JP2011023768A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2011023768A
JP2011023768A JP2010248251A JP2010248251A JP2011023768A JP 2011023768 A JP2011023768 A JP 2011023768A JP 2010248251 A JP2010248251 A JP 2010248251A JP 2010248251 A JP2010248251 A JP 2010248251A JP 2011023768 A JP2011023768 A JP 2011023768A
Authority
JP
Japan
Prior art keywords
chip
wire
bonding
solder
power transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010248251A
Other languages
Japanese (ja)
Inventor
Masaaki Koyama
正晃 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2010248251A priority Critical patent/JP2011023768A/en
Publication of JP2011023768A publication Critical patent/JP2011023768A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75743Suction holding means
    • H01L2224/75745Suction holding means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device that mounts a plurality of semiconductor components on the same substrate to receive the semiconductor components in a compact package, has the controlled, stabilized loop height and loop geometry of each wire connection, and improves an adhesion between the semiconductor components. <P>SOLUTION: A metal thin wire 9 is connected at a given wire length while being clamped with a clamp mechanism 34 before proceeding to a second bonding step after a first bonding step. An amount of pulling out the metal thin wire 9 is stabilized utilizing an active clamp function, which is an added function of a wedge bonder 30, in order to stabilize the loop geometry of a connecting wire when the wire is pull out after the first bonding step has finished. The method is also capable of stabilizing the loop geometry formed by the metal thin wire 9. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体チップを半田接合によって金属製のリードフレームの所定位置にマウントされた半導体装置の製造方法に関し、とくに出力段パワートランジスタチップの上に制御用のICチップを積層して配置し、所定の配線用ワイヤによってリードフレーム、出力段パワートランジスタチップ、またはICチップの間を電気的に接続する半導体装置の製造方法に関する。   The present invention relates to a method of manufacturing a semiconductor device in which a semiconductor chip is mounted at a predetermined position of a metal lead frame by solder bonding, and in particular, a control IC chip is stacked on an output stage power transistor chip and arranged. The present invention relates to a method for manufacturing a semiconductor device in which a lead frame, an output stage power transistor chip, or an IC chip are electrically connected by a predetermined wiring wire.

従来では、ディスクリート製品は1パッケージに1素子、あるいは同一半導体基板(同電位上)に数チップが搭載され、それらを配線用ワイヤによってパッケージの外部端子(アウタリード)とチップ電極とを結線する製品が主流であった。しかしながら、とくに自動車電装部品の分野においては、各種部品の電子化が進んでいて、近年では高電流/低抵抗のパワートランジスタのような半導体装置が多数採用されている。そのため、負荷短絡、過熱保護等の付加機能を有する半導体装置が必要とされることとなって、半導体装置の低損失化や小型パッケージ化の要求が強くなっている。   Conventionally, a discrete product is a product in which one element is mounted in one package or several chips are mounted on the same semiconductor substrate (on the same potential), and the external terminals (outer leads) of the package and chip electrodes are connected by wiring wires. It was mainstream. However, in the field of automotive electrical components, in particular, various components have been digitized, and in recent years, many semiconductor devices such as high current / low resistance power transistors have been adopted. For this reason, a semiconductor device having additional functions such as load short-circuiting and overheat protection is required, and there is an increasing demand for lower loss and smaller packaging of the semiconductor device.

小型パッケージ化された製品の一例として、後述する特許文献1には、車載エンジンの点火装置としてのイグナイタなどにおいて、スイッチング用のパワートランジスタとそのトランジスタを駆動するための回路素子とを備えた電子装置に関する発明が記載されている。すなわち、イグナイタは、基板としてのリードフレームと、第1のチップと、第2のチップとを備え、リードフレーム上に第1のチップが半田にて接合されるとともに、第1のチップ上には第2のチップがフリップチップ方式にて三次元実装されている。   As an example of a small packaged product, Patent Document 1 described later discloses an electronic device including a switching power transistor and a circuit element for driving the transistor in an igniter as an ignition device for an in-vehicle engine. The invention is described. In other words, the igniter includes a lead frame as a substrate, a first chip, and a second chip. The first chip is joined to the lead frame by solder, and the first chip is mounted on the first chip. The second chip is three-dimensionally mounted by a flip chip method.

このように、パワートランジスタを形成した第1のチップ上に、そのトランジスタを駆動するための回路素子を形成した第2のチップを積み重ねて配置することによって、セラミック基板上にパワートランジスタと回路素子を平面配置した従来のイグナイタと比較して、投影面積(上部から見た面積)を小さくでき、製品の小型化を図ることができる。   In this way, the power transistor and the circuit element are arranged on the ceramic substrate by stacking and arranging the second chip on which the circuit element for driving the transistor is stacked on the first chip on which the power transistor is formed. Compared to a conventional igniter arranged in a plane, the projected area (area viewed from above) can be reduced, and the product can be downsized.

図2は、一般的なチップオンチップ(COC)構成の半導体装置を示す断面構造図である。
基板となる金属製のリードフレーム1上には、パワートランジスタ2を導電性の接合部材、たとえば半田層3により接合され、その後に制御用のICチップ4が絶縁性接着剤5(あるいは導電性接着剤)によって接合されている。さらに、超音波および熱圧着を併用して、アルミニウムまたは金線等の金属細線6によって、パワートランジスタ2とリードフレーム1に対して外部端子となるアウタリード7との間が結線されている。また、金属細線6よりさらに細い金属細線8によって、パワートランジスタ2とICチップ4の電極間が接続され、さらに金属細線9によってICチップ4の電極とアウタリード7との間も接続されている。
FIG. 2 is a cross-sectional structure diagram illustrating a semiconductor device having a general chip-on-chip (COC) configuration.
A power transistor 2 is bonded to a metal lead frame 1 serving as a substrate by a conductive bonding member, for example, a solder layer 3, and then a control IC chip 4 is connected to an insulating adhesive 5 (or conductive bonding). Agent). Furthermore, the power transistor 2 and the outer lead 7 serving as an external terminal with respect to the lead frame 1 are connected to each other by a thin metal wire 6 such as aluminum or gold wire by using ultrasonic waves and thermocompression bonding. In addition, the power transistor 2 and the electrode of the IC chip 4 are connected by a fine metal wire 8 that is thinner than the fine metal wire 6, and the electrode of the IC chip 4 and the outer lead 7 are also connected by a fine metal wire 9.

こうしたパワートランジスタ2に、その制御用のICチップ4が積層されたチップオンチップ構成の半導体装置では、第1の半導体素子(パワートランジスタ2)が反った状態で第2の半導体素子(ICチップ4)を第1の半導体素子上に搭載すると、半導体素子どうしを全面にわたって均一に接着させることが困難となり、あるいはチップ接合面に間隙が生じることがあり、樹脂硬化後に半導体素子間で剥離が生じるおそれがあった。また、チップ接合面に間隙や剥離があると、第2の半導体素子の電極に金属細線6をボンディングする際に、ボンディング荷重や超音波振動のエネルギー等、接合エネルギーが分散されるために、安定して金属細線6を第2の半導体素子の電極に接合できなくなる。   In a semiconductor device having a chip-on-chip configuration in which the control IC chip 4 is stacked on the power transistor 2, the second semiconductor element (IC chip 4) with the first semiconductor element (power transistor 2) warped. ) Is mounted on the first semiconductor element, it may be difficult to uniformly bond the semiconductor elements over the entire surface, or a gap may be formed on the chip bonding surface, which may cause separation between the semiconductor elements after resin curing. was there. In addition, if there is a gap or separation on the chip bonding surface, bonding energy such as bonding load and ultrasonic vibration energy is dispersed when bonding the fine metal wire 6 to the electrode of the second semiconductor element. As a result, the metal thin wire 6 cannot be bonded to the electrode of the second semiconductor element.

特許文献2には、そのような問題に対処するための新規の半導体装置の製造方法の発明が記載されている。この発明は、配線基板と第1の半導体素子とを接着する第1の樹脂を軟化させ、第1の半導体素子の反りを解消させた状態で半導体素子どうしを全面にわたって接着したものである。これによって、ワイヤボンディング時の接合エネルギーの分散を防止して、安定した金属細線の接合を確保できるとともに、半導体素子どうしの間に形成した第2の樹脂の亀裂発生を防止している。   Patent Document 2 describes an invention of a novel method for manufacturing a semiconductor device to cope with such a problem. According to the present invention, the first resin for bonding the wiring board and the first semiconductor element is softened, and the semiconductor elements are bonded to each other in a state where the warp of the first semiconductor element is eliminated. Accordingly, dispersion of bonding energy during wire bonding can be prevented, stable metal thin wire bonding can be secured, and cracking of the second resin formed between the semiconductor elements can be prevented.

特開2001−168271号公報(〔0012〕〜〔0022〕、図2)JP 2001-168271 A ([0012] to [0022], FIG. 2) 特開2002−252326号公報(〔0012〕〜〔0023〕)JP 2002-252326 A ([0012] to [0023])

ところが、従来のパワートランジスタの半田接合方法には、以下の問題があった。
図2の半導体装置において、基板上に搭載されるパワートランジスタの素子面積は大型化しており、従来のダイボンディング装置によるマウント方法では、素子以外の領域に接合材がはみ出し、かつ接合材の厚みも不均一でコントロールできないという不具合が発生している。
However, the conventional power transistor soldering method has the following problems.
In the semiconductor device of FIG. 2, the element area of the power transistor mounted on the substrate is increased, and in the mounting method using the conventional die bonding apparatus, the bonding material protrudes into a region other than the element, and the thickness of the bonding material also increases. There is a problem that it is uneven and cannot be controlled.

自動車電装部品としての半導体装置が置かれている環境は、近年になって高温化が進み、適用環境における高耐熱性が要求されるようになっている。また、半田の鉛フリー化で融点の高い半田を使用することにより、実装温度が約20℃も上昇している。   The environment in which a semiconductor device as an automobile electrical component is placed has been increased in temperature in recent years, and high heat resistance in an application environment is required. In addition, the soldering temperature is increased by about 20 ° C. due to the use of solder having a high melting point by making the solder lead-free.

このような状況下では、前述の半田のはみ出し、および半田厚の不均一さは、封止材との密着を大幅に妨げ、耐湿性および対熱応力性の低下の大きな要因となっている。
ICチップの接着剤による接合方法についても、以下の問題があった。
Under such circumstances, the protrusion of the solder and the non-uniformity of the solder thickness greatly hinder the close contact with the sealing material, and are a major factor in lowering the moisture resistance and heat stress resistance.
The bonding method using an IC chip adhesive also has the following problems.

パワートランジスタ上へのICチップの接合では、一般的に熱硬化性の有機材料が用いられている。しかし、硬化キュア時に発生するアウトガス付着によるワイヤボンディング性の低下や素子電極の腐食が進行(耐腐食性低下)し、接着剤の位置ずれや染み出しによってもワイヤボンディング性の低下や実装面積の縮小化が生じ、さらには接着剤内のボイドや接着剤の厚み不均一による絶縁性の低下などが問題となる。   In joining an IC chip onto a power transistor, a thermosetting organic material is generally used. However, deterioration of wire bonding due to adhesion of outgas generated during curing and progress of corrosion of device electrodes (decrease in corrosion resistance), and deterioration of wire bonding and reduction of mounting area due to misalignment and leakage of adhesive. In addition, voids in the adhesive and deterioration of insulation due to uneven thickness of the adhesive become a problem.

また、接着剤をチップ接合部の全面にわたって添着させて、それを確実に硬化させておかないと、ICチップ上で金属細線をワイヤボンディングして結線するときに、ボンディングツールに超音波が伝わると同時に、素子そのものが同期してしまい、素子電極面とワイヤ間での摩擦が生じず、結果として凝固現象が起こらないで、不安定な接合につながる問題がある。   In addition, if the adhesive is not applied to the entire surface of the chip joint, and it is not hardened, the ultrasonic wave will be transmitted to the bonding tool when wire-bonding the fine metal wires on the IC chip. At the same time, the elements themselves are synchronized, there is no friction between the element electrode surface and the wire, and as a result, there is a problem that solidification does not occur and leads to unstable bonding.

さらに、ワイヤボンディングによる結線方法についても、下記の問題があった。
大電流化(低オン抵抗化)、およびパッケージの小型化による高密度実装可能な製品ができるというCOC構造のメリットについては前述したが、このような目標を達成するには、出力側端子への結線材は太線化・多数掛け化が必要不可欠である。一方、制御用ICとの間の結線には、搭載チップサイズ等の制約があって、ワイヤボンディングの細線化が必要であり、またICチップとパワートランジスタを直接結線することも必要である。また、自動車電装部品としての半導体装置を小型パッケージ化するためには、結線のループ高さ、およびループ形状をコントロールし、そのワイヤ結線を安定させることも求められている。
Furthermore, the wire bonding method has the following problems.
As described above, the advantages of the COC structure that enables high current mounting (low on-resistance) and high-density mounting by reducing the size of the package are described above. It is indispensable to use thick wires and multiple wires for the connecting material. On the other hand, the connection with the control IC has restrictions such as the size of the mounted chip, so that it is necessary to make the wire bonding thinner, and it is also necessary to directly connect the IC chip and the power transistor. In addition, in order to make a semiconductor device as an automobile electrical component into a small package, it is also required to stabilize the wire connection by controlling the loop height and loop shape of the connection.

本発明はこのような点に鑑みてなされたものであり、複数の半導体素子を同一基板に搭載することによって小型パッケージに収納される半導体装置であって、ワイヤ結線のループ高さ、およびループ形状をコントロールし、かつ安定させた半導体装置の製造方法を提供することを目的とする。   The present invention has been made in view of the above points, and is a semiconductor device that is housed in a small package by mounting a plurality of semiconductor elements on the same substrate, the loop height of the wire connection, and the loop shape It is an object of the present invention to provide a method for manufacturing a semiconductor device that controls and stabilizes.

本発明では、上記問題を解決するために、半導体チップを半田接合によって金属製のリードフレームの所定位置にマウントし、前記半導体チップにICチップをさらに積層して配置し、前記リードフレーム、前記半導体チップ、または前記ICチップの間を電気的に接続する半導体装置の製造方法が提供される。この半導体装置の製造方法は、前記リードフレーム、前記半導体チップ、または前記ICチップのボンディング位置に配線用ワイヤを超音波接合する第1のボンディング工程と、前記配線用ワイヤをキャピラリから所定長さだけ引き出した後に、前記キャピラリをワイヤクランプ状態にして前記リードフレーム、前記半導体チップ、または前記ICチップの別のボンディング位置に移動するワイヤ引き出し工程と、前記別のボンディング位置で前記配線用ワイヤの他端を超音波接合する第2のボンディング工程と、を含むことを特徴とする。   In the present invention, in order to solve the above problem, a semiconductor chip is mounted at a predetermined position of a metal lead frame by solder bonding, and an IC chip is further stacked on the semiconductor chip, and the lead frame, the semiconductor A method of manufacturing a semiconductor device that electrically connects chips or the IC chips is provided. The semiconductor device manufacturing method includes a first bonding step of ultrasonically bonding a wiring wire to a bonding position of the lead frame, the semiconductor chip, or the IC chip, and the wiring wire from the capillary by a predetermined length. A wire pulling process in which the capillary is brought into a wire clamped state after being pulled and moved to another bonding position of the lead frame, the semiconductor chip, or the IC chip; and the other end of the wiring wire at the other bonding position And a second bonding step for ultrasonic bonding.

本発明の半導体装置の製造方法によれば、接合材の厚みを均一にコントロールして、小型パッケージ化された半導体装置において、ワイヤ結線のループ高さ、およびループ形状をコントロールし、かつ安定させることができる。   According to the semiconductor device manufacturing method of the present invention, the thickness of the bonding material is uniformly controlled to control and stabilize the wire connection loop height and loop shape in a small packaged semiconductor device. Can do.

実施の形態に係る半導体装置のダイボンディング装置を示す図である。It is a figure which shows the die bonding apparatus of the semiconductor device which concerns on embodiment. 一般的なチップオンチップ(COC)構成の半導体装置を示す断面構造図である。1 is a cross-sectional structure diagram illustrating a semiconductor device having a general chip-on-chip (COC) configuration. 半田形状整形用の叩き工具を示す底面図、およびその側面断面図である。It is the bottom view which shows the tap tool for solder shape shaping, and its side surface sectional drawing. 図3に示す叩き工具によって圧延された半田の形状を示す図である。It is a figure which shows the shape of the solder rolled by the hitting tool shown in FIG. 従来のダイボンディング装置、およびチップ領域以外の部分に接合材がはみ出した様子を示す図である。It is a figure which shows a mode that the joining material protruded into parts other than the conventional die-bonding apparatus and a chip | tip area | region. 本発明の半田接合方法によりリードフレーム上にマウントされたパワートランジスタの顕微鏡写真を示す図である。It is a figure which shows the microscope picture of the power transistor mounted on the lead frame by the soldering method of this invention. 半導体ウェハーの裏面に接着剤フィルムを貼り付けてマウントする工程を示す図である。It is a figure which shows the process of affixing an adhesive film on the back surface of a semiconductor wafer, and mounting. 熱硬化型ポリイミドフィルムの吸発熱曲線の一例を示す図である。It is a figure which shows an example of the heat absorption-and-exotherm curve of a thermosetting polyimide film. パワートランジスタにポリイミドフィルムを接着した接着部の顕微鏡写真を示す図である。It is a figure which shows the microscope picture of the adhesion part which adhere | attached the polyimide film on the power transistor. 本発明のワイヤボンディングによる結線方法を示す説明図である。It is explanatory drawing which shows the connection method by the wire bonding of this invention.

以下、図面を参照してこの発明の実施の形態について、半導体チップの半田接合方法、接着剤によるICチップの接合方法、およびワイヤボンディングによる結線方法のそれぞれを順次に説明する。ここでは、図2に示すチップオンチップ(COC)構成の半導体装置の一例として、出力段のパワートランジスタを構成する半導体チップの上に制御用ICチップが積層配置された半導体装置について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings in order of a solder bonding method for semiconductor chips, a bonding method for IC chips using an adhesive, and a connection method using wire bonding. Here, as an example of a semiconductor device having a chip-on-chip (COC) structure shown in FIG. 2, a semiconductor device in which a control IC chip is stacked on a semiconductor chip constituting a power transistor in an output stage will be described.

(1)パワートランジスタの半田接合方法
最初に、半導体チップ(パワートランジスタ)を金属製のリードフレームの所定位置に、半田接合によってマウントする半田接合方法について説明する。
(1) Power Transistor Solder Joining Method First, a solder joining method for mounting a semiconductor chip (power transistor) on a predetermined position of a metal lead frame by solder joining will be described.

図1は、実施の形態に係る半導体装置のダイボンディング装置を示す図である。このダイボンディング装置は、リードフレーム1をタクト搬送するための搬送機構であるヒータレール11、このヒータレール11の上流でリードフレーム1上に半田12を供給する半田供給手段13、供給された半田12aをリードフレーム1の上方から押圧整形する押圧手段14、およびリードフレーム1に還元性雰囲気中でパワートランジスタ2をマウントするマウント手段15によって構成される。   FIG. 1 is a diagram illustrating a die bonding apparatus for a semiconductor device according to an embodiment. This die bonding apparatus includes a heater rail 11 which is a transport mechanism for tact transporting the lead frame 1, solder supply means 13 for supplying solder 12 onto the lead frame 1 upstream of the heater rail 11, and supplied solder 12a. Is formed by pressing means 14 for pressing and shaping from above the lead frame 1 and mounting means 15 for mounting the power transistor 2 on the lead frame 1 in a reducing atmosphere.

ここで半田供給手段13は、供給部13aと半田押出しツール(図示せず)から構成されている。ここでは、接合部材の最小半田厚を30〔μm〕以上に形成するために、溶融状態で定量の半田12が半田押出しツールからリードフレーム1の所定位置に供給される。このとき、パワートランジスタ2の寸法が4.3×3.6〔mm〕の大きさであって、金属製のリードフレーム1上に平均半田厚さ75〔μm〕の半田層3を形成して、パワートランジスタ2を接合するような設定であれば、そのために必要な半田12aの体積としては、4.3×3.6×0.075=1.161〔mm3〕のように計算することができる。 Here, the solder supply means 13 includes a supply unit 13a and a solder extrusion tool (not shown). Here, in order to form the minimum solder thickness of the joining member to 30 [μm] or more, a certain amount of solder 12 is supplied from a solder extrusion tool to a predetermined position of the lead frame 1 in a molten state. At this time, the size of the power transistor 2 is 4.3 × 3.6 [mm], and the solder layer 3 having an average solder thickness of 75 [μm] is formed on the metal lead frame 1. If the setting is such that the power transistor 2 is joined, the volume of the solder 12a necessary for that is calculated as 4.3 × 3.6 × 0.075 = 1.161 [mm 3 ]. Can do.

ヒータレール11の中流には押圧手段14が設けられている。この押圧手段14は、カム形式またはサーボモータ駆動により上下に駆動される加圧工具14aの下面に、叩き工具14bが取り付けられている。ここでは、叩き工具14bがリードフレーム1の表面まで上下移動して、リードフレーム1上に供給されたSn−Pb系の半田12aを押圧整形する。これによって、半田12aはパワートランジスタ2の素子形状に相似する形状であって、パワートランジスタ2の接合面積を越えない広さに圧延される。   A pressing means 14 is provided in the middle of the heater rail 11. The pressing means 14 has a hitting tool 14b attached to the lower surface of a pressurizing tool 14a that is driven up and down by a cam type or servo motor drive. Here, the striking tool 14b moves up and down to the surface of the lead frame 1 to press and shape the Sn—Pb solder 12a supplied onto the lead frame 1. As a result, the solder 12 a has a shape similar to the element shape of the power transistor 2 and is rolled to a size not exceeding the junction area of the power transistor 2.

つぎに、叩き工具14bの形状について説明する。
図3(a)は、半田形状整形用の叩き工具を示す底面図、同図(b)はその側面断面図である。叩き工具14bは、パワートランジスタ2と同様の矩形断面をなす直方体によって構成され、その断面積はチップサイズより小さく、かつその底面部には所定面積の開口部141が形成されている。また、この叩き工具14bの上部には、加圧工具14aの底部の挿入穴に嵌合可能な突起部142が設けられている。
Next, the shape of the hitting tool 14b will be described.
FIG. 3A is a bottom view showing a tapping tool for shaping the solder shape, and FIG. 3B is a side sectional view thereof. The hitting tool 14b is configured by a rectangular parallelepiped having the same rectangular cross section as that of the power transistor 2, and its cross-sectional area is smaller than the chip size, and an opening 141 having a predetermined area is formed on the bottom surface thereof. In addition, a protrusion 142 that can be fitted into the insertion hole in the bottom of the pressing tool 14a is provided on the top of the hitting tool 14b.

ここで、叩き工具14bの開口部141は、その開口面積がパワートランジスタ2の接合面積の50%から90%の範囲内に設定されていることが好ましい。具体的には、リードフレーム1の表面、およびパワートランジスタ2のチップ裏面での半田12aの濡れ性を考慮して、接合面積の75%程度に設計されている。すなわち、図3に示すように、この叩き工具14bの底面形状は、0.1〔mm〕幅の縁部を備えた矩形凹部をなしており、その有効開口面積は3.8×3.1〔mm〕となっている。また、必要半田量が1.161〔mm3〕であることから、開口部141の矩形凹部は0.1〔mm〕の深さが必要である。 Here, the opening 141 of the hitting tool 14b preferably has an opening area set in a range of 50% to 90% of the bonding area of the power transistor 2. Specifically, in consideration of the wettability of the solder 12a on the surface of the lead frame 1 and the chip back surface of the power transistor 2, it is designed to be about 75% of the bonding area. That is, as shown in FIG. 3, the bottom shape of the tapping tool 14b is a rectangular recess having an edge with a width of 0.1 [mm], and the effective opening area is 3.8 × 3.1. [Mm]. Further, since the necessary solder amount is 1.161 [mm 3 ], the rectangular recess of the opening 141 needs to have a depth of 0.1 [mm].

こうした叩き工具14bを加圧工具14aの下部に取り付けて、半田12aがリードフレーム1上で繰り返し叩かれることにより、パワートランジスタ2との接合面積の75%程度の広さにまで圧延される。なお、このような叩き工具14bは、リードフレーム1と繰り返し接触するものであるから、超硬製の金属で構成されていることが好ましい。また、上述したような箱型の額縁形状のものであれば、その耐久性を考慮するとき、縁部の幅はその材質にもよるが0.1〔mm〕以上が妥当である。   The hitting tool 14b is attached to the lower part of the pressing tool 14a, and the solder 12a is repeatedly hit on the lead frame 1 to be rolled to a size of about 75% of the joining area with the power transistor 2. In addition, since such a hitting tool 14b repeatedly contacts the lead frame 1, it is preferable that the hitting tool 14b is made of a hard metal. Further, in the case of the box-shaped frame shape as described above, when considering the durability, the width of the edge portion is appropriate to be 0.1 [mm] or more although it depends on the material.

図4には、図3に示す叩き工具14bによって圧延された半田12aの形状を示している。図4(a)には半田12aの平面的な広がりを、同図(b)にはその断面高さを示す。   FIG. 4 shows the shape of the solder 12a rolled by the hitting tool 14b shown in FIG. FIG. 4A shows a planar spread of the solder 12a, and FIG. 4B shows the cross-sectional height thereof.

ここに示すように、半田12aがSn−Pb系の半田である場合、パワートランジスタ2のマウント以前での断面形状は、表面張力の関係からなお円弧形状をなしているものの、そのピーク高さは、叩き工具14bに形成された凹部深さの約1.8倍の高さ(=0.18mm)になることが実験的に明らかにされている。この点に関しては、Sn−Sb系、あるいはSn−Ag系の半田を用いた場合であっても、ほぼ同様の形状となることが知られている。   As shown here, when the solder 12a is Sn-Pb solder, the cross-sectional shape before mounting the power transistor 2 is still an arc shape due to the surface tension, but the peak height is It has been experimentally clarified that the height (= 0.18 mm) is about 1.8 times the depth of the recess formed in the hitting tool 14b. With regard to this point, it is known that the same shape is obtained even when Sn—Sb or Sn—Ag solder is used.

つぎに、リードフレーム1はマウント手段15に搬送される。このマウント手段15は、コレット16とその昇降ユニット(図示せず)から構成され、窒素ガスと水素ガスを混合した還元性雰囲気中で動作する。マウント工程では、パワートランジスタ2がコレット16により真空吸着され、その接合面が半田高さの50〜60%の位置で保持されるように、リードフレーム1の上で停止位置が設定され、リードフレーム1上の所定位置にパワートランジスタ2がマウントされる。   Next, the lead frame 1 is conveyed to the mounting means 15. The mounting means 15 is composed of a collet 16 and its elevating unit (not shown), and operates in a reducing atmosphere in which nitrogen gas and hydrogen gas are mixed. In the mounting process, the stop position is set on the lead frame 1 so that the power transistor 2 is vacuum-sucked by the collet 16 and the joint surface is held at a position of 50 to 60% of the solder height. A power transistor 2 is mounted at a predetermined position on 1.

このマウント工程では、パワートランジスタ2のマウント高さを適切に設定することによって、以下の不都合が生じないようにすることが必要である。すなわち、マウント高さを低めに設定すると、半田のはみ出しが起こるだけでなく、半田層3の厚みが薄く、かつ不均一になってしまう。また、反対にマウント高さを高めに設定した場合は、マウントされるパワートランジスタ2の半田層3との接触面積が減少し、矩形のチップコーナ部分で未接合が発生し、さらにはパワートランジスタ2が傾くことによって、半田層3の厚みに不均一が発生する。ここでは、半田高さが0.18〔mm〕であれば、チップ下面の停止位置をフレーム面の上方0.09〜0.11〔mm〕に設定することで、安定したマウント状態を確保できる。   In this mounting process, it is necessary to prevent the following inconveniences by appropriately setting the mounting height of the power transistor 2. That is, if the mount height is set low, not only the solder will protrude, but the thickness of the solder layer 3 will be thin and non-uniform. On the other hand, when the mount height is set high, the contact area of the power transistor 2 to be mounted with the solder layer 3 is reduced, non-bonding occurs at the rectangular chip corner, and further the power transistor 2 As a result, the thickness of the solder layer 3 becomes non-uniform. Here, if the solder height is 0.18 [mm], a stable mounting state can be secured by setting the stop position of the lower surface of the chip to 0.09 to 0.11 [mm] above the frame surface. .

また、リードフレーム1上の半田層3は、もともとパワートランジスタ2のチップサイズよりも半田広がりが小さく、CuおよびNiメッキが施されているリードフレーム1では、半田濡れ性が劣る場合がある。そこで、パワートランジスタ2をスクラブすることによって半田濡れ性を確保する必要がある。   Further, the solder layer 3 on the lead frame 1 originally has a smaller solder spread than the chip size of the power transistor 2, and the lead frame 1 on which Cu and Ni plating are applied may have poor solder wettability. Therefore, it is necessary to ensure solder wettability by scrubbing the power transistor 2.

パワートランジスタ2のスクラブを実施するには、様々な方法が適用できる。ここでは、コレット16に保持されたパワートランジスタ2の形状にあわせて、スクウェア仕様のスクラブが最適である。なお、パワートランジスタ2のチップ裏面には、通常AuまたはAg蒸着が施されているので、とくに問題はない。   Various methods can be applied to scrub the power transistor 2. Here, in accordance with the shape of the power transistor 2 held in the collet 16, a square scrub is optimal. In addition, since Au or Ag vapor deposition is normally performed on the chip back surface of the power transistor 2, there is no particular problem.

図5は、従来のダイボンディング装置、およびチップ領域以外の部分に接合材がはみ出した様子を示す図である。同図(a)は、半導体装置のダイボンディング装置を示す図であって、同図(b),(c)には、それぞれ半田供給後と、チップマウント後のリードフレーム1の半田付け面を示している。   FIG. 5 is a diagram illustrating a conventional die bonding apparatus and a state in which a bonding material protrudes from a portion other than the chip region. FIG. 2A is a view showing a die bonding apparatus for a semiconductor device. FIGS. 2B and 2C show soldered surfaces of the lead frame 1 after supplying solder and after mounting the chip, respectively. Show.

ここでは、図1のダイボンディング装置のように、供給された半田12aをリードフレーム1の上方から押圧整形する押圧手段14を備えていない。そのため、マウント工程ではコレット16で保持されたパワートランジスタ2によって半田12aが直接に押し広げられ、溶融半田がリードフレーム1の素子以外の領域にも大きく広がっている。また、接合材(半田層3)の厚みも不均一になりやすく、その厚み自体を正確にコントロールすることができない。そのために、図5(a)に示すようにパワートランジスタ2は傾斜した状態でリードフレーム1上にマウントされてしまうことがある。   Here, unlike the die bonding apparatus of FIG. 1, the pressing means 14 for pressing and shaping the supplied solder 12a from above the lead frame 1 is not provided. Therefore, in the mounting process, the solder 12 a is directly spread by the power transistor 2 held by the collet 16, and the molten solder is greatly spread to the region other than the elements of the lead frame 1. Moreover, the thickness of the bonding material (solder layer 3) is also likely to be non-uniform, and the thickness itself cannot be controlled accurately. Therefore, the power transistor 2 may be mounted on the lead frame 1 in an inclined state as shown in FIG.

図6は、本発明の半田接合方法によりリードフレーム上にマウントされたパワートランジスタの顕微鏡写真を示す図である。
この顕微鏡写真に示すように、リードフレーム1上に配置された矩形のパワートランジスタ2の周囲には、ほぼ均等に半田フィレット3aが生じている。したがって、リードフレーム1上に均一な半田厚の接合材が形成され、安定した状態でパワートランジスタ2をマウントすることができる。
FIG. 6 is a view showing a photomicrograph of a power transistor mounted on a lead frame by the solder bonding method of the present invention.
As shown in this micrograph, the solder fillets 3a are generated almost uniformly around the rectangular power transistor 2 arranged on the lead frame 1. Therefore, a bonding material having a uniform solder thickness is formed on the lead frame 1, and the power transistor 2 can be mounted in a stable state.

以上、本発明の半田接合方法では、マウント前に所定の叩き工具で半田を押し広げているので、マウントされるパワートランジスタ2の高さを制御して、スクラブすることによって安定したマウント状態を確保できる。すなわち、所定量の半田をリードフレーム1に供給した後、叩き工具14bをリードフレーム1まで下降させて、その開口部面積まで半田層を押し広げるように半田形状を整形してから、パワートランジスタ2をマウントするようにしたために、半田フィレットを均一に形成して、半田はみ出しを防止して、均一な半田厚を確保することができる。   As described above, in the solder joining method of the present invention, the solder is spread with a predetermined hitting tool before mounting. Therefore, a stable mounting state is ensured by controlling the height of the mounted power transistor 2 and scrubbing. it can. That is, after supplying a predetermined amount of solder to the lead frame 1, the striking tool 14 b is lowered to the lead frame 1, and after shaping the solder shape so as to spread the solder layer to the opening area, the power transistor 2. Therefore, the solder fillet can be formed uniformly to prevent the solder from protruding, and a uniform solder thickness can be ensured.

(2)接着剤によるICチップの接合方法
つぎに、ICチップを接着剤フィルムによってパワートランジスタチップの上に積層して接合するICチップの接合方法について説明する。ここでは、接着剤フィルムの一例として、エポキシ樹脂を含有した熱硬化型ポリイミドフィルムが使用される。この接着剤フィルムは絶縁性フィルムであるが、導電性フィルムにも適用できる。
(2) IC chip bonding method using adhesive Next, an IC chip bonding method in which an IC chip is laminated on a power transistor chip using an adhesive film and bonded will be described. Here, as an example of the adhesive film, a thermosetting polyimide film containing an epoxy resin is used. This adhesive film is an insulating film, but can also be applied to a conductive film.

図7は、半導体ウェハーの裏面に接着剤フィルムを貼り付けてマウントする工程を示す図である。
同図(a)には、フィルム貼り付け工程を示す。円形の半導体ウェハー21には、多数のICチップが作成されている。この半導体ウェハー21をそのままの状態で、その裏面全体に矩形のポリイミドフィルム22を貼り付ける。こうして、ポリイミドフィルム22はその硬化反応が開始する温度より約10〜30℃低い温度で、半導体ウェハー21に対して仮接着される。
FIG. 7 is a diagram showing a process of attaching and mounting an adhesive film on the back surface of the semiconductor wafer.
FIG. 4A shows a film attaching process. A large number of IC chips are formed on the circular semiconductor wafer 21. With this semiconductor wafer 21 as it is, a rectangular polyimide film 22 is attached to the entire back surface thereof. Thus, the polyimide film 22 is temporarily bonded to the semiconductor wafer 21 at a temperature about 10 to 30 ° C. lower than the temperature at which the curing reaction starts.

図7(b)にはダイカット(DC)工程を示す。ここでは、半導体ウェハー21の外周部の余分なポリイミドフィルム22を除去してから、ダイシングテープに半導体ウェハー21を貼り付け、ダイサーによりフルカットを施すことにより、多数のICチップ(ダイス)として切り出される。これらの一連の作業は、通常のチップ作成工程と同一工程である。通常の作業と異なっているのは、このようにして切り出されたICチップ4の裏面には、チップサイズと同等であって、均一な膜厚の接着剤フィルム層5aが形成されていることである。   FIG. 7B shows a die cutting (DC) process. Here, the excess polyimide film 22 on the outer peripheral portion of the semiconductor wafer 21 is removed, and then the semiconductor wafer 21 is attached to a dicing tape, and a full cut is performed by a dicer to cut out a large number of IC chips (dies). . These series of operations are the same as the normal chip manufacturing process. The difference from the normal operation is that an adhesive film layer 5a having a uniform film thickness is formed on the back surface of the IC chip 4 cut out in this way, which is equivalent to the chip size. is there.

図8は、熱硬化型ポリイミドフィルムの吸発熱曲線の一例を示す図である。このチャートの横軸には温度(℃)、縦軸にはDSC(示差走査熱量計)によって測定される熱量(mW)を示す。この吸発熱曲線によれば、ポリイミドフィルム22の硬化開始温度は約180℃付近である。   FIG. 8 is a diagram showing an example of an endothermic curve of a thermosetting polyimide film. The horizontal axis of this chart indicates temperature (° C.), and the vertical axis indicates the amount of heat (mW) measured by DSC (differential scanning calorimeter). According to this endothermic curve, the curing start temperature of the polyimide film 22 is about 180 ° C.

つぎに、図7(c)に示すダイ加熱(DB)工程に進んで、パワートランジスタ2上へのマウントが実施される。ここでは、リードフレーム1のマウント手段15(図1)を用いて、コレット23でICチップ4を真空吸着して、恒温槽内で加熱されたパワートランジスタ2の表面所定位置に接着させる。   Next, the process proceeds to a die heating (DB) process shown in FIG. 7C, and mounting on the power transistor 2 is performed. Here, the IC chip 4 is vacuum-sucked by the collet 23 using the mounting means 15 (FIG. 1) of the lead frame 1 and adhered to a predetermined position on the surface of the power transistor 2 heated in the thermostat.

このとき恒温槽内のマウント温度は、半導体ウェハー21に貼り付けられた接着剤フィルム(ポリイミドフィルム22)の仕様に応じて最適化を図る必要がある。ここでは、ICマウント温度と接着状態との関連について説明する。   At this time, it is necessary to optimize the mount temperature in the thermostat according to the specifications of the adhesive film (polyimide film 22) attached to the semiconductor wafer 21. Here, the relationship between the IC mount temperature and the adhesion state will be described.

図9(a)〜(c)は、加熱温度がそれぞれ異なるパワートランジスタにポリイミドフィルムを接着したときの、接着部の顕微鏡写真を示す図である。
図9(a)に示すように、マウント時の加熱温度が170℃であれば、ICチップ4の全面が均一に接着されることになる。しかし、図9(b)および(c)に示すように、ポリイミドフィルム22の硬化開始温度である180℃以上の、190℃や210℃の高温でマウントを行ったときには、パワートランジスタ2上でICチップ4の一部分しか接着されない不具合が生じる。これは、パワートランジスタ2が傾いていた場合に、マウント温度が硬化開始温度より高い状態であれば、接着剤フィルム層5aとパワートランジスタ2との接触箇所のみが接着され、剥離部22aを残してポリイミドフィルム22が硬化してしまうことに起因している。そして、このような剥離現象は、つぎに説明するワイヤボンディング時のワイヤ結線にも悪影響を及ぼす。
FIG. 9A to FIG. 9C are micrographs of bonded portions when polyimide films are bonded to power transistors having different heating temperatures.
As shown in FIG. 9A, if the heating temperature at the time of mounting is 170 ° C., the entire surface of the IC chip 4 is uniformly bonded. However, as shown in FIGS. 9B and 9C, when mounting is performed at a high temperature of 190 ° C. or 210 ° C., which is 180 ° C. or higher, which is the curing start temperature of the polyimide film 22, an IC is formed on the power transistor 2. There arises a problem that only a part of the chip 4 is bonded. If the power transistor 2 is tilted and the mount temperature is higher than the curing start temperature, only the contact portion between the adhesive film layer 5a and the power transistor 2 is bonded, leaving the peeling portion 22a. This is because the polyimide film 22 is cured. And such a peeling phenomenon has a bad influence also on the wire connection at the time of the wire bonding demonstrated below.

こうした不具合を解消するために、本発明のICチップの接合方法では、マウント時の恒温槽内の温度を、当初は硬化開始温度より10から20℃低い温度、一例として約10℃低い170℃でICチップ4を仮接着するようにしている(第1のキュア工程)。仮接着では、ポリイミドフィルム22が硬化を開始する直前の状態に留めておいて、その後に恒温槽内の温度を硬化開始温度以上に高くして、接着剤フィルム層5aの硬化反応を完了させるためのキュアが施される(第2のキュア工程)。   In order to eliminate such problems, in the IC chip bonding method of the present invention, the temperature in the thermostatic chamber at the time of mounting is initially 10 to 20 ° C. lower than the curing start temperature, for example, 170 ° C. lower by about 10 ° C. The IC chip 4 is temporarily bonded (first curing step). In the temporary bonding, the polyimide film 22 is kept in a state immediately before the curing is started, and then the temperature in the thermostatic bath is set higher than the curing start temperature to complete the curing reaction of the adhesive film layer 5a. (The second curing step).

一般に、こうした2段階に温度を変化させるステップキュアの条件としては、まずマウント温度と同一温度(硬化開始温度より低い)状態でキュアをかけて、ポリイミドフィルム22の粘弾性によりICチップ4の全面での接着を図り、その後に温度を上げてポリイミドフィルム22を完全硬化させることが必要である。接着剤フィルム層5aの完全硬化は、ポリイミドフィルム22が熱分解を開始する温度以下であって、かつエンドユーザーでの実装条件を含む温度プロファイルの最高温度で実施することが望ましい。具体的には、エンドユーザーの基板実装時の加熱温度である260℃(Pbフリー半田の実装温度)で完全硬化させている。   In general, as a condition for the step cure in which the temperature is changed in two stages, first, curing is performed at the same temperature as the mount temperature (lower than the curing start temperature), and the entire surface of the IC chip 4 is applied due to the viscoelasticity of the polyimide film 22. It is necessary that the polyimide film 22 be completely cured by raising the temperature after that. The complete curing of the adhesive film layer 5a is preferably performed at a temperature not higher than the temperature at which the polyimide film 22 starts thermal decomposition and at the maximum temperature of the temperature profile including the mounting conditions of the end user. Specifically, it is completely cured at 260 ° C. (Pb-free solder mounting temperature), which is the heating temperature when the end user mounts the board.

以上に説明した接着剤フィルムによるICチップ4の接合方法では、COCの半導体装置にポリイミドフィルム22のようなフィルム系接着剤を導入して、半導体ウェハー21をウェハー状態のままで、まずフィルム系接着剤がウェハー裏面に貼り付けられ、その後に従来通りのダイシングカットをするようにしたので、アウトガス量を低減させて、接着剤内のボイドをなくすとともに、その厚みを均一化できる。また、チップサイズ同等の接着剤をICチップ4のチップ裏面に設けてから、パワートランジスタ2のような半導体チップ上にマウントするようにしたので、接着剤の位置ずれや染み出しなどの不具合を解消できる。さらに、ICチップ4のマウント装置には、パワートランジスタ2の接合工程で使用したコレット23をそのまま流用でき、設備投資を大幅に抑制することができる。   In the bonding method of the IC chip 4 using the adhesive film described above, a film adhesive such as the polyimide film 22 is introduced into the COC semiconductor device, and the semiconductor wafer 21 is left in the wafer state, and the film adhesive is first performed. Since the agent is affixed to the back surface of the wafer, and then the conventional dicing cut is performed, the amount of outgas can be reduced, voids in the adhesive can be eliminated, and the thickness thereof can be made uniform. In addition, since the adhesive equivalent to the chip size is provided on the back surface of the IC chip 4 and mounted on the semiconductor chip such as the power transistor 2, problems such as misalignment and bleeding of the adhesive are eliminated. it can. Further, the collet 23 used in the joining process of the power transistor 2 can be used as it is for the mounting device of the IC chip 4, and the capital investment can be greatly suppressed.

なお、フィルム系接着剤を用いるときには、その硬化特性を把握して最適キュア(ステップキュア)の条件を容易に確立できるとともに、ICチップ4の裏面全面の接着剤を確実に硬化させておくことによって、結線時のワイヤボンディング性が損なわれないという利点もある。   When using a film-based adhesive, it is possible to easily establish the conditions for optimal cure (step cure) by grasping its curing characteristics and to ensure that the adhesive on the entire back surface of the IC chip 4 is cured. There is also an advantage that the wire bonding property at the time of connection is not impaired.

(3)ワイヤボンディングによる結線方法
COCの半導体装置におけるワイヤボンディングによる結線方法では、短ループ/低ループでワイヤボンディングをいかに安定して完成させるかが最大の課題となる。上述した半導体チップの半田接合方法、および接着剤によるICチップの接合方法を適用した半導体装置においても、ボンディングツールの移動軌跡に合わせて、そこから引き出されるワイヤの長さを一定にして、かつそのワイヤ形状を安定してワイヤ結線することが必要不可欠である。
(3) Connection Method by Wire Bonding In the connection method by wire bonding in a COC semiconductor device, the biggest issue is how to complete wire bonding stably in a short loop / low loop. Even in a semiconductor device to which the above-described semiconductor chip soldering method and IC chip bonding method using an adhesive are applied, the length of the wire drawn from the bonding tool is adjusted in accordance with the movement trajectory of the bonding tool. It is indispensable to stably wire the wire shape.

図10は、本発明のワイヤボンディングによる結線方法を示す説明図である。ボンディングツール31は、アルミワイヤなどの金属細線9を保持するワイヤガイド32と、ボンディング後にワイヤをカットするカッター33とクランプ機構34とを備えたウェッジボンダー30として構成されている。   FIG. 10 is an explanatory view showing a connection method by wire bonding according to the present invention. The bonding tool 31 is configured as a wedge bonder 30 including a wire guide 32 that holds a thin metal wire 9 such as an aluminum wire, a cutter 33 that cuts the wire after bonding, and a clamp mechanism 34.

同図(a)では、ウェッジボンダー30によりICチップ4のボンディング位置に配線用の金属細線9が超音波接合される(第1のボンディング工程)。同図(b)には、ワイヤガイド32から引き出された金属細線9によりツール軌跡を示す。このとき、金属細線9はワイヤガイド32から所定長さだけ引き出された後、クランプ機構34によってクランプされる(ワイヤ引き出し工程)。   In FIG. 2A, the fine metal wires 9 are ultrasonically bonded to the bonding position of the IC chip 4 by the wedge bonder 30 (first bonding step). In FIG. 4B, the tool trajectory is shown by the fine metal wire 9 drawn out from the wire guide 32. At this time, the thin metal wire 9 is pulled out by a predetermined length from the wire guide 32 and then clamped by the clamp mechanism 34 (wire drawing process).

同図(c)では、ウェッジボンダー30はワイヤガイド32のクランプ機構34によってワイヤクランプ状態が保持され、リードフレーム1(図1)と一体構成のアウタリード7のボンディング位置まで移動する。そして、金属細線9の他端をウェッジボンダー30によりアウタリード7上に超音波接合している(第2のボンディング工程)。   In FIG. 6C, the wedge bonder 30 is held in the wire clamp state by the clamp mechanism 34 of the wire guide 32, and moves to the bonding position of the outer lead 7 integrated with the lead frame 1 (FIG. 1). The other end of the fine metal wire 9 is ultrasonically bonded onto the outer lead 7 by the wedge bonder 30 (second bonding step).

このように第1のボンディング工程が終了した後のワイヤ引き出し時に、結線用ワイヤのループ形状を安定化させるために、ウェッジボンダー30の付加機能であるアクティブクランプ機能を活用して、金属細線9の引き出し量を安定化させている。すなわち、第1のボンディング工程の後、第2のボンディング工程に進む前に、金属細線9をクランプ機構34によってクランプしながら一定のワイヤ長で結線するようにしたので、金属細線9が形成するループ形状の安定性を図ることができる。なお、金線ワイヤをボンディングする場合でも、同様の動作によって同等の効果を達成できる。   In order to stabilize the loop shape of the wire for connection when the wire is pulled out after the first bonding process is completed in this way, the active clamp function which is an additional function of the wedge bonder 30 is utilized to The amount of drawer is stabilized. That is, after the first bonding step and before proceeding to the second bonding step, the metal thin wire 9 is clamped by the clamp mechanism 34 and connected with a fixed wire length, so that the loop formed by the metal thin wire 9 is formed. Shape stability can be achieved. Even when a gold wire is bonded, the same effect can be achieved by the same operation.

以上、この発明の実施形態について説明したが、この発明は上述した実施形態のものに限られるわけではない。たとえばパワートランジスタの接合半田としては、Sn−Pb系に限らずSn−Ag、Sn−Sb系半田にも適用可能である。   As mentioned above, although embodiment of this invention was described, this invention is not necessarily restricted to the thing of embodiment mentioned above. For example, the junction solder of the power transistor is not limited to Sn—Pb, but can be applied to Sn—Ag and Sn—Sb solder.

またICチップの接着剤についても、ポリイミドフィルム以外の熱硬化性フィルム接着剤を利用することも可能である。   Moreover, it is also possible to utilize thermosetting film adhesives other than a polyimide film also about the adhesive agent of an IC chip.

1 リードフレーム
2 パワートランジスタ
3 半田層
4 制御用のICチップ
5 絶縁性接着剤
5a 接着剤フィルム層
6,8,9 金属細線
7 アウタリード
11 ヒータレール
12,12a 半田
13 半田供給手段
13a 供給部
14 押圧手段
14a 加圧工具
14b 叩き工具
15 マウント手段
16,23 コレット
21 半導体ウェハー
22 ポリイミドフィルム
30 ウェッジボンダー
31 ボンディングツール
32 ワイヤガイド
33 カッター
34 クランプ機構
DESCRIPTION OF SYMBOLS 1 Lead frame 2 Power transistor 3 Solder layer 4 IC chip for control 5 Insulating adhesive 5a Adhesive film layer 6, 8, 9 Metal thin wire 7 Outer lead 11 Heater rail 12, 12a Solder 13 Solder supply means 13a Supply part 14 Press Means 14a Pressure tool 14b Tapping tool 15 Mounting means 16, 23 Collet 21 Semiconductor wafer 22 Polyimide film 30 Wedge bonder 31 Bonding tool 32 Wire guide 33 Cutter 34 Clamp mechanism

Claims (2)

半導体チップを半田接合によって金属製のリードフレームの所定位置にマウントし、前記半導体チップにICチップをさらに積層して配置し、前記リードフレーム、前記半導体チップ、または前記ICチップの間を電気的に接続する半導体装置の製造方法において、
前記リードフレーム、前記半導体チップ、または前記ICチップのボンディング位置に配線用ワイヤを超音波接合する第1のボンディング工程と、
前記配線用ワイヤをキャピラリから所定長さだけ引き出した後に、前記キャピラリをワイヤクランプ状態にして前記リードフレーム、前記半導体チップ、または前記ICチップの別のボンディング位置に移動するワイヤ引き出し工程と、
前記別のボンディング位置で前記配線用ワイヤの他端を超音波接合する第2のボンディング工程と、
を含むことを特徴とする半導体装置の製造方法。
A semiconductor chip is mounted at a predetermined position on a metal lead frame by solder bonding, an IC chip is further stacked on the semiconductor chip, and the lead frame, the semiconductor chip, or the IC chip is electrically connected. In the manufacturing method of the semiconductor device to be connected,
A first bonding step of ultrasonically bonding a wire for wiring to a bonding position of the lead frame, the semiconductor chip, or the IC chip;
A wire drawing step of drawing the wiring wire from the capillary by a predetermined length and then moving the capillary to a wire clamping state and moving to another bonding position of the lead frame, the semiconductor chip, or the IC chip;
A second bonding step of ultrasonically bonding the other end of the wiring wire at the other bonding position;
A method for manufacturing a semiconductor device, comprising:
前記配線用ワイヤがアルミワイヤもしくは金線ワイヤであることを特徴とする請求項1記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein the wiring wire is an aluminum wire or a gold wire.
JP2010248251A 2010-11-05 2010-11-05 Method of manufacturing semiconductor device Pending JP2011023768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010248251A JP2011023768A (en) 2010-11-05 2010-11-05 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010248251A JP2011023768A (en) 2010-11-05 2010-11-05 Method of manufacturing semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004299728A Division JP2006114649A (en) 2004-10-14 2004-10-14 Method and apparatus for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2011023768A true JP2011023768A (en) 2011-02-03

Family

ID=43633500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010248251A Pending JP2011023768A (en) 2010-11-05 2010-11-05 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2011023768A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162217A (en) * 1995-12-08 1997-06-20 Sony Corp Semiconductor device
JP2001007143A (en) * 1999-06-22 2001-01-12 Kaijo Corp Wire bonding device
JP2004031451A (en) * 2002-06-21 2004-01-29 Mitsubishi Electric Corp Semiconductor device and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162217A (en) * 1995-12-08 1997-06-20 Sony Corp Semiconductor device
JP2001007143A (en) * 1999-06-22 2001-01-12 Kaijo Corp Wire bonding device
JP2004031451A (en) * 2002-06-21 2004-01-29 Mitsubishi Electric Corp Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4262672B2 (en) Semiconductor device and manufacturing method thereof
US6943443B2 (en) Electronic circuit device including metallic member having installation members
CN107615464B (en) Method for manufacturing power semiconductor device and power semiconductor device
JP3584930B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
US20150206830A1 (en) Method Of Manufacturing Semiconductor Device And The Semiconductor Device
US7833831B2 (en) Method of manufacturing an electronic component and an electronic device
CN109314063B (en) Power semiconductor device
JP2004174522A (en) Composite solder, production method therefor, and electronic equipment
CN108242435B (en) Method for manufacturing semiconductor device
JPH0964258A (en) Large power semiconductor device
TWI539586B (en) Flip chip bonding method, and method for manufacturing solid-state imaging device including the flip chip bonding method
US20210082868A1 (en) Method of joining a surface-mount component to a substrate with solder that has been temporarily secured
JP3111312B2 (en) Semiconductor device
CN112786469A (en) Bulk diffusion bonding and electronic devices produced by bulk diffusion bonding
JP2006114649A (en) Method and apparatus for manufacturing semiconductor device
US20110260307A1 (en) Integrated circuit including bond wire directly bonded to pad
JP2011023768A (en) Method of manufacturing semiconductor device
JP2000349099A (en) Method of bonding with solder and manufacture of semiconductor device
JP2021145051A (en) Semiconductor device and wire bonding method
JP3425510B2 (en) Bump bonder forming method
US20220173009A1 (en) Semiconductor device and method of manufacturing semiconductor device
JP6952503B2 (en) Manufacturing method of semiconductor devices
JP2001053097A (en) Method for forming stud bump
US20070290372A1 (en) Semiconductor device having wire loop and method and apparatus for manufacturing the semiconductor device
JP2016127163A (en) Method and device of manufacturing semiconductor device, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101105

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130716