に記載の窯業製品の製造方法。   The mineral waste is at least one of a crystalline material, an amorphous material, a glassy material, a gelled material, and a mixture thereof. Manufacturing method for ceramic products. 成形体は所定の含水率を有する状態で焼成してかさ比重0.1〜0.4の多孔体となすことを特徴とする請求項1に記載の窯業製品の製造方法。   The method for producing a ceramic product according to claim 1, wherein the formed body is fired in a state having a predetermined moisture content to become a porous body having a bulk specific gravity of 0.1 to 0.4. 素地材の水分は植物由来の成形材の添加量により調整することを特徴とする請求項1〜5の何れか1項に記載の窯業製品の製造方法。   The method for producing a ceramic product according to any one of claims 1 to 5, wherein the moisture of the base material is adjusted by the amount of the plant-derived molding material added. 素地材は20〜70重量%の含水率を有することを特徴とする請求項1〜6の何れか1項に記載の窯業製品の製造方法。   The method for producing a ceramic product according to any one of claims 1 to 6, wherein the base material has a moisture content of 20 to 70% by weight. 植物由来の成形材は所定量のカリウム元素、ナトリウム元素およびその化合物を含み、成形体は600〜1000℃で焼成することを特徴とする請求項1〜7の何れか1項に記載の窯業製品の製造方法。   The ceramic product according to any one of claims 1 to 7, wherein the plant-derived molding material contains a predetermined amount of potassium element, sodium element and a compound thereof, and the molded body is fired at 600 to 1000 ° C. Manufacturing method. 窯業製品用の成形体を形成するための素地材であって、窯業用原料と鉱物性廃棄物のうちの少なくとも何れかの素地原料と、水分を内包する植物細胞を含む成形材を配合したことを特徴とする素地材。   A base material for forming a molded body for ceramic products, comprising at least one base material of ceramic materials and mineral waste and a molding material containing plant cells containing moisture A base material characterized by
JP2009173777A 2009-07-27 2009-07-27 Method for producing ceramic product, and base material Pending JP2011026170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009173777A JP2011026170A (en) 2009-07-27 2009-07-27 Method for producing ceramic product, and base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009173777A JP2011026170A (en) 2009-07-27 2009-07-27 Method for producing ceramic product, and base material

Publications (1)

Publication Number Publication Date
JP2011026170A true JP2011026170A (en) 2011-02-10

Family

ID=43635369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009173777A Pending JP2011026170A (en) 2009-07-27 2009-07-27 Method for producing ceramic product, and base material

Country Status (1)

Country Link
JP (1) JP2011026170A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032237A (en) * 2011-08-01 2013-02-14 Ito En Ltd Clay fired product, method for producing the same, and clay composition for producing the clay fired product
CN109534846A (en) * 2018-12-27 2019-03-29 永清环保股份有限公司 The disposal of resources method and haydite of sludge and agriculture and forestry organic waste material
JPWO2021065252A1 (en) * 2019-09-30 2021-04-08

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338157A (en) * 1991-05-14 1992-11-25 Yootai:Kk Production of basic brick containing free lime
JPH05186284A (en) * 1992-01-14 1993-07-27 Hitachi Ltd Ceramics having high dimensional accuracy and its production
JP2000154073A (en) * 1998-11-17 2000-06-06 Noboru Ishibashi Production of porous fired body
JP2001232187A (en) * 2000-02-24 2001-08-28 Yutaka Hatano High performance deodorizing filter medium and method for producing the same
JP2001328878A (en) * 2000-03-17 2001-11-27 Korakuen:Kk Foamed sheet-like burned material and method of producing the same
JP2002265279A (en) * 2001-03-06 2002-09-18 Inax Corp Ceramics molding auxiliary and its manufacturing method
JP2003292370A (en) * 2002-03-29 2003-10-15 Kazuko Seyama Ceramics
JP2005281111A (en) * 2004-03-30 2005-10-13 Touseki Mater Co Ltd Method for manufacturing landscape gravel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338157A (en) * 1991-05-14 1992-11-25 Yootai:Kk Production of basic brick containing free lime
JPH05186284A (en) * 1992-01-14 1993-07-27 Hitachi Ltd Ceramics having high dimensional accuracy and its production
JP2000154073A (en) * 1998-11-17 2000-06-06 Noboru Ishibashi Production of porous fired body
JP2001232187A (en) * 2000-02-24 2001-08-28 Yutaka Hatano High performance deodorizing filter medium and method for producing the same
JP2001328878A (en) * 2000-03-17 2001-11-27 Korakuen:Kk Foamed sheet-like burned material and method of producing the same
JP2002265279A (en) * 2001-03-06 2002-09-18 Inax Corp Ceramics molding auxiliary and its manufacturing method
JP2003292370A (en) * 2002-03-29 2003-10-15 Kazuko Seyama Ceramics
JP2005281111A (en) * 2004-03-30 2005-10-13 Touseki Mater Co Ltd Method for manufacturing landscape gravel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032237A (en) * 2011-08-01 2013-02-14 Ito En Ltd Clay fired product, method for producing the same, and clay composition for producing the clay fired product
CN109534846A (en) * 2018-12-27 2019-03-29 永清环保股份有限公司 The disposal of resources method and haydite of sludge and agriculture and forestry organic waste material
JPWO2021065252A1 (en) * 2019-09-30 2021-04-08
WO2021065252A1 (en) * 2019-09-30 2021-04-08 パナソニックIpマネジメント株式会社 Plant structure, and building member and interior member using same

Similar Documents

Publication Publication Date Title
CN102491723B (en) Slickens baked brick and production method thereof
CN107721455A (en) A kind of haydite, its preparation method and application prepared by solid waste
CN111116210B (en) Method for preparing light ceramsite by utilizing biological coal ecological sintering waste soil
CN103626517B (en) A kind of preparation method of porous ceramic grain
CN106746816A (en) A kind of ultralight high-strength fly-ash light-weight aggregate
CN101081732A (en) Stone powder sludge sintering brick and method for making the same
CN104909799A (en) Lightweight high-strength ceramsite and preparation method thereof
CN101406777A (en) Porous porcelain granule filter material based on glass and sludge, and preparation method thereof
CN105669166B (en) A kind of light ceramic standby using coal ash for manufacturing and preparation method thereof
CN104058723A (en) Method of preparing water treatment lightweight ceramisites by using lake sediment and waste additive
CN102001862A (en) Method for producing permeable bricks by using dredged mud
EA025300B1 (en) Method of making particulate material
CN105237032A (en) Heat-preservation and sound-insulation sintered brick produced from straw and preparation method
CN102515816B (en) White-mud baked brick and production method thereof
JP2011026170A (en) Method for producing ceramic product, and base material
Raut et al. Utilization of Waste as a Constituent Ingredient for Enhancing Thermal Performance of Bricks –A Review Paper
KR101533657B1 (en) Ceramics panel with high water permeability and water absorbability using rice hulls and methods for manufacturing thereof
CN105731988A (en) Coal gangue brick and preparation method thereof
WO2016051053A1 (en) Process for manufacturing a solid element made of ceramic material, capable of being used in particular for heat storage - associated solid element
CN1412518A (en) High-temp. honeycomb ceramic heat storage body and its preparation method
JP5019308B2 (en) Porous fireproof insulation board and method for producing the same
CN101701482B (en) Brick for construction and preparation method thereof
CN1092160C (en) Method for producing fly-ash backed brick by using paper mill waste water to increase fly-ash percentage
CN101830724A (en) Perforated brick made of fly ash and preparation process thereof
KR101123278B1 (en) Method of producing lightweight aggregate material with sludge and glass powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140826