JP2011025255A - Method of temper-rolling metallic strip having dull surface excellent in fatigue strength, and metallic strip having dull surface - Google Patents

Method of temper-rolling metallic strip having dull surface excellent in fatigue strength, and metallic strip having dull surface Download PDF

Info

Publication number
JP2011025255A
JP2011025255A JP2009170824A JP2009170824A JP2011025255A JP 2011025255 A JP2011025255 A JP 2011025255A JP 2009170824 A JP2009170824 A JP 2009170824A JP 2009170824 A JP2009170824 A JP 2009170824A JP 2011025255 A JP2011025255 A JP 2011025255A
Authority
JP
Japan
Prior art keywords
rolling
metal strip
dull
temper rolling
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009170824A
Other languages
Japanese (ja)
Other versions
JP5564845B2 (en
Inventor
Toshiyuki Shiraishi
利幸 白石
Yoshihisa Takahama
義久 高濱
Shigeru Ogawa
茂 小川
Toru Akashi
透 明石
Takayuki Otsuka
貴之 大塚
Yoshinobu Matsuse
善信 松瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009170824A priority Critical patent/JP5564845B2/en
Publication of JP2011025255A publication Critical patent/JP2011025255A/en
Application granted granted Critical
Publication of JP5564845B2 publication Critical patent/JP5564845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method by temper-rolling a metallic strip having the dull-surface excellent in fatigue strength without deteriorating mechanical material in the outer layer part and significantly raising manufacturing cost, and to provide the metallic strip having the dull surface manufactured by the rolling method. <P>SOLUTION: The continuously annealed metallic strip is temper-rolled at the elongation percentage of 0.3-0.9% under the rolling lubrication condition which is ≤0.15 in the coefficient of friction by using dull work rolls whose surface roughness is 2-4 μmRa in arithmetic mean roughness. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、疲労強度に優れたダル表面金属ストリップの調質圧延方法、およびその圧延方法で製造されたダル表面金属ストリップに関する。   The present invention relates to a temper rolling method for a dull surface metal strip excellent in fatigue strength, and a dull surface metal strip produced by the rolling method.

0.3μmRa超のダル表面を有する金属ストリップは、表面粗さの粗いダルロールと呼ばれるワークロールで調質圧延されて製造される。一般に、ダルロールの表面粗さが圧延材の表面粗さに転写される度合いは、伸び率が大きいほど、また、線荷重が高いほど大きいことが知られている。このため、表面粗さの転写効率を上げるため、調質圧延後の金属ストリップの表面粗さが所望の範囲内に収まるように伸び率を大きくしたり、線荷重を上げるため、0.15超であるような摩擦係数の高い圧延潤滑油(例えば、水溶性圧延潤滑油や粘度が10cSt(at40℃)以下の圧延潤滑油)やワークロール径の大きな圧延機を採用したりしている。   A metal strip having a dull surface exceeding 0.3 μm Ra is manufactured by temper rolling with a work roll called a dull roll having a rough surface roughness. In general, it is known that the degree to which the surface roughness of the dull roll is transferred to the surface roughness of the rolled material increases as the elongation rate increases and the linear load increases. For this reason, in order to increase the transfer efficiency of the surface roughness, in order to increase the elongation rate so that the surface roughness of the metal strip after temper rolling falls within the desired range, or to increase the line load, it exceeds 0.15. For example, a rolling lubricant having a high friction coefficient (for example, a water-soluble rolling lubricant or a rolling lubricant having a viscosity of 10 cSt (at 40 ° C.) or less) or a rolling mill having a large work roll diameter is employed.

ところで、一般に、調質圧延された金属ストリップの表層の残留応力は引張りである(非特許文献1参照)。金属ストリップの表層の残留応力が引張りであると疲労強度に劣る場合がある。そこで、金属ストリップの表層の残留応力を圧縮にするために、例えばテンションレベラーによる矯正やショットピーニング加工(例えば特許文献1参照)等がある。また、特許文献2に、ダルロールを用いて噴霧によってウエット潤滑より高い摩擦係数を確保して調質圧延をする技術が開示されているが、これはロールバイト内に導入される油量を少なくし摩擦係数を上げて、かつ、圧延荷重を上げて転写効率を上昇させるものであり、摩擦係数を低くした調質圧延方法ではない。   By the way, generally, the residual stress of the surface layer of the temper-rolled metal strip is tensile (see Non-Patent Document 1). If the residual stress of the surface layer of the metal strip is tensile, the fatigue strength may be inferior. Therefore, in order to compress the residual stress on the surface layer of the metal strip, there are, for example, correction by a tension leveler, shot peening (for example, see Patent Document 1), and the like. Further, Patent Document 2 discloses a technique for performing temper rolling by securing a higher friction coefficient than wet lubrication by spraying using a dull roll, but this reduces the amount of oil introduced into the roll bite. It is a temper rolling method that raises the friction coefficient and raises the rolling load to increase the transfer efficiency, and is not a temper rolling method with a lowered friction coefficient.

特開平8−302425号公報JP-A-8-302425 特開平8−215708号公報JP-A-8-215708

塑性と加工、20−227(1979−12)、1124頁 図8Plasticity and processing, 20-227 (1979-12), page 1124 松本紘美:軽圧下圧延の圧延理論,材料とプロセス,18−5(2005),1218.Matsumoto Tomomi: Rolling Theory of Light Rolling, Materials and Processes, 18-5 (2005), 1218.

しかしながら、テンションレベラーによる加工では引張り曲げにより表層には加工時に中央部と比較して大きな伸びが生じるため、表層部の機械的材質が劣化したり、表層にある傷が顕在化する問題が新たに生じたり、テンションレベラーによる矯正後の金属ストリップの表面粗さを調整することが困難という問題が新たに生じる。また、ショットピーニング加工は表層の残留応力や加工後の金属ストリップの表面粗さ調整には優れているものの、生産性が劣り、また別ラインでの生産工程が必要となるため製造コストが上昇してしまうという問題があった。   However, in the processing with a tension leveler, the surface layer is greatly elongated compared to the center part during processing due to tensile bending, which causes new problems such as deterioration of the mechanical material of the surface layer part and the appearance of scratches on the surface layer. There arises a new problem that it is difficult to adjust or to adjust the surface roughness of the metal strip after correction by the tension leveler. In addition, although shot peening is excellent for adjusting the residual stress on the surface layer and the surface roughness of the metal strip after processing, the productivity is inferior, and a production process on a separate line is required, which increases the manufacturing cost. There was a problem that.

そこで、従来、ダル表面金属ストリップは調質圧延機によって製造されていた。しかし、表面品質に関しては圧延の観点から表面粗さの調整が行われ、疲労強度に関しては冶金学的観点から合金成分や組織の調整が行われ、表面粗さと疲労強度の双方を同時に両立させる検討は十分なものとはいえなかった。   Therefore, conventionally, the dull surface metal strip has been manufactured by a temper rolling mill. However, with regard to surface quality, surface roughness is adjusted from the viewpoint of rolling, and fatigue strength is adjusted from the metallurgical point of view, alloy components and structures are adjusted, and both surface roughness and fatigue strength are considered simultaneously. Was not enough.

上記問題点に鑑み、本発明の目的は、表層部の機械的材質の劣化や製造コストの大幅な上昇をもたらさず、疲労強度に優れたダル表面金属ストリップの調質圧延方法、およびその圧延方法で製造したダル表面金属ストリップを提供することにある。   In view of the above problems, an object of the present invention is to provide a temper rolling method for a dull surface metal strip excellent in fatigue strength without causing deterioration of mechanical material of a surface layer portion or a significant increase in manufacturing cost, and the rolling method thereof. It is to provide a dull surface metal strip manufactured in

第一の本発明は、ダル表面金属ストリップの調質圧延方法であって、連続焼鈍された金属ストリップを、ワークロールの表面粗さが算術平均粗さで2μmRa以上、4μmRa以下のダルワークロールを用い、摩擦係数で0.15以下の圧延潤滑条件で伸び率0.3%以上0.9%以下の調質圧延をすることを特徴としている。   The first aspect of the present invention is a temper rolling method for a dull surface metal strip, wherein a continuously annealed metal strip is a dull work roll having a work roll surface roughness of 2 μmRa or more and 4 μmRa or less in terms of arithmetic average roughness. It is characterized by performing temper rolling with an elongation of 0.3% or more and 0.9% or less under rolling lubrication conditions with a friction coefficient of 0.15 or less.

第二の本発明は、第一の発明において、前記摩擦係数は、前記ロールバイト内に被圧延材の剛体域を考慮し、かつワークロールが扁平変形するとし、摩擦係数と変形抵抗を未知数とした圧延計算手法を用いて、圧延荷重及び先進率の測定値と計算値とが一致するように連成して求めることを特徴としている。このような圧延計算手法の圧延理論としては、例えば、非特許文献2に開示されたモデルや弾塑性有限要素法などがある。本発明に供する精度の高い摩擦係数を得るには、このようなロールバイト中のロール扁平を厳密に取り扱ったモデルを用いることが望ましく、これにより、疲労強度に優れたダル表面金属ストリップを得ることができる。   According to a second aspect of the present invention, in the first aspect, the friction coefficient is determined in consideration of a rigid body region of the material to be rolled in the roll bite, and the work roll is deformed flatly. Using the calculated rolling calculation method, the measurement value and the calculated value of the rolling load and the advanced rate are obtained in a coupled manner. Examples of the rolling theory of such a rolling calculation method include a model disclosed in Non-Patent Document 2 and an elastoplastic finite element method. In order to obtain a highly accurate friction coefficient for use in the present invention, it is desirable to use a model that strictly handles the roll flatness in such a roll bite, thereby obtaining a dull surface metal strip having excellent fatigue strength. Can do.

また、上記摩擦係数を達成することが可能な別の観点からの第三の本発明は、上記第一の発明又は第二の発明の調質圧延方法において、粘度40cSt(at40℃)以上の圧延潤滑油を、エマルション濃度0.3%以上、1.0%以下、エマルション平均粒径1.0μm以上、3.0μm以下の圧延潤滑条件で前記金属ストリップに供給することを特徴としている。   Further, a third aspect of the present invention from another viewpoint capable of achieving the friction coefficient is a rolling with a viscosity of 40 cSt (at 40 ° C.) or higher in the temper rolling method of the first aspect or the second aspect. Lubricating oil is supplied to the metal strip under rolling lubrication conditions having an emulsion concentration of 0.3% or more and 1.0% or less and an average emulsion particle size of 1.0 μm or more and 3.0 μm or less.

第三の本発明において、上記摩擦係数を得るためには、潤滑性の優れた圧延潤滑油を使用するのが望ましく、そのためには粘度40cSt(at40℃)以上の圧延潤滑油を使用することが望ましい。エマルション濃度0.3%以上でないと圧延潤滑性は確保できない恐れがあり、エマルション濃度1%を超えると圧延潤滑性は確保できるもののミル汚れによる圧延機に付着し濃化した油が金属ストリップ表面に滴下して汚れが発生する恐れがある。また、エマルション平均粒径1.0μm未満であると、プレートアウト性が劣化して圧延潤滑性は確保できない恐れがあり、エマルション平均粒径が3.0μmを超えると、上述したミル汚れの問題が発生する恐れがあるからである。   In the third aspect of the present invention, in order to obtain the above friction coefficient, it is desirable to use a rolling lubricating oil having excellent lubricity, and for that purpose, a rolling lubricating oil having a viscosity of 40 cSt (at 40 ° C.) or more should be used. desirable. If the emulsion concentration is not 0.3% or more, the rolling lubricity may not be secured. If the emulsion concentration exceeds 1%, the rolling lubricity can be secured, but the concentrated oil that adheres to the rolling mill due to mill contamination is deposited on the surface of the metal strip. There is a risk of contamination by dripping. Further, if the average emulsion particle size is less than 1.0 μm, the plate-out property may deteriorate and rolling lubricity may not be ensured. If the average emulsion particle size exceeds 3.0 μm, the above-mentioned problem of mill stains may occur. This is because it may occur.

さらに、第四の本発明は、上記第一〜第三のいずれか一つの調質圧延方法で製造されたダル表面金属ストリップであって、表面粗さが算術平均粗さで0.6μmRa以上1.8μmRa以下であり、かつ、×線回折法による応力測定法で測定した表層の残留応力が圧縮であることを特徴としており、疲労強度に優れたダル表面金属ストリップを得ることができる。   Furthermore, the fourth aspect of the present invention is a dull surface metal strip manufactured by any one of the first to third temper rolling methods, wherein the surface roughness is an arithmetic average roughness of 0.6 μmRa or more 1 It is characterized in that the residual stress of the surface layer measured by a stress measurement method by X-ray diffraction method is compression, and a dull surface metal strip excellent in fatigue strength can be obtained.

上記X線回折法の測定条件の一例を、表1に示す。   An example of measurement conditions for the X-ray diffraction method is shown in Table 1.

Figure 2011025255
Figure 2011025255

本発明のダル表面金属ストリップの調質圧延方法は、連続焼鈍された金属ストリップを、ワークロールの表面粗さが算術平均粗さで2μmRa以上、4μmRa以下のダルワークロールを用い、摩擦係数で0.15以下の圧延潤滑条件で伸び率0.3%以上、0.9%以下の調質圧延をする。これにより、ダル表面金属ストリップの表面に圧縮残留応力が生じ、疲労強度に優れたダル表面金属ストリップを得ることができる。また、表層部の機械的材質の劣化や製造コストの大幅な上昇をもたらさずに、生産性を向上し、製造コストを削減することができる。さらに、本発明のダル表面金属ストリップは、上記調質圧延方法を経て製造されるため、その表面に圧縮残留応力を有するので、疲労強度に優れている。   The temper rolling method for a dull surface metal strip according to the present invention uses a continuously annealed metal strip, a dull work roll having a work roll surface roughness of 2 μmRa or more and 4 μmRa or less in arithmetic mean roughness, and a friction coefficient of 0. Perform temper rolling with an elongation of 0.3% or more and 0.9% or less under rolling lubrication conditions of 15 or less. Thereby, compressive residual stress arises on the surface of a dull surface metal strip, and a dull surface metal strip excellent in fatigue strength can be obtained. Further, the productivity can be improved and the manufacturing cost can be reduced without causing deterioration of the mechanical material of the surface layer portion and a significant increase in the manufacturing cost. Furthermore, since the dull surface metal strip of the present invention is manufactured through the temper rolling method, it has a compressive residual stress on its surface, and therefore has excellent fatigue strength.

調質圧延機の構成図である。It is a block diagram of a temper rolling mill. 圧延後の金属ストリップの残留応力分布である。 但し、a)ブライトワークロールの場合、b)がダルワークロールの場合である。It is a residual stress distribution of the metal strip after rolling. However, a) a bright work roll, and b) a dull work roll. 表層の残留応力分布に及ぼすワークロール表面粗さと伸び率の関係を示す図である。It is a figure which shows the relationship between the work roll surface roughness and elongation rate which influence on the residual stress distribution of a surface layer. 表層の残留応力分布に及ぼす摩擦係数と調質圧延条件の関係を示す図である。It is a figure which shows the relationship between the friction coefficient which affects the residual stress distribution of a surface layer, and temper rolling conditions.

以下、本発明の実施の形態の一例を、図面を参照にして説明する。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.

図1は、この発明を実施する調質圧延機の一例を示す構成図である。調質圧延機11は、1基の圧延スタンドから構成されており、この例では4重圧延機である。調質圧延機11のロールは、ワークロール16、17およびバックアップロール21、22からなっている。ワークロール16、17はスピンドルが連結されており、電動機(いずれも図示しない)によって駆動される。また、電動機にはパルスジェネレータ(図示しない)が取り付けられてあり、ワークロールの回転速度を検出する。ワークロールの回転速度、ワークロール径、およびギア比から、ワークロール16、17の周速度を求める。   FIG. 1 is a block diagram showing an example of a temper rolling mill for carrying out the present invention. The temper rolling mill 11 is composed of one rolling stand, and is a quadruple rolling mill in this example. The roll of the temper rolling mill 11 includes work rolls 16 and 17 and backup rolls 21 and 22. The work rolls 16 and 17 are connected to a spindle and are driven by an electric motor (both not shown). Further, a pulse generator (not shown) is attached to the electric motor, and detects the rotation speed of the work roll. The peripheral speed of the work rolls 16 and 17 is obtained from the rotation speed of the work roll, the work roll diameter, and the gear ratio.

調質圧延機11の上流には、連続焼鈍設備(図示しない)が配置されている。この連続焼鈍設備から調質圧延機11に熱処理された金属ストリップSが連続して供給される。また、この調質圧延機11の下流には、調質圧延機11で圧延されたダル表面金属ストリップSの表面を観察したり、平坦度や表面粗さを検査したりする検査台、さらにその下流には調質圧延されたダル表面金属ストリップSを切断する切断機、および調質圧延された金属ストリップSをコイル状に巻き取る巻き取りリール(いずれも図示しない)が配置されている。   A continuous annealing facility (not shown) is disposed upstream of the temper rolling mill 11. The heat-treated metal strip S is continuously supplied from the continuous annealing equipment to the temper rolling mill 11. Further, downstream of the temper rolling mill 11, an inspection table for observing the surface of the dull surface metal strip S rolled by the temper rolling mill 11 and inspecting flatness and surface roughness, A cutting machine that cuts the tempered rolled metal strip S and a take-up reel (both not shown) for winding the tempered rolled metal strip S in a coil shape are disposed downstream.

形状制御手段として、上下ワークロールチョック(図示しない)を支点として上下ワークロール16、17の垂直方向の撓みを制御するためのインクリースおよびディクリースベンダー力を付与することが可能なワークロールベンダー51が設けられている。上バックアップロールチョック(図示しない)の上部には圧延荷重検出装置36が配置されており、ワークサイドおよびドライブサイドの荷重を検出する。また、圧延荷重検出装置36の上部には電動圧下装置37が配置されており、金属ストリップSを圧延する際のパスライン調整が行われる。さらに、下バックアップロールチョック(図示しない)の下部には、圧延力を付与するための油圧圧下装置31が配置されている。 As a shape control means, there is a work roll bender 51 capable of applying an increase and decrease bender force for controlling vertical deflection of the upper and lower work rolls 16 and 17 with an upper and lower work roll chock (not shown) as a fulcrum. Is provided. A rolling load detection device 36 is disposed above the upper backup roll chock (not shown), and detects loads on the work side and the drive side. In addition, an electric reduction device 37 is disposed above the rolling load detection device 36, and a pass line is adjusted when the metal strip S is rolled. Furthermore, a hydraulic reduction device 31 for applying a rolling force is disposed below the lower backup roll chock (not shown).

調質圧延機11の入側に入側ブライドルロール61が、出側に出側ブライドルロール62がそれぞれ配備されている。図示はしていないが、これらの入・出側ブライドルロール61、62はスピンドルが連結されており、電動機によって駆動され、調質圧延機入側および出側の張力を目標値として制御している。入・出側ブライドルロール61、62にはPLG(図示しない)が取り付けてあり、調質圧延機前後の金属ストリップSの板速度を検出して、伸び率を測定する。先進率は、上述したワークロール周速度と調質圧延後の金属ストリップ板速度の検出値を基に演算して求める。   An entrance side bridle roll 61 is provided on the entrance side of the temper rolling mill 11, and an exit side bridle roll 62 is provided on the exit side. Although not shown, the spindles of these entry / exit bridle rolls 61 and 62 are connected to each other and are driven by an electric motor to control the tension on the entry and exit sides of the temper rolling mill as target values. . PLG (not shown) is attached to the entrance / exit bridle rolls 61, 62, and the elongation rate is measured by detecting the plate speed of the metal strip S before and after the temper rolling mill. The advanced rate is obtained by calculation based on the detected values of the work roll peripheral speed and the temper rolling metal strip plate speed.

また、入側ブライドルロール61と調質圧延機11の間に入側にタッチロール41が、調質圧延機と出側ブライドルロール62の間にタッチロール42が配置されている。調質圧延機の入側に上下対となった圧延潤滑油供給装置45、46が配置されおり、金属ストリップSの上下面に調質圧延潤滑油(エマルション潤滑油)を供給する。調質圧延機11の入・出側張力は、タッチロール41およびタッチロール42にそれぞれ取り付けた荷重検出器(図示しない)によって検出する。調質圧延機の出側にはX線板厚測定装置(図示しない)が配備されており、調質圧延後の板厚をモニターする。   Further, a touch roll 41 is disposed between the entry side bridle roll 61 and the temper rolling mill 11 on the entry side, and a touch roll 42 is disposed between the temper rolling mill and the exit side bridle roll 62. Rolling lubricating oil supply devices 45 and 46 that are vertically paired are arranged on the entrance side of the temper rolling mill, and temper rolling lubricating oil (emulsion lubricating oil) is supplied to the upper and lower surfaces of the metal strip S. The entrance / exit side tension of the temper rolling mill 11 is detected by load detectors (not shown) attached to the touch roll 41 and the touch roll 42, respectively. An X-ray plate thickness measuring device (not shown) is provided on the exit side of the temper rolling mill, and monitors the thickness after temper rolling.

上記湿式調質圧延機を用いて実験を行い、表層の残留応力に及ぼす圧延因子の影響を調査した。摩擦係数は、圧延潤滑油の粘度とエマルション潤滑濃度とを変えて変化させた。なお、金属ストリップは、板厚1mmの強度が約780MPaのハイテンである。   Experiments were conducted using the wet temper rolling mill to investigate the influence of rolling factors on the residual stress of the surface layer. The coefficient of friction was changed by changing the viscosity of the rolling lubricating oil and the emulsion lubricating concentration. Note that the metal strip is a high tensile steel having a thickness of 1 mm and a strength of about 780 MPa.

潤滑剤として、粘度42cSt(at40℃)と粘度10cSt(at40℃)圧延潤滑油のエマルションを用いた。エマルション濃度は0.5%であり、エマルション平均粒径は2.5μmであった。表面粗さ0.3μmRaのブライトワークロールと表面粗さ3.5μmRaのダルワークロールとを用い、伸び率0.5%で金属ストリップを圧延した。ついで、表1に示した方法で圧延後の金属ストリップの残留応力分布を測定した。   As the lubricant, an emulsion of rolling lubricating oil having a viscosity of 42 cSt (at 40 ° C.) and a viscosity of 10 cSt (at 40 ° C.) was used. The emulsion concentration was 0.5% and the average emulsion particle size was 2.5 μm. Using a bright work roll having a surface roughness of 0.3 μm Ra and a dull work roll having a surface roughness of 3.5 μm Ra, the metal strip was rolled at an elongation of 0.5%. Subsequently, the residual stress distribution of the metal strip after rolling was measured by the method shown in Table 1.

実験結果を図2に示す。これより、ブライトワークロールの場合には潤滑条件を変えても残留応力分布にはほとんど影響がないものの、ダルワークロールの場合には潤滑条件を良好にすると残留応力分布は大きく変化し、表層の残留応力は引張りから圧縮へ変化することが確認された。   The experimental results are shown in FIG. As a result, in the case of bright work rolls, changing the lubrication conditions has little effect on the residual stress distribution, but in the case of dull work rolls, if the lubrication conditions are improved, the residual stress distribution changes greatly, and the surface layer It was confirmed that the residual stress changed from tension to compression.

次に、上記知見を元に、粘度42cSt(at40℃)として、上記圧延条件でさらにワークロールの表面粗さを1.1μmRa〜5.5μmと伸び率(0.2%〜1.2%)まで変化して実験を行い、表層の残留応力分布を測定した。その結果を図3に示す。図より、ワークロール表面粗さが小さ過ぎてもまた大き過ぎても、また、伸び率が小さ過ぎてもまた大き過ぎても、調質圧延後の金属ストリップの表層の残留応力は引張りになることが分かった。逆に、伸び率0.3%以上、0.9%以下とした場合で、2μmRa以上、4μmRa以下のものは表層の残留応力が圧縮になることがわかった。さらに、この中で、2.6μmRa〜4μmRaのデータでは特に圧縮応力が大きいことがわかった。従って、圧延後の金属ストリップの残留応力を圧縮にするには、ワークロールの表面粗さを2μmRa以上4μmRa以下、かつ、伸び率を伸び率0.3%以上0.9%以下の範囲に収める必要があることが分かった。また,より好ましくはワークロールの表面粗さを2.5μmRa超から4μmRa以下にすることによって,確実に表層の残留応力を圧縮にすることができる.   Next, based on the above knowledge, the viscosity is 42 cSt (at 40 ° C.), and the surface roughness of the work roll is 1.1 μm Ra to 5.5 μm and the elongation (0.2% to 1.2%) under the above rolling conditions. Experiments were carried out to measure the residual stress distribution on the surface layer. The result is shown in FIG. From the figure, if the surface roughness of the work roll is too small or too large, or the elongation rate is too small or too large, the residual stress on the surface layer of the metal strip after temper rolling becomes tensile. I understood that. On the contrary, it was found that the residual stress of the surface layer is compressed when the elongation is 0.3% or more and 0.9% or less and the elongation is 2 μmRa or more and 4 μmRa or less. Furthermore, it was found that the compression stress was particularly large in the data of 2.6 μmRa to 4 μmRa. Therefore, in order to compress the residual stress of the metal strip after rolling, the surface roughness of the work roll is 2 μmRa or more and 4 μmRa or less, and the elongation is within the range of 0.3% or more and 0.9% or less. I found it necessary. More preferably, the residual stress of the surface layer can be reliably compressed by making the surface roughness of the work roll more than 2.5 μmRa to 4 μmRa or less.

上記の結果、表層の残留応力とワークロール表面粗さとの関係、並びに、表層の残留応力と伸び率との関係が明らかになったが、まだ、潤滑油の条件が明らかにはなっていない。
そこで、ワークロールの表面粗さと伸び率を次の9水準
a.ワークロールの表面粗さ:2.0μmRa、伸び率0.3%
b.ワークロールの表面粗さ:2.0μmRa、伸び率0.6%
c.ワークロールの表面粗さ:2.0μmRa、伸び率0.9%
d.ワークロールの表面粗さ:3.0μmRa、伸び率0.3%
e.ワークロールの表面粗さ:3.0μmRa、伸び率0.6%
f.ワークロールの表面粗さ:3.0μmRa、伸び率0.9%
g.ワークロールの表面粗さ:4.0μmRa、伸び率0.3%
h.ワークロールの表面粗さ:4.0μmRa、伸び率0.6%
i.ワークロールの表面粗さ:4.0μmRa、伸び率0.9%
潤滑油の粘度:10,20,30,42,51,62,100(at40℃)
エマルション濃度:0.1,0.2,0.5,0.9,1.0%
を変えた実験を行った。なお、その際エマルション平均粒径は約2μmに調整した。また、その際の摩擦係数を上述した方法で求めた。
As a result, the relationship between the residual stress of the surface layer and the surface roughness of the work roll and the relationship between the residual stress of the surface layer and the elongation rate have been clarified, but the conditions for the lubricating oil have not yet been clarified.
Therefore, the surface roughness and elongation of the work roll are set to the following nine levels a. Work roll surface roughness: 2.0 μm Ra, elongation 0.3%
b. Work roll surface roughness: 2.0 μm Ra, elongation 0.6%
c. Work roll surface roughness: 2.0 μm Ra, elongation 0.9%
d. Work roll surface roughness: 3.0 μm Ra, elongation 0.3%
e. Work roll surface roughness: 3.0 μm Ra, elongation 0.6%
f. Work roll surface roughness: 3.0 μm Ra, elongation 0.9%
g. Work roll surface roughness: 4.0 μm Ra, elongation 0.3%
h. Work roll surface roughness: 4.0 μm Ra, elongation 0.6%
i. Work roll surface roughness: 4.0 μm Ra, elongation rate: 0.9%
Lubricating oil viscosity: 10, 20, 30, 42, 51, 62, 100 (at 40 ° C.)
Emulsion concentration: 0.1, 0.2, 0.5, 0.9, 1.0%
The experiment which changed was performed. At that time, the average particle size of the emulsion was adjusted to about 2 μm. Further, the friction coefficient at that time was determined by the method described above.

調質圧延後の金属ストリップの表層の残留応力と摩擦係数の関係を調査した結果、摩擦係数が0.15以下の場合は上記圧延条件a〜d.において、調質圧延後の金属ストリップの表層の残留応力が圧縮であることが確認された。図4に摩擦係数と表層の残留応力との関係を示す。この図によると、a〜d.のいずれの条件も一つの曲線に乗る傾向があり、摩擦係数は0.15以下の圧延潤滑条件にすることが必要であることが分かった。   As a result of investigating the relationship between the residual stress of the surface layer of the metal strip after the temper rolling and the friction coefficient, when the friction coefficient is 0.15 or less, the rolling conditions a to d. The residual stress of the surface layer of the metal strip after temper rolling was confirmed to be compression. FIG. 4 shows the relationship between the friction coefficient and the residual stress on the surface layer. According to this figure, ad. It was found that any of these conditions tended to be on one curve, and the friction coefficient was required to be a rolling lubrication condition of 0.15 or less.

前記摩擦係数はロールバイト内に被圧延材の剛体域を考慮したワークロールの扁平変形を取り扱い、摩擦係数と変形抵抗を未知数とした圧延計算手法を用いて、圧延荷重と先進率の測定値と計算値とが一致するように連成して求められたものである。摩擦係数は、他の因子を含めた調整係数として求めることもあるが、厳密に求めた摩擦係数であればあるほど、図4に現れた傾向は顕著になる。   The friction coefficient handles the flat deformation of the work roll in consideration of the rigid body region of the material to be rolled in the roll bite, and uses a rolling calculation method with the friction coefficient and deformation resistance as unknowns. It is obtained in a coupled manner so that the calculated value matches. Although the friction coefficient may be obtained as an adjustment coefficient including other factors, the tendency that appears in FIG.

以上のことから、連続焼鈍された金属ストリップを、ワークロールの表面粗さが算術平均粗さで2μmRa以上4μmRa以下のダルワークロールを用い摩擦係数で0.15以下の圧延潤滑条件で伸び率0.3%以上0.9%以下の調質圧延をすれば良いことが明らかとなった。   In view of the above, the continuous annealing of the metal strip was performed using a dull work roll having a work roll surface roughness of 2 μmRa or more and 4 μmRa or less in terms of arithmetic average roughness under a rolling lubrication condition with a friction coefficient of 0.15 or less and an elongation of 0. It became clear that temper rolling of .3% to 0.9% should be performed.

さらに検討を続けた結果、上記圧延条件で摩擦係数で0.15以下にするには、粘度40cSt(at40℃)以上の圧延潤滑油を用い、エマルション濃度0.3%以上1.0%以下、かつ、エマルション平均粒径1.0μm、以上3.0μm以下とすることが良いことが明らかとなった。また、このような調質圧延方法で製造できる金属ストリップは、面表面粗さが算術平均粗さで0.6μmRa以上、1.8μmRa以下であり、かつ、×線回折法による応力測定法で表層の残留応力が圧縮である特徴があることが明らかとなった。   As a result of further investigation, in order to reduce the friction coefficient to 0.15 or less under the above rolling conditions, a rolling lubricant having a viscosity of 40 cSt (at 40 ° C.) or higher is used, and an emulsion concentration of 0.3% to 1.0%, And it became clear that it is good to set it as an emulsion average particle diameter of 1.0 micrometer or more and 3.0 micrometers or less. In addition, the metal strip that can be produced by such a temper rolling method has a surface roughness of 0.6 μm Ra or more and 1.8 μm Ra or less in terms of arithmetic average roughness, and a surface layer by a stress measurement method using an X-ray diffraction method. It was clarified that there is a characteristic that the residual stress is compression.

以上、本発明の実施の形態の一例を説明したが、本発明は図示の形態に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although an example of embodiment of this invention was demonstrated, this invention is not limited to the form of illustration. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.

以下に本発明の実施例および比較例として、本発明にかかる圧延方法(実施例)と、従来の圧延方法(比較例)とをそれぞれ適用し、図1に示した調質圧延機を用いて板厚1mm、強度780MPaのハイテン材(焼鈍材)を比較例、実施例ともに調質圧延し、その疲労強度を比較した。   As examples and comparative examples of the present invention, the rolling method (example) according to the present invention and the conventional rolling method (comparative example) are applied, respectively, and the temper rolling mill shown in FIG. 1 is used. A high-tensile material (annealed material) having a thickness of 1 mm and a strength of 780 MPa was temper-rolled in both the comparative example and the example, and the fatigue strength was compared.

まず、比較例として放電加工によって作製された表面粗さが3.0μmRaのワークロールを用い、粘度が8cSt(at40℃)の潤滑油をエマルション濃度0.5%、エマルション粒径6μm、伸び率0.4%の調質圧延を行い、調質圧延後のサンプルを取り出した。このサンプルの表層の残留応力を測定した結果、残留応力は約80MPaの引張り応力であった。また、このときの摩擦係数を求めた結果、摩擦係数は0.19であった。上記サンプルから、幅50mm、長さ100mmの試験片を作製し、その試験片の中央部にφ5mmの穴を開け、曲げ曲げ戻しの弾性変形を加え、上記穴に亀裂が発生するまでの回数を測定した。この実験を5回行いその平均値を求めた。
比較例の場合、5×10回で亀裂が生じた。
First, as a comparative example, a work roll having a surface roughness of 3.0 μmRa produced by electric discharge machining was used, and a lubricating oil with a viscosity of 8 cSt (at 40 ° C.) was used with an emulsion concentration of 0.5%, an emulsion particle size of 6 μm, and an elongation of 0 .4% temper rolling was performed, and a sample after temper rolling was taken out. As a result of measuring the residual stress of the surface layer of this sample, the residual stress was a tensile stress of about 80 MPa. Further, as a result of obtaining the friction coefficient at this time, the friction coefficient was 0.19. A test piece having a width of 50 mm and a length of 100 mm was prepared from the above sample, a φ5 mm hole was made in the center of the test piece, elastic deformation of bending and bending back was performed, and the number of times until a crack occurred in the hole was determined. It was measured. This experiment was repeated 5 times and the average value was obtained.
In the case of the comparative example, cracks occurred after 5 × 10 4 times.

また、本発明の実施例として、放電加工によって作製された表面粗さが3.0μmRaのワークロールを用い、粘度が40cSt(at40℃)の潤滑油をエマルション濃度0.5%、エマルション粒径2.5μm、伸び率0.4%の調質圧延を行い、調質圧延後のサンプルを取り出した。このサンプルの表層の残留応力を測定した結果、残留応力は約40MPaの圧縮応力であった。また、このときの摩擦係数を求めた結果、摩擦係数は0.10であった。上記サンプルから、幅50mm、長さ100mmの試験片を作製し、その試験片の中央部にφ5mmの穴を開け、曲げ曲げ戻しの弾性変形を加え、上記穴に亀裂が発生するまでの回数を測定した。この実験を5回行いその平均値を求めた。
本発明の実施例の場合、7×10回で亀裂が生じた。
Further, as an example of the present invention, a work roll having a surface roughness of 3.0 μmRa produced by electric discharge machining was used, and a lubricating oil having a viscosity of 40 cSt (at 40 ° C.) was used with an emulsion concentration of 0.5% and an emulsion particle size of 2 Temper rolling was performed at a thickness of 0.5 μm and an elongation of 0.4%, and a sample after the temper rolling was taken out. As a result of measuring the residual stress of the surface layer of this sample, the residual stress was a compressive stress of about 40 MPa. Further, as a result of obtaining the friction coefficient at this time, the friction coefficient was 0.10. A test piece having a width of 50 mm and a length of 100 mm was prepared from the above sample, a φ5 mm hole was made in the center of the test piece, elastic deformation of bending and bending back was performed, and the number of times until a crack occurred in the hole was determined. It was measured. This experiment was repeated 5 times and the average value was obtained.
In the case of the example of the present invention, cracks occurred at 7 × 10 6 times.

以上述べた、比較例および実施例の結果から、本発明に係る金属ストリップの調質圧延方法を適用することで、調質圧延後の金属ストリップの疲労強度は従来のものと比較して大きく向上することが確認された。なお、調質圧延後の金属ストリップの表面粗さは比較例が1.1μmRa、本発明の実施例0.9μmRaであった。   From the results of the comparative examples and examples described above, the fatigue strength of the metal strip after temper rolling is greatly improved compared to the conventional one by applying the temper rolling method of the metal strip according to the present invention. Confirmed to do. The surface roughness of the metal strip after temper rolling was 1.1 μmRa in the comparative example and 0.9 μmRa in the example of the present invention.

上記実施例及び比較例と同様な調質圧延条件で、ワークロールの表面粗さ(Ra)、摩擦係数、伸び率を本発明の範囲内で変更して評価した実施例を表2に示す。   Table 2 shows examples in which the surface roughness (Ra), the friction coefficient, and the elongation of the work roll were changed and evaluated within the scope of the present invention under the same temper rolling conditions as in the above Examples and Comparative Examples.

Figure 2011025255
Figure 2011025255

この表で示されるように、本発明の調質圧延で製造されたダル表面金属ストリップは表層に圧縮(−の値)の残留応力が存在し、疲労強度が高いことが明らかになった。   As shown in this table, it has been clarified that the dull surface metal strip produced by the temper rolling of the present invention has a compressive (-value) residual stress in the surface layer and has high fatigue strength.

本発明は、疲労強度に優れたダル表面金属ストリップおよびその製造方法に適用できる。   The present invention can be applied to a dull surface metal strip excellent in fatigue strength and a method for manufacturing the same.

11 湿式調質圧延機
16〜17 ワークロール
21〜22 バックアップロール
31 油圧圧下装置
36 圧延荷重検出装置
37 電動圧下装置
41〜42 タッチロール
45〜46 潤滑油供給装置
51 ワークロールベンダー
61〜62 ブライドルロール
S 金属ストリップ
DESCRIPTION OF SYMBOLS 11 Wet temper rolling mill 16-17 Work roll 21-22 Backup roll 31 Hydraulic reduction device 36 Rolling load detection device 37 Electric reduction device 41-42 Touch roll 45-46 Lubricating oil supply device 51 Work roll bender 61-62 Bridle roll S metal strip

Claims (4)

連続焼鈍された金属ストリップを、ワークロールの表面粗さが算術平均粗さで2μmRa以上、4μmRa以下のダルワークロールを用い、摩擦係数で0.15以下の圧延潤滑条件で伸び率0.3%以上、0.9%以下の調質圧延をすることを特徴とするダル表面金属ストリップの調質圧延方法。 Continuously annealed metal strip, a dull work roll having a work roll surface roughness of 2 μmRa or more and 4 μmRa or less in arithmetic mean roughness, and an elongation of 0.3% under rolling lubrication conditions having a friction coefficient of 0.15 or less. The method for temper rolling a dull surface metal strip, wherein the temper rolling is 0.9% or less. 前記摩擦係数は、ロールバイト内に被圧延材の剛体域を考慮し、かつワークロールが扁平変形するとし、摩擦係数と変形抵抗を未知数とした圧延計算手法を用いて、圧延荷重及び先進率の測定値と計算値とが一致するように連成して求めることを特徴とする請求項1に記載のダル表面金属ストリップの調質圧延方法。 The friction coefficient is determined by taking into account the rigid region of the material to be rolled in the roll bite and assuming that the work roll is flatly deformed, and using a rolling calculation method with the friction coefficient and deformation resistance as unknowns, 2. The temper rolling method for a dull surface metal strip according to claim 1, wherein the measurement value and the calculated value are obtained so as to coincide with each other. 請求項1又は請求項2に記載の調質圧延方法において、粘度40cSt(at40℃)以上の圧延潤滑油をエマルション濃度0.3%以上、1.0%以下、エマルション平均粒径1.0μm以上、3.0μm以下の圧延潤滑条件で前記金属ストリップに供給することを特徴とするダル表面金属ストリップの調質圧延方法。 The temper rolling method according to claim 1 or 2, wherein a rolling lubricating oil having a viscosity of 40 cSt (at 40 ° C) or higher has an emulsion concentration of 0.3% or more and 1.0% or less, and an average emulsion particle size of 1.0 µm or more. A temper rolling method for a dull surface metal strip, wherein the metal strip is supplied under rolling lubrication conditions of 3.0 μm or less. 請求項1〜3のいずれか1項に記載の調質圧延方法で製造されたダル表面金属ストリップであって、表面粗さが算術平均粗さで0.6μmRa以上、1.8μmRa以下であり、かつ、×線回折法による応力測定法で測定した表層の残留応力が圧縮であることを特徴とするダル表面金属ストリップ。 A dull surface metal strip manufactured by the temper rolling method according to any one of claims 1 to 3, wherein the surface roughness is an arithmetic average roughness of 0.6 μmRa or more and 1.8 μmRa or less, A dull surface metal strip, wherein the residual stress of the surface layer measured by a stress measurement method by an X-ray diffraction method is compression.
JP2009170824A 2009-07-22 2009-07-22 Temper rolling method for dull surface metal strip with excellent fatigue strength and dull surface metal strip Active JP5564845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009170824A JP5564845B2 (en) 2009-07-22 2009-07-22 Temper rolling method for dull surface metal strip with excellent fatigue strength and dull surface metal strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009170824A JP5564845B2 (en) 2009-07-22 2009-07-22 Temper rolling method for dull surface metal strip with excellent fatigue strength and dull surface metal strip

Publications (2)

Publication Number Publication Date
JP2011025255A true JP2011025255A (en) 2011-02-10
JP5564845B2 JP5564845B2 (en) 2014-08-06

Family

ID=43634622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009170824A Active JP5564845B2 (en) 2009-07-22 2009-07-22 Temper rolling method for dull surface metal strip with excellent fatigue strength and dull surface metal strip

Country Status (1)

Country Link
JP (1) JP5564845B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159306A (en) * 2015-02-27 2016-09-05 新日鐵住金株式会社 Temper rolling method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219142A (en) * 1975-08-07 1977-02-14 Nippon Steel Corp Method for wet rolling of thin steel sheet
JPH03172392A (en) * 1989-11-30 1991-07-25 Sumitomo Metal Ind Ltd Cold rolling oil for steel plate and method for rolling steel plate with the same
JPH05317907A (en) * 1992-03-30 1993-12-03 Sumitomo Metal Ind Ltd Skin pass rolling
JPH06122013A (en) * 1992-10-15 1994-05-06 Kawasaki Steel Corp Manufacture of steel sheet for shadow mask or aperture grille
JPH06340953A (en) * 1991-08-20 1994-12-13 Mitsubishi Kasei Corp Aluminum stock for disk wheel rim
JPH08215708A (en) * 1995-02-13 1996-08-27 Sumitomo Metal Ind Ltd Skin-pass rolling method for strip metal
JPH08225794A (en) * 1995-02-20 1996-09-03 Sumitomo Metal Ind Ltd Water-soluble rolling oil for stainless steel sheet and method for rolling
JP2000202505A (en) * 1999-01-13 2000-07-25 Nippon Steel Corp Rolling method of cold tandem rolling mill
JP2004174568A (en) * 2002-11-28 2004-06-24 Jfe Steel Kk Method for manufacturing hot-dip galvanized steel sheet excellent in press-formability
JP2006061953A (en) * 2004-08-27 2006-03-09 Sumitomo Metal Ind Ltd Hot dip galvanized steel sheet and method for manufacturing the same
JP2009142879A (en) * 2007-12-17 2009-07-02 Nippon Steel Corp Temper rolling method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219142A (en) * 1975-08-07 1977-02-14 Nippon Steel Corp Method for wet rolling of thin steel sheet
JPH03172392A (en) * 1989-11-30 1991-07-25 Sumitomo Metal Ind Ltd Cold rolling oil for steel plate and method for rolling steel plate with the same
JPH06340953A (en) * 1991-08-20 1994-12-13 Mitsubishi Kasei Corp Aluminum stock for disk wheel rim
JPH05317907A (en) * 1992-03-30 1993-12-03 Sumitomo Metal Ind Ltd Skin pass rolling
JPH06122013A (en) * 1992-10-15 1994-05-06 Kawasaki Steel Corp Manufacture of steel sheet for shadow mask or aperture grille
JPH08215708A (en) * 1995-02-13 1996-08-27 Sumitomo Metal Ind Ltd Skin-pass rolling method for strip metal
JPH08225794A (en) * 1995-02-20 1996-09-03 Sumitomo Metal Ind Ltd Water-soluble rolling oil for stainless steel sheet and method for rolling
JP2000202505A (en) * 1999-01-13 2000-07-25 Nippon Steel Corp Rolling method of cold tandem rolling mill
JP2004174568A (en) * 2002-11-28 2004-06-24 Jfe Steel Kk Method for manufacturing hot-dip galvanized steel sheet excellent in press-formability
JP2006061953A (en) * 2004-08-27 2006-03-09 Sumitomo Metal Ind Ltd Hot dip galvanized steel sheet and method for manufacturing the same
JP2009142879A (en) * 2007-12-17 2009-07-02 Nippon Steel Corp Temper rolling method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159306A (en) * 2015-02-27 2016-09-05 新日鐵住金株式会社 Temper rolling method

Also Published As

Publication number Publication date
JP5564845B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
EP2542372B1 (en) A method of manufacturing a stainless steel product
JP3558628B2 (en) Magnesium alloy plate and method for producing the same
US11098393B2 (en) Martensitic stainless steel foil and manufacturing method thereof
EP2505275B1 (en) Magnesium alloy coil stock
WO2008075603A1 (en) Method of temper rolling of steel strip and process for manufacturing high tensile cold rolled steel sheet
CN110944764A (en) System and method for controlling surface texturing of metal substrates by low pressure rolling
JP2012171008A (en) Temper rolling method, temper rolling apparatus, and manufacturing method of steel strip
WO1989000611A1 (en) Method of producing directional silicon steel sheet having excellent magnetic characteristics and continuous intermediate annealing equipment
JP4990747B2 (en) Temper rolling method
JP5564845B2 (en) Temper rolling method for dull surface metal strip with excellent fatigue strength and dull surface metal strip
JP6860025B2 (en) Tempered rolling method, temper rolling equipment, steel strip manufacturing method
EP3406361B1 (en) Titanium plate
JP4777161B2 (en) Temper rolling method
JP7448859B2 (en) titanium material
JP4314884B2 (en) Mandrel bar for hot seamless pipe rolling
JP6070616B2 (en) Manufacturing method of hot-rolled steel sheet
JP4962319B2 (en) Steel strip temper rolling method
JP5761071B2 (en) Temper rolling method, temper rolling equipment and rolling line for high strength steel plate
JP2002241843A (en) Method for producing ferritic stainless steel sheet having excellent surface gloss and workability
JP2008254026A (en) Method of manufacturing high tensile strength metal strip having excellent press formability
JP2009208125A (en) Temper mill
JP4267562B2 (en) Manufacturing method of high grade non-oriented electrical steel sheet
JP2020082126A (en) Cold rolling method for metal band and cold rolling facility as well as manufacturing method for metal band
JP7338604B2 (en) Manufacturing method of cold-rolled steel sheet
KR20160123276A (en) Method for preparing hot-rolled semifinished steel rolled stock for cold rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140602

R151 Written notification of patent or utility model registration

Ref document number: 5564845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350