JP2011024706A - Method for driving fluid ejection device - Google Patents

Method for driving fluid ejection device Download PDF

Info

Publication number
JP2011024706A
JP2011024706A JP2009171896A JP2009171896A JP2011024706A JP 2011024706 A JP2011024706 A JP 2011024706A JP 2009171896 A JP2009171896 A JP 2009171896A JP 2009171896 A JP2009171896 A JP 2009171896A JP 2011024706 A JP2011024706 A JP 2011024706A
Authority
JP
Japan
Prior art keywords
pressure chamber
volume
fluid ejection
piezoelectric element
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009171896A
Other languages
Japanese (ja)
Inventor
Hideki Kojima
英揮 小島
Shigeo Sugimura
繁夫 杉村
Naohiro Matsuzaki
尚洋 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2009171896A priority Critical patent/JP2011024706A/en
Publication of JP2011024706A publication Critical patent/JP2011024706A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3203Fluid jet cutting instruments

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid ejection device for ejecting a strong pulse flow. <P>SOLUTION: In a method for driving the fluid ejection device 1, the fluid ejection device 1 is equipped with a piezoelectric element 30 and a diaphragm 40 both of which change the volume of a pressure chamber 80 as a volume altering means, the outlet flow channel 82 opened in the volume changing direction of the pressure chamber 80 and the fluid ejection opening part 96 allowed to communicate with the outlet flow channel 82 and constituted so as to change the volume of the pressure chamber 80 by the piezoelectric element 30 and the diaphragm 40 to eject a liquid in a pulse-like state from the fluid ejection opening part 96. In the case that the cycle of the volume change of the pressure chamber 80 is set to T, the distance from the fluid ejection opening part 96 to the surface on the side of the pressure chamber 80 of the diaphragm 40 is set to D and the sonic velocity in the water of the section of the distance D is set to Q, the piezoelectric element 30 is driven so that the cycle T, the distance D and the sonic velocity Q satisfy T=n×2D/Q (wherein n is a positive integer). As a result, a pressure wave becomes resonance relation with respect to the drive frequency of the piezoelectric element 30 and the strong pulse flow can be ejected. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、圧力室の容積を容積変更手段により変化させて流体をパルス状に噴射させる流体噴射装置の駆動方法に関する。   The present invention relates to a driving method of a fluid ejecting apparatus that ejects fluid in pulses by changing a volume of a pressure chamber by a volume changing unit.

流体をパルス状に噴射して対象物の切断または切除等を行う流体噴射装置が知られている。例えば、医療分野では生体組織を切開または切除する手術具として、容積変更手段を駆動することによって圧力室の容積を変化させて流体を脈流に変換し、流体噴射開口部から流体をパルス状に高速噴射させる流体噴射装置が提案されている(例えば、特許文献1参照)。   There is known a fluid ejecting apparatus that ejects fluid in pulses to cut or cut an object. For example, in the medical field, as a surgical instrument for incising or excising living tissue, the volume of the pressure chamber is changed by driving the volume changing means to convert the fluid into a pulsating flow, and the fluid is pulsed from the fluid ejection opening. A fluid ejecting apparatus that ejects at high speed has been proposed (see, for example, Patent Document 1).

この流体噴射装置は、接続流路内の流体の音速をQ、出口流路側の流体抵抗要素と流体噴射開口部までの距離をL、圧力室の容積変更周波数をfとしたとき、n・2L=Q/f(または2L/n=Q/f、nは正の整数)を満たすように圧力室の容積の変更を行う。   In this fluid ejecting apparatus, when the sound velocity of the fluid in the connection channel is Q, the distance between the fluid resistance element on the outlet channel side and the fluid ejection opening is L, and the volume change frequency of the pressure chamber is f, n · 2L The volume of the pressure chamber is changed so as to satisfy = Q / f (or 2L / n = Q / f, where n is a positive integer).

特開2005−152127号公報JP 2005-152127 A

このような特許文献1では、圧力室の流体噴射開口部側には弁が無いので、流体を噴射させる場合、圧力室の内部まで圧力波が伝播する。そのため、出口流路側の流体抵抗要素から流体噴射開口部までの距離Lだけを考慮しても実際には圧力室の内部まで圧力波が伝播する。従って、実際には距離Lに差異が発生し、圧力波の共振原理を利用する場合には、この差異の影響は無視できない。   In such Patent Document 1, since there is no valve on the fluid ejection opening side of the pressure chamber, a pressure wave propagates to the inside of the pressure chamber when fluid is ejected. Therefore, even if only the distance L from the fluid resistance element on the outlet flow channel side to the fluid ejection opening is considered, the pressure wave actually propagates to the inside of the pressure chamber. Therefore, a difference actually occurs in the distance L, and the influence of this difference cannot be ignored when the resonance principle of the pressure wave is used.

また、特許文献1による構成では、出口流路は圧力室の容積変化方向に対してほぼ垂直方向に設けられているため、圧力波が圧力室内部まで到達した際に、圧力室内部で反射する圧力が一様ではなく、圧力波を共振させるように圧力室の容積を変化させることは困難である。   Further, in the configuration according to Patent Document 1, since the outlet channel is provided in a direction substantially perpendicular to the volume change direction of the pressure chamber, when the pressure wave reaches the pressure chamber, it is reflected in the pressure chamber. The pressure is not uniform, and it is difficult to change the volume of the pressure chamber so as to resonate the pressure wave.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]本適用例に係る流体噴射装置の駆動方法は、圧力室の容積を変化させる容積変更手段と、前記圧力室の容積変化方向に開口される出口流路と、前記出口流路に連通される流体噴射開口部とが備えられ、前記容積変更手段により前記圧力室の容積を変化させて、前記流体噴射開口部から流体をパルス状に噴射する脈流噴射装置の駆動方法であって、前記圧力室の容積変化の周期をT、前記流体噴射開口部から前記圧力室の変形面までの距離をD、距離Dの区間の水中の音速をQとした場合、周期Tと距離Dと音速Qとが、T=n・2D/Q(nは正の整数)を満たすように前記容積変更手段を駆動することを特徴とする。   Application Example 1 A fluid ejection device driving method according to this application example includes a volume changing unit that changes the volume of a pressure chamber, an outlet channel that opens in the direction of volume change of the pressure chamber, and the outlet channel. A pulsating flow ejection device that ejects fluid in a pulsed manner from the fluid ejection opening by changing the volume of the pressure chamber by the volume changing means. When the period of volume change of the pressure chamber is T, the distance from the fluid ejection opening to the deformation surface of the pressure chamber is D, and the sound velocity in water in the section of the distance D is Q, the period T and the distance D The volume changing means is driven so that the sound velocity Q satisfies T = n · 2D / Q (n is a positive integer).

本適用例によれば、出口流路を圧力室の容積変化方向に開口しているため、圧力波が圧力室の変形面(つまり、容積変更手段の圧力室側の面)まで到達して、圧力室の変形面で反射する圧力に共振させるように圧力室を変形させることができる。従って、圧力波の共振効果により、流体をより強くパルス状に噴射させることができる。   According to this application example, since the outlet channel is opened in the volume change direction of the pressure chamber, the pressure wave reaches the deformation surface of the pressure chamber (that is, the pressure chamber side surface of the volume changing unit), The pressure chamber can be deformed so as to resonate with the pressure reflected by the deformation surface of the pressure chamber. Therefore, the fluid can be jetted more strongly and in a pulse shape due to the resonance effect of the pressure wave.

[適用例2]上記適用例に係る流体噴射装置の駆動方法は、周期Tは、前記圧力室の容積を減少させている時間をt1としたときにT±t1の範囲内で前記容積変更手段を駆動することが望ましい。   Application Example 2 In the fluid ejection device driving method according to the application example, the period T is the volume changing means within a range of T ± t1, where t1 is a time during which the volume of the pressure chamber is decreased. It is desirable to drive.

圧力室の容積を減少させている時間は、少なくとも圧力変動範囲となる。従って、圧力室内部から流体噴射開口部に至る流路(距離Dで表す範囲)内における反射波も圧力変動範囲となる。従って、圧力室の容積を減少させている時間t1に発生する圧力波と、距離Dで表される範囲の流路内の反射波が重なる(共振する)ためには、少なくとも周期Tは、容積変更手段の駆動波形の圧力室の容積を減少させている時間t1の2倍の範囲となり、周期T±t1の範囲内で共振効果を得ることができる。   The time during which the volume of the pressure chamber is reduced is at least the pressure fluctuation range. Therefore, the reflected wave in the flow path (range represented by the distance D) from the pressure chamber to the fluid ejection opening also becomes the pressure fluctuation range. Therefore, in order for the pressure wave generated at the time t1 during which the volume of the pressure chamber is reduced and the reflected wave in the flow path in the range represented by the distance D to overlap (resonate), at least in the period T, the volume The drive waveform of the changing means is in a range that is twice the time t1 during which the volume of the pressure chamber is reduced, and a resonance effect can be obtained within the range of the cycle T ± t1.

[適用例3]上記適用例に係る流体噴射装置の駆動方法は、前記圧力室の容積を増加させている時間をt2としたとき、t1≦t2となる範囲で前記容積変更手段を駆動することが望ましい。   Application Example 3 In the driving method of the fluid ejection device according to the application example described above, when the time during which the volume of the pressure chamber is increased is t2, the volume changing unit is driven in a range where t1 ≦ t2. Is desirable.

このようにすれば、流体を容積変更手段により圧力室の容積を減少させる方向に押した後に、急激に容積を増加する方向に引く作用となり、流体噴射開口部から圧力室の変形面までの区間において液柱分離(詳しくは実施の形態で説明する)が発生しやすくなる。液柱分離が発生すると圧力波の伝播ができなくなるので圧力波の共振タイミングがずれてしまう。   In this way, after the fluid is pushed in the direction of decreasing the volume of the pressure chamber by the volume changing means, the volume is suddenly increased in the direction of increasing the volume, and the section from the fluid ejection opening to the deformation surface of the pressure chamber In this case, liquid column separation (described in detail in the embodiment) is likely to occur. When the liquid column separation occurs, the pressure wave cannot be propagated, and the resonance timing of the pressure wave is shifted.

本適用例では、圧力室の容積を増加させている時間t2を、圧力室の容積を減少させている時間t1よりも長くし、液柱分離の発生を抑制している。このことによって、共振効果による強い流体噴射を安定して行うことができる。   In this application example, the time t2 during which the volume of the pressure chamber is increased is set longer than the time t1 during which the volume of the pressure chamber is decreased, thereby suppressing the occurrence of liquid column separation. This makes it possible to stably perform strong fluid ejection due to the resonance effect.

実施形態1に係る手術具としての流体噴射装置を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration explanatory view showing a fluid ejecting apparatus as a surgical instrument according to a first embodiment. 実施形態1に係る脈流発生部を液体の噴射方向に沿って切断した切断面を示す断面図。Sectional drawing which shows the cut surface which cut | disconnected the pulsating flow generation part which concerns on Embodiment 1 along the injection direction of a liquid. 実施形態1に係る駆動制御部の概略構成を示すブロック説明図。FIG. 2 is an explanatory block diagram illustrating a schematic configuration of a drive control unit according to the first embodiment. 実施形態1に係る圧電素子の駆動波形の1例を示す駆動波形図。FIG. 3 is a drive waveform diagram illustrating an example of a drive waveform of the piezoelectric element according to the first embodiment. 三角波の駆動波形と休止時間T=1/fとの組み合わせの波形を示す駆動波形図。The drive waveform figure which shows the waveform of the combination of the drive waveform of a triangular wave, and rest time T = 1 / f. 接続流路(出口流路を含む)内の液体の状態を模式的に示す断面図。Sectional drawing which shows typically the state of the liquid in a connection flow path (an outlet flow path is included). 実施形態2に係る圧力反射波と駆動波形のタイミングの関係を示す駆動波形図。FIG. 9 is a drive waveform diagram showing a relationship between a pressure reflected wave and a drive waveform timing according to the second embodiment. 圧力反射波と駆動波形のタイミングの具体的な関係を示す駆動波形図。The drive waveform figure which shows the specific relationship between a pressure reflected wave and the timing of a drive waveform. 圧力反射波の波形に対して駆動波形の立ち上がりタイミングをt1の範囲とした状態を表す駆動波形図。The drive waveform figure showing the state which made the rising timing of the drive waveform the range of t1 with respect to the waveform of a pressure reflected wave. 接続管を曲げて形成した場合を例示する構成図(実施例1)。The block diagram which illustrates the case where a connection pipe is bent and formed (Example 1). 接続管を曲げて形成した場合を例示する構成図(実施例2)。The block diagram which illustrates the case where a connecting pipe is bent and formed (Example 2). 接続管を曲げて形成した場合を例示する構成図(実施例3)。The block diagram which illustrates the case where a connection pipe is bent and formed (Example 3).

以下、本発明の実施形態を図面に基づいて説明する。本発明による流体噴射装置は、インク等を用いた描画、細密な物体及び構造物の洗浄、手術用メス等様々に採用可能であるが、以下に説明する実施形態では、生体組織を切開または切除することに好適な流体噴射装置を例示して説明する。従って、実施形態にて用いる流体は、水または生理食塩水等の液体である。
(実施形態1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The fluid ejecting apparatus according to the present invention can be used in various ways such as drawing using ink, washing fine objects and structures, and a scalpel. However, in the embodiment described below, incision or excision of living tissue is performed. A fluid ejecting apparatus suitable for this will be described as an example. Therefore, the fluid used in the embodiment is a liquid such as water or physiological saline.
(Embodiment 1)

図1は、実施形態1に係る手術具としての流体噴射装置を示す構成説明図である。図1において、流体噴射装置1は、液体を収容する液体供給容器2と、流体供給部としてのポンプ10と、ポンプ10から供給される液体を脈流に変換させパルス状に噴射する脈流発生部20と、を備えている。ポンプ10と脈流発生部20とは、液体供給チューブ4によって連通されている。   FIG. 1 is a configuration explanatory view showing a fluid ejecting apparatus as a surgical instrument according to the first embodiment. In FIG. 1, a fluid ejecting apparatus 1 includes a liquid supply container 2 that contains a liquid, a pump 10 as a fluid supply unit, and a pulsating flow that converts the liquid supplied from the pump 10 into a pulsating flow and ejects it in a pulsed manner. Part 20. The pump 10 and the pulsating flow generator 20 are communicated with each other by the liquid supply tube 4.

脈流発生部20には、細いパイプ状の接続流路管90が接続され、接続流路管90の先端部には流路径が縮小されたノズル95が挿着されている。   The pulsating flow generation section 20 is connected to a thin pipe-shaped connection flow path tube 90, and a nozzle 95 with a reduced flow path diameter is inserted into the distal end portion of the connection flow path pipe 90.

また、流体噴射装置1には、ポンプ10と脈流発生部20それぞれの駆動制御をするための駆動制御部15が備えられている。図1では、駆動制御部15はポンプ10と脈流発生部20から離間した位置に配設されているが、ポンプ10を含む駆動制御部として構成してもよい。   Further, the fluid ejection device 1 is provided with a drive control unit 15 for controlling the driving of the pump 10 and the pulsating flow generation unit 20. In FIG. 1, the drive control unit 15 is disposed at a position separated from the pump 10 and the pulsating flow generation unit 20, but may be configured as a drive control unit including the pump 10.

脈流発生部20は、脈流発生部20の起動・停止を行う噴射指令切替スイッチ25を備えている。流体噴射装置1を手術具として用いる場合、脈流発生部20を把持して操作するため、噴射指令切替スイッチ25を手元に備えることで操作性を高めている。   The pulsating flow generation unit 20 includes an injection command changeover switch 25 that starts and stops the pulsating flow generation unit 20. When the fluid ejecting apparatus 1 is used as a surgical instrument, the pulsating flow generation unit 20 is gripped and operated, so that the operability is improved by providing the ejection command changeover switch 25 at hand.

まず、流体噴射装置1の液体流動作用を簡単に説明する。容器2に収容された液体は、ポンプ10によって吸引され、一定の圧力で液体供給チューブ4を介して脈流発生部20に供給される。脈流発生部20には、圧力室80と、この圧力室80の容積を変化させる容積変更手段としての圧電素子30及びダイアフラム40(共に、詳しくは図2、参照)とが備えられている。   First, the liquid flow action of the fluid ejecting apparatus 1 will be briefly described. The liquid stored in the container 2 is sucked by the pump 10 and supplied to the pulsating flow generation unit 20 through the liquid supply tube 4 at a constant pressure. The pulsating flow generation unit 20 includes a pressure chamber 80 and a piezoelectric element 30 and a diaphragm 40 (both see FIG. 2 for details) as volume changing means for changing the volume of the pressure chamber 80.

噴射指令切替スイッチ25を操作して圧電素子30を起動し、圧電素子30を矢示A方向(図2、参照)に伸縮させることによってダイアフラム40を変形し、圧力室80の容積を変化させて脈流を発生させる。そして、接続流路管90、ノズル95を介して液体をパルス状に高速噴射する。脈流発生部20については、図2を参照して後述する。   The injection command changeover switch 25 is operated to activate the piezoelectric element 30, and the diaphragm 40 is deformed by expanding and contracting the piezoelectric element 30 in the direction of arrow A (see FIG. 2), and the volume of the pressure chamber 80 is changed. Generates pulsating flow. Then, the liquid is jetted at high speed in a pulsed manner through the connection flow channel tube 90 and the nozzle 95. The pulsating flow generation unit 20 will be described later with reference to FIG.

ここで、この流体噴射装置1を用いて手術をする際、術者が把持する部位は脈流発生部20である。従って、液体供給チューブ4はできるだけ柔軟であることが好ましい。   Here, when an operation is performed using the fluid ejecting apparatus 1, the part grasped by the operator is the pulsating flow generation unit 20. Therefore, the liquid supply tube 4 is preferably as flexible as possible.

次に、本実施形態に係る脈流発生部20の構造について説明する。
図2は、本実施形態に係る脈流発生部を液体の噴射方向に沿って切断した切断面を示す断面図である。なお、図2は図示の便宜上、部材ないし部分の縦横の縮尺は実際のものとは異なる模式図である。図2において、脈流発生部20は、ポンプ10から液体供給チューブ4を介して圧力室80に液体を供給する入口流路81と、圧力室80の容積を変化させる容積変更手段としての圧電素子30及びダイアフラム40と、圧力室80から流体噴射開口部96まで液体を送出する出口流路82と、を有して構成されている。
Next, the structure of the pulsating flow generation unit 20 according to this embodiment will be described.
FIG. 2 is a cross-sectional view showing a cut surface obtained by cutting the pulsating flow generation unit according to the present embodiment along the liquid ejecting direction. Note that FIG. 2 is a schematic diagram in which the vertical and horizontal scales of members or portions are different from actual ones for convenience of illustration. In FIG. 2, the pulsating flow generation unit 20 includes an inlet flow path 81 that supplies liquid from the pump 10 to the pressure chamber 80 via the liquid supply tube 4, and a piezoelectric element as a volume changing unit that changes the volume of the pressure chamber 80. 30 and the diaphragm 40, and an outlet channel 82 that sends liquid from the pressure chamber 80 to the fluid ejection opening 96.

出口流路82は、圧力室80の容積変化方向(つまり、ダイアフラム40の圧力室80側表面に対してほぼ垂直方向)に開口されている。   The outlet channel 82 is opened in the volume change direction of the pressure chamber 80 (that is, the direction substantially perpendicular to the surface of the diaphragm 40 on the pressure chamber 80 side).

ダイアフラム40は円盤状の金属薄板からなり、周縁部が下ケース50と上ケース70とによって密着固定されている。また、圧力室80は、上ケース70のダイアフラム40に対向する面に形成される凹部とダイアフラム40とによって形成される空間である。   The diaphragm 40 is made of a disk-shaped thin metal plate, and the peripheral edge thereof is closely fixed by the lower case 50 and the upper case 70. Further, the pressure chamber 80 is a space formed by a concave portion formed on a surface of the upper case 70 facing the diaphragm 40 and the diaphragm 40.

圧電素子30は、本実施形態では積層型圧電素子であって、両端部の一方がダイアフラム40に、他方が底板60に固着されている。   The piezoelectric element 30 is a laminated piezoelectric element in the present embodiment, and one of both ends is fixed to the diaphragm 40 and the other is fixed to the bottom plate 60.

上ケース70と下ケース50とは、それぞれ対向する面において接合一体化されている。上ケース70には、出口流路82に連通する接続流路91を有する接続流路管90が嵌着され、接続流路管90の先端部にはノズル95が挿着されている。そして、ノズル95には、流路径が出口流路82よりも縮小された流体噴射開口部96が開口されている。   The upper case 70 and the lower case 50 are joined and integrated on opposite surfaces. A connection channel pipe 90 having a connection channel 91 that communicates with the outlet channel 82 is fitted into the upper case 70, and a nozzle 95 is inserted into the tip of the connection channel pipe 90. The nozzle 95 is provided with a fluid ejection opening 96 whose flow path diameter is smaller than that of the outlet flow path 82.

本実施形態では、出口流路82と接続流路91とは、それぞれの流路径をほぼ一致させているが、出口流路82の流路径を接続流路91の流路径よりも縮小させてもよい。このような場合、出口流路82の流路径の縮小量は、流体噴射開口部96と圧力室80との間で圧力波の伝播が可能な範囲とする。   In the present embodiment, the outlet channel 82 and the connection channel 91 have substantially the same channel diameter, but the outlet channel 82 may have a smaller channel diameter than the connection channel 91. Good. In such a case, the reduction amount of the flow path diameter of the outlet flow path 82 is set to a range in which the pressure wave can propagate between the fluid ejection opening 96 and the pressure chamber 80.

上ケース70には、圧力室80と連通する入口流路81が形成され、入口流路81には液体供給チューブ4が取付けられている。   The upper case 70 is formed with an inlet channel 81 communicating with the pressure chamber 80, and the liquid supply tube 4 is attached to the inlet channel 81.

ここで、流体噴射開口部96から圧力室80の変形面(つまり、ダイアフラム40の圧力室80側表面)までの流路長を距離Dで表す。   Here, the flow path length from the fluid ejection opening 96 to the deformation surface of the pressure chamber 80 (that is, the surface of the diaphragm 40 on the pressure chamber 80 side) is represented by a distance D.

続いて、本実施形態の駆動制御部の構成について説明する。
図3は、本実施形態に係る駆動制御部の概略構成を示すブロック説明図である。駆動制御部15は、ポンプ10の駆動制御を行うポンプ駆動回路152と、圧電素子30を駆動制御する圧電素子駆動回路153と、ポンプ駆動回路152と圧電素子駆動回路153とを制御する制御回路151と、を有して構成される。なお、圧電素子駆動回路153には、圧電素子30の所定の駆動波形を生成する波形形生成回路(図示せず)が含まれる。
Next, the configuration of the drive control unit of the present embodiment will be described.
FIG. 3 is a block diagram illustrating a schematic configuration of the drive control unit according to the present embodiment. The drive controller 15 includes a pump drive circuit 152 that controls the drive of the pump 10, a piezoelectric element drive circuit 153 that controls the drive of the piezoelectric element 30, and a control circuit 151 that controls the pump drive circuit 152 and the piezoelectric element drive circuit 153. And is configured. The piezoelectric element driving circuit 153 includes a waveform shape generating circuit (not shown) that generates a predetermined driving waveform of the piezoelectric element 30.

ここで、噴射指令切替スイッチ25を操作することで、制御回路151のプログラムに基づき圧電素子30に所定の駆動波形を入力し、圧電素子30を駆動させる。圧電素子30の駆動開始と同時にポンプ10を駆動してもよいが、ポンプ10の駆動指令は圧電素子30の起動とは切り離し、圧電素子30を駆動する前にポンプ10を駆動しておくことがより望ましい。   Here, by operating the injection command changeover switch 25, a predetermined drive waveform is input to the piezoelectric element 30 based on the program of the control circuit 151 to drive the piezoelectric element 30. The pump 10 may be driven simultaneously with the start of driving of the piezoelectric element 30, but the pump 10 drive command is separated from the activation of the piezoelectric element 30, and the pump 10 may be driven before driving the piezoelectric element 30. More desirable.

次に、本実施形態における脈流発生部20の流体吐出動作について図1、図2を参照して説明する。本実施形態の脈流発生部20の流体吐出は、入口流路81側の合成イナータンスL1と出口流路82側の合成イナータンスL2の差によって行われる。   Next, the fluid discharge operation of the pulsating flow generation unit 20 in the present embodiment will be described with reference to FIGS. The fluid discharge of the pulsating flow generation unit 20 of the present embodiment is performed by the difference between the synthetic inertance L1 on the inlet flow path 81 side and the synthetic inertance L2 on the outlet flow path 82 side.

まず、イナータンスについて説明する。
イナータンスLは、流体の密度をρ、流路の断面積をS、流路の長さをhとしたとき、L=ρ×h/Sで表される。流路の圧力差をΔP、流路を流れる流体の流量をQとした場合に、イナータンスLを用いて流路内の運動方程式を変形することで、ΔP=L×dQ/dtという関係が導き出される。
First, inertance will be described.
The inertance L is expressed by L = ρ × h / S, where ρ is the density of the fluid, S is the cross-sectional area of the flow path, and h is the length of the flow path. When the pressure difference in the flow path is ΔP and the flow rate of the fluid flowing through the flow path is Q, the relationship of ΔP = L × dQ / dt is derived by modifying the equation of motion in the flow path using the inertance L. It is.

つまり、イナータンスLは、流量の時間変化に与える影響度合いを示しており、イナータンスLが大きいほど流量の時間変化が少なく、イナータンスLが小さいほど流量の時間変化が大きくなる。   That is, the inertance L indicates the degree of influence on the time change of the flow rate. The larger the inertance L, the less the time change of the flow rate, and the smaller the inertance L, the greater the time change of the flow rate.

入口流路81側の合成イナータンスL1は、入口流路81の範囲において算出される。また、出口流路82側の合成イナータンスL2は、出口流路82の範囲において算出される。
なお、接続流路管90の管壁の厚さは、流体の圧力伝播に十分な剛性を有している。
The combined inertance L1 on the inlet channel 81 side is calculated in the range of the inlet channel 81. The synthetic inertance L2 on the outlet channel 82 side is calculated in the range of the outlet channel 82.
In addition, the thickness of the tube wall of the connection flow path tube 90 has sufficient rigidity for the pressure propagation of the fluid.

そして、本実施形態では、入口流路81側の合成イナータンスL1が出口流路82側の合成イナータンスL2よりも大きくなるように、入口流路81の流路長及び断面積、出口流路82の流路長及び断面積を設定する。   In this embodiment, the flow path length and cross-sectional area of the inlet flow path 81 and the outlet flow path 82 are set so that the synthetic inertance L1 on the inlet flow path 81 side is larger than the synthetic inertance L2 on the outlet flow path 82 side. Set the channel length and cross-sectional area.

続いて、流体噴射動作について説明する。
ポンプ10によって入口流路81には、常に一定圧力(定常流量)で液体が供給されている。その結果、圧電素子30が動作を行わない場合、ポンプ10の吐出力と入口流路側全体の流路抵抗の差によって液体は圧力室80内に流動する。
Subsequently, the fluid ejection operation will be described.
Liquid is always supplied to the inlet channel 81 by the pump 10 at a constant pressure (steady flow rate). As a result, when the piezoelectric element 30 does not operate, the liquid flows into the pressure chamber 80 due to the difference between the discharge force of the pump 10 and the channel resistance on the entire inlet channel side.

ここで、圧電素子30に駆動信号が入力され、急激に圧電素子30が伸長したとすると圧力室80の容積が縮小され、圧力室80内の圧力は、入口流路側及び出口流路側の合成イナータンスL1,L2が十分な大きさを有していれば急速に上昇して数十気圧に達する。   Here, if a drive signal is input to the piezoelectric element 30 and the piezoelectric element 30 is suddenly expanded, the volume of the pressure chamber 80 is reduced, and the pressure in the pressure chamber 80 is changed to the combined inertance on the inlet channel side and the outlet channel side. If L1 and L2 have a sufficient size, they rise rapidly and reach several tens of atmospheres.

この圧力は、入口流路81に加えられていたポンプ10による圧力よりはるかに大きいため、入口流路81から圧力室80内への液体の流入はその圧力によって減少し、出口流路82からの流出は増加する。   Since this pressure is much larger than the pressure by the pump 10 applied to the inlet channel 81, the inflow of the liquid from the inlet channel 81 into the pressure chamber 80 is reduced by the pressure, and the pressure from the outlet channel 82 is reduced. Outflow increases.

しかし、入口流路側の合成イナータンスL1は、出口流路側の合成イナータンスL2よりも大きく、入口流路81から圧力室80へ流入する流量の減少量よりも、出口流路82から吐出される液体の増加量のほうが大きいため、接続流路91にパルス状の液体吐出、つまり、脈流が発生する。この吐出の際の圧力変動が、接続流路管90内(接続流路91)を伝播して、先端のノズル95の流体噴射開口部96から液体がパルス状に噴射される。   However, the combined inertance L1 on the inlet channel side is larger than the combined inertance L2 on the outlet channel side, and the amount of liquid discharged from the outlet channel 82 is smaller than the amount of decrease in the flow rate flowing into the pressure chamber 80 from the inlet channel 81. Since the increase amount is larger, a pulsed liquid discharge, that is, a pulsating flow is generated in the connection channel 91. The pressure fluctuation at the time of discharge propagates in the connection flow channel tube 90 (connection flow channel 91), and the liquid is ejected in a pulse form from the fluid ejection opening 96 of the nozzle 95 at the tip.

ここで、流体噴射開口部96の流路径は、出口流路82の流路径よりも縮小されているので、液体はさらに高圧となり、パルス状の液滴となって高速噴射される。   Here, since the flow path diameter of the fluid ejection opening 96 is smaller than the flow path diameter of the outlet flow path 82, the liquid has a higher pressure and is ejected at high speed as pulsed droplets.

一方、圧力室80内は、入口流路81からの液体流入量の減少と出口流路82からの液体流出の増加との相互作用で、圧力上昇直後に低圧状態となる。そして、圧電素子30を元の形状に復元すると、ポンプ10の圧力と、圧力室80内の低圧状態の双方によって一定時間経過後、入口流路81の液体は圧電素子30の動作前(伸長前)と同様な速度で圧力室80内に向かう流れが復帰する。   On the other hand, the pressure chamber 80 is in a low pressure state immediately after the pressure rises due to the interaction between the decrease in the amount of liquid inflow from the inlet channel 81 and the increase in the outflow of liquid from the outlet channel 82. Then, when the piezoelectric element 30 is restored to its original shape, the liquid in the inlet channel 81 flows before the operation of the piezoelectric element 30 (before expansion) after a predetermined time has elapsed due to both the pressure of the pump 10 and the low pressure state in the pressure chamber 80. ) Returns to the pressure chamber 80 at the same speed.

入口流路81内の液体の流動が復帰した後、圧電素子30の伸長があれば、流体噴射開口部96からパルス状の液滴を継続して噴射する。   If the piezoelectric element 30 is expanded after the flow of the liquid in the inlet channel 81 is restored, pulsed droplets are continuously ejected from the fluid ejection opening 96.

次に、圧電素子30の駆動波形について説明する。
図4は、本実施形態に係る圧電素子の駆動波形の1例を示す駆動波形図である。駆動波形の周期Tは、正の電圧方向にオフセットして位相が−90度ずれたsin波形と休止期間とを合わせた時間である。つまり、圧電素子30の駆動周波数をfとすると、1周期Tは1/fで表される。
Next, the driving waveform of the piezoelectric element 30 will be described.
FIG. 4 is a drive waveform diagram showing an example of a drive waveform of the piezoelectric element according to the present embodiment. The period T of the drive waveform is a time obtained by combining the sin waveform whose phase is shifted by -90 degrees and offset in the positive voltage direction, and the rest period. That is, if the driving frequency of the piezoelectric element 30 is f, one period T is represented by 1 / f.

流体噴射開口部96から圧力室80の変形面までの流路長を距離D、この流路長の区間の水中の音速をQとした場合、距離Dと音速Qと駆動周波数fとの関係波は、n・2D=Q/f、または2D/Q=n/f(nは正の整数)で表すことができる。なお、圧力波は、圧力室80から流体噴射開口部96まで達して反射して圧力室80(変形面)まで戻ってくるため、圧力波の移動距離を距離Dの2倍としている。このような関係にある場合、距離D区間の圧力波は圧電素子30の駆動と共振関係にあるといえる。また、周期TはT=1/fで表されるため、T=1/fで上記数式を置き換えると、T=n・2D/Qで表すことができる。   When the flow path length from the fluid ejection opening 96 to the deformation surface of the pressure chamber 80 is a distance D and the sound speed in water in the section of the flow path length is Q, the relational wave between the distance D, the sound speed Q, and the drive frequency f. Can be expressed by n · 2D = Q / f or 2D / Q = n / f (n is a positive integer). Since the pressure wave reaches the fluid ejection opening 96 from the pressure chamber 80 and is reflected back to the pressure chamber 80 (deformation surface), the pressure wave travel distance is twice the distance D. In such a relationship, it can be said that the pressure wave in the distance D section has a resonance relationship with the driving of the piezoelectric element 30. Further, since the period T is represented by T = 1 / f, if the above equation is replaced by T = 1 / f, it can be represented by T = n · 2D / Q.

圧電素子30は正の電圧が印加されると伸長するものとすると、時間t1(立ち上がり時間t1と表すことがある)の区間は圧力室80の容積を減少させている時間に相当する。つまり、立ち上がり時間t1の区間では圧力室80の内部圧力が上昇する。また、時間t2(立ち下がり時間t2と表すことがある)の区間では圧電素子30の電荷を除去する区間であって、圧電素子30は縮小する。つまり、立ち下がり時間t2の区間では圧力室80の容積は増加する。   Assuming that the piezoelectric element 30 expands when a positive voltage is applied, a section of time t1 (may be expressed as rise time t1) corresponds to a time during which the volume of the pressure chamber 80 is decreased. That is, the internal pressure of the pressure chamber 80 rises during the rise time t1. Further, the section of time t2 (which may be expressed as the fall time t2) is a section in which the electric charge of the piezoelectric element 30 is removed, and the piezoelectric element 30 is reduced. That is, the volume of the pressure chamber 80 increases in the section of the falling time t2.

ここで、立ち下がり時間t2をほぼ0にした三角波の駆動波形と休止期間との組み合わせの波形を例示して考察する。
図5は、三角波の駆動波形と休止時間T=1/fとの組み合わせの波形を示す駆動波形図である。図5に示す駆動波形によれば、圧力室80の容積を縮小した後(立ち上がり時間t1直後)に急激に容積を増加させる駆動波形を示している。
Here, a waveform of a combination of a triangular driving waveform and a rest period in which the falling time t2 is set to approximately 0 will be considered.
FIG. 5 is a drive waveform diagram showing a combination of a triangular drive waveform and a pause time T = 1 / f. The drive waveform shown in FIG. 5 shows a drive waveform that rapidly increases the volume after the volume of the pressure chamber 80 is reduced (immediately after the rising time t1).

このときの状態を模式的に表し説明する。
図6は、接続流路(出口流路を含む)内の液体の状態を模式的に示す断面図である。立ち上がり時間t1において圧力室80の容積を縮小する場合、イナータンス効果により液体は流体噴射開口部96に向かって(矢示E方向に)流動しようとする。しかし、圧力室80の急激な容積減少に伴い液体には圧力室80に向かって(矢示F方向に)引く作用が発生する。このことにより、接続流路管90内に真空状態の空間である液柱分離が発生する。
The state at this time will be schematically shown and described.
FIG. 6 is a cross-sectional view schematically showing the state of the liquid in the connection channel (including the outlet channel). When the volume of the pressure chamber 80 is reduced at the rising time t1, the liquid tends to flow toward the fluid ejection opening 96 (in the direction of arrow E) due to the inertance effect. However, as the volume of the pressure chamber 80 is suddenly reduced, an action of drawing the liquid toward the pressure chamber 80 (in the direction of arrow F) occurs. As a result, liquid column separation, which is a space in a vacuum state, is generated in the connection channel tube 90.

液柱分離が発生すると圧力波が伝播しないため、圧電素子30の駆動と距離D区間の圧力波の周期タイミングがずれてしまい、圧電素子30の駆動と共振関係がくずれてしまうことが考えられる。   Since the pressure wave does not propagate when the liquid column separation occurs, it is considered that the driving of the piezoelectric element 30 and the period of the pressure wave in the section of distance D are shifted, and the resonance relationship between the driving of the piezoelectric element 30 is lost.

そこで、圧力室80の容積を増加させている時間をt2(図4の立ち下がり時間t2に相当)としたとき、立ち上がり時間t1に対してt1≦t2となるように圧電素子30の駆動波形を形成することが望ましい。
このようにすることによって液柱分離の発生を抑制し、共振効果による強い流体噴射を安定して行うことができる。
Therefore, when the time during which the volume of the pressure chamber 80 is increased is t2 (corresponding to the fall time t2 in FIG. 4), the drive waveform of the piezoelectric element 30 is set so that t1 ≦ t2 with respect to the rise time t1. It is desirable to form.
By doing so, it is possible to suppress the occurrence of liquid column separation and stably perform strong fluid ejection by the resonance effect.

また、出口流路82を圧力室80の容積変化方向に開口しているため、圧力波が流体噴射開口部96から圧力室の内部まで到達して圧力室80の変形面(つまり、ダイアフラム40の圧力室側の面)で反射する圧力に共振させるように圧電素子30を駆動制御することが容易になるという効果がある。
(実施形態2)
Further, since the outlet channel 82 is opened in the direction of volume change of the pressure chamber 80, the pressure wave reaches the inside of the pressure chamber from the fluid ejection opening 96, and the deformation surface of the pressure chamber 80 (that is, the diaphragm 40 of the diaphragm 40). The piezoelectric element 30 can be easily driven and controlled to resonate with the pressure reflected by the pressure chamber side surface.
(Embodiment 2)

続いて、実施形態2について説明する。実施形態2は、前述した実施形態1が、周期Tと距離Dと音速Qと駆動周波数fの関係を、n・2D=Q/f、またはT=n・2D/Qとしていることに対して、周期Tが、前記圧力室の容積を減少させている時間をt1としたときにT±t1の範囲内(つまり、2・t1の誤差を許容する)で圧電素子30を駆動しても共振効果があることを特徴としている。
図7は、実施形態2に係る圧力反射波のタイミングと駆動波形の関係を示す駆動波形図である。
Next, Embodiment 2 will be described. In the second embodiment, the relationship between the period T, the distance D, the sound speed Q, and the driving frequency f is n · 2D = Q / f or T = n · 2D / Q in the first embodiment. Resonance even if the piezoelectric element 30 is driven within the range of T ± t1 (that is, an error of 2 · t1 is allowed) when the period T is the time during which the volume of the pressure chamber is reduced is t1. It is characterized by its effectiveness.
FIG. 7 is a drive waveform diagram showing the relationship between the timing of the pressure reflected wave and the drive waveform according to the second embodiment.

ここで、基本の駆動波形を図4と同じにした場合を考えると、n・2D=Q/f、または2D/Q=n/fの関係を満たしている。この場合、最初の駆動波形において、立ち上がり時間t1の間だけ圧電素子30を駆動して圧力室80を加圧するため、最初の駆動波形が流体噴射開口部96から反射した圧力反射波のタイミングと時間は図中斜線で示す範囲の期間となり、少なくともと立ち上がり時間t1と同じ時間がある。ここで、概念的な圧力反射波の波形を重ねて表示すると図中斜線で表される領域となる。   Here, considering the case where the basic drive waveform is the same as in FIG. 4, the relationship of n · 2D = Q / f or 2D / Q = n / f is satisfied. In this case, in the first drive waveform, the piezoelectric element 30 is driven only during the rise time t1 to pressurize the pressure chamber 80. Therefore, the timing and time of the pressure reflected wave reflected from the fluid ejection opening 96 by the first drive waveform. Is a period in the range indicated by hatching in the figure, and has at least the same time as the rising time t1. Here, when the waveform of the conceptual pressure reflected wave is displayed in an overlapping manner, it becomes a region represented by diagonal lines in the figure.

図8は、圧力反射波と駆動波形のタイミングの具体的な関係を示す駆動波形図である。つまり、最初の駆動波形に対する次の駆動波形も立ち上がり時間t1の間だけ圧電素子30を駆動して圧力室80を加圧する。従って、圧力反射波の波形と重なる状態で加圧しても共振効果がある。つまり、駆動波形の立ち上がりタイミングは、周期Tに対して立ち上がり時間t1の2倍の範囲の誤差が許容できることを表している。言い換えると、基本の周期Tに対してT±t1の範囲で駆動波形を立上げてもよいことを示している。   FIG. 8 is a drive waveform diagram showing a specific relationship between the pressure reflected wave and the timing of the drive waveform. That is, the next drive waveform with respect to the first drive waveform also drives the piezoelectric element 30 during the rise time t1 to pressurize the pressure chamber 80. Therefore, there is a resonance effect even if the pressure is applied in a state overlapping with the waveform of the pressure reflected wave. That is, the rise timing of the drive waveform represents that an error in a range twice as long as the rise time t1 with respect to the period T can be allowed. In other words, the drive waveform may be raised in the range of T ± t1 with respect to the basic period T.

このように、圧力反射波の波形に対してT±t1の範囲に駆動波形の立ち上がり時間を許容してもT=n・2D/Qにした場合と同様に共振効果が得られ、ほぼ同等の強いパルス流を噴射させることができる。   As described above, even when the rise time of the drive waveform is allowed in the range of T ± t1 with respect to the waveform of the pressure reflected wave, the resonance effect can be obtained as in the case of T = n · 2D / Q, which is almost equivalent. A strong pulse flow can be ejected.

なお、圧力反射波の波形に対して駆動波形の立上がりタイミングの少なくとも50%が重なる状態と考えると、周期T=1/fは、立ち上がり時間t1の範囲の誤差範囲を許容することがより好ましい。
図9は、圧力反射波の波形に対して駆動波形の立ち上がりタイミングをt1の範囲とした状態を表す駆動波形図である。つまり、基本周期T=1/fに対して、駆動波形の立ち上がりタイミングをT±t1・1/2の範囲とすることがより好ましく、T=n・2D/Qにした場合とほぼ同等の強いパルス流を噴射させることができる。
When it is considered that at least 50% of the rising timing of the drive waveform overlaps the waveform of the pressure reflected wave, it is more preferable that the period T = 1 / f allows an error range in the range of the rising time t1.
FIG. 9 is a drive waveform diagram showing a state where the rise timing of the drive waveform is in the range of t1 with respect to the waveform of the pressure reflected wave. That is, with respect to the basic period T = 1 / f, it is more preferable that the rising timing of the drive waveform is in the range of T ± t1 · 1/2, which is almost as strong as when T = n · 2D / Q. A pulse stream can be injected.

なお、前述した実施形態1及び実施形態2では、出口流路82から流体噴射開口部96までの流路を直線的に形成しているが、出口流路82から流体噴射開口部96に至る流路は、必ずしも直線的ではなく曲げて形成してもよい。   In the first and second embodiments described above, the flow path from the outlet flow path 82 to the fluid ejection opening 96 is linearly formed. The path is not necessarily straight but may be bent.

図10〜図12は、接続流路(つまり、接続管)を曲げて形成した場合の実施例を例示する構成図である。図10に示す実施例1では、接続流路管90の途中をクランク状に曲げた例を表している。また、図11に示す実施例2は、接続流路管90をU字状に曲げてノズル95を出口流路82の開口方向とは逆方向に延在させた例、図12に示す実施例3は、接続流路管90を螺旋状に巻回して形成した例を表している。   FIGS. 10-12 is a block diagram which illustrates the Example at the time of forming a connection flow path (namely, connection pipe) by bending. In the first embodiment shown in FIG. 10, an example in which the middle of the connection flow path pipe 90 is bent in a crank shape is shown. Further, the second embodiment shown in FIG. 11 is an example in which the connecting flow channel tube 90 is bent in a U shape so that the nozzle 95 extends in the direction opposite to the opening direction of the outlet flow channel 82, and the embodiment shown in FIG. 3 represents an example in which the connection flow channel tube 90 is formed by being spirally wound.

このように、出口流路82から流体噴射開口部96までの流路を曲線を含む形状に形成しても、圧力室80の変形方向(つまり、圧電素子30の伸縮方向)に出口流路82を形成し、実施形態1及び実施形態2にて説明した圧力反射波の波形と圧電素子30の駆動タイミングの条件を満たせば、強いパルス流を噴射させることができる。   Thus, even if the flow path from the outlet flow path 82 to the fluid ejection opening 96 is formed in a shape including a curve, the outlet flow path 82 in the deformation direction of the pressure chamber 80 (that is, the expansion / contraction direction of the piezoelectric element 30). And a strong pulse flow can be ejected if the conditions of the waveform of the pressure reflected wave and the drive timing of the piezoelectric element 30 described in the first and second embodiments are satisfied.

なお、上述した駆動条件を逸脱しない範囲で、接続流路管90を様々な形状にすることができ、また、接続流路管90を使用者自身が曲げたり、接続流路管90にチューブのようなものを採用してもよい。チューブを用いる場合には、圧力波によってチューブが変形しない程度の剛性を有していることが望ましい。   In addition, the connection flow path tube 90 can be formed in various shapes without departing from the driving conditions described above, and the user can bend the connection flow path tube 90 or connect the connection flow path pipe 90 to the connection flow path tube 90. Such a thing may be adopted. When a tube is used, it is desirable that the tube has rigidity enough to prevent the tube from being deformed by a pressure wave.

前述したように、圧力反射波と駆動波形とは、T=n・2D/Qの関係にあることから、駆動周波数f及び流体の音速Qによって距離Dが必然的に決定される。この際、使用者にとって施術しやすい脈流発生部20から流体噴射開口部96までの距離よりも接続流路91の長さがはるかに大きくなることが考えられる。このような場合に、接続流路管90を図10〜図12に表すようにまげることにより、把持される脈流発生部20からの流体噴射開口部96の距離を使用者にとって施術しやすくなるように設定しつつ上述の条件を満たす流体噴射装置1を実現できる。   As described above, since the pressure reflected wave and the driving waveform are in a relationship of T = n · 2D / Q, the distance D is inevitably determined by the driving frequency f and the sound velocity Q of the fluid. At this time, it is conceivable that the length of the connection flow path 91 is much longer than the distance from the pulsating flow generation portion 20 that is easy for the user to perform the treatment to the fluid ejection opening portion 96. In such a case, the connection flow path tube 90 is bent as shown in FIGS. 10 to 12, so that the user can easily operate the distance of the fluid ejection opening 96 from the grasped pulsating flow generation unit 20. Thus, the fluid ejecting apparatus 1 that satisfies the above-described conditions can be realized.

1…流体噴射装置、30…圧電素子、40…ダイアフラム、80…圧力室、82…出口流路、96…流体噴射開口部。   DESCRIPTION OF SYMBOLS 1 ... Fluid ejection apparatus, 30 ... Piezoelectric element, 40 ... Diaphragm, 80 ... Pressure chamber, 82 ... Outlet flow path, 96 ... Fluid ejection opening part.

Claims (3)

圧力室の容積を変化させる容積変更手段と、前記圧力室の容積変化方向に開口される出口流路と、前記出口流路に連通される流体噴射開口部とが備えられ、前記容積変更手段により前記圧力室の容積を変化させて、前記流体噴射開口部から流体をパルス状に噴射する流体噴射装置の駆動方法であって、
前記圧力室の容積変化の周期をT、前記流体噴射開口部から前記圧力室の変形面までの距離をD、距離Dの区間の水中の音速をQとした場合、周期Tと距離Dと音速Qとが、T=n・2D/Q(nは正の整数)を満たすように前記容積変更手段を駆動することを特徴とする流体噴射装置の駆動方法。
A volume changing means for changing the volume of the pressure chamber; an outlet channel opened in the volume changing direction of the pressure chamber; and a fluid ejection opening communicating with the outlet channel. A method of driving a fluid ejection device that changes the volume of the pressure chamber and ejects fluid in a pulse form from the fluid ejection opening,
When the period of the volume change of the pressure chamber is T, the distance from the fluid ejection opening to the deformation surface of the pressure chamber is D, and the sound speed in water in the section of the distance D is Q, the period T, the distance D, and the sound speed The fluid ejecting apparatus driving method, wherein the volume changing unit is driven so that Q satisfies T = n · 2D / Q (n is a positive integer).
請求項1に記載の流体噴射装置の駆動方法において、
周期Tは、前記圧力室の容積を減少させている時間をt1としたときにT±t1の範囲内で前記容積変更手段を駆動することを特徴とする流体噴射装置の駆動方法。
The method for driving a fluid ejection device according to claim 1,
In the period T, the volume changing means is driven within a range of T ± t1, where t1 is a time during which the volume of the pressure chamber is reduced.
請求項1または請求項2に記載の流体噴射装置の駆動方法において、
前記圧力室の容積を増加させている時間をt2としたとき、t1≦t2となるように前記容積変更手段を駆動することを特徴とする流体噴射装置の駆動方法。
In the driving method of the fluid ejection device according to claim 1 or 2,
The fluid ejecting apparatus driving method according to claim 1, wherein the volume changing means is driven so that t1 ≦ t2, where t2 is a time during which the volume of the pressure chamber is increased.
JP2009171896A 2009-07-23 2009-07-23 Method for driving fluid ejection device Withdrawn JP2011024706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009171896A JP2011024706A (en) 2009-07-23 2009-07-23 Method for driving fluid ejection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009171896A JP2011024706A (en) 2009-07-23 2009-07-23 Method for driving fluid ejection device

Publications (1)

Publication Number Publication Date
JP2011024706A true JP2011024706A (en) 2011-02-10

Family

ID=43634176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009171896A Withdrawn JP2011024706A (en) 2009-07-23 2009-07-23 Method for driving fluid ejection device

Country Status (1)

Country Link
JP (1) JP2011024706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015058169A (en) * 2013-09-19 2015-03-30 セイコーエプソン株式会社 Liquid jet device and medical equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015058169A (en) * 2013-09-19 2015-03-30 セイコーエプソン株式会社 Liquid jet device and medical equipment

Similar Documents

Publication Publication Date Title
JP4666094B2 (en) PULSE FLOW GENERATION DEVICE, MEDICAL DEVICE, AND METHOD OF CONTROLLING PULSE FLOW GENERATION DEVICE
JP4952754B2 (en) Liquid ejecting apparatus, scalpel for operation, and method for controlling liquid ejecting apparatus
JP4788809B2 (en) Fluid injection method
JP4655163B1 (en) Fluid ejecting apparatus and method for controlling fluid ejecting apparatus
JP4266788B2 (en) Fluid ejection device
JP4311483B2 (en) Liquid ejecting apparatus and surgical instrument using the same
JP6044098B2 (en) Liquid ejecting apparatus and method for controlling liquid ejecting apparatus
JP2010106748A (en) Fluid ejection system, method for driving fluid ejection system, and surgical apparatus
JP2010084678A (en) Fluid ejection device, fluid ejection method, and operation device
JP5360690B2 (en) Fluid ejecting apparatus and method for controlling fluid ejecting apparatus
JP2010059939A (en) Fluid injection device, method of controlling fluid injection device, and surgical device
JP2011024706A (en) Method for driving fluid ejection device
JP2010077949A (en) Fluid injection device, method for molding pipe member, fluid injection unit, and surgical apparatus
JP2011052595A (en) Device and method for injecting fluid
JP5408324B2 (en) Fluid ejecting apparatus and medical device
JP5585713B2 (en) Fluid ejection device
JP5212440B2 (en) Laser pulse scalpel and medical equipment
JP5549489B2 (en) Fluid injection method
JP5776246B2 (en) Liquid ejector
JP2010051517A (en) Fluid injection device, fluid injection surgical implement, and fluid injection method
JP2009108866A (en) Fluid jet device
JP6222322B2 (en) Medical equipment
JP5773039B2 (en) Control device, fluid ejection device, and fluid ejection method
JP2011017342A (en) Pulsating flow generating apparatus, medical equipment and method of controlling the pulsating flow generating apparatus
JP5737365B2 (en) Fluid ejection device and surgical scalpel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121002